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ABSTRACT

Substructure decoupling consists in the identification of the dynamic behaviour of a structural subsystem, starting
from the dynamic behaviour of both the assembled system and the residual subsystem (the known portion of the
assembled system). The degrees of freedom (DoFs) of the coupled system can be partitioned into internal DoFs
(not belonging to the couplings) and coupling DoFs. In direct decoupling, a fictitious subsystem that is the negative
of the residual subsystem is added to the coupled system, and appropriate compatibility and equilibrium conditions
are enforced at interface DoFs. Compatibility and equilibrium can be required either at coupling DoFs only (standard
interface), or at additional internal DoFs of the residual subsystem (extended interface), or at some coupling DoFs
and some internal DoFs of the residual subsystem (mixed interface). In this paper, a test bench is considered made
by a cantilever column with two staggered short arms coupled to a horizontal beam. This involves both flexural and
torsional DoFs, on which rotational FRFs are quite difficult to measure. Using a mixed interface, rotational DoFs are
neglected and substituted by internal translational DoFs. Experimental results are presented and discussed.

Keywords: Substructure Decoupling, Rotational DoFs, Flexotorsional Joints, Mixed Interface, Experimental Dy-
namic Substructuring.

1 INTRODUCTION

Substructure decoupling consists in the identification of the dynamic behaviour of a structural subsystem, starting
from the dynamic behaviour of both the assembled system and the residual subsystem (the known portion of the as-
sembled system). Decoupling is a need for subsystems that cannot be measured separately, but only when coupled
to their neighboring substructure(s) (e.g. fixtures needed for testing or subsystems in operational conditions).

Substructure decoupling represents a special case of experimental dynamic substructuring, where experimental
means that the model of at least one subsystem derives from tests. In Frequency Based Substructuring, Frequency
Response Functions (FRFs) are used instead of modal parameters to avoid modal truncation problems. A general
framework for dynamic substructuring is provided in [1], where primal and dual assembly are introduced.

A well known issue in experimental dynamic substructuring is related to rotational DoFs. In substructure coupling,
whenever coupling DoFs include rotational DoFs, the related rotational FRFs must be obtained experimentally. This
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becomes a quite complicated task when measuring only translational FRFs, as shown in [2]. Several techniques for
measuring rotational responses have been devised since then, see e.g. [3, 4]. However, when such rotational FRFs
are used for substructure coupling, results are still unsatisfactory.

Substructure decoupling techniques can be classified as reverse coupling techniques or direct decoupling tech-
niques. In reverse coupling, the equations written for the coupling problem are rearranged to isolate (as unknown)
one of the substructures instead of the assembled structure. Examples of reverse coupling are impedance and
mobility approaches [5, 6].

In direct decoupling, a fictitious subsystem that is the negative of the residual subsystem is added to the coupled
system, and appropriate compatibility and equilibrium conditions are enforced at interface DoFs. To solve the decou-
pling problem, a dual assembly [7], a primal assembly [8] or an hybrid assembly [9, 10] can be used. Compatibility
and equilibrium can be required either at coupling DoFs only (standard interface), or at additional internal DoFs
of the residual subsystem (extended interface), or at subsets of coupling DoFs and internal DoFs of the residual
subsystem (mixed interface). The choice of interface DoFs determines a set of frequencies at which the decoupling
problem is ill conditioned, as shown in [7].

For some time, it was believed that issues related to rotational DoFs also applied to substructure decoupling. How-
ever, in this case the actions exchanged through the connecting DoFs, and specifically through rotational DoFs,
are already embedded in each FRF of the assembled system. In practice, a mixed interface [11] can in fact be
considered that allows to substitute undesired coupling DoFs with internal DoFs of the residual subsystem. This
approach is introduced in [12] using simulated test data.

In this paper, a test bed is considered made by a cantilever column with two staggered short arms coupled to
a horizontal beam. This involves both flexural and torsional DoFs, on which rotational FRFs are quite difficult to
measure. Using a mixed interface, rotational DoFs are neglected and substituted by internal translational DoFs.
Experimental results are presented and discussed.

2 DIRECT DECOUPLING USING DUAL ASSEMBLY

The unknown substructure U (NU DoFs) is a portion of a larger structure RU (NRU DoFs). The known portion of
the assembled structure RU, defined as residual substructure R (NR DoFs), is joined to the unknown substructure
through a number of couplings (see Fig. 1). The degrees of freedom (DoFs) can be partitioned into internal DoFs
(not belonging to the couplings) of substructure U (u), internal DoFs of substructure R (r ), and coupling DoFs (c).

