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RATIONALITY PRINCIPLES FOR PREFERENCES
ON BELIEF FUNCTIONS

Giulianella Coletti, Davide Petturiti and Barbara Vantaggi

A generalized notion of lottery is considered, where the uncertainty is expressed by a belief
function. Given a partial preference relation on an arbitrary set of generalized lotteries all on
the same finite totally ordered set of prizes, conditions for the representability, either by a linear
utility or a Choquet expected utility are provided. Both the cases of a finite and an infinite set
of generalized lotteries are investigated.
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1. INTRODUCTION

The classical von Neumann–Morgenstern’s model for decision under risk refers to a total
preference relation on a suitable class of random quantities (also called lotteries) each
equipped with a probability distribution. In this setting, the aim is to find necessary and
sufficient conditions for the representability of a preference relation by a linear utility
[16, 28]. In particular, assuming some additional conditions on the class of lotteries the
linear utility can be expressed as an expected utility (EU) [28].

Nevertheless, in several situations uncertainty cannot be expressed through a prob-
ability but it is unavoidable to refer to non-additive uncertainty measures, such as
Dempster-Shafer belief functions [8, 23]. Recall that in some probabilistic inferential
problems belief functions can be obtained as lower envelopes of a family of probabilities
[6, 7, 8, 12, 19].

For the above motivation, decision models have been generalized in a way to express
decision maker’s uncertainty by a non-additive measure: the resulting models look for
a representation either by a linear utility (LU) [17] or a Choquet expected utility (CEU)
which has to be maximized [2, 21, 29, 30, 31].

In any case, the quoted models still refer to a total preference relation on a set
of objects (lotteries or their generalizations) closed with respect to suitable operations
(such as convex combination) and containing particular sub-classes (such as the class of
degenerate lotteries).
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In fact, to find the utility u the classical methods ask for comparisons between “lotter-
ies” and “certainty equivalent” or, anyway, comparisons among particular large classes
of lotteries (for a discussion in the EU framework see [18]). Hence, the decision maker
is often forced to provide comparisons which have little or nothing to do with the given
problem, having to choose between risky prospects and certainty.

On the other hand, in case of partial information (i. e., when the preference relation
is not total and is assessed on an arbitrary set of lotteries) it can be difficult to construct
the utility function, and even to test if the preferences agree with the model of reference.

In [5], referring to the EU model, a different approach (based on a “rationality prin-
ciple”) is proposed: it does not need all these non-natural comparisons but, instead,
it can work by considering only the (few) lotteries and comparisons of interest. The
mentioned “rationality principle” can be summarized as follows: it is not possible to
obtain the same lottery by combining in the same way two groups of lotteries, if every
lottery of the first group is not preferred to the corresponding one of the second group,
and at least a preference is strict.

Such a principle allows to assign a preference relation (-,≺), just among some lot-
teries and it permits to check that the given relation does not contain inconsistencies,
in the sense that it guarantees the existence of a utility function u on the set of prizes
whose expected value agrees with (-,≺).

In this paper we cope with a generalization of lotteries already introduced in [17],
where a generalized lottery L (or g-lottery for short) is intended to be a random quantity
with a finite support XL endowed with a belief function BelL [8, 23, 26] (or, equivalently,
a basic assignment mL) defined on the power set ℘(XL).

Our aim is to propose an approach similar to that in [5] for both the linear utility
model and the Choquet expected utility model.

The first “rationality principle” proposed here (namely, axiom (g-R)) is a direct
generalization of the “rationality principle” given in the case of probabilities, simply
obtained by changing “lotteries” with “generalized lotteries”. Given a preference rela-
tion on an arbitrary (possibly infinite) set of generalized lotteries L, this principle is a
necessary and sufficient condition for the existence, for every finite F ⊆ L, of a linear
utility representing the restriction of the preference relation to F .

Nevertheless this principle is only necessary for the representability of the preference
by a Choquet expected utility.

On the contrary, the “Choquet rationality principle” (namely, axiom (g-CR)) is
based on the following property of Choquet integral for belief functions defined on the
power set ℘(X) of a finite set X = {x1, . . . , xn} totally ordered as x1 <

∗ . . . <∗ xn: for
every g-lottery L with support XL ⊆ X, the Choquet integral of any strictly increasing
utility function u : X → R, not only is a weighted average (as observed in [15]), but the
weights have a clear meaning. In fact, for the worst prize x1 the weight is the sum of the
values of the basic assignment mL on the events implied by the event {L = x1}, for x2

it is the sum of the values of mL on the events implied by the event {L = x2} but not
by {L = x1}, and so on. This allows to map every g-lottery L to a “standard” lottery
whose probability distribution is constructed (following a pessimistic approach) through
the aggregated basic assignment ML. We note that ML is, in some sense, a “pessimistic”
probability distribution on X induced by a belief function.
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Then axiom (g-CR) requires that it is not possible to obtain two g-lotteries L and
L′, with ML = ML′ by combining in the same way the aggregated basic assignments
of two groups of g-lotteries, if every g-lottery of the first group is not preferred to the
corresponding one of the second group, and at least a preference is strict.

Given a preference relation on an arbitrary (possibly infinite) set of generalized lot-
teries L, axiom (g-CR) is a necessary and sufficient condition for the existence, for
every finite F ⊆ L, of a strictly increasing utility function uF whose CEU represents
the restriction of the preference relation to F .

Both rationality principles (g-R) and (g-CR) are not sufficient to assure repre-
sentability on an infinite set of generalized lotteries. However, if the preference relation
is total and assessed on the set of all belief functions on ℘(X) it is sufficient to add
an Archimedean axiom to (g-R) or (g-CR) in order to obtain, respectively, the repre-
sentability by a linear utility functional or a Choquet expected utility functional.

2. PRELIMINARIES

2.1. Belief functions

Let X be a finite set and denote by ℘(X) the power set of X. We recall that a belief
function Bel [8, 23, 26] on a field of subsets A ⊆ ℘(X) is a function such that Bel(∅) = 0,
Bel(X) = 1 and satisfying the n-monotonicity property for every n ≥ 2, i. e., for every
A1, . . . , An ∈ A,

Bel

(
n⋃
i=1

Ai

)
≥

∑
∅6=I⊆{1,...,n}

(−1)|I|+1Bel

(⋂
i∈I

Ai

)
. (1)

Previous properties imply the monotonicity of Bel with respect to set inclusion ⊆,
hence belief functions are particular normalized capacities [3].

