
RAMSES: Reversibility-based Agent Modeling
and Simulation Environment with

Speculation-support

Davide Cingolani, Alessandro Pellegrini, and Francesco Quaglia

DIAG, Sapienza, University of Rome

Abstract. This paper presents RAMSES, a framework for easily speci-
fying agent-based discrete event models entailing both environment and
agent entities. RAMSES offers parallel execution capabilities based on
speculative event processing and an innovative software reversibility tech-
nique that copes with state restore in case the run slides along a non-
consistent speculative path. Reversibility in RAMSES relies on transpar-
ent static software instrumentation, thus allowing the model developer
to concentrate on the actual forward-execution logic of the simulation
events occurring in the system. An experimental assessment of RAMSES
is also presented, which is aimed at determining its run-time effectiveness
and its potential for simplifying the development of agent-based models
when compared to other (general purpose) speculative frameworks for
parallel discrete event simulation.

1 Introduction

Agent-based modeling exhibits an intrinsic expressive power, making it a proven
solution to study complex real-world scenarios, such as disaster rescue [1], com-
putational sociology [2], biomedical applications [3], and economic analysis [4].
At the same time, discrete event models are mainstream formalisms for describ-
ing agent-based models, just due to the fact that agents’ interactions with other
entities can be abstracted as occurring at specific time instants1.

Also, discrete event simulation techniques represent a core support for solving
agent-based models relying on the discrete event paradigm. This is an important
aspects, given the existence of a plethora of techniques, globally referred as
Parallel Discrete Event Simulation (PDES) [5], which provides protocols and
mechanisms for running complex discrete event simulation models in parallel,
hence allowing for speedup in the model execution and tractability of highly
complex and/or large/huge models.

However, except for a few specific cases, most of the traditional PDES plat-
forms are general-purpose. Nevertheless, when considering agent-based simula-
tion, the peculiarities of this kind of simulation models can be exploited in order
to tailor both the PDES environment API, its internal structure and run-time
behavior to the actual needs of agent-based scenarios. In particular, two different

1 Interactions having a specific duration can be anyhow mapped to a couple of begin
and end discrete events.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/54527055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

types of simulation objects/entities can be considered as core building blocks:
the environment, and the actual agents (both either physical or logical).

In this paper we present RAMSES—Reversibility-based Agent Modeling and
Simulation Environment with Speculation-support2— which has been conceived
by starting from the conjecture that the environment can represent the dominant
objects’ category in a wide set of agent-based simulation models. In fact, the en-
vironment can experience changes which are either independent of or dependent
on the actual agents behavior, and at the same time agents interact among each
other within (a portion of) the environment. We exploit this conjecture of domi-
nance by the environment to set up a PDES-based execution framework in which
the actual evolution of the system is driven only by discrete events which affect
portions of the environment—in fact, agent/agent and agent/environment inter-
actions can be easily mapped to events which take place within the environment
only. This will be reflected, particularly, in the API offered by RAMSES to the
simulation model developer.

Concerning run-time efficiency, RAMSES specifically targets parallel exe-
cution on multi/many-core environments, where the simulation’s execution is
partitioned among different worker-threads that share the overall simulation
workload. Also, the approach to synchronize the activities of the different worker-
threads to ensure a causally-consistent evolution of the simulation model (global)
state, allows for speculative event processing, a technique that has been shown to
provide high scalability in disparate execution environments (see, e.g., [6]). As for
this aspect, RAMSES incorporates an innovative support for correct state restore
in case of miss-speculation (namely, a posteriori detection of out-order execution
actually affecting causal consistency), which is based on the software reversibil-
ity approach recently presented in [7] and has been shown to have the potential
to provide overhead reduction, with respect to classical (e.g. checkpoint-based
[8]) state recovery. This is especially true for execution patterns of individual
events entailing a reduced amount of simulation state updates, independently
of the complexity of the actual logic of the events. This might be the case of
agent models, since agents might inspect (read) large chunks of data from the
environment, while updating the environment state with a limited number of
operations (at least in the likely case).