Assembled

system RU

− Internal DoFs r

Coupling DoFs c

Residual

subsystem R

=

Coupling DoFs c

Internal DoFs u

Unknown subsystem U

Figure 1: Scheme of the direct decoupling problem.

The goal is to find the FRF of the unknown substructure U starting from the FRFs of the assembled structure
RU and of the residual substructure R. The dynamic behaviour of the unknown substructure U can be extracted



from that of the assembled structure RU by taking out the dynamic effect of the residual subsystem R. This can
be accomplished by considering a negative structure, i.e. by adding to the assembled structure RU a fictitious
substructure with a dynamic stiffness opposite to that of the residual substructure R and satisfying compatibility and
equilibrium conditions. The dynamic equilibrium of the assembled structure RU and of the negative substructure is
expressed in block diagonal format as:

[
ZRU 0
0 −ZR

]{
uRU

uR

}
=

{
fRU

fR

}
+

{
gRU

gR

}
(1)

where:

• ZRU, −ZR are the dynamic stiffness matrices of the assembled structure RU and of the negative structure,
respectively;

• uRU, uR are the vectors of degrees of freedom of the assembled structure RU and of the negative structure,
respectively;

• fRU, fR are the external force vectors on the assembled structure RU and on the negative structure, respec-
tively;

• gRU, gR are the vectors of disconnection forces exchanged between the assembled structure and the negative
structure (constraint forces associated with compatibility conditions).

Compatibility and equilibrium conditions must be considered at the interface between the assembled structure RU
and the negative structure: such interface includes not only all the coupling DoFs between substructures U and R,
but includes as well all the internal DoFs of substructure R (the blue part of the structure in Fig. 1). However, it is
not required to consider all these interface DoFs, because it is sufficient that the number of interface DoFs be not
less than the number of coupling DoFs nc . Therefore, several options for interface DoFs can be considered:

• standard interface, including only the coupling DoFs (c) between substructures U and R;

• extended interface, including also a subset of internal DoFs (i ⊆ r ) of the residual substructure R;

• mixed interface, including subsets of coupling DoFs (d ⊆ c) and/or internal DoFs (i ⊆ r ) of substructure R.

The use of a mixed interface may allow to ignore rotational coupling DoFs by substituting them with translational
internal DoFs.

The compatibility condition at the (standard, extended, mixed) interface DoFs implies that any pair of matching DoFs
uRU

l and uR
m, i.e. DoF l on the coupled system RU and DoF m on subsystem R must have the same displacement,

that is uRU
l − uR

m = 0. Let the number of interface DoFs on which compatibility is enforced be denoted as NC .

The compatibility condition can be generally expressed as:

[
BRU

C BR
C

]{uRU

uR

}
= 0 (2)

where each row of BC =
[
BRU

C BR
C

]
corresponds to a pair of matching DoFs. Note that BC has size NC × (NRU + NR)

and is, in most cases, a signed Boolean matrix.



It should be noted that the interface DoFs involved in the equilibrium condition need not to be the same used to
enforce the compatibility condition, as long as compatibility can be ensured by disconnection forces applied at a
different set of DoFs. If the compatibility and the equilibrium DoFs are not the same, the approach is called non-
collocated [11]. Obviously, the traditional approach, in which compatibility and equilibrium DoFs are the same, is
called collocated.

Let NE denote the number of interface DoFs on which equilibrium is enforced. The equilibrium of disconnection
forces implies that their sum must be zero for any pair of matching DoFs belonging to the equilibrium interface,
i.e. gRU

r + gR
s = 0. Furthermore, for any DoF k on the coupled system RU (or on the residual subsystem R) not

belonging to the equilibrium interface, it must be gRU
k = 0 (gR

k = 0).

Overall, the above conditions can be expressed as:

[
LRU

E

LR
E

]T {gRU

gR

}
= 0 (3)

where the matrix LE =
[
LRU

E LR
E

]
is a Boolean localisation matrix. Note that the number of columns of LE is equal

to the number NE of equilibrium interface DoFs plus the number NNE of DoFs not belonging to the equilibrium
interface. Note that NNE = NRU + NR − 2NE : in fact, the number of DoFs belonging to the equilibrium interface must
be subtracted once from NRU and once from NR . Therefore, the size of LE is (NRU + NR) × (NRU + NR − NE ).

Eqs. (1-3) can be gathered to obtain the so-called 3-field formulation. Starting from the 3-field formulation, several
assembly techniques can be devised:

• dual assembly [1, 7] where equilibrium is satisfied exactly by defining a unique set of disconnection force
intensities;

• primal assembly [1, 8] where compatibility is satisfied exactly by defining a unique set of interface DoFs;

• hybrid assembly [9, 10] where both compatibility and equilibrium are satisfied exactly.

