
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=iaut20

Download by: [Universita Studi la Sapienza], [Antonello Mai] Date: 22 January 2016, At: 07:24

Autoimmunity

ISSN: 0891-6934 (Print) 1607-842X (Online) Journal homepage: http://www.tandfonline.com/loi/iaut20

Histone deacetylase inhibitors restore IL-10
expression in lipopolysaccharide-induced cell
inflammation and reduce IL-1β and IL-6 production
in breast silicone implant in C57BL/6J wild-type
murine model

Rosa Di Liddo, Sergio Valente, Samanta Taurone, Clemens Zwergel, Biagina
Marrocco, Rosaria Turchetta, Maria Teresa Conconi, Carlotta Scarpa, Thomas
Bertalot, Sandra Schrenk, Antonello Mai & Marco Artico

To cite this article: Rosa Di Liddo, Sergio Valente, Samanta Taurone, Clemens Zwergel,
Biagina Marrocco, Rosaria Turchetta, Maria Teresa Conconi, Carlotta Scarpa, Thomas Bertalot,
Sandra Schrenk, Antonello Mai & Marco Artico (2016): Histone deacetylase inhibitors restore
IL-10 expression in lipopolysaccharide-induced cell inflammation and reduce IL-1β and IL-6
production in breast silicone implant in C57BL/6J wild-type murine model, Autoimmunity, DOI:
10.3109/08916934.2015.1134510

To link to this article:  http://dx.doi.org/10.3109/08916934.2015.1134510

Published online: 20 Jan 2016.

Submit your article to this journal 

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=iaut20
http://www.tandfonline.com/loi/iaut20
http://www.tandfonline.com/action/showCitFormats?doi=10.3109/08916934.2015.1134510
http://dx.doi.org/10.3109/08916934.2015.1134510
http://www.tandfonline.com/action/authorSubmission?journalCode=iaut20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=iaut20&page=instructions
http://www.tandfonline.com/doi/mlt/10.3109/08916934.2015.1134510
http://www.tandfonline.com/doi/mlt/10.3109/08916934.2015.1134510
http://crossmark.crossref.org/dialog/?doi=10.3109/08916934.2015.1134510&domain=pdf&date_stamp=2016-01-20
http://crossmark.crossref.org/dialog/?doi=10.3109/08916934.2015.1134510&domain=pdf&date_stamp=2016-01-20


http://informahealthcare.com/aut
ISSN: 0891-6934 (print), 1607-842X (electronic)

Autoimmunity, Early Online: 1–11
! 2016 Taylor & Francis. DOI: 10.3109/08916934.2015.1134510

ORIGINAL ARTICLE

Histone deacetylase inhibitors restore IL-10 expression in lipopolysac-
charide-induced cell inflammation and reduce IL-1b and IL-6 production
in breast silicone implant in C57BL/6J wild-type murine model

Rosa Di Liddo1*, Sergio Valente2*, Samanta Taurone3, Clemens Zwergel2, Biagina Marrocco2, Rosaria Turchetta3,
Maria Teresa Conconi1, Carlotta Scarpa4, Thomas Bertalot1, Sandra Schrenk1, Antonello Mai2,5, and Marco Artico3

1Dipartimento Scienze del Farmaco, Università di Padova, Padova, Italy, 2Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di

Roma, Roma, Italy, 3Dipartimento Organi di Senso, Sapienza Università di Roma, Roma, Italy, 4Dipartimento di Neuroscienze, Clinica di Chirurgia

Plastica, Università di Padova, Padova, Italy, and 5Istituto Pasteur – Fondazione Cenci Bolognetti, Sapienza Università di Roma, Roma, Italy

Abstract

Among epigenetic enzymes, histone deacetylases (HDACs) are responsible for regulating the
expression of an extensive array of genes by reversible deacetylation of nuclear histones as well
as a large number of non-histone proteins. Initially proposed for cancer therapy, recently the
interest for HDAC inhibitors (HDACi) as orally active, safe, and anti-inflammatory agents is rising
due to their ability in reducing the severity of inflammatory and autoimmune diseases. In
particular, selective HDAC3, HDAC6, and HDAC8 inhibitors have been described to down-
regulate the expression of pro-inflammatory cytokines (TNF-a, TGF-b, IL-1b, and IL-6). Herein,
using KB31, C2C12, and 3T3-J2 cell lines, we demonstrated that, under lipopolysaccharide-
induced in vitro inflammation, HDAC3/6/8 inhibitor MC2625 and HDAC6-selective inhibitor
MC2780 were effective at a concentration of 30 ng/mL to downregulate mRNA expression of
pro-inflammatory cytokines (IL-1b and IL-6) and to promote the transcription of IL-10 gene,
without affecting the cell viability. Afterwards, we investigated by immunohistochemistry the
activity of MC2625 and MC2780 at a concentration of 60 ng/kg animal weight to regulate
silicone-triggered immune response in C57BL/6J female mice. Our findings evidenced the
ability of such inhibitors to reduce host inflammation in silicone implants promoting a thickness
reduction of peri-implant fibrous capsule, upregulating IL-10 expression, and reducing the
production of both IL-1b and IL-6. These results underline the potential application of MC2625
and MC2780 in inflammation-related diseases.

Keywords

Breast silicone implants, epigenetics, HDAC
inhibitors, inflammation, pro-inflammatory
cytokines

History

Received 13 August 2015
Revised 24 November 2015
Accepted 16 December 2015
Published online 18 January 2016

Introduction

Epigenetic regulation of gene expression is now recognized as

a novel approach to treat several diseases. Histone deacety-

lases (HDACs) are responsible for regulating the expression

of an extensive array of genes by catalyzing the reversible

deacetylation of "-amino groups located on the N-terminal

lysine residues of nuclear histones as well as a large number

of non-histone proteins [1,2]. Although initially used mainly

for cancer therapy, research now suggests that inhibitors of

HDAC (HDACi) could also be utilized for treating diseases

ranging from neurodegenerative [3–5] to inflammatory ones,

such as asthma and rheumatoid arthritis [6,7]. Anti-inflam-

matory properties of HDACi are interestingly observed in the

low nanomolar range, compared with the micromolar range

needed to treat cancer. The recent expanding interest in

HDAC inhibitors as orally active, safe, and anti-inflammatory

agents has been increased by the ability of these inhibitors to

reduce disease severity in several in vitro and in vivo models

of inflammatory and autoimmune diseases [6,8,9]. Histone

hyperacetylation results in up-regulation of cell-cycle inhibi-

tors (p21Cip1, p27Kip1, and p16INK4), repression of inflamma-

tory cytokines (IL-1 and IL-8), tumor necrosis factor-a (TNF-

a), and downregulation of immune stimulators (IL-6, IL-10,

and CD154) [10]. The role of HDACs in the modulation of

inflammatory mediators has been well reviewed: these

enzymes are mainly involved in the activation of T-cells

(HDAC1, HDAC6, HDAC7, and HDAC9), macrophages

(HDAC2-5, HDAC6, and HDAC7), differentiation and pro-

liferation processes (HDAC5), adhesion mechanisms of

monocytes to endothelium (HDAC3-5), and osteoclast activ-

ity (HDAC3, HDAC5, HDAC7, and HDAC8) [11]. Among

HDAC isoforms, HDAC3 is reported to play a pivotal role in

monocyte recruitment to sites of inflammation and in

macrophage cytokine production [12], while HDAC6 regu-

lates the activity of Foxp3+ T-regulatory cells [13].
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Interestingly, HDAC3-deficient macrophages stimulated with

