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ABSTRACT  Recent advances in experimental technologies and cancer models have made possible 
to demonstrate that the tumor is a dynamic system comprising heterogeneous populations of 
cancer cells organized in a hierarchical fashion with cancer stem cells (CSCs) at the apex. CSCs are 
immature cells characterized by self-renewal property and long-term repopulation potential. CSCs 
have been causally linked to cancer initiation, propagation, spreading, recurrence and relapse as 
well as to resistance to anticancer therapy. A growing body of evidence suggests that the function 
and physiology of CSCs may be influenced by genetic/epigenetic factors and tumor environment. In 
this context, macroautophagy is a lysosomal degradative process (herein referred to as autophagy) 
critical for the adaptive response to stress and the preservation of cellular and tissue homeostasis in 
all eukaryotes that may have a crucial role of in the origin, maintenance and invasiveness of CSCs. 
The activation of the autophagic machinery is also considered as an adaptive response of CSCs to 
perturbation of tumor microenvironment, caused for instance by anticancer therapy. Nevertheless, 
compelling preclinical and clinical evidence on the cytoprotective role of autophagy for CSCs is 
still missing. Here, we summarize the results on the contribution of autophagy in CSCs and how it 
impacts tumorigenesis and tumor progression. We also discuss the therapeutical potential of the 
modulation of autophagy as a means to eradicate CSCs. 
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Introduction

It is becoming increasingly evident that solid neoplasms are 
complex and dynamic entities composed of tumor cells and non-
tumor components, including infiltrating endothelial, stromal and 
immune cells, cancer-associated fibroblasts and constituents of 
extracellular matrix. The continuous crosstalk between these ele-
ments allows for the quick adaptation and rapid response of tumor 
system to modifications of the environmental conditions such as 
those provoked for instance by low concentration of oxygen (hy-
poxia) or nutrient (starvation) as well as anticancer therapy(Hanahan 
and Coussens, 2012). 

As additional layers of complexity, there is compelling evidence 
demonstrating that malignant tissues display: (1) intertumoral 
heterogeneity (i.e., few alterations shared by tumors of the same 
histopathologic subtype) and intratumoral heterogeneity (i.e., 
distinct phenotypes, genotypes, proliferation rates, metabolisms, 
metastatic potentials and epigenetic status between neoplastic 
cells of the same tumor)(De Sousa et al., 2013, Gerlinger et al., 
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2012); (2) a high frequency of aneuploidy and genetic/chromo-
somal instability(Gordon et al., 2012, Hanahan and Weinberg, 
2011, Vitale et al., 2011a, Vitale et al., 2011b); (3) an extensive 
metabolic rewiring, which is also believed to accompany neo-
plastic transformation(Galluzzi et al., 2013, Michels et al., 2015, 
Schulze and Harris, 2012, Vander Heiden et al., 2009); and (4) a 
hierarchical organization(Nguyen et al., 2012, Reya et al., 2001). 
In particular, it has been put in evidence the existence of stem 
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cell-like niches,  distinct compartments generated within the tumor 
housing a subpopulation of immature cells known as cancer stem 
cells (CSCs)(Beck and Blanpain, 2013). CSCs share with stem 
cells some properties, including the maintenance of an undiffer-
entiated state and the capability of self-renewal upon symmetrical 
and asymmetrical divisions(Beck and Blanpain, 2013, Kreso and 
Dick, 2014, Nguyen et al., 2012). These features allow for the 
perpetuation and the potential expansion of the cancer stem pool 
as well as the preservation of the stemness potential. Besides 
this, CSCs are also able to generate non-tumorigenic, daughter 
cells with variable degree of differentiation. Of note, multilineage 
differentiation potential is not considered a bona fide stemness 
property(Kreso and Dick, 2014). 

CSCs are believed to drive tumor growth and progression by 
contributing to the proliferative potential and constituting a source 
for relapse/recurrence of the disease(Beck and Blanpain, 2013, 
Greaves, 2013, Kreso and Dick, 2014, Nguyen et al., 2012). 
These cells have been prospectively isolated by means of specific 
markers first in acute myeloid leukemia(Bonnet and Dick, 1997, 
Lapidot et al., 1994) and then in a variety of solid tumors, including 
breast, brain, colon, lung, pancreas and prostate cancer(Al-Hajj 
et al., 2003, Collins et al., 2005, Eramo et al., 2008, Hemmati et 
al., 2003, Hermann et al., 2007, Li et al., 2009b, Patrawala et al., 
2006, Ricci-Vitiani et al., 2007, Singh et al., 2004). In these set-
tings, purified CSCs were able to maintain stem cell property and 
initiate/propagate neoplasms representative of the parental tumors 
from which they were derived upon serial xenotransplantation into 
immunodeficient mice.

Recent experimental observations suggest, however, the need 
of an evolution of the CSC model, as the situation appears more 
complex than previously thought(Kreso and Dick, 2014, Magee 
et al., 2012, Meacham and Morrison, 2013, Nguyen et al., 2012, 
Zeuner et al., 2014b). First, high percentages of CSCs have been 
shown in some cancers such as acute lymphoblastic leukemia and 
melanoma (Cojoc et al., 2015, Kong et al., 2008, Quintana et al., 
2008). Second, self-renewal is often deregulated in CSCs(Kreso and 
Dick, 2014). Third, CSCs appear as a heterogeneous population, 
whose functional properties are influenced by genetic, epigenetic 
and microenvironmental factors(Baccelli and Trumpp, 2012, Chen 
and Dent, 2014, Curtis et al., 2010, Dieter et al., 2011, Giannoni 
et al., 2010, Iliopoulos et al., 2011, Sharma et al., 2010, Suva et 
al., 2013, Todaro et al., 2014, Vermeulen et al., 2010). Fourth, in 
some cases, CSCs exist as a dormant and/or quiescent pool po-
tentially contributing to tumor repopulation(Francescangeli et al., 
2012, Kreso et al., 2013, Pece et al., 2010, Roesch et al., 2010). 
Fifth, a certain degree of plasticity in stem cell status has been 
identified within tumors. For instance, glioblastoma stem cells can 
differentiate towards neural and mesenchymal lineages(Ricci-Vitiani 
et al., 2008). Moreover, cancer cells may experience phases of 
transition between stem-like and non-stem-like states(Chaffer et 
al., 2011, Chaffer et al., 2013, Gupta et al., 2011, Iliopoulos et 
al., 2011, Jopling et al., 2011). Thus the process of differentiation 
seems not to be unidirectional, but rather is based on a dynamic 
equilibrium between stemness and differentiation.