To assess the viability of our proposal, we rely on a set of experiments car-
ried out by using a distributed multi-robot exploration and mapping simulation
model developed on the basis of the results in [9]. We compare the performance
of RAMSES with an implementation of the same simulation model on top of
ROOT-Sim [10], namely a highly-optimized general-purpose simulation frame-
work offering speculative execution capabilities for PDES models. We also con-
sider software development aspects in the comparison (e.g. required number of
code lines for the same model in the different—special vs general purpose—
frameworks).

The remainder of this paper is structured as follows. In Section 2, related
work is discussed. The internal structure of RAMSES and the exposed API are
described in Section 3. The experimental study is presented in Section 4.

2 The source code of RAMSES can be found at https://github.com/HPDCS/RAMSES.

2 Related Work

We can find a large number of frameworks to support agent-based simulation in
the literature. The MASON framework [11] pays special attention to the per-
formance of simulation execution, addressing computing-intensive models (i.e.,
large scenarios with many agents), along with portability and reproducibility of
the results across different hardware architectures. A parallel/distributed ver-
sion (D-MASON) has been presented in [12], which relies on time-stepped syn-
chronization and on the master/slave paradigm. We similarly address the per-
formance of agent-based simulation execution, yet we do this for the case of
speculative asynchronous (non-time-stepped) PDES, relying on the innovative
generation of update undo code blocks for the reconciliation of causality errors.

Pandora [13] is a C++-based simulation framework enabling executions in
parallel/distributed environments. It features several AI algorithms for support-
ing agents’ decision making and provides python bindings (which is a benefit for
inexperienced programmers). On the other hand, RAMSES provides the simula-
tion model developer with an API that is specifically tailored for implementing
simulation models in ANSI-C, which binds the interactions to the environment.
This allows for a simplified implementation of simulation models, giving trans-
parently access to highly optimized synchronization facilities to support efficient
computations on multi/many-core machines.

AnyLogic [14] is a commercial multi-method general-purpose simulation mod-
eling and execution framework, offering at the same time the possibility to sup-
port discrete-event, system dynamics, and agent-based simulation. The simula-
tion model developer can rely on graphical modeling languages to implement the
simulation models, along with Java code. Differently from this framework, we
target C technology and rely on innovative synchronization protocols to carry
on the simulation work. Additionally, we provide an API specifically targeting
agent-based models, allowing for an easy implementation of simulation models.

FLAME [15] is a simulation framework targeting large, complex models with
large agent populations to be run on HPC platforms using MPI and OpenMP.
The counterpart FLAME GPU [16] targets 3D simulations of complex systems
with a multi-massive number of agents on GPU devices. We keep the ability to
deal with large amount of agents, yet we rely on traditional CPU-based execution
of the simulation model.

RAMSES is naturally related to the literature dealing with parallel specu-
lative processing. This paradigm is recognized as a means to achieve scalability
thanks to the (partial) removal of the cost for coordinating concurrent processes
and/or threads from the critical path of task processing (see, e.g., [17]). In the
PDES context, the speculative paradigm is incarnated by the well-known Time
Warp synchronization protocol [18], which has been recently shown to provide
scalability up to thousands or millions of CPU-cores [6]. Among the PDES plat-
forms that have been developed by relying on Time Warp synchronization, a
close one to RAMSES is ROOT-Sim [10]. This is a general-purpose speculative
simulation framework for discrete-event simulation models that has been re-
cently enhanced with the software reversibility support we exploit in RAMSES.
Although ROOT-Sim has been proven [19, 20] to be able to efficiently carry out
the execution of agent-based models, it does not account for the requirements of

developing this kind of models. Conversely, in RAMSES, we offer a specific API
to let the model writer implement agent-based models more easily. Additionally,
the internal runtime execution support which we propose in this paper is based
on an innovative synchronization protocol different from the more traditional
Time Warp-based one of ROOT-Sim.