lipopolysaccharide (LPS) demonstrated a reduced expression

of inflammatory cytokines [12]. Further studies [14] reported

that histone deacetylase isoforms regulate innate immune

response by deacetylating mitogen-activated protein kinase

phosphatase-1 and thus inhibiting Toll-like receptor (TLR)

signaling. Since their first use in aesthetic and reconstructive

mammoplasty, breast prostheses demonstrated to cause a

natural foreign body reaction (FBR) characterized by the

infiltration of inflammatory cells, including neutrophils,

monocytes/macrophages, T-cells (helper and cytotoxic sub-

types) and B-lymphocytes [15], and non-inflammatory cells,

including fibroblasts and myofibroblasts [16,17]. It is well

documented that FBR response leads to fibrotic encapsulation

around the expander in the first 20 d after surgery. In

susceptible individuals, the progression of inflammatory

reaction could promote the formation of capsule contracture,

a local complication of unknown causes [18]. The peripros-

thetic capsule represents a dynamic inflammatory reaction

that involves in early-phase monocytes/macrophages and,

later on, CD4+ T helper cells, recruited by inflammatory

microenviroment. Among cytokines released by macro-

phages, TNF-a and TGF-b stimulate neo-angiogenesis, pro-

liferation of fibroblasts, and deposition of collagenous matrix

[19]. The current knowledge suggests that the local applica-

tion of oligonucleosides targeting Connective Tissue Growth

Factor (CTGF) and TGF-b could be effective in reducing

CTGF synthesis and capsular formation. Zimman et al. [20]

detected a reduction of TGF-b1, autoantibodies against

collagen III and periprosthetic fibrosis in rats treated with

enalapril, an inhibitor of angiotensin-converting enzyme and

angiotensin II receptor antagonist. Moreover, leukotriene

receptor antagonists, such as zafirlukast and montelukast,

showed an antifibrotic activity [21,22]. In patients with

rheumatoid arthritis (RA), the co-treatment with methotrexate

and etanercept revealed to be useful to modulate T helper-1

and -2 cells and to regulate the secretion of the main

cytokines involved in the formation of fibrous capsule (IL-1,

IL-6, IL-17, TNF-a, and TGF-b) [23]. Several studies have

demonstrated that HDAC inhibitors act as modulators of the

inflammatory response: the HDAC pan-inhibitors SAHA

(Zolinza�, Merck, Darmstadt, Germany) and ITF2357

(givinostat, Merck, Darmstadt, Germany) were demonstrated

to reduce the production of TNF-a, IL-1a, IL-1b, and IFN-g
from peripheral blood mononuclear cells (PBMCs) stimulated

with LPS [9,24]. The expression of inflammatory cytokines is

regulated by reversible acetylation and deacetylation of

histones and transcription factors. HDACi were demonstrated

to be effective therapeutics in animal models of rheumatoid

arthritis (RA) and have anti-inflammatory effects in RA

synovial macrophages and tissue via modulation of mRNA

stability. In particular, HDACi trichostatin A (TSA) sup-

pressed IL-6 production by RA fibroblast-like synoviocytes

stimulated with IL-1b [25]. Similarly, the treatment of LPS-

stimulated macrophages with TSA reduced IL-6, TNF-a,

and IL-1b expression [26]. In an experimental colitis model,

SAHA treatment resulted in a dose-dependent suppression of

cytokine synthesis and apoptosis induction of lamina propria

lymphocytes [27] and promoted the reduction of LPS-

induced septic shock in rodents downregulating the expres-

sion of TNF-a and IL-1b [28]. In addition, TSA suppressed

the ability of IL-1b and TNF-a to up-regulate matrix

metalloproteinase (MMP)-3, consistently with a cartilage

protective effect [29]. Moreover, ITF2357 reduced joint

inflammation in rat and mouse models, and, in contrast to

SAHA, was able to prevent joint destruction as well as

inflammation [30]. Recently, the HDAC3-selective inhibitor

MI192 was found to reduce TNF-a production and to dose

dependently suppress IL-6 production in PBMCs from RA

patients [31]. Noteworthy, the HDAC6-selective inhibitor

tubastatin A [32,13] was shown to enhance the suppressive

effects of Foxp3+ regulatory T cells (Tregs), suggesting to

be a potential therapeutic approach to slow or reverse the

pathogenesis of autoimmune disorders and prevent allograft

rejection, inflammatory bowel disease, and RA [33–35].

Recently, the specific inhibition of HDAC8 by ITF3056, an

analogue of ITF2357, was reported to downregulate both

gene expression and production of pro-inflammatory cyto-

kines [36]. Therefore, based on the findings correlating

HDACs with innate immune response, herein we investi-

gated in vitro and in vivo the anti-inflammatory activity of

two different HDAC inhibitors (MC2625 and MC2780)

selected from our own library. MC2625 (Figure 1) is an

isosteric pyridine analog of a series of aroylamminocinnamyl

hydroxamates [37–40], that carries a branched bulky group

at the cap moiety, a chemical modification previously

demonstrated to furnish isoform-selective HDAC inhibition

[41]. MC2780 (Figure 1) bears a tert-butoxycarbonylamino

group bound to the phenyl cap moiety, a structural feature

known to confer high potency and selectivity towards

HDAC6 [42]. Both MC2625 and MC2780 molecules were

tested in vitro on epithelial (KB31), fibroblast (3T3-J2), and

myogenic (C2C12) cells to evaluate their cytotoxicity by cell

viability test and their capability to modulate mRNA

expression of IL-1�, IL-6, and IL-10 genes. Moreover,

histological and immunohistochemical analysis were per-

formed to study fibrous capsular reaction and pro- (IL-1b
and IL-6) and anti-inflammatory (IL-10) cytokines-mediated

immune response to silicone implants, adsorbed with

HDACi and placed in C57BL/6J female mice.

Figure 1. HDACi described as anti-
inflammatory agents. Structures of the
HDACi MC2625 and MC2780 studied in
this work.
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Materials and methods

Chemistry and biochemistry

The synthetic routes for the preparation of MC2625 (racemic

mixture) and MC2780 have been recently described by our

group [43,42]. Individual IC50 values for each HDAC isozyme

were measured with the homogeneous fluorescence-release

HDAC assay. Purified recombinant enzymes were incubated

with serial diluted inhibitors at the indicated concentration, in

10-dose IC50 mode with three-fold serial dilution starting

from 50 mM solutions. The deacetylase activities of HDACs

1–11 were measured by assaying enzyme activity using

AMC-K(Ac)GL (classes I, IIb, and IV HDACs) or

AMC-K(TFA)GL (class IIa HDACs) substrate. Deacetylated

AMC-KGL was sensitive toward lysine peptidase, and free

fluorogenic 4-methylcoumarin-7-amide (MCA) was gener-

ated, which can be excited at 355 nm and observed at 460 nm

(Reactive Biology Corp., Annapolis, MD). Data were

analyzed on a plate-to-plate basis in relationship to the

control and imported into analytical software (GraphPad

Prism, San Diego, CA).