A belief function Bel on A is completely singled out by its Möbius inverse defined
for every A ∈ A as

m(A) =
∑
B⊆A

(−1)|A\B|Bel(B).

Such a function, usually called basic (probability) assignment, is a function m : A → [0, 1]
satisfying m(∅) = 0 and

∑
A∈Am(A) = 1, and is such that for every A ∈ A

Bel(A) =
∑
B⊆A

m(B). (2)

A set A in A is a focal element for m (and so also for the corresponding Bel) whenever
m(A) > 0.

Let A be a field of subsets of a non-empty set X and ϕ : A → [0, 1] a normalized
capacity, the Choquet integral of an A-measurable function f : X → R is defined as

C

∫
f dϕ =

∫ 0

−∞
(ϕ({x : f(x) ≥ t})− 1) dt+

∫ +∞

0

ϕ({x : f(x) ≥ t}) dt, (3)

where both integrals on the right-side are of Riemann type.
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If X = {x1, . . . , xn} and f(x1) ≤ . . . ≤ f(xn) (see [9]), then

C

∫
f dϕ =

n∑
i=1

f(xi)(ϕ(Ei)− ϕ(Ei+1)),

where Ei = {xi, . . . , xn} for i = 1, . . . , n, and En+1 = ∅.

2.2. Classical linear utility model

In the classical von Neumann–Morgenstern theory [28] a total preference relation - on
a set L of lotteries is given, where a lottery L is a random quantity endowed with a
probability distribution PL on X = {x1, . . . , xn} with support XL ⊆ X.

The theory requires that the set of lotteries L is a mixture set [16], i. e., for every
L,G ∈ L and α ∈ [0, 1] the convex combination defined as

αL+(1−α)G =
(

x1 · · · xn
αPL(x1) + (1− α)PG(x1) · · · αPL(xn) + (1− α)PG(xn)

)
, (4)

is a lottery belonging to L.

Remark 2.1. Every L ∈ L can simply be viewed as a vector (PL(x1), . . . , PL(xn)) ∈
[0, 1]n, thus L is a mixture set if and only if {(PL(x1), . . . , PL(xn)) ∈ [0, 1]n : L ∈ L} is
a convex subset of [0, 1]n.

The goal is to determine a set of axioms that the relation - has to satisfy in order
to have a linear utility function U : L → R representing -, i. e., such that for every
L,G ∈ L

L - G if and only if U(L) ≤ U(G).

An axiom system characterizing the above representation is the following one:

(VM1) the preference relation - is a weak order;

(VM2) for every L,G,H ∈ L and λ ∈ [0, 1], if L - G then

λL+ (1− λ)H - λG+ (1− λ)H;

(VM3) for every L,G ∈ L and 0 ≤ β < α ≤ 1, if L ≺ G then

αL+ (1− α)G ≺ βL+ (1− β)G;

(VM4) for every L,G,H ∈ L such that L ≺ G ≺ H there exists an α ∈]0, 1[ such that

αL+ (1− α)H ∼ G.

We recall that in the literature there are many other axiom systems equivalent to
(VM1)–(VM4) as the one proposed in [16]. In particular, axioms (VM1)–(VM4)
do not rely on the structure of the lotteries in L but only on the fact that L is a mixture
set.
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It is well-known that, denoting with δx the degenerate lottery assigning probability 1
to x ∈ X, if L0 = {δx : x ∈ X} ⊆ L and X = {x1, . . . , xn}, then there exists u : X → R
such that u(x) = U(δx) for x ∈ X, and for every L ∈ L

U(L) = E(u(L)) =
n∑
i=1

u(xi)PL(xi),

i. e., U can be expressed as an expected utility.
The classical expected utility theory has been object of many criticisms introduced

through famous paradoxes, where preferences assessed by means of human experiments
cannot be modelled through a linear functional of a utility function and a probability
measure. We consider the following example, inspired by the well-known Ellsberg’s
paradox [11], which will be developed in the rest of the paper.

Example 2.2. Consider the following hypothetical experiment. Let us take two urns,
U1 and U2, from which we draw a ball each. U1 contains 1

3 of white (w) balls and
the remaining balls are black (b) and red (r), but in a ratio entirely unknown to us,
analogously, U2 contains 1

4 of green (g) balls and the remaining balls are yellow (y) and
orange (o), but in a ratio entirely unknown to us.

In light of the given information, the composition of U1 singles out a class of proba-
bility measures P1 = {P θ} on the power set ℘(S1) of S1 = {w, b, r} such that

P θ({w}) =
1
3
, P θ({b}) = θ, P θ({r}) =

2
3
− θ,

with θ ∈
[
0, 2

3

]
. Analogously, for the composition of U2 consider the class P2 = {Pλ}

on ℘(S2) with S2 = {g, y, o} such that

Pλ({g}) =
1
4
, Pλ({y}) = λ, Pλ({o}) =

3
4
− λ,

with λ ∈
[
0, 3

4

]
.

Concerning the ball drawn from U1 and the one drawn from U2, the following gambles
are considered:

w b r
L1 100e 0e 0e
L2 0e 0e 100e
L3 0e 100e 100e
L4 100e 100e 0e

g y o
G1 100e 10e 10e

Consider the strict preferences L2 ≺ L1, L4 ≺ L3 assessed through a human experi-
ment. Since the given preferences involve only gambles related to the first urn, we can
restrict to the set of prizes {0, 100}. It holds that for no value of θ there exists a function
u : {0, 100} → R such that its expected value on the Li’s with respect to P θ represents
our preferences on the Li’s. Indeed, putting w1 = u(0) and w2 = u(100), both the
following inequalities must hold

1
3
w1 + θw1 +

(
2
3
− θ
)
w2 <

1
3
w2 + θw1 +

(
2
3
− θ
)
w1,
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1
3
w2 + θw2 +

(
2
3
− θ
)
w1 <

1
3
w1 + θw2 +

(
2
3
− θ
)
w2,

from which, summing memberwise, we get w1 + w2 < w1 + w2, i. e., a contradiction.

2.3. Linear utility model for belief functions

In [17] a generalized notion of lottery L is given by assuming that a belief function BelL
is assigned on the power set ℘(XL) of a finite set XL.