3 RAMSES

3.1 Reference Programming Model

We target a programming model in which two different types of entities compose
the overall structure of the simulated phenomenon. On the one side we have the
environment, which could be of any size and shape, yet we expect it to be divided
into regions. Each region has the following characteristics:
– A region has a state, which describes all the aspects of the environment. We

do not place any limit on the number and kind of aspects that a region might
have, thus giving the model programmer the highest degree of freedom in
the definition of the environment.

– A region might host one or multiple agents at a given time instant.
– The internal state of the region might be modified either by external cir-

cumstances (e.g., an earthquake might change the shape of the terrain), or
by the interaction with one or more agents (e.g., one agent might drop or
collect objects into a region).

– Regions can be logically connected to each other depending on the actual
model’s logic, thus the environment is customizable in size and shape.

On the other side we have agents, which adhere to the following behavior:
– Agents have a state, which describes all the aspects of their current evolu-

tion within the environment. This state can describe either physical charac-
teristics (e.g., the conditions of some parts of a mechanical agent) or logi-
cal/cognitive characteristics (e.g., the knowledge of the environment that an
exploring agent has gathered so far).

– Agents are always located in a region. We note that this does not pose
a limitation to the programming freedom of the model developer, as logical
dummy regions can be used to host agents, in case the model requires agents
to be outside of the environment, at a given point in the simulation.

– Agents can move freely in the environment, yet moving only across regions
which are adjacent. Again, this does not pose a limitation to the program-
ming freedom, as any region can be connected to any other region, depending
on the model’s logic.

– Agents can interact with each other. Nevertheless, this interaction can only
take place when two agents are located within the same region.

– Agents can interact with the environment. In particular, they can inspect
the environment to gather knowledge, or they can modify it.

We emphasize that (as already hinted) all the interactions take place within re-
gions. Therefore, changes in the state of any entity (be it a region or an agent)
which are produced by the events’ execution take place according to the (sim-
ulated) time advancement of regions. We call this property dominance by the
environment, which will be exploited by the architectural organization presented

in Section 3.4. In particular, since our simulation framework executes according
to a PDES scheme, we map only regions to the traditional notion of simulation
objects. In this way, we are able to significantly reduce the amount of entities
which are managed by the multi-threaded simulation infrastructure, and the
associated management/synchronization costs.

3.2 Exposed API

The API exposed by RAMSES includes functions of various nature, which can
be grouped into two main categories: functions to model the initial state of the
simulation (in terms of description of the environment and agents) and to carry
on the evolution of the system, and library functions to manipulate the topol-
ogy of the environment and retrieve the simulation state of regions and agents.
For the sake of space constraints, we refer to the online RAMSES documen-
tation for a comprehensive and technical description of the whole set of API
functions and supported topologies. We discuss here the basic functions, to let
the reader understand the principles driving the implementation of models on
top of RAMSES.

To setup and start the simulation, the model writer issues a call (possibly
from main()) to the Setup() API, which allows to specify both the number of
regions and agents, along with two initialization callbacks, say function pointers,
one for the regions and one for the agents. Both pointers refer functions accept-
ing one integer as input (which is the id number of the agent or the region,
assigned by the engine) and must return a pointer to the (allocated) simula-
tion state, which will be then managed by the simulation framework. During
the initialization of an agent, a call to void InitialPosition(unsigned int
region) must be issued, so as to specify in which region the currently being
initialized agent is placed. Failing to do so results in a runtime error. After the
call to Setup(), the simulation application can call void StartSimulation(int
n cores), which creates n parallel worker-threads and carries on the simulation
execution.

Concerning interactions among agents and the environment, four specific API
functions allow to inject in the system new events. They are:
– void Move(uint32 t agent, uint32 t dest, simtime t time): by issuing a call

to this function, the model tells the simulation framework that at a certain
time (denoted by time) the agent agent is moving from the current region
which is hosting it to the region identified by dest.