In the sequel, only the dual assembly is recalled. It can be shown [9] that whenever NC = NE , i.e. the number of
compatibility DoFs is the same as the number of equilibrium DoFs, all assembly techniques provide the same result.

2.1 Dual assembly

In the dual assembly, the equilibrium condition gRU
r + gR

s = 0 at a pair of equilibrium interface DoFs is ensured by
choosing gRU

r = −λ and gR
s = λ. If a Boolean matrix BE related to interface equilibrium DoFs is defined similarly to

BC, the overall interface equilibrium can be ensured by writing the disconnection forces in the form:

{
gRU

gR

}
= −

BRU
E

T

BR
E

T

λ (4)

where λ are Lagrange multipliers corresponding to disconnection force intensities and BE is a NE × (NRU + NR)
matrix. Since there is a unique set of disconnection force intensities λ, the interface equilibrium condition is satisfied
automatically for any λ, i.e.



[
LRU

E

LR
E

]T {gRU

gR

}
= −

[
LRU

E

LR
E

]T
BRU

E
T

BR
E

T

λ = 0 (5)

In the dual assembly, the total set of DoFs is retained, i.e. each interface DoF appears twice. Since Eq. (5) is always
satisfied, the 3-field formulation reduces to:



[
ZRU 0
0 −ZR

]{
uRU

uR

}
+

BRU
E

T

BR
E

T

λ =

{
fRU

fR

}

[
BRU

C BR
C

]{uRU

uR

}
= 0

(1∗)

(2)

or in more compact form:

Zu + BE
Tλ = f

BCu = 0

(1∗)

(2)

To eliminate λ, Eq. (1∗) can be written:

u = −Z−1BE
Tλ + Z−1f (1∗)

which substituted in Eq. (2) gives:

BCZ−1BE
Tλ = BCZ−1f (6)

from which λ, to be back-substituted in Eq. (1∗), is found as:

λ =
(

BCZ−1BE
T
)+

BCZ−1f (7)

To obtain a determined or overdetermined matrix for the generalized inversion operation, the number of rows of BC
must be greater or equal than the number of rows of BE, i.e.

NC ≥ NE ≥ nc (8)

Note that, if NC > NE , Eq. (6) is not satisfied exactly by vector λ given by Eq. (7), but only in the minimum
square sense. This implies that also Eq. (2) is not satisfied exactly, i.e. compatibility conditions at interface are
approximately satisfied. On the contrary, equilibrium is satisfied exactly due to the introduction of the disconnection
force intensities λ as in Eq. (4).



By substituting λ in Eq. (1∗), it is obtained:

Zu + BE
T
(

BCZ−1BE
T
)+

BCZ−1f = f (9)

Finally, u can be written as u = Hf, which provides the FRF of the unknown subsystem U:

u =
(

Z−1 − Z−1BE
T
(

BCZ−1BE
T
)+

BCZ−1
)

f (10)

i.e., by noting that the inverse of the block diagonal dynamic stiffness matrix can be expressed as:

[
ZRU 0
0 −ZR

]
= Z−1 = H =

[
HRU 0

0 −HR

]
(11)

where HRU and HR are the FRFs of the assembled structure and of the residual substructure, it is:

HU = H − HBE
T
(

BCHBE
T
)+

BCH (12)

With the dual assembly, the rows and the columns of HU corresponding to compatibility and equilibrium DoFs
appear twice. Furthermore, when using an extended or mixed interface, HU contains some meaningless rows and
columns: those corresponding to the internal DoFs of the residual substructure R. Obviously, only meaningful and
independent entries are retained.

2.2 Interface flexibility matrix

In Eq. (12), the product of the three matrices to be inverted can be defined as interface flexibility matrix. The
interface flexibility matrix can be rewritten in expanded form as:

[
BRU

C BR
C

] [HRU 0
0 −HR

]BRU
E

T

BR
E

T

 = BRU
C HRUBRU

E
T − BR

CHRBR
E

T
(13)

It can be noticed that

BRU
C HRUBRU

E
T = ĤRU

where ĤRU is a subset of the FRF matrix of the coupled structure: pre-multiplication by BRU
C extracts rows at com-

patibility DoFs, and post-multiplication by BRU
E extracts columns at the equilibrium DoFs. Similarly,

BR
CHRBR

E
T = ĤR

where ĤR is the FRF of the residual structure at the same DoFs as above.



Figure 2: Sketch of the test structure.