In vitro studies of cytotoxicity and biological activity
of HDACi

Cytotoxic effects and biological activity of MC2625 and

MC2780 molecules were studied in vitro using epithelial

(KB31), fibroblast (3T3J2), and myogenic (C2C12) cell lines.

Cells were seeded (20� 103 cells/cm2) in six-well tissue

culture dishes (BD Falcon, Milan, Italy) and cultured with

Dulbecco’s Modified Eagle’s Medium (DMEM low glucose,

Euroclone, Milan, Italy) supplemented with 10% fetal bovine

serum (FBS) (Sigma-Aldrich, Milan, Italy), and 1% penicillin/

streptomycin (Invitrogen, Darmstadt, Germany).

Cell viability assay

When populations reached 70% confluency, HDACi were

added to the cell cultures at different concentrations ranging

from 30 ng/mL to 300 mg/mL. After 24 h of incubation,

cytotoxicity of MC2625 and MC2780 molecules was assessed

by flow cytometry using BD Cell Viability Kit (BD

Biosciences, Milan, Italy). The detection of injured, dead,

and viable cells was performed by staining with thiazole

orange (TO), a nucleic-acid-specific dye and propidium

iodide (PI). Aliquots of 2.0 mL of TO and 1.0 mL of PI were

added to 1 mL of cell suspensions containing �5� 105cells,

to obtain the final staining concentrations of 84 nM for TO

and 4.3 mM for PI. After incubation for 5 min at room

temperature, the samples were loaded on BD FACSCanto� II

system (Becton Dickinson, San Jose, CA) equipped with BD

FACSDiva software. Data were acquired as a percentage of

dead, injured, and live cells discriminated using TO and PI

mean fluorescence intensity (MFI). According to the instruc-

tions of the manufacturer, high MFI value of TO combined

with negative expression of PI identified living cells, while

injured and dead cells were detected due to a decreased TO

fluorescence intensity and an intermediate or high MFI value

of PI, respectively. For analysis, MFI values of TO and PI

from HDACi-untreated samples were used as references for

each cell line. Statistical significance was calculated by

Student’s t-test comparing MC2625- and MC2780-treated

cultures to untreated cells.

Gene expression study

KB31, C2C12, and 3T3J2 cells were treated in vitro for 24 h

with MC2625 and MC2780 at concentrations of 30 ng/mL and

300 ng/mL. In order to evaluate the anti-inflammatory activity

of HDACi, we added to culture media 5 mg/mL lipopolysac-

charide (LPS) (Sigma-Aldrich, Milan, Italy). In parallel,

samples untreated (negative controls) or treated with LPS

alone (LPS-controls) were used as a reference. Total

cellular RNA was extracted using TRIzol� (Invitrogen� Life

Technologies, Grand Island, NY) and quantified by NanoDrop

2000 (Thermo Fisher Scientific, Inc., Waltham, MA). All

samples were reverse transcribed with Thermoscript� RT-

PCR System kit (Invitrogen� Life Technologies, Grand

Island, NY) and an iCycler iQ� (Bio-Rad Laboratories,

Hercules, CA). The amplification reaction was carried out

using specific oligo primers (Table S1) (Invitrogen� Life

Technologies, Grand Island, NY), Platinum� SYBR� Green

qPCR SuperMix UDG kit (Invitrogen� Life Technologies,

Grand Island, NY), and a DNA Engine Opticon� Real Time

Thermal Cycler (MJ Research, St. Bruno, QC, Canada). The

amount of gene products was calculated with a linear

regression analysis from standard curves, demonstrating

amplification efficiencies ranging from 95% to 100%. Data

were reported as a fold increase of target gene expression

defined as a complementary DNA (cDNA) ratio between target

gene and hypoxanthine–guanine phosphoribosyltransferase

(HPRT) housekeeping gene. Statistical significance was

calculated by Student’s t-test comparing with negative controls

(asterisk: p value �0.05) or to LPS-controls (one black

triangle: p value �0.05).

In vivo biological activity of HDACi

Ethics statement

C57BL/6J wild-type female mice (2 weeks old) (n¼ 18) were

provided by the Animal House facility of Padova University,

Italy. The use and care of animals as well as the surgical

procedures were approved and supervised by the local Ethic

committee (protocol 32132/2011 CEASA, University of

Padova, Padova, Italy). For subcutaneous implantation of

texturized silicone (Allergan, Inc., Irvine, CA), the animals

were anesthetized by isofluorane (Forane�, Abbott S.P.A.,

Campoverde, Italy) (3% oxygen with the flow of 1 L/min) in a

transparent Plexiglas box. After 30 d, the animals were

sacrificed by cervical dislocation and the silicone patches

along with surrounding tissues were removed.

In vivo implantation of silicone patches adsorbed with HDACi

Round-shaped silicone implants were prepared using a 6-mm

biopsy punch (Kai Medical, Solingen, Germany) and then

sterilized at 120 �C for 20 min. The patches were pre-treated

overnight at 37 �C with MC2625 and MC2780 solutions

(3 mg/mL in PBS/DMSO), obtaining a final adsorbed

concentration of 60 ng/kg. HDACi-untreated silicone was

prepared and implanted as control. After a skin incision on the

back side, a patch (6 mm diameter) of texturized silicone was

DOI: 10.3109/08916934.2015.1134510 HDACi reduce silicone-triggered inflammation 3
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subcutaneously implanted in mice. After 30 d, the animals

were sacrificed by cervical dislocation and silicone along with

surrounding tissues was explanted for histological evaluation.

Histology

Explants were fixed overnight in 10% formalin solution,

washed in PBS, and embedded in paraffin (Carlo Erba

Reagents S.r.l., Milan, Italy). Sections of 4 mm thickness were

prepared (Histoslide 2000 microtome, Leica Reichert Jung,

Leica Camera Inc., Allendale, NJ) and then stained with

conventional hematoxylin–eosin (H&E) according to standard

protocols. In parallel, the analysis of capsular collagen was

performed using Trichrome Stain (Masson) Kit (Sigma-

Aldrich, Milan, Italy) according to the instructions of the

manufacturer.

Immunohistochemistry

Explants were washed in PBS, fixed in 10% formalin, and

embedded in paraffin [44]. Serial 3-mm thick sections were

cut using a rotative microtome, mounted on gelatin-coated

slides, and then processed for immunohistochemical analysis

by ABC/HRP (avidin–biotin complex/horseradish peroxidase)

technique. After deparaffinization in xylene and rehydration,

sections were immersed in citrate buffer (pH 6) and thus

subjected twice to microwave irradiation for 5 min. All

sections were treated for 30 min with 0.3% hydrogen peroxide

in methanol for quenching endogenous peroxidase activity.

Thereafter, the samples were incubated overnight at 4 �C with

the following antibodies: (i) rabbit anti-IL-1b polyclonal

antibody (Santa Cruz Biotechnology, Santa Cruz, CA); (ii)

rabbit anti-IL-6 polyclonal antibody (Santa Cruz

Biotechnology, Santa Cruz, CA); (iii) rabbit anti-IL-10

polyclonal antibody (Immunological Sciences, Rome, Italy).