Despite these novel findings and some contradictory 
reports(Ishizawa et al., 2010, Quintana et al., 2010, Shackleton et 
al., 2009), it is generally accepted that CSCs casually contribute 
to tumor generation and progression in the vast majority of hema-
tological and solid tumors(Baccelli and Trumpp, 2012, Bartucci et 

al., 2015; Driessens et al., 2012, Nguyen et al., 2012, Schepers 
et al., 2012, Todaro et al., 2014). CSCs have clinical relevance 
as they are endowed with an intrinsic resistance to radio- and 
chemotherapy (Chen et al., 2012, Cojoc et al., 2015, Eramo et al., 
2006, Maugeri-Sacca et al., 2011, Phillips et al., 2006, Vermeu-
len et al., 2012, Zeuner et al., 2014b). This is believed to occur 
through mechanisms encompassing the overexpression of one 
or more members of the ATP-Binding Cassette (ABC) transporter 
family, which increases drug efflux(Alison et al., 2012); an aug-
mented activity of aldehyde dehydrogenase, which is believed to 
contribute to the adaptive response to oxidative stress(Ginestier 
et al., 2007, Kastan et al., 1990); an enhanced activation of DNA 
damage response often coupled to the evasion of the process 
of regulated cell death (RCD)(Bao et al., 2006, Bartucci et al., 
2012, Capper et al., 2009, Majeti et al., 2009, Todaro et al., 2007, 
Zeuner et al., 2014a); and the induction of dormancy(Kreso et al., 
2013). Emerging evidence also links therapy resistance to the 
cytoprotective activation of autophagy in CSCs(Biasoli et al., 2013, 
Chaterjee and van Golen, 2011, Firat et al., 2012, Kantara et al., 
2014, Lomonaco et al., 2009, Mai et al., 2012, Ojha et al., 2014, 
Rao et al., 2012, Wu et al., 2013, Yue et al., 2013). The importance 
of this catabolic pathway in the function and maintenance of CSCs 
is however still debated. 

Here, we provide an overview of the mechanism of autophagy 
and the contribution of this process to tumor initiation and pro-
gression. We then focus on the role of the autophagic process 
in CSCs, also discussing the potentiality of strategies based on 
the modulation of components of the autophagic machinery as a 
means to efficiently eradicate CSCs.

Autophagy, a brief overview

Physiological functions
Autophagy (from the  ancient Greek aυτο + φagos/φagεĩν = 

self-eating) is a highly conserved, catabolic process involved in a 
variety of physiological processes, including normal development, 
growth and immunity(Choi et al., 2013, Mizushima and Komatsu, 
2011, Mizushima et al., 2008). Autophagy deregulation (e.g., owing 
to defects in autophagy machinery) has been linked to physio-/
pathological disorders such as infection, neurodegenerative dis-
eases, cancer and aging(Choi et al., 2013, Levine and Kroemer, 
2008, Nixon, 2013, Rubinsztein et al., 2011).

Macroautophagy - the major autophagic pathway in mammals 
and commonly (and hereafter in this review) referred to as autophagy 
- is a lysosome-dependent mechanism responsible for the degrada-
tion of intracellular components, including cytotoxic protein aggre-
gates, damaged organelles and invading pathogens(Mizushima and 
Komatsu, 2011, Yang and Klionsky, 2010). During this degradative 
process, autophagic substrates are normally captured in a non-
selective fashion (bulk autophagy). Nevertheless, recent evidence 
suggests the existence of specialized subtypes of autophagy that 
selectively recognize their substrates, such as mitophagy, which 
operates as a mitochondria quality control by eliminating damaged, 
superfluous or dysfunctional mitochondria(Green and Levine, 2014, 
Youle and Narendra, 2011).

Autophagy is kept at low level under normal conditions but be-
comes up-regulated in response to various perturbations, including 
starvation, hypoxia, pathogen invasion or treatment with cytotoxic 
compounds(Galluzzi et al., 2014, Kroemer et al., 2010, Mizushima 
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and Komatsu, 2011). Under these stressful conditions, autophagy 
is induced to preserve cellular integrity, promote cellular detoxifica-
tion and provide sources of metabolic energy. 

Although the general consensus is that autophagy constitutes 
a protective response for the short-term adaptation of cells to in-
tracellular stress(Boya et al., 2005, Galluzzi et al., 2012), in some 
limited instances, such as during the development of Caenorhadditis 
elegans(Erdelyi et al., 2011) and Drosophila melanogaster(Berry 
and Baehrecke, 2007, Denton et al., 2009, Nezis et al., 2010) or 
upon exposure to chemotherapeutic agents(Grander et al., 2009, 
Laane et al., 2009, Lamy et al., 2013), this pathway may also 
mediate cell death. Of note “autophagic cell death” is considered 
as a type of RCD only when pharmacological or genetic inhibition 
of the autophagic machinery delays cellular demise(Denton et al., 
2012, Galluzzi et al., 2012). 