Therefore, the interface flexibility matrix becomes:

BRU
C HRUBRU

E
T − BR

CHRBR
E

T = ĤRU − ĤR (14)

The interface flexibility matrix (14) is strictly related to singularity. In [7, 8], it is shown that the interface flexibility
matrix is singular at the resonant frequencies of the residual substructure with coupling DoFs grounded, both for
standard interface and for non collocated extended interface when equilibrium condition is enforced on coupling
DoFs only. In other cases, it is not so easy to find the frequencies at which the interface flexibility matrix is singular.

3 TEST STRUCTURE

The proposed decoupling technique is tested on an aluminium structure (Fig. 2). The residual substructure R
consists of a cantilever column with two staggered short arms. The unknown substructure U is a horizontal beam.
The horizontal beam is bolted to the top of the column, involving both translational and rotational DoFs.

The geometrical dimensions are reported in Table 1. The cross section is 40 mm×8 mm for all beams, with the
short side along the z-direction.

a b c d e l

540 420 60 100 240 600

TABLE 1: Geometrical dimensions [mm]



Figure 3: Assembled system.

The experimental FRFs of the assembled system RU up to 2000 Hz are obtained by applying impact excitation
and measuring the resulting accelerations along z-direction at seven locations (3, 6, 9, 10, 11, 13, 20), as shown
in Fig. 3. For the residual subsystem R (column) the experimental FRFs are similarly measured at five locations
(3, 6, 9, 10, 11), as shown in Fig. 4. A detail of the bolted junction between the beam and the column is shown in
Fig. 5. Finally, to check decoupling results, FRFs are measured also at three locations (11, 13, 20) of the unknown
subsystem U (beam), supported by an inflated rubber tube, shown in Fig. 6, giving rigid body eigenfrequencies well
separated from the first flexible mode of the beam. Measurements are performed by placing the accelerometers
at the underside of each (sub)structure. In order to obtain a complete FRF matrix, as required by the decoupling
technique, impact excitation is sequentially provided on all DoFs at the topside of each (sub)structure.

A reciprocity check is performed on the experimental FRFs showing that reciprocity is acceptable for all FRF pairs
involving coupling DoFs and internal DoFs of the residual subsystem, i.e. the DoFs that can be used to enforce
compatibility and equilibrium conditions. Figures 7 and 8 show the reciprocity check on experimental FRFs of
the assembled structure RU and of the residual subsystem R. No indication about possible FRFs that should be
discarded because of lack of reciprocity is provided by this check.

4 DECOUPLING

The FRFs of subsystem U can be determined through the procedure described previously and summarized in
Eq. (12), where compatibility and equilibrium DoFs are defined case by case. A collocated approach is adopted in
which compatibility and equilibrium DoFs are the same.

FRFs to be used in decoupling can be either the raw FRFs or can be obtained by a curve fitting procedure. In the
latter case, results are very bad and are not shown in the paper. This occurs although curve fitting is performed
using a global procedure that gives rise to a unique modal model plus low and high frequency residuals obtained
for all FRFs. Therefore, raw FRFs are used in the sequel.



Figure 4: Residual subsystem.

Figure 5: Detail of the bolted junction.

4.1 Results using raw FRFs

Since rotational DoFs at the junction between the residual subsystem and the unknown subsystem can not be
measured, neither the standard interface nor the extended interface can be used. Therefore, only mixed interfaces
can be considered. The number nc of coupling DoFs is 3 so that it must be NE ≥ nc = 3. To deal with overdetermined
problems, a set of attempts using mixed interfaces with NC = NE = 4 is performed.



Figure 6: Unknown subsystem.
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Figure 7: Reciprocity check on experimental FRFs of the assembled structure RU among DoFs 3, 6, 9, 10, 11.
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Figure 8: Reciprocity check on experimental FRFs of the residual structure RU among DoFs 3, 6, 9, 10, 11.

First, an interface including DoFs 3z, 6z, 9z and 11z is used. Therefore

BC = BE =

uRU
3z uRU

6z uRU
9y uRU

11z
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣∣∣
BRU

C

uR
3z uR

6z uR
9z uR

11z

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


BR

C

(15)

The FRF of the unknown substructure U is shown in Fig. 9. It can be noticed that, although the FRF is not very scat-
tered, the peak around 1000 Hz is not well described and some other peaks are shifted towards higher frequencies.

Another mixed interface including DoFs 3z, 6z, 10z and 11z is used. The signed Boolean matrices BC and BE
are built as in the previous case. The FRF of the unknown substructure U is shown in Fig. 10. It can be noticed
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Figure 9: HU
11z,11z : measured (—), computed using mixed interface with coupling DoF 11z, and internal DoFs

3z, 6z, 9z (∗∗∗).