The immunodetection of target proteins was performed by

incubation at room temperature with secondary biotinylated

goat anti-rabbit IgG (Vector Laboratories, Burlingame, CA)

for 1 h and, at a later phase, with peroxidase-conjugated

avidin (Vectastain Elite ABC Kit Standard, Vector

Laboratories, Burlingame, CA) for 35 min. The immunoreac-

tive sites were revealed using 0.1% H2O2 and 0.05% 3,3-

diaminobenzidine (DAB) (Vector Laboratories Burlingame,

CA). Finally, sections were counterstained with Mayer’s

hematoxylin and observed using Leica DFC480 microscope

(Leica Camera Inc., Allendale, NJ). Negative control experi-

ments were carried out: (i) by omitting the primary antibody;

(ii) by substituting the primary antibody with an equivalent

amount of non-specific immunoglobulins; (iii) by pre-

incubating the primary antibody with the specific blocking

peptide (antigen/antibody¼ 5 according to supplier’s instruc-

tions). Data were collected by two experienced observers in

light microscopy. The intensity of immunoreactivity was

evaluated microdensitometrically using an IAS 2000 image

analyzer (Delta Sistemi, Rome, Italy) connected to a micro-

scope via TV camera. The calibration of system was made

taking as zero the background obtained in sections incubated

with non-immune serum. For analysis, 10 regions (100mm2

area) per section were delineated within fibrous capsule by a

measuring diaphragm and data were expressed as a fold

increase of intensity value detected for each target protein in

HDACi-treated samples compared with controls. Significant

differences were statistically defined using the analysis of

variance (ANOVA) followed by Duncan’s multiple range test

as a post hoc test.

Results

HDAC inhibition data

Both MC2625 (racemic mixture) and MC2780 molecules

were tested against all the HDAC1-11 isoforms in 10-dose

IC50 mode with three-fold serial dilution starting from 50 mM

solutions, and the relative inhibition data are recapitulated in

Table 1 [43,42]. From these data, MC2625 behaved as a

specific HDAC3/HDAC6/HDAC8 inhibitor, because it is able

to inhibit these isoforms at nanomolar (HDAC3 and HDAC6)

or submicromolar (HDAC8) concentration, while the remain-

ing HDAC enzymes are inhibited in the range 1.4–11.7 mM.

Differently, MC2780 emerged as a potent and selective

HDAC6 inhibitor, displaying an IC50 value of 0.01 mM against

this isoform and being from 120- to 45000-fold less potent

versus the other HDAC enzymes.

In vitro citotoxicity study of HDACi

Epithelial KB31, fibroblast 3T3-J2, and myogenic C2C12 cell

lines were employed to assess potential citotoxic effects of

MC2625 and MC2780 molecules at concentrations ranging

from 300 mg/mL to 30 ng/mL. Based on the fluorescence

intensity values of TO and PI, flow cytometrical analysis

evidenced that 300 mg/mL MC2625 drastically affected the

viability of 3T3-J2 (0% viable cells) while exerted less

cytotoxicity in C2C12 (66% viable cells) (Figure 2). At

the same concentration, MC2780 caused 100% cell death in

3T3-J2 and C2C12 populations (Figure 3). When added at

lower doses (�30 mg/mL), a higher percentage of viable cells

ranging from 85 to 96 % in 3T3-J2 cells and 90–96% in

C2C12 samples was observed, hence suggesting the suitabil-

ity of these HDACi solutions for in vitro and in vivo

evaluation of biological activity. The viability of KB31 cells

was not affected by MC2625 and MC2780 molecules, in

accordance with published data reporting that mechanisms of

resistance to HDAC inhibitors are active in tumor cells [45].

Table 1. Inhibition of HDAC1–11 isoforms by MC2625 and MC2780.

IC50 against HDAC isoforms, mM

Cpd 1 2 3 4 5 6 7 8 9 10 11

MC2625 1.42 1.77 0.08 11.7 9.37 0.01 8.77 0.61 10.6 1.8 10.2
MC2780 2.9 2.1 10.8 3.2 450 0.01 450 1.2 68.8 5.1 12.0

4 R. Di Liddo et al. Autoimmunity, Early Online: 1–11
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Evaluation of in vitro biological activity of HDACi

Originally described by its ability to inhibit T-helper (Th) 1

activation and Th1 cytokine production, interleukin 10 plays

an essential part in controlling inflammation and instructing

adaptive immune responses [46]. Besides immune cells [47],

keratinocytes [48], muscle cells [49], and fibroblasts [50]

have shown to express IL-10. Consistent with these evidences,

the analysis of qPCR products (Figure 4) evidenced a basal

expression of IL-10 in KB31, C2C12, and 3T3J2 cells

(Figure 4). As previously demonstrated for other HDAC

Figure 2. Cell viability in cell lines treated with MC2625. Cell viability test on KB31 (A), 3T3J2 (B), and C2C12 cells (C) treated with MC2625
solutions (from 300 mg/mL to 30 ng/mL) for 24 h at 37 �C and measured by flow cytometry with thiazole orange (TO) and propidium iodide (PI). Data
were acquired as a percentage of dead, injured and live cells discriminated using TO and PI mean fluorescence intensity (MFI). According to
instructions of the manufacturer, high MFI value of TO combined with negative expression of PI identified living cells, while injured and dead cells
were detected due to a decreased TO fluorescence intensity and an intermediate or high MFI value of PI, respectively. For analysis, MFI values of TO
and PI from HDACi-untreated samples were used as references for each cell line. Statistical significance was calculated by Student’s t-test comparing
MC2625- and MC2780-treated cultures to untreated cells (p value50.05).

Figure 3. Cell viability in cell lines treated with MC2780. Cell viability test on KB31 (A), 3T3J2 (B), and C2C12 cells (C) exposed to MC2780
solutions (from 300 mg/mL to 30 ng/mL) for 24 h at 37 �C and measured by flow cytometry with thiazole orange (TO) and propidium iodide (PI). Data
were reported as a percentage of dead, injured, and live cells measured by flow cytometry with BD Cell Viability Kit (BD Biosciences, Milan, Italy)
containing thiazole orange (TO) solution to stain all cells and propidium iodide (PI) to stain dead cells (p value50.05).
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inhibitors [51], MC2625 and MC2780 solutions with higher

(300 ng/mL) and lower (30 ng/mL) concentration downregu-

lated (p� 0.05) the expression of IL-10 while stimulating the

transcription of IL-1b and IL-6. These data are in accordance

with other studies reporting that HDAC inhibitors deacetylate

MAPK phosphatase-1 (MKP-1) increasing TLR signaling-

mediated inflammation [52]. When the cells were cultured

with LPS alone, all samples demonstrated a significant

reduction of IL-10 transcription activity, probably due to TLR

signaling activation following MKP-1 acetylation by LPS

[52,53]. Interestingly, the co-treatment of cell cultures with

LPS and MC2780 (300 ng/mL or 30 ng/mL) or MC2625

(30 ng/mL) showed to restore (p� 0.05) IL-10 gene

expression and to downregulate the transcription of pro-

inflammatory cytokines (IL-1b and IL-6). Taken into con-

sideration these in vitro findings, using an in vivo mouse

model, we, therefore, investigated the potentiality of MC2625

and MC2780 to inhibit the inflammatory process triggered by

silicone subcutaneous implantation.