– void AgentInteraction(uint32 t agent a, uint32 t agent b, simtime t time,
interaction f agent int, void *args, size t size): this function tells the sim-
ulation framework that at time time two agents, agent a and agent b want
to interact. The actual interaction is modeled by the function pointed by
agent int, which receives as argument the buffer pointed by args. If at
time time the two agents agent a and agent b are not in the same region,
a runtime error is issued.

– void EnvironmentInteraction(uint32 t agent, uint32 t region, simtime t
time, interaction f environment int, void *args, size t size): in case one
agent wants to interact with the surrounding environment, namely with a
region, this function tells the simulation engine that at time time the agent

agent is expected to be found in region region. If this is not the case, a
runtime error is issued. On the other hand, the model code receives a call to
the function pointed by environment int, having args as the parameter.

– void EnvironmentUpdate(uint32 t region, simtime t time, update f envi-
ronment update, void *args, size t size): to model updates to the environ-
ment which are not related to the interaction with agents, this API function
can be used to notify that at time time an update to region should be
carried out by the function pointed by environment update.
Concerning the topology, RAMSES offers several API functions to organize

the regions in common topologies. As an example, in case of random move-
ments, by calling int FindRegion(int type) the model can receive the id of a
neighbor region according to a given topology organization described by type.

3.3 Tracking Memory Updates for Reversibility

We rely on software instrumentation to transparently modify the application-
level code, in order to let RAMSES engine track at runtime what are the effects
of the forward execution of events on the simulation model’s state. This infor-
mation is used to build a packed version of negative instructions which only
undo the effects of the forward execution, allowing for a reverse execution of
events (in terms of state updates) which is independent of the actual forward
event granularity (CPU requirement). The whole approach is based on the co-
existence of dual executable modes (inspired to [19]), to quickly switch between
two operative modes: one tracking memory updates, one which does not.

To statically instrument the application-level code, we rely on the open-
source Hijacker [21] tool. By relying on Hijacker, we can specify (via a set of
xml-based rules) what are the instrumentation steps to be undertaken before
the final linking stage of the application is executed3. More specifically, we in-
struct Hijacker to create multiple copies of the same executable, but differently
instrumented. This technique, known as multi-coding, creates different versions
of the application which nevertheless share the same data sections within the
virtual address space, but can be accessed using ad-hoc altered function names.
One copy of the software is left untouched (namely, no instrumentation is ap-
plied to it). Therefore, this first version can be regarded as the original code,
which therefore does not provide any possibility to undo the effects on memory
(in terms of updates) by the execution of an event.

The second version, on the other hand, is managed by Hijacker so that the
whole simulation model’s code is scanned to find assembly instructions which
have a memory address as the destination operand4. Before each memory-write
instruction, Hijacker places a call to a specific internal trampoline, along with
some instructions which generate an invocation context for it. This trampoline

3 Hijacker works on relocatable object files (specifically on the Executable and Linkable
Format—ELF), therefore it must be regarded as an additional compilation step of
the executable building procedure.

4 The most significant instructions for the x86 architecture (which represents our
target) are mov, movs, and cmov instructions, and are handled internally by Hijacker
in different ways. The same is true for vectorized memory access instructions such
as movdqa.

function computes the ultimate target memory address which will be accessed
in write mode, and the size of the writing. The couple 〈address, size〉 is then
passed as input to the internal reverse generator(void *address, size t
size) module of RAMSES, which generates the reverse code instructions, just
before any memory-update operation is performed.