Definition 2.3. A generalized lottery, or g-lottery for short, on a finite set XL is
a pair L = (℘(XL), BelL) where BelL is a belief function on ℘(XL).

Let us notice that, a g-lottery L = (℘(XL), BelL) could be equivalently defined as
L = (℘(XL),mL), where mL is the basic assignment associated to BelL. We stress
that this definition of g-lottery generalizes the classical one in which mL(A) = 0 for any
A ∈ ℘(XL) with cardA > 1.

For example, a g-lottery L on XL = {x1, x2, x3} can be expressed as

L =
(
{x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} XL

b{x1} b{x2} b{x3} b{x1,x2} b{x1,x3} b{x2,x3} bXL

)
where the belief function BelL on ℘(XL) is such that bA = BelL(A) for every A ∈
℘(XL) \ {∅}. Notice that since BelL(∅) = mL(∅) = 0, the empty set is not reported
in the tabular expression of L. An equivalent representation of previous g-lottery is
obtained through the basic assignment mL associated to BelL (where mA = mL(A) for
every A ∈ ℘(XL) \ {∅})

L =
(
{x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} XL

m{x1} m{x2} m{x3} m{x1,x2} m{x1,x3} m{x2,x3} mXL

)
.

Given a set L of g-lotteries, let X =
⋃
{XL : L ∈ L}. In the case X is a finite set,

any g-lottery L on XL with belief function BelL can be rewritten as a g-lottery on X
by defining a suitable extension Bel′L of BelL.

Proposition 2.4. Let L = (℘(XL), BelL) be a g-lottery on XL. Then, for any finite
X ⊇ XL there exists a unique belief function Bel′L on ℘(X) with the same focal elements
as BelL and such that Bel′L|℘(XL) = BelL.

P r o o f . The extension Bel′L is defined through the corresponding m′L. For every
A ∈ ℘(X) we put m′L(A) = mL(A) if A ∈ ℘(XL) and m′L(A) = 0 otherwise. The
function m′L is easily seen to be a basic assignment on ℘(X), moreover, the corresponding
belief function Bel′L on ℘(X) is an extension of BelL and has the same focal elements.

�

Given L1, . . . , Lt ∈ L, all rewritten on X, and a real vector k = (k1, . . . , kt) with
ki ≥ 0 (i = 1, . . . , t) and

∑t
i=1 ki = 1, the convex combination of L1, . . . , Lt according

to k is the g-lottery on X

k(L1, . . . , Lt) =
(

A∑t
i=1 kimLi(A)

: A ∈ ℘(X) \ {∅}
)
. (5)
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Since the convex combination of belief functions is a belief function, it immediately
follows that k(L1, . . . , Lt) is a g-lottery [17].

Remark 2.5. Every L ∈ L can simply be viewed as a vector (mL(A) : A ∈ ℘(X)) ∈
[0, 1]2

n

, thus L is a mixture set if and only if {(mL(A) : A ∈ ℘(X)) ∈ [0, 1]2
n

: L ∈ L}
is a convex subset of [0, 1]2

n

, for a finite set X = {x1, . . . , xn}.

For every A ∈ ℘(X) \ {∅}, there exists a degenerate g-lottery δA on X such that
mδA

(A) = 1, and, moreover, every g-lottery L with focal elements A1, . . . , Ak can be
expressed as k(δA1 , . . . , δAk

) with k = (mL(A1), . . . ,mL(Ak)).
For the above considerations, a set of g-lotteries L, all written on the same finite set

X, which is closed under convex combination, is again a mixture set. Hence, as proved
in [17] by using results in [16], (VM1)–(VM4) are necessary and sufficient conditions
for the existence of a linear utility function LU : L → R representing -. In particular,
if L∗0 = {δB : B ∈ ℘(X) \ {∅}} ⊆ L then there exists v : ℘(X)→ R such that for every
L ∈ L

LU(L) =
∑

B∈℘(X)

v(B)mL(B), (6)

where LU(δB) = v(B), for every B ∈ ℘(X) \ {∅}.
A drawback of the above functional is that the “utility” v(B) with B ∈ ℘(X) and

cardB > 1 has not a clear semantic interpretation.
As already noticed in [17], there is also a computational difficulty due to the number

of parameters to specify, which is 2cardX , since v must be assessed on ℘(X). This is why
in [17] a more restrictive functional is proposed which is based only on the “best” and
“worst” alternatives in every set B ∈ ℘(X), according to the relation on X obtained
restricting - on {δ{x} : x ∈ X}. To get a representation with such a functional, the
axiom system has to be reinforced by introducing a further axiom of dominance [17].

Another possible choice for the function U is based on the Choquet expected utility
[15, 24],

CEU(L) = C

∫
udBelL, (7)

where u : X → R is a utility function and CEU(δ{x}) = u(x), for every x ∈ X.
It is known [24] that CEU(L) coincides with a lower expected utility with respect to

the class PBelL of probabilities on P(XL) dominating BelL and so the maximization of
(7) corresponds to the well-known maxmin criterion of choice [14, 15].

In the following example we show that the preferences in Example 2.2 are repre-
sentable both by a linear utility defined as in (6) and by a Choquet expected utility
defined as in (7).

Example 2.6. (Example 2.2 continued) Now take P 1 = min P1 and P 2 = min P2,
where the minimum is intended pointwise on the elements of ℘(S1) and ℘(S2), obtaining:

℘(S1) ∅ {w} {b} {r} {w, b} {w, r} {b, r} S1

P 1 0 1
3 0 0 1

3
1
3

2
3 1

℘(S2) ∅ {g} {y} {o} {g, y} {g, o} {y, o} S2

P 2 0 1
4 0 0 1

4
1
4

3
4 1
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It is easily verified that both P 1 and P 2 are belief functions giving rise to the following
g-lotteries

L1 =
(
{0} {100} {0, 100}

2
3

1
3 1

)
, L2 =

(
{0} {100} {0, 100}

1
3 0 1

)
,

L3 =
(
{0} {100} {0, 100}

1
3

2
3 1

)
, L4 =

(
{0} {100} {0, 100}
0 1

3 1

)
,

G1 =
(
{10} {100} {10, 100}

3
4

1
4 1

)
.