In vivo anti-inflammatory activity of MC2625 and
MC2780

Round-shaped silicone implants pre-adsorbed or not with

HDACi were placed subcutaneously in 2 weeks old C57BL/6J

female mice. After 30 d from implantation, silicone patches

Figure 4. Expression of IL-1�, IL-6, and IL-10 genes is modulated by MC2625 and MC2780 in LPS-mediated in vitro inflammation. KB31, C2C12,
and 3T3J2 cultures were treated in vitro for 24 h with MC2780 and MC2625 used both at 300 ng/mL and 30 ng/mL, in the presence or absence of LPS
(5mg/mL). In parallel, samples untreated (negative controls) or treated only with LPS (LPS-controls) were prepared. To prove the anti-inflammatory
activity of our HDAC inhibitors, the analysis of IL-10 gene expression was performed by qPCR. The amount of gene products was calculated using a
linear regression analysis from standard curves, demonstrating the amplification efficiencies ranging from 95% to 100%. We reported the fold increase
of gene expression that was defined as the cDNA ratio between target gene and reference gene (HPRT). Statistical significance was calculated using
Student’s t-test, comparing with negative controls (asterisk: p value50.05) or to LPS-controls (black triangle: p value50.05).

6 R. Di Liddo et al. Autoimmunity, Early Online: 1–11
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along with surrounding tissues were extracted and submitted

to histological evaluation.

The most common complications in silicone mammary

implants is the development of capsular fibrosis and capsular

contracture resulting from a silicone-mediated activation of

fibroblasts [54], macrophages, and T cells [55]. As reported

by several studies, human fibrous capsule is characterized by

three layers known as intimal, intermediate, and outer layers

where the intimal zone is the inner compartment composed of

fibrocytes and histiocytes forming an epithelial-like single

layer, synovial-type metaplasia, the intermediate layer

contains smaller fibrils in loose connective tissue, and the

outer layer is the transition zone characterized by densely

packed collagen fibers and blood vessels [56]. In response to

silicone implants, activated inflammatory cells secrete pro-

inflammatory cytokines, recruiting fibroblasts and promoting

collagen deposition. IL-1b [57] and IL-6 [58] are demon-

strated to promote the progression of inflammation and

fibrosis. In contrast, IL-10 exerts anti-inflammatory activity

and regulates collagen synthesis [59,60]. In our work, a

fibrous capsule was detected in all animals around the silicone

patch, showing a bilayered structure with cells located

predominantly in the inner layer while extracellular matrix

largely expressed in the outer layer (Figure 5). Morphometric

analysis of silicone specimens demonstrated a reduced

capsule thickness in samples treated with HDACi, suggesting

that MC2625 and MC2780 modulated in vivo the inflamma-

tory response acting on fibroblast populations and down-

regulating collagen deposition. Moreover, a significant

difference in the orientation of capsular collagen fibers was

observed among samples treated with HDAC inhibitors

compared with controls, demonstrating that MC2625 and

MC2780 differently affected the process of fibrillogenesis or

collagen assembly. The analysis by Masson’s trichrome

staining (Figure 6) evidenced that the fibers were randomly

distributed in silicone patches adsorbed with MC2625. In

contrast, controls and samples treated with MC2780 showed a

fibrotic capsule with bundled parallel fibers. The evidences

collected were consistent with the study reported by Laitung

et al. [54], who found that lower capsular formation and

contracture is related to less number of myofibroblasts in the

tissue around expanding devices. The severity of capsule

formation and contracture has a positive linear correlation

with the degree of local inflammation [18], that is largely

regulated by macrophage-derived growth factors and fibro-

cyte-stimulating cytokines, such as IL-6, TNF-a, IL-1b, and

TGF-b [61]. Compared with controls, HDACi-treated samples

showed a significant (p50.05) lower immunoreactivity for

IL-1b and IL-6 (Figure 7) besides an increased expression of

anti-inflammatory IL-10. These data were consistent with

results from our in vitro studies demonstrating that MC2625

or MC2780 would contribute to inhibit local inflammation in

silicone surrounding tissue regulating the expression of IL-1b,

IL-6, and IL-10 from inflammatory and not inflammatory

cells.

Discussion and conclusion

Histone deacetylases balance the acetylation activities of

histone acetyltransferases on chromatin remodeling and

regulate gene transcription. Accumulated evidence indicates

that HDAC activity is also associated with the development

and progression of some chronic fibrotic diseases [62]. Thus,

a growing interest is recently focused on the potential

applications of HDAC inhibitors in the treatment of disorders

arising from unbalanced fibroblast activation and prolifer-

ation. Several studies report that HDACi exerts anti-inflam-

matory effects downregulating the expression of TNF-a,

TGF-b, IL-1b, and IL-6 under in vitro and in vivo experi-

mental conditions. Moreover, it is demonstrated that HDAC

inhibitors regulate the immune response through the inhib-

ition of HDAC6 and the acetylation of non-histone proteins

(i.e., p53, GATA1-3, STAT3, STAT5, Foxp3, and NF-kB)

[63]. In our study, using in vitro and in vivo settings, two

inhibitors of HDAC, called MC2625 and MC2780, were

tested at not cytotoxic concentrations for anti-inflammatory

and anti-fibrotic activities. Both MC2625, an inhibitor

of HDAC3/6/8, and MC2780, a selective inhibitor of

Figure 6. Masson’s trichrome staining.
Histological analysis by Trichrome
(Masson) Stain on silicone patches and
surrounding tissues excised from C57BL/6J
mice. HDACi-untreated animals (+Silicone);
MC2625-treated animals (+ Silicone\+
MC2625); MC2780-treated animals
(+ Silicone\+MC2780). Cytoplasm and
muscle fibers (red (in web)/black (in print));
collagen (blue (in web)/black (in print)).
Scale bar: 10mm.

Figure 5. H&E staining. Histological analysis
by hematoxilin/eosin on silicone patches and
surrounding tissues excised from C57BL/6J
mice. HDACi-untreated animals (+Silicone);
MC2625-treated animals (+ Silicone\+
MC2625); MC2780-treated animals
(+ Silicone\+MC2780). Capsule thickness
was marked by square brackets. Scale bar:
25mm.
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HDAC6, demonstrated comparable anti-inflammatory effects

downregulating IL-1b, IL-6, and stimulating the expression of

IL-10 but diverged in the anti-fibrotic abilities. The differen-

tial biological response to MC2625 and MC2780 well

correlated with their distinct inhibition profile and were

consistent with published evidences reporting the ability of

HDACi to regulate the innate immune response inhibiting

inflammatory cells and stimulating conventional and regula-

tory T lymphocytes [64]. It is reported that the inhibition of

HDAC6 is essential for the stabilization of Foxp3, the

winged-helix family transcription factor involved in the

differentiation of Treg cells from CD4+ naı̈ve T cells.