These negative instructions are simply built by accessing memory at address
and by reading size bytes. Since the invocation of reverse generator happens
right before the execution of the original memory-write instruction, this allows
the module to retrieve the “old” value of the memory location belonging to the
simulation model’s state. Therefore, it is used to build a negative data movement
instruction whose destination is address. Generally, the generation of negative
instructions is not a costly operation as all the opcodes are known beforehand,
allowing to use pre-compiled tables of instructions, where only the relevant pa-
rameters should be packed within, namely the old memory value and the des-
tination address. To keep the negative instructions packed, each worker-thread
operating within the RAMSES simulation engine relies on a (heap-allocated)
reverse window structure. This structure allows to immediately determine the
memory position at which a negative instruction must be stored. In particular,
after having allocated at startup the reverse window, instructions are generated
in a top-heading stack. This solution allows for a fast annihilation of the effects
of an event, as simply jumping to the last-generated instruction (namely, the
one on the top of the stack) is enough to execute the negative instructions in
reverse order. This is done by issuing a call to the address of the top-standing
instruction, thus undoing the effects until a final ret instruction placed at the
buffer end is found. Clearly, a unique reverse instruction for any different mem-
ory location that is touched by the simulation event in write mode is inserted
in the reverse window (namely, the reverse instruction associated with the first
update occurring on that location while processing a single event).

3.4 Runtime Execution Support

We consider a scenario where all the scheduled events (including the simula-
tion startup events), destined to whichever simulation object, are kept within a
unique pool. For efficiency reasons, we consider a classical calendar queue [22],
which provides average O(1) performance. The ordering of the elements into the
calendar queue is based on events’ timestamp. Each event also keeps information
regarding which is the target simulation object (namely the region) and the ac-
tual event’s type and payload. Nevertheless, the event type is not defined by the
model developer. Rather, with respect to the API discussed in Section 3.2, the
type is internally used by the engine to determine what is the type of callback
to be invoked. All the events kept in the calendar queue are schedule-committed
(hence non-retractable). In fact, in our approach the events that are scheduled
during the processing of an event according to the reversibility scheme are only
flushed upon the detection of the event safety (i.e. causal consistency).

The calendar queue data structure is coupled with an array of N entries that
we name processing[]. The i-th entry is used to keep data related to the status
of the i-th worker-thread, noted WTi. This array is initialized at simulation
startup with all the entries keeping the special value ∞. Each worker-thread

Fetch

Check Safety

Process
Process +

Undo Generation

FlushCheck SafetyCheck Wait-For

unsafe safe

safeunsafe

no one waiting

Undo

Effects

someone

waiting

Fig. 1. Main Loop Flow Chart

WTi follows through the algorithmic actions depicted in Figure 1. It performs
the Fetch operation presented in Algorithm 1, which (in case the last event
input parameter, indicating whether an event still to be processed is already
bound to this thread, is NULL) atomically extracts the event e with minimum
timestamp that is currently registered into the calendar queue, and records the
extracted timestamp value into the entry processing[i] associated with WTi.
Atomicity ensures that an event is taken by only one thread.

Due to the multi-threaded nature and the speculative flavor of our simu-
lation environment, no two different worker-threads can execute at the same
time multiple events which entail reading/updating the same memory regions.
Therefore, to enforce data separation, we rely on an array of spinlocks, which we
call region lock[]. Whenever WTi fetches an event e from the calendar queue,
it tries to acquire the lock for the given recipient simulation object (see Algo-
rithm 1). In case the lock cannot be taken, it means that another worker-thread
is currently executing operations on the region’s state. In this case, the worker-
thread spins on the lock, until the other worker-thread completes its operations.
We note that, due to the region dominance property defined in Section 3.1, this
sanity check ensures as well that all worker-threads access the agents’ states in
data separation, as no agent can be (at the same time) in two different regions.

When an event is processed, new events possibly generated by the processing
actions are temporarily buffered (hence not yet flushed to the calendar queue).
However in case they eventually become schedule committed, then the Flush
procedure is called, which atomically inserts them into the calendar queue.

To cope with consistency, and to determine event processing commitment and
event schedule commitment, we exploit the values kept by the processing[] ar-
ray. The condition that tells whether a worker-thread WTi can safely commit
the event it is handling is ∀j 6= i : processing[i] < processing[j]. This condi-
tion tells that the (possibly speculatively) executed event is associated with the
current lower bound timestamp across all the events in the system5. Hence the
timestamp of this event represents the commit horizon, and the event can be
safely executed or (in case of already carried out speculative execution) safely
committed.