Molecular mechanisms
Upon its first description, which was possibly made more than 50 

years ago when Clark observed the presence of peculiar vesicles 
containing cytoplasmic organelles by transmission electron mi-
croscopy analyses(Clark, 1957), an intense wave of studies have 
been launched to elucidate the cellular and molecular pathways 
of autophagy. 

The autophagic pathway starts with the sequestration of cyto-
plasmic material within a double-membraned, non-degradative 
vesicle known as autophagosome(Lamb et al., 2013). The subse-
quent fusion of the autophagosome with lysosome generates an 
autolysosome, the organelle into which the autophagic content is 
degraded and released into cytoplasm for recycling(Hamasaki et 
al., 2013, Hayashi-Nishino et al., 2009, Lamb et al., 2013)(Fig. 1).

The biogenesis of autophagosomes proceeds via three main 
steps: 1) the initiation, a signaling pathway whereby the autophagic 
machinery is targeted to membrane source sites to assembly a 
pre-autophagosomal membrane, followed by 2) the nucleation of 
a lipid-based structure known as isolation membrane or phago-
phore, which is believed to occur at the contact site between 
endoplasmic reticulum (ER) and mitochondria(Hamasaki et al., 
2013, Hayashi-Nishino et al., 2009), and 3) the elongation and 
sealing of the vesicle to surround autophagic cargoes (Lamb et al., 
2013)(Fig. 1). Although the membrane sources for the generation 
of autophagosome mostly derive from ER and mitochondria, it has 
been suggested that lipids may also be mobilized to the isolation 
membrane from plasma membrane (Ravikumar et al., 2010) and 
other cytoplasmic organelles, including the Golgi (Takahashi et 
al., 2011). 

The molecular core of the autophagic machinery consists of the 
products of several autophagy-related (ATG) genes (Mizushima 
et al., 2011). Atg proteins were first identified in yeast as essen-
tial for their survival on nutrient stress and starvation (Thumm et 
al., 1994, Tsukada and Ohsumi, 1993). The homologues of ATG 
genes have been subsequently identified in almost all organisms, 
including mammals. So far, at least 19 mammalian ATG proteins 
have been involved in the autophagic process (Choi et al., 2013). 

At molecular level autophagosome generation is driven by two 
main multiprotein complexes, the unc-51 like autophagy activat-
ing kinase (ULK) complex and the phosphatidylinositol 3-kinase, 
catalytic subunit type 3 (PK3C3 best known as vacuolar protein 
sorting 34, VPS34)-Beclin 1(BECN1) complex(Wirth et al., 2013). 
The ULK complex, known as pre-initiation complex, consists of 

ULK1, ULK2, RB1-inducible coiled-coil 1 (RB1CC1, best known 
as FIP200), ATG13 and ATG101(Ganley et al., 2009, Mizushima, 
2010). Both negative and positive regulators of ULK1 complex 
have been identified. Thus, depending on the energy status and/
or nutrient resources of the cells ULK complex may be inhibited 
or activated by mechanistic target of rapamycin (serine/threonine 
kinase) (mTOR) complex 1 (mTORC1) or by AMP-activated pro-
tein kinase (AMPK), respectively(Hardie et al., 2012, Laplante 
and Sabatini, 2012). ULK1 associates to the negative regulator 
mTORC1 under fed condition, while on nutrient depletion mTORC1 
becomes inactivated, leading to ULK1 release and autophagy 
engagement(Hosokawa et al., 2009, Jung et al., 2009). Starvation 
also results in the activation of AMPK, which triggers autophagy by 
inhibiting mTORC1 - via AMPK-mediated phosphorylation of the 
mTORC1 component regulatory associated protein of mTORC1 
(RPTOR)(Gwinn et al., 2008) or of tuberous sclerosis 1 (TSC1)-
TSC2-TBC1 domain family, member 7 (TBC1D7) (TSC-TBC) 
complex(Inoki et al., 2003) – or by directly activating ULK1(Egan 
et al., 2011, Kim et al., 2011b)(Fig. 1).

The VPS34-BECN1 complex [also known as class III phos-
phatidylinositol-3 kinase (PI3K) complex)] is a regulative platform 
composed by VPS34, BECN1, autophagy/beclin-1 regulator 1 
(AMBRA1) and ATG14L(Funderburk et al., 2010, Yang and Klionsky, 
2010). The crucial pro-autophagic event promoted by this complex 
is the conversion of phosphatidylinositol to phosphatidylinositol-
3-phosphate (PI3P) at the site of phagophore nucleation(Wirth 
et al., 2013). PI3P generation, which is catalyzed by the class 
III PI3K VPS34(Meijer and Klionsky, 2011), triggers phagophore 
nucleation(Axe et al., 2008, Polson et al., 2010). Under normal 
conditions the anti-apoptotic proteins of the Bcl-2 family B-cell 
CLL/lymphoma 2 (BCL2) and BCL2-like 1 (BCL2L1, best known 
as BCLXL) inhibit the VPS34-BECN1 complex by interacting with 
BECN1, the co-activator of VPS34(Furuya et al., 2005, Pattingre 
et al., 2005) (Fig. 1). Such inhibitory association must thus be 
blocked to promote the PI3K activity of VPS34. The interaction 
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VPS34-BECN1 
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Fig. 1. The autophagic pathway. At cellular level, the two principal steps 
of autophagy are the generation of an autophagosome from the isolation 
membrane and its fusion with a lysosome to generate an autolysosome. 
At molecular level, autophagy relies on the ULK complex and the VPS34-
BECN1complex. The activity of these two macromolecular complexes is 
finely tuned by both positive (mTORC1 complex) and negative (AMPK and 
BCL2) regulators.