Taken into consideration that IL-10 is expressed by Treg

and IL-10 suppresses the production of pro-inflammatory

cytokines by dendritic cells and macrophages [65], the

comparable anti-inflammatory activity of MC2625 and

MC2780 could be dependent on the inhibition that both

molecules exerted on HDAC6. The reduction of fibrous

capsule thickness observed in mice treated with HDAC

inhibitors further confirmed the ability of both MC2625 and

MC2780 to modulate the inflammatory response, although

with a different grade. The implantation of biomaterials is

Figure 7. Silicone implantation-induced inflammation is reduced in vivo by MC2625 and MC2780. Immunohistochemical analysis of IL-1�, IL-6, and
IL-10 genes in explants from mice transplanted with silicone alone (group: + Silicone), silicone adsorbed with MC2625 (group: + Silicone\+ MC2625)
or MC2780 (group: + Silicone\+ MC2780). Immunoreactive sites (brown) were revealed by exposure to DAB substrate. The intensity of
immunoreactivity was evaluated microdensitometrically using an IAS 2000 image analyzer (Delta Sistemi, Rome, Italy) connected to microscope via
TV camera. The calibration of system was made taking as zero the background obtained in sections incubated with non-immune serum. For analysis,
ten regions (100mm2 area) per section were delineated within fibrous capsule (black asterisk) by a measuring diaphragm. In histograms, data were
expressed as a fold increase of intensity value detected for each target protein in HDACi-treated samples compared to controls. Significant differences
were statistically defined using the analysis of variance (ANOVA) followed by Duncan’s multiple range test as a post hoc test (black circle:
p value50.05).

8 R. Di Liddo et al. Autoimmunity, Early Online: 1–11
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known to trigger a classical foreign body response and leads

to a chronic inflammation [66] driven by monocytes and

macrophages recruited by chemokines and chemo attract-

ants such as transforming growth factor-b (TGF-b), platelet-

derived growth factor (PDGF), and interleukin (IL-1). After

chronic inflammation is resolved, fibroblast cells activate

and differentiate into myofibroblasts due to the stimulation

of TGF-b, a key regulator of extracellular matrix formation

and remodeling [67]. Fibroblasts and myofibroblasts secrete

collagen types I and III to form a fibrous capsule around

the implant and contract the wound edges. Several studies

demonstrated that TGF-b-inducible genes, including colla-

gen and smooth muscle actin are suppressed by HDAC

inhibitors [68,69] and the extracellular matrix remodeling is

regulated by the inhibition of class I HDAC3 [70]

Moreover, also the process of collagen assembly or

fibrillogenesis has been demonstrated to be affected by

HDAC inhibitors [71]. In our study, although both HDAC

inhibitors promoted a reduction of fibrous capsular thick-

ness, only MC2625 showed to exert an anti-fibrotic activity

interfering with the parallel assembly of collagen, a

predisposing condition to the development of capsular

contracture. Consistent with data above reported, this

biological effect was hypothesized to be mediated by the

inhibition of class I HDAC3 and 8.

Further studies on MC2625 and MC2780 will explore their

potential therapeutical applications in other inflammation-

related diseases especially those well responding to the

administration of recombinant IL-10 [72].

Acknowledgements

The authors thank Garland R. Marshall, Department of

Biochemistry and Molecular Biophysics, Washington

University School of Medicine, St. Louis, MO, for critical

reading of the manuscript and scientific discussion, and

Carola Cenzi, Department of Pharmaceutical and

Pharmacological Sciences, Padova University, Italy, for

technical support.

Declaration of interest

This work was supported by Italian Ministry of Health (RF-

2010-2318330 Grant), IIT-Sapienza Project grant, and FP7

Projects BLUEPRINT/282510 and A-PARADDISE/602080

for A.M., and by Sapienza Ateneo Project 2013 and Nobile

S.p.a. for M.A.

References

1. Kollar, J., and V. Frecer. 2015. Selective inhibitors of zinc-
dependent histone deacetylases. Therapeutic targets relevant to
cancer. Curr. Pharm. Des. 21: 1472–1502.

2. Mai, A., S. Massa, D. Rotili, et al. 2005. Histone deacetylation in
epigenetics: an attractive target for anticancer therapy. Med. Res.
Rev. 25: 261–309.

3. Didonna, A., and P. Opal. 2015. The promise and perils of HDAC
inhibitors in neurodegeneration. Ann. Clin. Transl. Neurol. 2:
79–101.

4. Dietz, K. C., and P. Casaccia. 2010. HDAC inhibitors and
neurodegeneration: at the edge between protection and damage.
Pharmacol. Res. 62: 11–17.

5. Mai, A., D. Rotili, S. Valente, and A. G. Kazantsev. 2009. Histone
deacetylase inhibitors and neurodegenerative disorders: holding the
promise. Curr. Pharm. Des. 15: 3940–3957.

6. Dinarello, C. A. 2010. Anti-inflammatory agents: present and
future. Cell 140: 935–950.

7. Licciardi, P. V., K. Ververis, M. L. Tang, et al. 2013.
Immunomodulatory effects of histone deacetylase inhibitors.
Curr. Mol. Med. 13: 640–647.

8. Grabiec, A. M., S. Krausz, W. de Jager, et al. 2010. Histone
deacetylase inhibitors suppress inflammatory activation of rheuma-
toid arthritis patient synovial macrophages and tissue. J. Immunol.
184: 2718–2728.

9. Leoni, F., A. Zaliani, and G. Bertolini, et al. 2002. The antitumor
histone deacetylase inhibitor suberoylanilide hydroxamic acid
exhibits antiinflammatory properties via suppression of cytokines.
Proc. Natl. Acad. Sci. USA 99: 2995–3000.

10. Chung, Y. L., M. Y. Lee, A. J. Wang, and L. F. Yao. 2003. A
therapeutic strategy uses histone deacetylase inhibitors to modulate
the expression of genes involved in the pathogenesis of rheumatoid
arthritis. Mol. Ther. 8: 707–717.

11. Cantley, M. D., and D. R. Haynes. 2013. Epigenetic regulation of
inflammation: progressing from broad acting histone deacetylase
(HDAC) inhibitors to targeting specific HDACs.
Inflammopharmacology 21: 301–307.

12. Chen, X., I. Barozzi, A. Termanini, et al. 2012. Requirement for the
histone deacetylase Hdac3 for the inflammatory gene expression
program in macrophages. Proc. Natl. Acad. Sci. USA 109:
E2865–E2874.

13. de Zoeten, E. F., L. Wang, K. Butler, et al. 2011. Histone
deacetylase 6 and heat shock protein 90 control the functions of
Foxp3(+) T-regulatory cells. Mol. Cell. Biol. 31: 2066–2078.

14. Jeong, Y., R. Du, X. Zhu, et al. 2014. Histone deacetylase isoforms
regulate innate immune responses by deacetylating mitogen-
activated protein kinase phosphatase-1. J. Leukoc. Biol. 95:
651–659.

15. Meza Britez, M. E., C. Caballero Llano, and A. Chaux. 2012.
Periprosthetic breast capsules and immunophenotypes of inflam-
matory cells. Eur J Plast Surg. 35: 647–651.

16. Berry, M. G., V. Cucchiara, and D. M. Davies. 2010. Breast
augmentation: part II – adverse capsular contracture. J. Plast.
Reconstr. Aesthet. Surg. 63: 2098–2107.