Concerning execution liveness, if the region lock is taken by any worker-
thread speculatively processing an event e associated with T (e), and during

5 The case of simultaneous events, where T (e) may be equal to T (e′), can be ad-
dressed using a variant of Lamport’s bakery algorithm [23] either including causality
information or simply thread identifiers.

Algorithm 1 Fetch procedure - worker-thread WTi

1: procedure Fetch(last event e) RETURNS: event
2: if e = NULL then
3: SpinLock(global lock) //this branch is atomic via a globally shared lock
4: e ← GetMinimumTimestampEventFromCalendarQueue()
5: processing[i] ← T (e)
6: SpinUnlock(global lock)
7: end if
8: if ¬TryLock(region lock[e.destination]) then
9: repeat

10: reupdateMin← false
11: minWait← wait time[e.destination]
12: if T (e) < minWait then
13: if ¬ Cas(wait time[e.destination], minWait, T (e)) then
14: reupdateMin← true
15: end if
16: end if
17: until reupdateMin
18: while TRUE do
19: SpinLock(region lock[e.destination])
20: if T (e) ≤ wait time[e.destination] then break
21: end if
22: SpinUnlock(region lock[e.destination])
23: end while
24: end if
25: return e
26: end procedure

its execution a new event e′ associated with T (e′) < T (e) is flushed (e.g., by
a worker-thread executing in non-speculative mode) into the calendar queue,
we might incur in livelock. Therefore, an additional array wait time[], with
one entry for each managed region, is used to notify worker-threads running in
speculative mode that an event with higher priority is waiting to be processed
by another worker-thread (see Algorithm 1 for the logic used to post the event
timestamp value within this array entries) . As depicted in Figure 1, if a worker-
thread has executed speculatively an event which is (not yet) safe, it checks
whether any other worker-thread has registered within the wait time[] array a
timestamp which is less than that of the event currently being processed. In the
positive case, the effects of the event’s execution are undone (by simply jumping
to the generated reverse window) and the region lock is released. In this case,
the event stays bound to the worker-thread (for re-processing), and is passed
in input to Fetch, which will skip extracting another event from the calendar
queue. On the other hand, in case of commitment of the processed event, a
NULL value is passed in input (as last-event record) to the Fetch procedure.

4 Experimental Results

To assess the programmability and performance of RAMSES, we have imple-
mented a distributed multi-robot exploration and mapping simulation model,
according to the results in [9]. A group of robots is set out into an unknown
space to fully explore it, while acquiring data from sensors to map the environ-
ment. Whenever a robot has to make a decision about which direction should be
taken to carry on the exploration, it is done by relying on the notion of explo-
ration frontier. By keeping a representation of the explored world, the robot is
able to detect which is the closest unexplored area which it can reach, computes
the fastest way to reach it and continues the exploration. The robots explore

independently of each other until one coincidentally detects another robot. In
this case, they exchange the data acquired during the exploration, thus reducing
the exploration time and allowing for more accurate decisions. We have im-
plemented this model on top of both RAMSES and ROOT-Sim6. The latter is
an open source PDES simulation engine developed using C/POSIX technology,
still targeting speculative processing. Differently from RAMSES, it is general
purpose, thus offering an API based on a single application entry point, repre-
senting the event handler. ROOT-Sim transparently supports all the mechanisms
associated with parallelization (e.g., mapping of simulation objects on different
kernel instances) and optimistic synchronization (e.g., state recoverability). This
allow us to compare the efficiency of our innovative runtime execution support
against an already highly-optimized, but general purpose, simulation framework
for PDES, targeting as well multi/many-core architectures.

We simulated an environment composed of 4096 regions, and we varied the
number of agent (robot) units moving around between 100 and 1000, which
allowed us assessing how the performance of RAMSES scales vs variations of
the ratio between the number of regions and the number of agents.