98    I. Vitale et al.

between BECN1 and BCL2/BCLXL supports the notion of the 
existence of a complex interplay between autophagy and apop-
tosis, which appears relevant in the context of cancer and cancer 
therapy(Marino et al., 2014). On starvation the activation of the 
VPS34-BECN1 complex is also promoted by AMPK(Kim et al., 
2013) or ULK1(Russell et al., 2013).

Among other molecular components mediating autopha-
gosome generation are included ATG9, a transmembrane 
protein that is believed to contribute to the recruitment of 
lipids to the isolation membrane(Mari et al., 2010), and the 
phosphatidylethanolamine(PE)-conjugated form of microtubule-
associated protein light chain 3 (LC3) known as LC3-PE or LC3-
II(Weidberg et al., 2010). LC3-II is generated by an ubiquitin-like 
(UBL) conjugation system via the cleavage of LC3 by the protease 
ATG4, which produces the cytosolic form LC3-I, followed by the 
sequential action of the E1-like enzyme ATG7, the E2-like enzyme 
ATG3 and the E3-ligase complex ATG5-ATG12-ATG16L1, which 
catalyzes the covalent conjugation of PE to LC3-I(Noda et al., 
2008, Ohsumi, 2001). Once generated LC3-II relocates to the 
nucleation membranes where it exerts a role in the elongation/
closure stage(Nakatogawa et al., 2007, Weidberg et al., 2011). 
Of note, LC3-II remains associated to mature autophagosomal 
membrane during the autophagic process.

Concerning the last steps of autophagy: the deliver and uptake 
of the cargoes during autophagosome maturation is mediated by 
specific adaptors, including the autophagy cargo receptor and 
substrate p62/sequestosome 1(SQSTM1, best known as p62), 
which first associates to proteins or organelles (often tagged by 
ubiquitin modification, e.g., Lys63 ubiquitination) and then interacts 
with LC3-like proteins through the LC3-interacting region (LIR)
(Birgisdottir et al., 2013, Johansen and Lamark, 2011); the fusion 
between autophagosome and lysosome is promoted by multiple 
soluble N-ethylmaleimide-sensitive fusion (NSF) attachment pro-
tein receptors-(SNARE-)like proteins(Fader et al., 2009, Nair et 
al., 2011). The hydrolysis of the autophagic cargo, including the 
adaptors, relies on lysosomal enzymes (i.e., acidic hydrolases), 
whose catabolic activity is triggered by the activation of H+ pumps, 
which lowers the pH of the lysosomal lumen(Kroemer et al., 2010) 
Lysosomal permeases eventually promote the cytosolic export 
of the product of this degradation for potential reuse(Kuma and 
Mizushima, 2010). 

Autophagy and cancer

The role of the autophagic machinery in cancer initiation and 
progression is complex. This catabolic pathway may indeed act 
either as an oncosuppressive or as a prosurvival mechanism 
depending on tumor stage and type(White, 2012).

Autophagy limits the early phases of tumorigenesis
Accumulating evidence suggests that autophagy may act 

as an antioncogenic barrier by limiting, or even suppressing, 
cancer initiation. Autophagy is indeed stimulated by tumor sup-
pressors, including phosphatase and tensin homolog (PTEN) or 
serine/threonine kinase 11 (STK11, also known as LKB1), while 
being abolished by oncogenic signals, including the overactiva-
tion of the PI3K-AKT pathway and the overexpression of the 
antiapoptotic member of the Bcl-2 family(Morselli et al., 2011). 
Moreover, an autophagy-dependent anticancer immune response 

has been recently reported to control tumorigenesis(Michaud et 
al., 2011). In addition, mice bearing monoallelic loss of Becn1 
(Becn1+/-) spontaneously develop tumors(Qu et al., 2003, Yue 
et al., 2003), while the whole-body absence of ATG4C increases 
the incidence of chemically-induced tumorigenesis(Marino et al., 
2007) and the deletion of Atg5 or Atg7 favors the development 
of liver hepatomas(Takamura et al., 2011). Along similar lines, 
the monoallelic deletion of BECN1 has been described in a large 
fraction of human neoplasms, including breast, ovarian and 
prostate cancer(Aita et al., 1999, Choi et al., 2013, Liang et al., 
1999), while mutations of other autophagic proteins (e.g., ATG5, 
ATG12) have been found in colorectal cancers(Kang et al., 2009). 
Altered expression of autophagic proteins has also been detected 
in some tumors. For instance low BECN1 levels correlated with 
poor prognosis in multiple human malignancies including, colorec-
tal, lung, esophageal and pancreatic cancer(Chen et al., 2009, 
Jiang et al., 2012, Kim et al., 2011a, Li et al., 2009a), while high 
BECN1 levels have been associated with improved survival in 
patients affected by high-grade gliomas, hepatocellular carcinoma 
or large B-cell lymphoma(Ding et al., 2008, Huang et al., 2011, 
Pirtoli et al., 2009). In addition, both ATG5 and LC3 levels were 
found decreased in patients with melanomas as compared with 
those with benign nevi(Liu et al., 2013). 

Despite some contradictory observations(Kim et al., 2011c, Lad-
dha et al., 2014, Takamura et al., 2011, Wan et al., 2010, Wei et al., 
2011) the current hypothesis pleads in favor of an oncosuppressive 
role for autophagy. According to this model, the suppression of 
this catabolic process would promote oncogenesis by increasing 
the level of oxidative stress(White, 2012, Yang et al., 2011a); 
inducing genomic instability (due to accumulation of genomic 
alteration and/or micronuclei) (Mathew et al., 2007, Rello-Varona 
et al., 2012, Xie et al., 2011); rewiring bioenergetic metabolism 
(due to a defective mitochondria turnover) (Karantza-Wadsworth 
et al., 2007) counteracting oncogene-induced senescence(Iannello 
and Raulet, 2014, Iannello et al., 2013, Liu et al., 2013, Xue 
et al., 2007, Young et al., 2009); favoring the accumulation of 
p62, which triggers a pro-tumorigenic signal via the antioxidant 
transcription factor nuclear factor, erythroid 2-like 2 (NFE2L2, 
best known as NRF2)(Inami et al., 2011, Jain et al., 2010); and 
affecting the mechanism of antitumor immunosurveillance (due 
to perturbations in the tumor microenvironment)(Michaud et al., 
2011, Rao et al., 2014).