The preferences L2 ≺ L1, L4 ≺ L3, are representable both by a linear utility and by
a Choquet expected utility. Again, since the given preferences involve only g-lotteries
Li’s, we can restrict to the set of prizes {0, 100}.

For the first representation, any function v : ℘({0, 100})→ R satisfying

2v({0, 100}) < v({0}) + v({100}),

is such that the weighted average LU of v on ℘({0, 100}) with weights given by mLi
, i =

1, . . . , 4, represents the given preferences. Indeed, denoting with q1 = v(∅), q2 = v({0}),
q3 = v({100}) and q4 = v({0, 100}) we have

LU(L1) =
2
3
q2 +

1
3
q3, LU(L2) =

1
3
q2 +

2
3
q4, LU(L3) =

1
3
q2 +

2
3
q3, LU(L4) =

1
3
q3 +

2
3
q4,

thus LU(L2) < LU(L1) and LU(L4) < LU(L3) hold whenever 2q4 < q2 + q3.
For the second representation, instead, any strictly increasing function u : {0, 100} →

R is such that the Choquet integral of u with respect to BelLi
, i = 1, . . . , 4, represents

our preferences. Indeed, denoting w1 = u(0) and w2 = u(100) we get

CEU(L1) = CEU(L4) =
2
3
w1 +

1
3
w2, CEU(L2) = w1, CEU(L3) =

1
3
w1 +

2
3
w2,

thus CEU(L2) < CEU(L1) and CEU(L4) < CEU(L3) hold whenever w1 < w2.

3. PREFERENCES OVER A SET OF GENERALIZED LOTTERIES

Consider a set L of g-lotteries with X =
⋃
{XL : L ∈ L}. Assume that X is totally

ordered and denote by ≤∗ this relation. Let <∗ be the total strict order on X induced
by ≤∗. The assumption that X is totally ordered is quite natural when the elements
of X are real numbers (e. g., when they are money payoffs) and in this case ≤∗ simply
coincides with the usual total order ≤ on R. Furthermore, such condition is acceptable
also in the case X is composed of arbitrary objects. In this case, since X is a set of prizes,
the elicitation of the relation <∗ (and so of ≤∗) amounts to ask to the decision maker to
rank the elements of X by their strict desirability, assuming he/she could receive them
with certainty. In the particular interpretation of X as a set of money rewards, this
encodes the economic idea of “more money is better”.
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In what follows the set X is always assumed to be finite, i. e., X = {x1, . . . , xn}
with x1 <

∗ . . . <∗ xn. Under previous assumption, we can define the aggregated basic
assignment of a g-lottery L, for every xi ∈ X, as

ML(xi) =
∑

{xi}⊆B⊆Ei

mL(B), (8)

where Ei = {xi, . . . , xn} for i = 1, . . . , n.
Note that ML(xi) ≥ 0 for every xi ∈ X and

∑n
i=1ML(xi) = 1, thus ML determines

a probability distribution on X.
Let R be a partial binary relation on L. For every (L,L′) ∈ R denote by L - L′

the assertion L is not preferred to L′. The assertion L is indifferent to L′, denoted
by L ∼ L′, summarizes the two assertions L - L′ and L′ - L, so R determines the
symmetric relation I = {(L,L′) ∈ R : (L′, L) ∈ R}. An additional strict preference
relation R′ can be elicited by assertions such as L′ is strictly preferred to L, denoted
by L ≺ L′. Let R∗ be the asymmetric relation formally deduced from R, namely
R∗ = R \ I.

Since the pair of relations (R,R′) represents the opinion of the decision maker, it is
natural to have R′ ⊆ R∗: in fact, it is possible that, in the first approach to the decision
problem, the decision maker is not able to evaluate yet whether L ≺ L′ or L ∼ L′ and
he/she expresses his/her opinion only by L - L′.

Obviously, if R is total on the set of g-lotteries L then R′ = R∗ and for every
L,L′ ∈ L: L ≺ L′ or L′ ≺ L or L ∼ L′.

We call a pair (R,R′), denoted in the following by (-,≺), a strengthened preference
relation if ∅ 6= R′ ⊆ R and I ∩ R′ = ∅.

Since the set X is totally ordered by ≤∗, it is natural to require that the partial
preference relation (-,≺) agrees with ≤∗ on degenerate g-lotteries δ{x}, for x ∈ X, that
correspond to decisions under certainty. For this the preference (-,≺) is asked to satisfy
the following assumption

(A0) L contains the set of degenerate g-lotteries on singletons L0 = {δ{x} : x ∈ X} and
if x <∗ x′ then δ{x} ≺ δ{x′}, for x, x′ ∈ X.

Note that the decision maker is not required to provide comparisons between degener-
ate g-lotteries and non-degenerate g-lotteries, but just to accept the (natural) preferences
considered in condition (A0).

We say that a function U : L → R represents (or agrees with) (-,≺) if, for every
L,L′ ∈ L

L - L′ =⇒ U(L) ≤ U(L′) and L ≺ L′ =⇒ U(L) < U(L′). (9)

In the following we consider two different functionals for the utility U representing
the preference (-,≺): a linear utility LU (as proposed in [17]) and a Choquet expected
utility CEU (as proposed in [2, 24, 25]).

Since our main interest is to manage a finite set L of g-lotteries with a possibly partial
preference relation (-,≺), in analogy with [5], we search for a necessary and sufficient
condition for the existence of either a linear utility function on L representing (-,≺) or
a utility function u : X → R such that its Choquet expected value represents (-,≺).
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3.1. Rationality conditions for g-lotteries

The first axiom of rationality we introduce is formally equal to the one given in [5]: it
requires that it is not possible to obtain the same g-lottery, by combining in the same
way two groups of g-lotteries, if each g-lottery in the first group is not preferred to the
corresponding one in the second group, and at least a preference is strict.

Definition 3.1. A strengthened preference relation (-,≺) on a set L of g-lotteries is
said to be rational if it satisfies the following condition:

(g-R) For all h ∈ N and Li, L
′
i ∈ L with Li - L′i (i = 1, . . . , h), if

k(L1, . . . , Lh) = k(L′1, . . . , L
′
h)

with k = (k1, . . . , kh), ki > 0 (i = 1, . . . , h), and
∑h
i=1 ki = 1, then it cannot be

Li ≺ L′i for any i = 1, . . . , h.