In Figure 2 we report data for a comparison of the performance achieved via
RAMSES and ROOT-Sim with the one achieved via sequential execution of the
simulation model (on top of a calendar queue scheduler)7. All the experiments
have been carried out on an HP ProLiant server, equipped with four 2GHz
AMD Opteron 6128 processors and 64 GB of RAM. Each processor has 8 cores
(for a total of 32 cores) that share a 12MB L3 cache (6 MB per each 4-cores
set), and each core has a 512KB private L2 cache. The architecture entails 8
different NUMA nodes. The operating system is 64-bit Debian 6, with Linux
Kernel version 2.6.32.5.

By the results, when the number of robots is small (namely, 100 robots), the
speedup offered by RAMSES over the sequential run is low, while ROOT-Sim
provides definitely better reduction of the execution time. However, for large
numbers of simulated robots (namely, 1000 robots), RAMSES starts becoming
competitive with respect to ROOT-Sim, by providing a speedup over the sequen-
tial run of about 15. We deduce that this performance trend is directly linked to
how the simulation engine manages event concurrency. Particularly, in ROOT-
Sim the robots are modeled as purely concurrent entities, which leads to the
fact that if multiple robots collide within the same region, the associated events
can still be processed concurrently. Instead, in RAMSES, if multiple robots tem-
porarily reside within the same region, then all their events are sequentialized
given that they are mapped to region-events at the level of the reversibility-
based speculative underlying engine. However, for larger numbers of robots, we
get higher likelihood that multiple regions hosting robots can be scheduled con-
currently by the RAMSES engine. On the on the other hand, the ratio between
the number of application level code lines to implement the model in RAMSES
and in ROOT-Sim is of the order of 0.65, which roughly indicates 35% reduction

6 The ROOT-Sim version is the one used as test-bed in [8].
7 The sequential code version exactly corresponds to the one run on top of ROOT-
Sim. However, a port of the version run on RAMSES on the same sequential engine
provided quite similar execution times.

 1

 10

 100

 1000

 10000

100 Robots 500 Robots1000 Robots

O
ve

ra
ll

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)
Number of Robots

Sequential RAMSES 32 WT ROOT-Sim 32 WT

Fig. 2. Experimental Results: 4096 regions, varied number of robots.

of the application code complexity for implementing the same model, achieved
thanks to the agent-modeling suited API offered by RAMSES. Overall, RAM-
SES can exemplify the development of agent-based models (as compared to what
allowed by a classical general purpose PDES engine) while still providing run
time efficiency especially for more complex models (namely with larger ratio
between active and passive objects).

5 Conclusions

In this paper we have presented RAMSES, a framework for agent-based modeling
and simulation, relying on speculative concurrent processing and an innovative
synchronization (namely rollback) protocol which exploits reversibility to undo a
portion of the speculative simulation which is a-posteriori detected to be incon-
sistent. The experimental assessment on a case study has shown that RAMSES is
performance-effective especially for more complex models and, at the same time,
can definitely reduce the complexity of coding agent-models when compared to
what can be done on top of general-purpose parallel simulation frameworks.

References

1. Takahashi, T., Tadokoro, S., Ohta, M., Ito, N.: Agent based approach in disaster
rescue simulation - from test-bed of multiagent system to practical application. In:
RoboCup 2001: Robot Soccer World Cup V, Springer-Verlag (2002) 102–111

2. Macy, M.W., Willer, R.: From factors to actors: Computational sociology and
agent-based modeling. Annual Review of Sociology 28(1) (2002) 143–166

3. Macal, C., North, M.: Tutorial on agent-based modeling and simulation part 2: How
to model with agents. In: Proceedings of the 2006 Winter Simulation Conference.
WSC, Society for Computer Simulation (2006) 73–83

4. Page, S.E.: Agent-based models. In Durlauf, S.N., Blume, L.E., eds.: The New
Palgrave Dictionary of Economics. Palgrave Macmillan (2008)