Autophagy promotes the survival of cancer cells
A growing body of evidence suggests that once established 

tumors retain and/or activate autophagy (or reinstate it if the 
autophagic machinery has been disabled in the early phase of 
oncogenesis) for sustaining their progression. Human tumor cell 
lines, and in particular RAS-driven pancreatic cancer cells, display 
indeed an upregulated basal level of autophagy as compared to 
normal cells, and this has been associated to poor outcome and 
increased tumor survival(Guo et al., 2011, Lazova et al., 2012, Wang 
et al., 2012, Yang et al., 2011a). In addition, autophagy is induced 
as a cancer pro-survival pathway in response to multiple stress 
conditions in tumor microenvironment including starvation and 
hypoxia(Amaravadi et al., 2011, Kimmelman, 2011, White, 2012). 

Some experimental evidence supports the notion of a pro-
oncogenic function of autophagy in established cancer. First, the 
hemizygous deletion of Becn1 hampers tumor formation in ataxia 
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telangiectasia mutated (Atm)-/- and Tsc2+/- mice(Parkhitko et al., 
2011). Apparently at odds with this, enhanced BECN1 inactivation 
augments tumor growth of established non-small-cell lung cancer 
with active mutation of epidermial growth factor (EGFR)(Wei et al., 
2013b). Second, the ablation of Rb1cc1 limits tumor progression in 
a mouse model of breast cancer driven by the polyoma middle T 
oncogene (PyMT) oncogene(Wei et al., 2011). Third, the hepatic-
specific deletion of Atg5 or Atg7 arrests the transition from hepa-
toma to hepatocellular carcinoma in genetically modified mouse 
models(Takamura et al., 2011). Fourth, disabling autophagy limits 
tumor growth in KRAS-transformed cells by interfering with the meta-
bolic functions and the turnover of mitochondria, and consequently 
affecting both the level of metabolic/biosynthetic substrates and 
the energy charge(Guo et al., 2011). Fifth, autophagy is reported 
to facilitate mammary tumorigenesis and promote tumor growth 
in a model of partner and localizer of breast cancer 2, early onset 
(BRCA2)-(PALB2-)associated hereditary breast cancer(Huo et al., 
2013). Sixth, studies performed on genetically engineered mouse 
models of KRASG12D- or BRAFV600E-driven lung cancer suggest 
that autophagy dictates lung tumor fate(Chen and Guan, 2013, 
Guo et al., 2013, Rao et al., 2014). Thus, tissue-specific inactiva-
tion of ATG5 or ATG7 respectively reduced the progression from 
adenomas to adenocarcinomas(Rao et al., 2014) or diverted it to 
more benign tumor oncocytomas(Chen and Guan, 2013, Guo et 
al., 2013). Of note, the negative impact of autophagy inhibition 
on tumor progression could be in part reverted by the deletion of 
the transformation related protein 53 (Tpr53, best known as p53). 
Seventh, in a humanized genetically-modified mouse model of 
KRASG12D-driven pancreatic ductal adenocarcinoma (PDAC), 
the absence of either ATG5 or ATG7 blocks tumor progression 
to PDAC(Rosenfeldt et al., 2013). Intriguingly, in this study the 
combination of autophagy loss and p53 deficiency accelerated 
tumor initiation and progression, suggesting that p53 status may 
dictate the role of autophagy in pancreatic tumor development.

Altogether these observations suggest that autophagy pro-
motes the survival of cancer cell by favoring their adaptation and 
tolerance to environmental stress such as hypoxia, by maintain-
ing mitochondrial homeostasis and functions (e.g., by providing 
substrates for mitochondrial metabolisms via nutrient recycling 
or limiting the accumulation of ROS), and by affecting p53 tumor 
suppressor pathway.

Autophagy in the physiology of CSCs

An increasing number of experimental observations suggest 
that autophagy may be crucial in the maintenance and function 
of distinct types of normal stem cells. This catabolic process is 
indeed involved in the preservation of stem cell homeostasis 
and the maintenance of stemness property (reviewed in(Guan et 
al., 2013, Phadwal et al., 2013, Vessoni et al., 2012)). Of note, 
the protein/organelle quality control operated by autophagy ap-
pears of particular relevance during periods of quiescence and/
or differentiation(Guan et al., 2013). The exact contribution of 
autophagy for the biology of CSCs is not yet elucidated(Lin et 
al., 2015). Given the analogy between CSCs and stem cells, one 
could expect that autophagy may play a cytoprotective role for 
CSCs. Nevertheless, as autophagy suppresses the early phases 
of tumorigenesis (see above), a deregulation of this catabolic pro-
cess in CSCs could also be plausible. To further complicate this 

“autophagy paradox”, the mechanism of autophagic cell death may 
be relevant for the effectiveness of specific antineoplastic therapies. 
In the next paragraphs we summarize the experimental evidence 
available on the contribution of autophagy in CSCs.