17. McLean, A. L., M. Talmor, A. Harper, et al. 2002.
Expression of cyclooxygenase-2 in the periprosthetic capsule
surrounding a silicone shell implant in the rat. Ann. Plast. Surg.
48: 292–297.

18. Poeppl, N., S. Schreml, F. Lichtenegger, et al. 2007. Does the
surface structure of implants have an impact on the formation of a
capsular contracture? Aesthetic Plast. Surg. 31: 133–139.

19. Brazin, J., S. Malliaris, B. Groh, et al. 2014. Mast cells
in the periprosthetic breast capsule. Aesthetic Plast. Surg. 38:
592–601.

20. Zimman, O. A., J. Tobli, L. Stella, et al. 2007. The effects of
angiotensin-converting enzyme inhibitors on the fibrous enve-
lope around mammary implants. Plast. Reconstr. Surg. 120:
2025–2033.

21. Huang, C. K., and N. Handel. 2010. Effects of Singulair
(montelukast) treatment for capsular contracture. Aesthet. Surg. J.
30: 404–408.

22. Scuderi, N., M. Mazzocchi, and C. Rubino. 2007. Effects of
zafirlukast on capsular contracture: controlled study measuring the
mammary compliance. Int. J. Immunopathol. Pharmacol. 20:
577–584.

23. Lina, C., W. Conghua, L. Nan, and Z. Ping. 2011. Combined
treatment of etanercept and MTX reverses Th1/Th2, Th17/Treg
imbalance in patients with rheumatoid arthritis. J. Clin. Immunol.
31: 596–605.

24. Leoni, F., G. Fossati, and E. C. Lewis, et al. 2005. The histone
deacetylase inhibitor ITF2357 reduces production of pro-inflam-
matory cytokines in vitro and systemic inflammation in vivo. Mol.
Med. 11: 1–15.

25. Grabiec, A. M., O. Korchynskyi, P. P. Tak, and K. A. Reedquist.
2012. Histone deacetylase inhibitors suppress rheumatoid
arthritis fibroblast-like synoviocyte and macrophage IL-6 pro-
duction by accelerating mRNA decay. Ann. Rheum. Dis. 71:
424–431.

DOI: 10.3109/08916934.2015.1134510 HDACi reduce silicone-triggered inflammation 9

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 S

tu
di

 la
 S

ap
ie

nz
a]

, [
A

nt
on

el
lo

 M
ai

] 
at

 0
7:

24
 2

2 
Ja

nu
ar

y 
20

16
 



26. Han, S. B., and J. K. Lee. 2009. Anti-inflammatory effect of
Trichostatin-A on murine bone marrow-derived macrophages. Arch.
Pharm. Res. 32: 613–624.

27. Glauben, R., A. Batra, I. Fedke, et al. 2006. Histone hyperacetyla-
tion is associated with amelioration of experimental colitis in mice.
J. Immunol. 176: 5015–5022.

28. Li, Y., B. Liu, and H. Zhao, et al. 2009. Protective effect of
suberoylanilide hydroxamic acid against LPS-induced septic shock
in rodents. Shock 32: 517–523.

29. Nasu, Y., K. Nishida, S. Miyazawa, et al. 2008. Trichostatin A, a
histone deacetylase inhibitor, suppresses synovial inflammation and
subsequent cartilage destruction in a collagen antibody-induced
arthritis mouse model. Osteoarthritis Cartil. 16: 723–732.

30. Joosten, L. A., F. Leoni, S. Meghji, and P. Mascagni. 2011.
Inhibition of HDAC activity by ITF2357 ameliorates joint inflam-
mation and prevents cartilage and bone destruction in experimental
arthritis. Mol. Med. 17: 391–396.

31. Gillespie, J., S. Savic, C. Wong, et al. 2012. Histone deacetylases
are dysregulated in rheumatoid arthritis and a novel histone
deacetylase 3-selective inhibitor reduces interleukin-6 production
by peripheral blood mononuclear cells from rheumatoid arthritis
patients. Arthritis Rheum. 64: 418–422.

32. Butler, K. V., J. Kalin, C. Brochier, et al. 2010. Rational design and
simple chemistry yield a superior, neuroprotective HDAC6 inhibi-
tor, tubastatin A. J. Am. Chem. Soc. 132: 10842–10846.

33. Akimova, T., G. Ge, T. Golovina, et al. 2010. Histone/protein
deacetylase inhibitors increase suppressive functions of human
FOXP3+ Tregs. Clin. Immunol. 136: 348–363.

34. Saouaf, S. J., B. Li, G. Zhang, et al. 2009. Deacetylase inhibition
increases regulatory T cell function and decreases incidence and
severity of collagen-induced arthritis. Exp. Mol. Pathol. 87:
99–104.

35. Tao, R., E. F. de Zoeten, E. Ozkaynak, et al. 2007. Deacetylase
inhibition promotes the generation and function of regulatory
T cells. Nat. Med. 13: 1299–1307.

36. Li, S., G. Fossati, and C. Marchetti, et al. 2015. Specific inhibition
of histone deacetylase 8 reduces gene expression and production of
proinflammatory cytokines in vitro and in vivo. J. Biol. Chem. 290:
2368–2378.

37. Mai, A., S. Massa, R. Pezzi, et al. 2005a. Synthesis and biological
evaluation of 2-, 3-, and 4-acylaminocinnamyl-N-hydroxyamides as
novel synthetic HDAC inhibitors. Med. Chem. 1: 245–254.

38. Thaler, F., M. Varasi, A. Colombo, et al. 2010. Synthesis and
biological characterization of amidopropenyl hydroxamates as
HDAC inhibitors. ChemMedChem 5: 1359–1372.

39. Thaler, F., A. Colombo, A. Mai, et al. 2010a. Synthesis and
biological evaluation of N-hydroxyphenylacrylamides and
N-hydroxypyridin-2-ylacrylamides as novel histone deacetylase
inhibitors. J. Med. Chem. 53: 822–839.

40. Valente, S., M. Tardugno, M. Conte, et al. 2011. Novel cinnamyl
hydroxyamides and 2-aminoanilides as histone deacetylase inhibi-
tors: apoptotic induction and cytodifferentiation activity.
ChemMedChem 6: 698–712.

41. Yang, F., T. Zhang, H. Wu, et al. 2014. Design and optimization of
novel hydroxamate-based histone deacetylase inhibitors of Bis-
substituted aromatic amides bearing potent activities against tumor
growth and metastasis. J. Med. Chem. 57: 9357–9369.

42. Valente, S., D. Trisciuoglio, M. Tardugno, et al. 2013. tert-
Butylcarbamate-containing histone deacetylase inhibitors: apop-
tosis induction, cytodifferentiation, and antiproliferative activities
in cancer cells. ChemMedChem 8: 800–811.

43. Di Pompo, G., M. Salerno, D. Rotili, et al. 2015. Novel histone
deacetylase inhibitors induce growth arrest, apoptosis, and differ-
entiation in sarcoma cancer stem cells. J. Med. Chem. 58:
4073–4079.

44. Bancroft, J. D., and M. Gamble. 2008. Theory and
Practice of Histological Techniques, 6th edn. Philadelphia (PA),
USA: Elsevier Health Sciences.