We stress that the convex combination referred to in condition (g-R) involves belief
functions (or, equivalently, the corresponding basic assignments).

The second axiom requires that it is not possible to obtain the same probability
distribution on X, by combining in the same way the aggregated basic assignments
of two groups of g-lotteries, if each g-lottery in the first group is not preferred to the
corresponding one in the second group, and at least a preference is strict.

Definition 3.2. A strengthened preference relation (-,≺) on a set L of g-lotteries is
said to be Choquet rational if it satisfies the following condition:

(g-CR) For all h ∈ N and Li, L
′
i ∈ L with Li - L′i (i = 1, . . . , h), if

k(ML1 , . . . ,MLh
) = k(ML′1

, . . . ,ML′h
)

with k = (k1, . . . , kh), ki > 0 (i = 1, . . . , h) and
∑h
i=1 ki = 1, then it cannot be

Li ≺ L′i for any i = 1, . . . , h.

Note that the convex combination referred to in condition (g-CR) is the usual one
involving probability distributions on X, since aggregated basic assignments are proba-
bility distributions on X.

It is easily proven that if k(L1, . . . , Lh) = k(L′1, . . . , L
′
h) then k(ML1 , . . . ,MLh

) =
k(ML′1

, . . . ,ML′h
), but the converse is generally not true, as shown in next example (so

condition (g-CR) strictly implies condition (g-R)).

Example 3.3. Let X = {x1, x2} with x1 <
∗ x2 and consider the g-lotteries

L1 =

„
{x1} {x2} {x1, x2}

1
4

3
4

0

«
, L′

1 =

„
{x1} {x2} {x1, x2}

1
3

2
3

0

«
,

L2 =

„
{x1} {x2} {x1, x2}

0 2
3

1
3

«
, L′

2 =

„
{x1} {x2} {x1, x2}

0 3
4

1
4

«
,
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with the preferences L1 - L′1 and L2 - L′2. There is no k ∈ [0, 1] such that kL1 + (1−
k)L2 = kL′1 + (1− k)L′2, indeed, the following system k 1

4 = k 1
3

k 3
4 + (1− k) 2

3 = k 2
3 + (1− k) 3

4
(1− k) 1

3 = (1− k) 1
4

has not solution. Nevertheless, considering the aggregated basic assignments of L1, L
′
1, L2, L

′
2

we have

ML1 =

„
x1 x2
1
4

3
4

«
, ML′1

=

„
x1 x2
1
3

2
3

«
, ML2 =

„
x1 x2
1
3

2
3

«
, ML′2

=

„
x1 x2
1
4

3
4

«
,

for which we have 1
2ML1 + 1

2ML2 = 1
2ML′1

+ 1
2ML′2

.

The following Propositions 3.4 and 3.5 have a straightforward proof.

Proposition 3.4. Let L be a set of g-lotteries on a finite set X totally ordered by ≤∗,
and (-,≺) a strengthened preference relation on L satisfying (A0). If (-,≺) satisfies
(g-R) then it satisfies the following properties:

(i) (-,≺) has no intransitive cycles, that is: if Li - Lj and Lj - Lk then it cannot
be Lk ≺ Li and similarly if Li ≺ Lj and Lj - Lk it cannot be Lk - Li;

(ii) for every Li, Lj , Lk ∈ L and λ ∈ [0, 1], if Li - Lj then it cannot be

λLj + (1− λ)Lk ≺ λLi + (1− λ)Lk;

(iii) for every Li, Lj ∈ L and 0 ≤ α < β ≤ 1 if Li ≺ Lj then it cannot be

βLj + (1− β)Li - αLj + (1− α)Li.

Proposition 3.5. Let L be a set of g-lotteries on a finite set X totally ordered by ≤∗,
and (-,≺) a strengthened preference relation on L satisfying (A0). If (-,≺) satisfies
(g-CR) then it satisfies conditions (i), (ii), (iii) and the following:

(iv) if MLi
= MLj

it cannot be Li ≺ Lj or Lj ≺ Li.

We stress that conditions (i)–(iii) are equivalent to axioms (VM1)–(VM3) in the
case (-,≺) is a total preference relation defined on the set of all g-lotteries on X.

4. REPRESENTABILITY OF RATIONAL PREFERENCE RELATIONS

In this section we study representability of a strengthened preference relation (-,≺) on
a set of g-lotteries L all having support on a finite set X totally ordered by ≤∗. In detail,
we investigate the consequences of axioms (g-R) and (g-CR), respectively, both when
L is finite and when L is infinite.
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4.1. Representability of rational preference relations on finite sets of g-
lotteries

We first consider the representability by a linear utility of a strengthened preference
relation (-,≺) on a finite set of g-lotteries.

Theorem 4.1. Let L be a finite set of g-lotteries, X =
⋃
{XL : L ∈ L} a finite set

totally ordered by ≤∗, and (-,≺) a strengthened preference relation on L satisfying
(A0). The following statements are equivalent:

(i) (-,≺) satisfies (g-R) condition;

(ii) there exists a linear utility function LU : L → R representing (-,≺);

(iii) there exists a utility function v : ℘(X) → R such that, for x, x′ ∈ X, if x <∗ x′

then v({x}) < v({x′}) and the function LU on L, defined for every L ∈ L as

LU(L) =
∑

B∈℘(X)

v(B)mL(B)

represents (-,≺).

P r o o f . Equivalence between (ii) and (iii) has been essentially proved in [17]. We prove
the equivalence between (i) and (iii). Let X = {x1, . . . , xn} with x1 <

∗ . . . <∗ xn and
assume all g-lotteries in L are rewritten on X. Introduce the collections S = {(Lj , L′j) :
Lj ≺ L′j , Lj , L

′
j ∈ L} and R = {(Gh, G′h) : Gh - G′h, Gh, G

′
h ∈ L} with s = cardS and

r = cardR.
(iii) ⇒ (i). Let us consider the events Ai ∈ ℘(X) with i = 1, . . . , 2n. Condition

(iii) is equivalent to the existence of a (2n × 1) column vector q, with qi = v(Ai), for
i = 1, . . . , 2n, which is a solution of the following system

S :

 Aq > 0
Bq ≥ 0
q ≥ 0

where A = (aj) and B = (bh) are, respectively, (s× 2n) and (r× 2n) real matrices with
rows aj = mL′j

−mLj
for j = 1, . . . , s, and bh = mG′h

−mGh
for h = 1, . . . , r. Notice

that in S we can restrict to a non-negative q because of the homogeneity of first two
constraints.