Autophagy promotes CSCs survival
Some components of autophagic machinery are essential for 

the survival of CSCs and their adaptation to changes of the tumor 
microenvironment. This applies to: 1) ATG4A, which has been identi-
fied as a pivotal factor for CSC maintenance in a high-throughput 
screening based on mammosphere formation upon transfection 
with a pool of short hairpin RNAs (shRNAs)(Wolf et al., 2013); 2) 
BECN1, which has been shown to promote the survival of breast 
CSCs (but not bulk cancer cells) and to contribute to their in vivo 
tumorigenicity (Gong et al., 2013). In this experimental setting, the 
expression level of BECN1, and consequently the autophagic flux, 
were indeed higher in CSC-enriched than in non-CSC-enriched 
breast tumor cells; 3) DRAM1 and p62, which have been found 
overexpressed in adult glioblastoma tumors belonging to the mes-
enchymal subtype(Galavotti et al., 2013). In this study, by using 
specific siRNAs directed against DRAM1 and p62 both proteins 
were mechanistically linked to the regulation of bioenergetic me-
tabolism, migration and invasion of glioblastoma CSCs. 

Further confirming the crucial role of autophagy in CSC main-
tenance, the stable or specific knockdown of LC3 and ATG12 (by 
means of lentiviral-delivered shRNAs) decreased the fraction of 
tumor cells expressing high levels of CD44 and low levels of CD24 
antigens (CD44+/CD24-/low), which are believed to include the popu-
lation of breast CSCs(Cufi et al., 2011). Accordingly, an elevated 
autophagic flux was found in mammospheres derived from triple 
negative breast cancer (TNBC) as compared to parental cells(Rao 
et al., 2012). Moreover, it has been recently demonstrated that a 
subpopulation of human pancreatic CSCs resistant to KRAS ablation 
and responsible for tumor relapse relied on autophagy and other 
catabolic processes for its survival (Viale et al., 2014). Chronic 
myeloid leukemia (CML) is a disease of hematopoietic stem cells 
harboring the chimeric gene BCR-ABL. Both the survival of CML 
cells and leukemogenesis was shown to strictly rely on autophagy, 
as demonstrated in experiments performed by using the conditional 
knockout of ATG3(Altman et al., 2011). The survival of CML stem/
progenitor cells was also impaired by the depletion of ATG4B(Rothe 
et al., 2014). Along similar lines, the inhibition of autophagy via 
the administration of chloroquine (CQ, a lysosomotropic agent ar-
resting the fusion between autophagosomes and lysosomes(Firat 
et al., 2012, O’Donovan et al., 2011, Sasaki et al., 2010, Selva-
kumaran et al., 2013)) depleted the CD44+/CD24-/low population in 
TNBC, both in preclinical and clinical settings(Choi et al., 2014). 
CQ also abolished the propagation, invasion and growth of fresh 
spheroid-forming cells derived from human ductal carcinoma in situ 
(DCIS), the most common non-invasive, pre-malignant condition 
often progressing to invasive breast cancer(Espina et al., 2010). 
It should be noted, however, that CQ may modulate signaling 
pathways other than autophagy, including the permeabilization of 
lysosomal membrane and the subsequent activation of the mito-
chondrial pathway of apoptosis(Maycotte et al., 2012, Rubinsztein 
et al., 2012). Moreover, CQ is reported to exert anti-CSC activity 
through autophagy-unrelated mechanisms, including the inhibition 
of Janus kinase 2 (JAK2)(Choi et al., 2014) or the inactivation of 
the CXCR4 and Hedgehog signaling(Balic et al., 2014).
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CD133 (also known as prominin-1) was one of the first surface 
markers used to prospectively purify and thus enrich CSCs(Singh 
et al., 2004). Despite some contentions(Clement et al., 2009, Wang 
et al., 2008), CD133 has been proposed as a marker of a number 
of solid tumors, and its expression is predictive of glioma patient 
outcome(Pallini et al., 2008). CD133 has also been described 
as a marker of bioenergetic stress(Griguer et al., 2008). In line 
with this, two recent reports of the same group described a 
prosurvival role of CD133 in hepatoma cancer exerted through 
CD133-mediated activation of autophagy(Chen et al., 2013a, 
Chen et al., 2013b). In the first study, the authors showed that a 
CD133 antibody inhibited spheroids and xenograft tumor forma-
tion in NOD/SCID mice, and induced cancer cell death by sup-
pressing autophagy and promoting necrotic cell death(Chen et 
al., 2013b). In the second study, they reported that on glucose 
deprivation CD133 translocated to cytoplasm where it promotes 
autophagosome formation, glucose uptake and ATP synthesis 
by a mechanism not fully elucidated(Chen et al., 2013a). In this 
latter experimental setting, the depletion of CD133 also reduced 
xenograft tumor formation. Apparently at odd with these obser-
vations, CD133 is described to activate the PI3K/AKT/mTOR 
pathway (which among other functions also inhibits autophagy, 
see above) by interacting with PI3K, and its depletion reduced the 
self-renewal and tumorigenicity of glioblastoma CSCs(Wei et al., 
2013a). This is in line with a role of the PI3K/AKT/mTOR signal-
ing in the origin, survival and maintenance of CSCs from both 
hematological and solid tumors(Chang et al., 2013, Dubrovska 
et al., 2009, Francipane and Lagasse, 2013, Martelli et al., 2011, 
Zhou et al., 2007). Moreover, Cho and colleagues reported that 
the expression of sex determining region Y(SRY)-box 2 (SOX2), 
a transcription factor involved in the regulation of embryonic 
development with essential roles for stem-cell maintenance and 
pluripotency(Boyer et al., 2005), triggered the activation of either 
autophagy (by inducing the overexpression of ATG10) or cellular 
senescence in colon cancer cells, in turn resulting in the arrest of 
tumor growth, both in vitro and in vivo(Cho et al., 2013). 