45. Lee, J. H., M. L. Choy, and P. A. Marks. 2012. Mechanisms of
resistance to histone deacetylase inhibitors. Adv. Cancer Res. 116:
39–86.

46. Spits, H., and R. de Waal Malefyt. 1992. Functional characteriza-
tion of human IL-10. Int. Arch. Allergy Immunol. 99: 8–15.

47. Moore, K. W., R. de Waal Malefyt, R. L. Coffman, and A. O’Garra.
2001. Interleukin-10 and the interleukin-10 receptor. Annu. Rev.
Immunol. 19: 683–765.

48. Grewe, M., K. Gyufko, and J. Krutmann. 1995. Interleukin-10
production by cultured human keratinocytes: regulation by ultra-
violet B and ultraviolet A1 radiation. J. Invest. Dermatol. 104: 3–6.

49. Hacham, M., R. M. White, S. Argov, et al. 2004. Interleukin-6 and
interleukin-10 are expressed in organs of normal young and old
mice. Eur. Cytokine Netw. 15: 37–46.

50. Ingerslev, H. C., C. G. Ossum, T. Lindenstrom, and M. E. Nielsen.
2010. Fibroblasts express immune relevant genes and are important
sentinel cells during tissue damage in rainbow trout (Oncorhynchus
mykiss). PLoS One 5: e9304.

51. Licciardi, P. V., and T. C. Karagiannis. 2012. Regulation of immune
responses by histone deacetylase inhibitors. ISRN Hematol. 2012:
690901.

52. Cao, W., C. Bao, E. Padalko, and C. J. Lowenstein. 2008.
Acetylation of mitogen-activated protein kinase phosphatase-1
inhibits Toll-like receptor signaling. J. Exp. Med. 205: 1491–1503.

53. Daan de Boer, J., J. J. Roelofs, A. F. de Vos, et al. 2013.
Lipopolysaccharide inhibits Th2 lung inflammation induced by
house dust mite allergens in mice. Am. J. Respir. Cell. Mol. Biol.
48: 382–389.

54. Laitung, J. K., J. McClure, and C. A. Shuttleworth. 1987. The
fibrous capsules around static and dynamic implants: their
biochemical, histological, and ultrastructural characteristics. Ann.
Plast. Surg. 19: 208–216.

55. Wolfram, D., C. Rainer, H. Niederegger, et al. 2004. Cellular and
molecular composition of fibrous capsules formed around silicone
breast implants with special focus on local immune reactions.
J Autoimmunity 23: 81–91.

56. Minami, E., I. H. Koh, J. C. Ferreira, et al. 2006. The composition
and behavior of capsules around smooth and textured breast
implants in pigs. Plast. Reconstr. Surg. 118: 874–884.

57. Deknuydt, F., G. Bioley, D. Valmori, and M. Ayyoub. 2009. IL-1b
and IL-2 convert human Treg into T H 17 cells. Clin. Immunol. 131:
298–307.

58. Joseph, J., K. T. Variathu, and M. Mohanty. 2013. Mediatory role of
interleukin-6 in a-smooth muscle actin induction and myofibroblast
formation around silicone tissue expander. J. Biomed. Mater.
Res. A. 101: 2967–2973.

59. Levings, M. K., R. Bacchetta, U. Schulz, and M. G. Roncarolo.
2002. The role of IL-10 and TGF-b in the differentiation and
effector function of T regulatory cells. Int. Arch. Allergy Immunol.
129: 263–276.

60. Reitamo, S., A. Remitz, K. Tamai, and J. Uitto. 1994. Interleukin-
10 modulates type I collagen and matrix metalloprotease gene
expression in cultured human skin fibroblasts. J. Clin. Invest. 94:
2489–2492.

61. Schmidt, S. C., S. E. Logan, J. M. Hayden, et al. 1991. Continuous
versus conventional tissue expansion: experimental verification of a
new technique. Plast Reconstr Surg. 87: 10–15.

62. Pang, M., and S. Zhuang. 2010. Histone deacetylase: a potential
therapeutic target for fibrotic disorders. J. Pharmacol. Exp. Ther.
335: 266–272.

63. Choudhary, C., C. Kumar, F. Gnad, et al. 2009. Lysine acetylation
targets protein complexes and co-regulates major cellular functions.
Science 325: 834–840.

64. Akimova, T., U. H. Beier, Y. Liu, et al. 2012. Histone/protein
deacetylases and T-cell immune responses. Blood 119: 2443–2451.

65. Maynard, C. L., and C. T. Weaver. 2008. Diversity in the
contribution of interleukin-10 to T-cell-mediated immune regula-
tion. Immunol. Rev. 226: 219–233.

66. Gaston, J. S. 1989. Lymphokines in inflammation. Autoimmunity
4: 143–147.

67. Hinz, B. 2007. Formation and function of the myofibroblast during
tissue repair. J. Invest. Dermatol. 127: 526–537.

68. Glenisson, W., V. Castronovo, D. Waltregny. 2007. Histone
deacetylase 4 is required for TGFbeta1-induced myofibroblastic
differentiation. Biochim. Biophys. Acta 1773: 1572–1582.

69. Rombouts, K., T. Niki, P. Greenwel, et al. 2002. Trichostatin A,
a histone deacetylase inhibitor, suppresses collagen synthesis and
prevents TGF-beta(1)-induced fibrogenesis in skin fibroblasts.
Exp. Cell Res. 278: 184–197.

10 R. Di Liddo et al. Autoimmunity, Early Online: 1–11

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 S

tu
di

 la
 S

ap
ie

nz
a]

, [
A

nt
on

el
lo

 M
ai

] 
at

 0
7:

24
 2

2 
Ja

nu
ar

y 
20

16
 



70. Barter, M. J., L. Pybus, G. J. Litherland, et al. 2010. HDAC-
mediated control of ERK- and PI3K-dependent TGF-b-induced
extracellular matrix-regulating genes. Matrix Biol. 29: 602–612.

71. Chen, C. Z., and M. Raghunath. 2009. Focus on collagen: in vitro
systems to study fibrogenesis and antifibrosis state of the art.
Fibrogenesis Tissue Repair. 2: 7.

72. Asadullah, K., W. Sterry, and H. D. Volk. 2003. Interleukin-
10 therapy – review of a new approach. Pharmacol. Rev. 55:
241–269.

73. Villagra, A., F. Cheng, H. W. Wang, et al. 2009. The histone
deacetylase HDAC11 regulates the expression of interleukin 10 and
immune tolerance. Nat. Immunol. 10: 92–100.

Supplementary material available online

Supplementary Table S1

DOI: 10.3109/08916934.2015.1134510 HDACi reduce silicone-triggered inflammation 11

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 S

tu
di

 la
 S

ap
ie

nz
a]

, [
A

nt
on

el
lo

 M
ai

] 
at

 0
7:

24
 2

2 
Ja

nu
ar

y 
20

16
 


	Histone deacetylase inhibitors restore IL-10 expression in lipopolysaccharide-induced cell inflammation and reduce IL-1β and IL-6 production in breast silicone implant in C57BL/6J wild-type murine model
	Introduction
	Materials and methods
	Results
	Discussion and conclusion
	Acknowledgements
	Declaration of interest
	References