By a well-known alternative theorem (see, e. g., [13]) the solvability of S is equivalent
to the non-solvability of the following system

S ′ :

 yA+ zB ≤ 0
y, z ≥ 0
y 6= 0

where y and z are, respectively, (1 × s) and (1 × r) unknown row vectors. Since the
system S ′ is homogeneous, it is solvable if and only if it admits a solution (y, z) with L1-
norm equal to 1. By taking into account that a convex combination of basic assignments
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is a basic assignment and that for two basic assignment vectors mL and mG one has
mL ≤ mG if and only if mL = mG, system S ′ is solvable if and only if the following
system S ′′ is solvable

S ′′ :


yA+ zB = 0
y, z ≥ 0
y 6= 0
||(y, z)||1 = 1.

The non-solvability of S ′′ implies that for every k = (y, z) ≥ 0 with ||k||1 = 1 and ki > 0
for at least one index i ∈ {1, . . . , s} it holds

k(L1, . . . , Ls, G1, . . . , Gr) 6= k(L′1, . . . , L
′
s, G

′
1, . . . , G

′
r),

and this implies condition (g-R) is satisfied.
(i) ⇒ (iii). Suppose (g-R) holds. In this case, considering a convex combination

k(L1, . . . , Ls, G1, . . . , Gr) = k(L′1, . . . , L
′
s, G

′
1, . . . , G

′
r) where some of the ki’s can be 0,

it must be that ki = 0 for i = 1, . . . , s, thus system S ′′ cannot have solution, while S
has solution q. Moreover, assumption (A0) assures that, for x, x′ ∈ X, if x <∗ x′ then
v({x}) < v({x′}). �

Remark 4.2. Notice that the utility function v in condition (iii) is not unique up to a
positive linear transformation. Indeed, there can exist a utility function v′ = ϕ(v) still
satisfying condition (iii), where ϕ is a strictly increasing non-linear transformation as
the following trivial Example 4.3 shows. Every utility function v induces a weak order
on the convex closure of the set L which is the same induced by v′ = ϕ(v) only when ϕ
is a positive linear transformation.

Example 4.3. LetX = {x1, x2, x3} with x1 <
∗ x2 <

∗ x3 and L = {δ{x1}, δ{x2}, δ{x3}, L}
where L = (℘(X), BelL) with BelL({xi}) = 1

3 for i = 1, 2, 3. Consider the preferences
δ{x1} ≺ δ{x2} ≺ δ{x3}, δ{x1} ≺ L ≺ δ{x3}.

The functions v1 and v2 on ℘(X) defined as v1({x1}) = 0, v1({x2}) = 1
2 , v1({x3}) = 1,

and v2({x1}) = 0, v2({x2}) = 1
4 , v2({x3}) = 1 and zero otherwise, are such that v2 = v2

1 .
The LU functional corresponding to v1 and that corresponding to v2 both represent

the given preferences. Denote -v1 and -v2 the weak orders induced by v1 and v2 through
the corresponding LU functional, respectively, on the convex closure of L, for which it
holds that δ{x2} ∼v1 L while δ{x2} ≺v2 L.

Notice that introducing v3 = v2
2 we obtain a weak order -v3 which coincides with

-v2 on L, while the same does not hold on the whole convex closure of L.

Consider now the representability of (-,≺) by a CEU. The following theorem (already
proved in [4]) shows that (g-CR) is a necessary and sufficient condition for the existence
of a strictly increasing utility function u on X whose Choquet expected value represents
(-,≺), moreover its proof provides a procedure to compute such a u.

Theorem 4.4. Let L be a finite set of g-lotteries, X =
⋃
{XL : L ∈ L} a finite set

totally ordered by ≤∗, and (-,≺) a strengthened preference relation on L satisfying
(A0). The following statements are equivalent:
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(i) (-,≺) satisfies (g-CR) condition;

(ii) there exists a strictly increasing utility function u : X → R whose Choquet ex-
pected value on L represents (-,≺).

P r o o f . Let X = {x1, . . . , xn} with x∗1 < . . . < x∗n and assume all g-lotteries in L are
rewritten on X. Introduce the collections S = {(Lj , L′j) : Lj ≺ L′j , Lj , L

′
j ∈ L} and

R = {(Gh, G′h) : Gh - G′h, Gh, G
′
h ∈ L} with s = cardS and r = cardR.

(ii) ⇒ (i). Condition (ii) holds if and only if there are n real numbers wi = u(xi),
with w1 < . . . < wn, s.t. for all (Lj , L′j) ∈ S we have CEU(Lj) < CEU(L′j), and for all
(Gh, G′h) ∈ R we have CEU(Gh) ≤ CEU(G′h). Setting Ei = {xi, . . . , xn} (i = 1, . . . , n)
and En+1 = ∅, for every g-lottery L ∈ L it holds

CEU(L) =
n∑
i=1

wi [BelL(Ei)−BelL(Ei+1)]

=
n∑
i=1

wi

 ∑
B⊆Ei

mL(B)−
∑

B⊆Ei+1

mL(B)

 =
n∑
i=1

wiML(xi).

Hence, condition (i) is equivalent to the existence of an (n× 1) column vector w which
is solution of the following system

S :

 Aw > 0
Bw ≥ 0
w ≥ 0

where A = (aj) and B = (bh) are, respectively, (s × n) and (r × n) real matrices with
rows aj = ML′j

−MLj
for j = 1, . . . , s, and bh = MG′h

−MGh
for h = 1, . . . , r. Notice

that in S we can restrict to a non-negative w because of the homogeneity of first two
constraints.