The current view is that autophagy acts as a pro-survival mecha-
nism whereby CSCs face changes in the tumor microenvironment. 
Reportedly, extrinsic perturbations, including hypoxic, metabolic 
and oxidative stress, can promote self-renewal and plasticity. For 
instance, in hypoxic conditions (such as those encountered in the 
hypoxic niche(Mohyeldin et al., 2010)) hypoxia inducible factor 
(HIF) mediates the activation of stem cell markers/factors as well 
as prosurvival pathways, including autophagy(Heddleston et al., 
2009, Lin and Yun, 2010, Ma et al., 2011, Mathieu et al., 2011, 
Qiang et al., 2012). Accordingly, a high number of autophago-
some have been reported in poorly vascularized, hypoxic tumor 
regions(Degenhardt et al., 2006). Of note, HIF-inducing autophagy 
has been recently shown to promote the metastatic ability of 
CD133+ pancreatic cancer stem cells(Zhu et al., 2014). In ad-
dition, antiangiogenic agents increased the population of CSCs 
on hypoxia and this phenomenon could limit their anticancer 
activity(Conley et al., 2012). In line with the hypothesis of a role 
of autophagy in the adaptation of CSCs to environmental pertur-
bations, interfering with autophagic flux decreased the survival 
of either pancreatic cancer cells with stem-like properties under 
hypoxic conditions(Rausch et al., 2012) or CD133+ liver CSCs on 
oxygen- and nutrient-deprivation(Song et al., 2013). Importantly, 
a co-expression between hypoxia, stemness and autophagy 

markers was found in immunohistochemical analyses performed 
on tissue samples from PDAC patients(Rausch et al., 2012).

Finally, intriguing evidence also ascribes to autophagy a role in 
CSC plasticity. Thus, the inhibition of mTOR (and the subsequent 
induction of autophagy, Fig. 1) increased the CD133+ fraction in 
liver tumor cells by arresting the differentiation and inducing the 
conversion of CD133- to CD133+ cells and also promoted in vivo 
tumor growth(Yang et al., 2011b) Similar results were found by 
Zhu and collaborators, who demonstrated that the activation of 
autophagy under hypoxic conditions promoted the dedifferentia-
tion of non-stem pancreatic cancer cell population into stem-like 
cells(Zhu et al., 2013).

Taken together, these observations suggest that the cytopro-
tective role of autophagy for CSCs has a crucial impact on tumor 
initiation, progression and spreading (Fig. 2). Nevertheless, com-
pelling clinical evidence on the exact contribution of autophagy 
to CSC physiology is required, as in some settings autophagy 
activation (for instance via the inhibition of the PI3K/AKT/mTOR 
pathway) may also exert antineoplastic activity by targeting CSCs.

Autophagy activation in CSCs affects therapy response
Contrasting results link the autophagic process to either the 

resistance of CSCs to, or the fully execution of cell death induced 
by, radio or chemotherapy. 

On the one hand, the depletion of autophagy-related genes 
and/or the pharmacological inhibition of autophagy increased 
the sensitivity of glioma CSCs to radiation therapy(Firat et al., 
2012, Lomonaco et al., 2009). In one of these two studies, the 
simultaneous administration of the inhibitor of the PI3K/AKT 
pathway boosted the antitumor efficacy and allowed for CQ dose 
reduction(Firat et al., 2012). Salinomycin is a compound identi-
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Fig. 2. Contribution of autophagy to cancer stem cell (CSC) biology. 
Recent evidence suggests that the activation of the autophagy (ATG) con-
tributes to the generation (1), survival (2), differentiation (3), plasticity (4) 
and migrating/invasion property (5) of CSCs. The impact of the autophagy 
process on CSC biology may thus have a direct role on tumor initiation, 
progression and metastasis.
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fied in a screening for novel agents specifically killing epithelial 
CSCs(Gupta et al., 2009). The molecular mechanism underlying 
this anti-CSCs effect has been recently characterized to involve the 
direct abrogation of autophagy by salynomicin(Yue et al., 2013). 
In addition, the knockdown of ATG7 potentiated the inhibitory ef-
fect of salinomycin on breast CSC survival and expansion(Yue 
et al., 2013). Along similar lines, the inhibition of the autophagic 
flux increased the killing effect of etopoxide in glioblastoma cell 
lines and CSCs(Biasoli et al., 2013), sensitized breast CSCs to 
ginsenoside F2(Mai et al., 2012), and inhibited mammosphere 
formation of TNBC cells, while enhancing the in vitro and in vivo 
anticancer efficacy of panobinostat (Rao et al., 2012). Moreover, 
autophagy promoted the resistance of colon CSCs to paclitaxel 
by inhibiting apoptosis and upregulating caudal type homeobox 
1 (CDX1)(Wu et al., 2013), induced dormancy in breast CSCs 
exposed to farnesyl-transferase inhibitors(Chaterjee and van 
Golen, 2011), and protected bladder cancer side population 
(SP(Golebiewska et al., 2011)) cells from chemotherapeutic 
agents such as gemcitabine, mitomycin and cisplatin(Ojha et 
al., 2014). In addition, curcumin enhanced the proliferation and 
autophagic survival of doublecortin-like kinase 1(DCLK1)-positive 
colon CSCs(Kantara et al., 2014). This finding supports the use 
of DCLK1 as a potential target to sensitize tumors to curcumin. 
Finally, the depletion of autophagy by different approaches in-
creased the cytotoxicity of the tyrosine kinase inhibitor imatinib 
or the AKT inhibitor perifosine (two drugs reported to activate 
autophagy) in CML cell lines (Bellodi et al., 2009, Elzinga et al., 
2013, Rothe et al., 2014, Tong et al., 2012, Yu et al., 2012). 