0 500 1000 1500 2000

10
−1

10
1

10
3

Frequency [Hz]

M
a

g
n

it
u

d
e

 [
m

 s
−

2
/N

]

Figure 10: HU
11z,11z : measured (—), computed using mixed interface with coupling DoF 11z, and internal DoFs

3z, 6z, 10z (∗∗∗).

that around 500 Hz a spurious peak appear and another peak is considerably forward shifted. However, the peak
around 1000 Hz is better described.

Subsequently, a mixed interface including DoFs 3z, 9z, 10z and 11z is used. The signed Boolean matrices BC and
BE are built as in the first case. The FRF of the unknown substructure U is shown in Fig. 11. It can be noticed
that around 600 Hz the peak is shifted forward and around this peak the FRF is a bit scattered. However, the peak
around 1000 Hz is very well described.

Finally, a mixed interface including DoFs 6z, 9z, 10z and 11z is used. The signed Boolean matrices BC and BE are
built as in the first case. The FRF of the unknown substructure U is shown in Fig. 12. At a first glance, the result
looks very similar to the previous one (interface DoFs 3z, 9z, 10z and 11z), but it is definitely worse because of
several spikes and because the FRF around 1000 Hz is described less accurately than in the previous case.

A new set of attempts is performed using mixed interfaces including only 3 DoFs that give rise to determined
problems. Based on the previous results, a mixed interface that includes DoFs 3z, 9z and 11z is used. Such DoFs
represent the set intersection between DoFs 3z, 6z, 9z, 11z and 3z, 9z, 10z, 11z that provide the best results
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Figure 11: HU
11z,11z : measured (—), computed using mixed interface with coupling DoF 11z, and internal DoFs
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Figure 12: HU
11z,11z : measured (—), computed using mixed interface with coupling DoF 11z, and internal DoFs

6z, 9z, 10z (∗∗∗).

using 4 interface DoFs. The signed Boolean matrices BC and BE are built similarly to the first case. The FRF of
the unknown substructure U is shown in Fig. 13. It can be noticed that the result is quite clean with no significant
drawbacks.

To cross-check this result, a mixed interface that includes DoFs 6z, 10z and 11z is used. Such DoFs represent the
set intersection between DoFs 3z, 6z, 10z, 11z and 6z, 9z, 10z, 11z that provide the worst results using 4 interface
DoFs. The FRF of the unknown substructure U is shown in Fig. 14. It can be noticed that the result is quite bad
with significant scatter around the natural frequencies and several spurious peaks.

A further check is performed using a mixed interface that includes DoFs 9z, 10z and 11z. DoFs 9z, 10z are both
able to provide information about the rotational DoF θy (torsion of the column) but may miss the information about
the rotational DoF θx (bending of the column). The FRF of the unknown substructure U is shown in Fig. 15. It can
be noticed that the result is very bad because the two modes around 315 Hz and 615 Hz are not clearly visible.
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Figure 13: HU
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Figure 14: HU
11z,11z : measured (—), computed using mixed interface with coupling DoF 11z, and internal DoFs
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5 CONCLUDING REMARKS

In this paper, a procedure that ignores rotational DoFs in decoupling of substructures, connected to each other
through translational and rotational DoFs, is verified on an experimental test bed. The test bed is made by a
cantilever column with two staggered short arms coupled to a horizontal beam. This involves both flexural and
torsional DoFs, on which rotational FRFs are quite difficult to measure. Using a mixed interface, such FRFs are
neglected and substituted by FRFs involving internal translational DoFs.

Measured FRFs can be curve fitted to try to smooth out noise before using them in the decoupling procedure. How-
ever, in this case, very bad results are obtained. Therefore, raw FRFs are used. Using a mixed interface including
the single translational coupling DoF and several combinations of 3 internal DoFs, the obtained results are not sat-
isfactory in different frequency bands: in two cases results are slightly better than in other cases. Further attempts
are performed using a mixed interface including the single translational coupling DoF and different combinations
of 2 internal DoFs. In one case, the result is almost satisfactory, whilst in the other cases results are worse than
those obtained with 3 internal DoFs. (It can be noticed that the minimum number of interface equilibrium DoFs is 3.)
Therefore, increasing the number of interface DoFs to deal with an overdetermined problem does not necessarily
improve the results. Conversely, decreasing the number of interface DoFs increases the variability of the results:
this can lead to better results but care must be taken to avoid worse results.
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