By the same alternative theorem (see, e. g., [13]) and taking into account the same
considerations made in the proof of Theorem 4.1 the solvability of S is equivalent to the
non-solvability of the following system

S ′′ :


yA+ zB = 0
y, z ≥ 0
y 6= 0
||(y, z)||1 = 1

where y and z are, respectively, (1× s) and (1× r) unknown row vectors.
The non-solvability of S ′′ implies that for every k = (y, z) ≥ 0 with ||k||1 = 1 and

ki > 0 for at least one index i ∈ {1, . . . , s} it holds

k(ML1 , . . . ,MLs
,MG1 , . . . ,MGr

) 6= k(ML′1
, . . . ,ML′s

,MG′1
, . . . ,MG′r

),

and this implies condition (g-CR) is satisfied.
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(i) ⇒ (ii). Suppose (g-CR) holds. In this case, considering a convex combination
k(ML1 , . . . ,MLs

,MG1 , . . . ,MGr
) = k(ML′1

, . . . ,ML′s
,MG′1

, . . . ,MG′r
) where some of the

ki’s can be 0, it must be that ki = 0 for i = 1, . . . , s, thus system S ′′ cannot have solution,
while S has solution w. Assumption (A0) assures that w1 < . . . < wn, thus, u(xi) = wi,
i = 1, . . . , n, is a strictly increasing utility function on X whose CEU represents (-,≺).

�

Analogous considerations as those in Remark 4.2 and the relevant Example 4.3 hold
for the CEU representation.

The following example shows a relation that violates both (g-CR) and (g-R), and
so admits neither a CEU representation nor a LU representation.

Example 4.5. (Example 2.2 continued) Consider again Example 2.2 and suppose
to toss a fair coin and to choose among L1 and G1 depending on the result of the toss.
In analogy, suppose to choose among L2 and G1 with a totally similar experiment. Let
us denote with F1 and F2 the results of the two experiments.

In order to express F1 and F2 we need to properly combine L1, L2 and G1 and for
this we have to rewrite them on the same set of prizes {0, 10, 100}

L1 =

„
{0} {10} {100} {0, 10} {0, 100} {10, 100} {0, 10, 100}

2
3

0 1
3

2
3

1 1
3

1

«
,

L2 =

„
{0} {10} {100} {0, 10} {0, 100} {10, 100} {0, 10, 100}

1
3

0 0 1
3

1 0 1

«
,

G1 =

„
{0} {10} {100} {0, 10} {0, 100} {10, 100} {0, 10, 100}
0 3

4
1
4

3
4

1
4

1 1

«
.

L1, L2 and G1 can be simply regarded as belief functions on the same field, thus F1

and F2 can be defined as the convex combinations F1 = 1
2L1+ 1

2G1 and F2 = 1
2L2+ 1

2G1,
obtaining

F1 =

„
{0} {10} {100} {0, 10} {0, 100} {10, 100} {0, 10, 100}

8
24

9
24

7
24

17
24

15
24

16
24

1

«
,

F2 =

„
{0} {10} {100} {0, 10} {0, 100} {10, 100} {0, 10, 100}

4
24

9
24

3
24

13
24

15
24

12
24

1

«
.

Taking into account assumption (A0), it is easily proven that for every strictly in-
creasing u : {0, 10, 100} → R the strict preferences L2 ≺ L1, L4 ≺ L3, are represented
by a CEU functional. Analogously, the above preferences are representable also by a LU
functional for every v : ℘({0, 10, 100})→ R such that v({0}) < v({10}) < v({100}) and
2v({0, 100}) < v({0}) + v({100}).

Nevertheless, by considering the further strict preference F1 ≺ F2, there is neither
a LU nor a CEU functional on L = {L1, L2, L3, L4, G1, F1, F2} representing the given
preferences. Indeed, by Propositions 3.4 and 3.5, in order to have such representations
L2 ≺ L1 implies that it cannot be F1 = 1

2L1 + 1
2G1 ≺ 1

2L2 + 1
2G1 = F2.
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4.2. Representability of rational preference relations on infinite sets
of g-lotteries

Consider a strengthened preference relation (-,≺) on an infinite set L of g-lotteries with
support on a finite set X totally ordered by ≤∗. Our aim is to study its representability
under either (g-R) or (g-CR) conditions. For that, for every finite F ⊆ L let XF =⋃
{XL : L ∈ F}, and denote by (-F ,≺F ) the restriction of (-,≺) to F .
As a direct consequence of Theorem 4.1 the following result holds.

Theorem 4.6. Let L be an arbitrary set of g-lotteries with support on a finite set X
totally ordered by ≤∗, and (-,≺) a strengthened preference relation on L satisfying
(A0). The following statements are equivalent:

(i) (-,≺) satisfies (g-R) condition;

(ii) for every finite F ⊆ L, there exists a linear utility function LUF : F → R repre-
senting (-F ,≺F );

(iii) for every finite F ⊆ L, there exists a utility function vF : ℘(XF ) → R such that,
for x, x′ ∈ XF , if x <∗ x′ then v({x}) < v({x′}) and the function LUF on F ,
defined for every L ∈ F as

LUF (L) =
∑

B∈℘(XF )

vF (B)mL(B)

represents (-F ,≺F ).

Remark 4.7. For every finite subsets F ,G of L such that F ⊆ G ⊆ L, the set of utility
functions {vG|℘(XF )} is contained in {vF}. Since the set {vL} can be empty when L
is infinite, as the following example shows, condition (g-R) is not sufficient for the
existence of a linear utility function LU on the whole set L representing (-,≺).

Example 4.8. Take X = {x1, x2, x3} with x1 <
∗ x2 <

∗ x3 and consider the following
infinite set of g-lotteries

L = {L1 = δ{x1}, L2 = δ{x2}, L3 = δ{x3}, αL1 + (1− α)L3 : α ∈]0, 1[},

together with the preference relation on L satisfying (A0)

L1 ≺ L2 ≺ L3, αL1 + (1− α)L3 ≺ L2 for every α ∈]0, 1[.

For every finite subset F of L we can find a linear utility function LUF on F rep-
resenting (-F ,≺F ). By virtue of Remark 4.7, we can restrict to subfamilies of the
form

F = {L1, L2, L3, αjL1 + (1− αj)L3 : j = 1, . . . , n}.

For that, taking into account that Li is a degenerate g-lottery and so LUF (Li) =
vF ({xi}), for i = 1, 2, 3, and that

LUF (αjL1 + (1− αj)L3) = αjvF ({x1}) + (1− αj)vF ({x3}),
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for j = 1, . . . , n, it is sufficient to consider any function vF on ℘(XF ) with XF = X
satisfying the constraints

vF ({x1}) < vF ({x2}) < vF ({x3}),

max
j=1,...,n

{αjvF ({x1}) + (1− αj)vF ({x3})} < vF ({x2}) < vF ({x3}).