On the other hand, the cytotoxic effect of some therapeutic 
agents is mediated by (and strictly requires) the molecular machin-
ery of autophagy. This applies to 1) temozolomide, whose effect 
on glioblastoma CSCs involves the activation of autophagic cell 
death, suggesting that the down-regulation of autophagy-related 
proteins may be a mechanism to evade temozolomide-induced 
cytotoxicity (Fu et al., 2009); 2) resveratrol, which eliminates 
breast CSCs by inducing autophagy via the suppression of the 
Wnt/-b catenin signaling pathway (Fu et al., 2014) or upstream 
of the activation of apoptosis (Filippi-Chiela et al., 2011) and 3) 
metformin (a pharmacological agent currently employed for the 
treatment of type 2 diabetes and known to selectively kill breast 
CSCs(Hirsch et al., 2009)), which seems to exert its anti-CSC 
effect by modulating the mTOR signaling pathway(Mohammed et 
al., 2013). Along similar line, the depletion of DNA-PKcs radiosen-
sitized glioma CSCs by inducing autophagic cell death(Zhuang 
et al., 2011b), while autophagy activation by the modulation of 
mTOR activity promoted neuroblastoma and glioma stem cell 
differentiation and abrogated resistance of glioma stem cells to 
radiation(Zeng and Zhou, 2008, Zhao et al., 2010, Zhuang et al., 
2011a, Zhuang et al., 2011c). Finally, brain CSCs succumbed to 
adenovirus-mediated cell death via autophagy, both in vitro and 
in vivo(Jiang et al., 2007) 

Reportedly, some drugs may simultaneously trigger distinct 
pathways of RCD (Galluzzi et al., 2015, Galluzzi et al., 2012). For 
instance rotterin promotes autophagy followed by cell death in 
breast, pancreatic or prostate CSCs by acting on the PI3K/AKT/
mTOR cascade(Francipane and Lagasse, 2013, Kumar et al., 
2013, Kumar et al., 2014, Singh et al., 2012). Rotterin-induced 
autophagy may thus act as a survival mechanism limiting apop-
tosis or, alternatively, contribute to the activation of this RCD 

subroutine. Finally, in one report, no significant difference was 
observed in the induction of apoptosis and autophagic cell death 
between CD44+/CD24-/low breast CSCs and parental cells (Yenigun 
et al., 2013). Altogether, these findings suggest that autophagy 
inhibition and autophagy activation may be both considered as 
promising strategies for sensitizing CSCs to anticancer therapy.

Concluding remarks

The contribution of autophagy in the physiology of CSCs 
appears complex and is not yet fully elucidated. Accumulating 
evidence suggests that the autophagic process actively contrib-
utes to the generation, maintenance, plasticity, distribution and 
migratory/invasion potential of CSCs (Fig. 2). Moreover this cata-
bolic process takes part to the adaptive stress response mounted 
by CSCs to cope with perturbations of tumor microenvironment 
(e.g., hypoxia or therapy).

The inhibition of prosurvival pathways preferentially activated 
in (and presumably strictly required for the survival of) CSCs, 
including Notch(McAuliffe et al., 2012, Takebe et al., 2011, Ula-
sov et al., 2011), Sonic Hedgehog(Song et al., 2011, Takebe et 
al., 2011, Ulasov et al., 2011), Wnt/-b catenin(Kendziorra et al., 
2011, Takebe et al., 2011) and NF-kB(Garner et al., 2013, Sun 
et al., 2013) signaling cascades, is considered as an efficient 
antineoplastic strategy. By using a similar approach, the compo-
nents of the autophagic machinery may thus be employed as a 
promising target to selectively eradicate CSCs thereby arresting 
tumor growth/progression/spreading and improving the effective-
ness of radio- and chemotherapy (which both are reported to 
enrich CSCs in tumors)(Bao et al., 2006, De Sousa et al., 2013, 
Phillips et al., 2006).

Nevertheless, some evidence suggests caution in the use of 
autophagy inhibitors for cancer therapy: (1) autophagy has a 
physiological role in the preservation of tissue homeostasis, is 
involved in innate/adaptive immunity and also acts as a barrier 
against tumorigenesis and neurodegenerative diseases, implying 
that its whole-body inhibition may have adverse effects(Choi et 
al., 2013); (2) CQ and hydroxychloroquine (i.e., the drugs cur-
rently used for inhibiting autophagy in multiple ongoing clinical 
trials launched on cancer patients, source: http://clinicaltrials.gov/)  
(Manic et al., 2014) have activities on lysosomal (and possibly 
non-lysosomal) processes distinct from autophagy(Balic et al., 
2014, Choi et al., 2014, Maycotte et al., 2012, Rubinsztein et al., 
2012) suggesting the need to develop novel, specific pharma-
cological inhibitors of autophagy; (3) autophagic proteins have 
autophagy-independent roles (for instance BECN1 contributes to  
vesicular trafficking pathways (Cao and Klionsky, 2007, Shravage 
et al., 2013); (4) in some cases autophagy drives the anticancer 
and anti-CSC activity of specific antitumor agents(Filippi-Chiela 
et al., 2011, Fu et al., 2009, Fu et al., 2014, Mohammed et al., 
2013, Zhuang et al., 2011b), meaning that autophagy inhibition 
may lead to therapeutic failure; and (5) some signaling pathways 
that de facto inhibit the molecular machinery of autophagy (e.g. 
the PI3K/AKT/mTOR cascade) are described as cytoprotective for 
CSCs(Chang et al., 2013, Dubrovska et al., 2009, Martelli et al., 
2011), suggesting that the activation of the autophagic process 
may also be a potential means to kill cancer cells including CSCs. 
The real impact of autophagy in CSCs may thus depend on the 
type of tumor, stage of tumorigenesis, tumor microenvironment 
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as well as the genetic, epigenetic and metabolic context.
Uncovering the exact contribution of autophagy in tumor 

system and CSC biology, and the specific role of this catabolic 
pathway in CSCs may be crucial for the development of novel 
antineoplastic therapy aiming at tumor eradication. 
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