5. Fujimoto, R.M.: Parallel discrete event simulation. In: Proceedings of the 21st
conference on Winter Simulation. WSC, ACM Press (1989) 19–28

6. Jr., P.D.B., Carothers, C.D., Jefferson, D.R., LaPre, J.M.: Warp speed: executing
time warp on 1, 966, 080 cores. In: SIGSIM Principles of Advanced Discrete
Simulation, SIGSIM-PADS ’13, Montreal, QC, Canada, May 19-22, 2013. (2013)
327–336

7. Cingolani, D., Pellegrini, A., Quaglia, F.: Transparently mixing undo logs and
software reversibility for state recovery in optimistic pdes. In: Proceedings of the
2015 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.
PADS, ACM Press (June 2015)

8. Pellegrini, A., Vitali, R., Quaglia, F.: Autonomic state management for optimistic
simulation platforms. IEEE Transactions on Parallel and Distributed Systems
26(6) (June 2015) 1560–1569

9. Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D., Stewart, B.: Distributed
multirobot exploration and mapping. Proceedings of the IEEE 94(7) (July 2006)
1325–1339

10. Pellegrini, A., Quaglia, F.: The ROme OpTimistic Simulator: A tutorial (invited
tutorial). In: Proceedings of the 1st Workshop on Parallel and Distributed Agent-
Based Simulations. PADABS, LNCS, Springer-Verlag (August 2013)

11. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: A multiagent
simulation environment. Simulation 81(7) (July 2005) 517–527

12. Cordasco, G., Chiara, R.D., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo, C.:
A framework for distributing agent-based simulations. In: Euro-Par Workshops
(1). (2011) 460–470

13. Wittek, P., Rubio-Campillo, X.: Scalable agent-based modelling with cloud hpc
resources for social simulations. In: Proceedings of the 4th International Conference
on Cloud Computing Technology and Science. CloudCom, IEEE Computer Society
(2012) 355–362

14. Karpov, Y.G.: Anylogic — a new generation professional simulation tool. In:
Proceedings of the 6th International Congress on Mathematical Modeling. MATH-
MOD (September 2004)

15. Holcombe, M., Coakley, S., Smallwood, R.: A general framework for agent-based
modelling of complex systems. In: Proceedings of the 2006 European conference
on complex systems, European Complex Systems Society Paris, France (2006)

16. Richmond, P., Romano, D.: Agent based gpu, a real-time 3d simulation and inter-
active visualisation framework for massive agent based modelling on the gpu. In:
Proceedings International Workshop on Supervisualisation. (2008)

17. Romano, P., Palmieri, R., Quaglia, F., Carvalho, N., Rodrigues, L.: On speculative
replication of transactional systems. J. Comput. Syst. Sci. 80(1) (2014) 257–276

18. Jefferson, D.R.: Virtual Time. ACM Transactions on Programming Languages
and System 7(3) (July 1985) 404–425

19. Pellegrini, A., Quaglia, F.: Programmability and performance of parallel ECS-
based simulation of multi-agent exploration models. In: Proceedings of the 2nd
Workshop on Parallel and Distributed Agent-Based Simulations. PADABS, LNCS,
Springer-Verlag (August 2014)

20. Pellegrini, A., Quaglia, F.: A study on the parallelization of terrain-covering ant
robots simulations. In: Proceedings of the 1st Workshop on Parallel and Distributed
Agent-Based Simulations. PADABS, LNCS, Springer-Verlag (August 2013)

21. Pellegrini, A.: Hijacker: Efficient static software instrumentation with applications
in high performance computing (poster paper). In: Proceedings of the 2013 Inter-
national Conference on High Performance Computing & Simulation. HPCS, IEEE
Computer Society (July 2013)

22. Brown, R.: Calendar queues: a fast O(1) priority queue implementation for the
simulation event set problem. Communications of the ACM 31 (October 1988)
1220–1227

23. Lamport, L.: A new solution of dijkstra’s concurrent programming problem. Com-
munications of the ACM 17(8) (1974) 453–455