Hence, from Theorem 4.6 (-,≺) satisfies (g-R).
On the other hand, there is no linear utility function representing (-,≺) on L. In

fact, for every choice of LU(L1) < LU(L2) < LU(L3) there exists an α ∈]0, 1[ such
that αLU(L1) + (1 − α)LU(L3) ≥ LU(L2) and so it should be L2 - αL1 + (1 − α)L3,
contradicting the given preferences.

It is clear that what is lacking in previous example is an Archimedean condition for
(-,≺). In fact such a condition is not implied by (g-R). The following Theorem 4.9
shows that it is sufficient to add to (g-R) condition (VM4) to obtain representability
when we consider the (infinite) set of all g-lotteries over a finite set X.

Theorem 4.9. Let L be the set of all g-lotteries with support on a finite set X totally
ordered by ≤∗, and - a total preference relation on L satisfying (A0). The following
statements are equivalent:

(i) - satisfies condition (g-R) and (VM4);

(ii) there exists a linear utility function LU : L → R representing -;

(iii) there exists a utility function v : ℘(X) → R such that, for x, x′ ∈ X, if x <∗ x′

then v({x}) < v({x′}) and the function LU on L defined for every L ∈ L as

LU(L) =
∑

B∈℘(X)

v(B)mL(B),

represents -.

Moreover, LU is unique up to a positive linear transformation.

P r o o f . The set L is a mixture set, moreover, since the preference relation - is total,
from Proposition 3.4 we have that axioms (VM1)–(VM3) are satisfied. Hence the
validity of (VM1)–(VM3) and (VM4) is equivalent to (ii) and (iii) (see [17]), respec-
tively, and, moreover, LU is unique up to a positive linear transformation. In particular,
assumption (A0) implies, for x, x′ ∈ X, if x <∗ x′ then v({x}) < v({x′}). �

Next Theorems 4.10 and 4.12 are analogous to Theorems 4.6 and 4.9 for the CEU
representation and are direct consequences of Theorem 4.1.

Theorem 4.10. Let L be an arbitrary set of g-lotteries with support on a finite set
X totally ordered by ≤∗, and (-,≺) a strengthened preference relation on L satisfying
(A0). The following statements are equivalent:
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(i) (-,≺) satisfies (g-CR) condition;

(ii) for every finite F ⊆ L, there exists a strictly increasing utility function uF : XF →
R whose Choquet expected value on F represents (-F ,≺F ).

Nevertheless, also in this case, if L is not finite, condition (g-CR) is not sufficient for
the existence of a strictly increasing u : X → R whose CEU on L represents the given
preferences.

Example 4.11. Consider the g-lotteries and preferences of Example 4.8. For every
finite subset F of L we can find a strictly increasing utility function uF on XF such that
its Choquet expected value represents (-F ,≺F ). By analogous considerations of those
in Remark 4.7, we can restrict to subfamilies of the form

F = {L1, L2, L3, αjL1 + (1− αj)L3 : j = 1, . . . , n}.

For that, taking into account that Li is a degenerate g-lottery and so CEUF (Li) =
uF (xi), for i = 1, 2, 3, and that CEUF (αjL1 +(1−αj)L3) = αjuF (x1)+(1−αj)uF (x3),
for j = 1, . . . , n, it is sufficient to consider any function uF on XF = X satisfying the
constraints

uF (x1) < uF (x2) < uF (x3),

max
j=1,...,n

{αjuF (x1) + (1− αj)uF (x3)} < uF (x2) < uF (x3).

Hence, from Theorem 4.10 (-,≺) satisfies (g-CR).
On the other hand, there is no utility function u on X whose Choquet expected value

represents (-,≺) on L. In fact, for every choice of u(x1) < u(x2) < u(x3) there exists an
α ∈]0, 1[ such that αu(x1)+(1−α)u(x3) ≥ u(x2) and so it should be L2 - αL1+(1−α)L3,
contradicting the given preferences.

It is clear that also in this case axiom (g-CR) must be reinforced by an Archimedean
condition to have representability of a total preference relation - on the set of all g-
lotteries.

Theorem 4.12. Let L be the set of all g-lotteries with support on a finite set X totally
ordered by ≤∗, and let - be a total preference relation on L satisfying (A0). The
following statements are equivalent:

(i) - satisfies conditions (g-CR) and (VM4);

(ii) there exists a strictly increasing utility function u : X → R (unique up to a positive
linear transformation) whose Choquet expected value on L represents -.

P r o o f . The set L is a mixture set, moreover, since the preference relation - is total,
from Proposition 3.5 we have that axioms (VM1)–(VM3) are satisfied together with
condition

(*) for every L,L′ ∈ L, ML = ML′ implies L ∼ L′.
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Define the relation ≡M on L as L ≡M L′ if and only if ML = ML′ , for every L,L′ ∈ L,
which is easily seen to be an equivalence relation, and consider the quotient set L/≡M

.
Since L contains all belief functions on ℘(X), in particular, it contains all probability
distributions on X, then for every g-lottery L ∈ L there is a probabilistic g-lottery in
L having ML as probability distribution, that can be chosen as representative of the
corresponding equivalence class in L/≡M

.
Let LP be the set of probabilistic lotteries formed by the representatives of equivalence

classes in L/≡M
. The set LP consists of all probability distributions on X and is,

therefore, a mixture set. Axioms (VM1)–(VM4) are necessary and sufficient for the
existence of a function u : X → R (unique up to a positive linear transformation) whose
expected value represents the restriction of - on LP . The assumption (A0) assures
that u is strictly increasing. The proof immediately follows by taking into account what
proved in Theorem 4.4, i. e., CEU(L) =

∑n
i=1 u(xi)ML(xi), for every L ∈ L. �

5. CONCLUSIONS

The paper copes with decisions under risk, where the uncertainty on consequences is
modelled by a pre-assigned (“objective” in the jargon by von Neumann–Morgenstern)
belief function.

Two rationality principles (g-R) and (g-CR) for preference relations among random
quantities equipped with a belief function (g-lotteries) are introduced, following the line
of the rationality principle given in [5]. Such principles allow to handle representability
of preference relations when the set of random quantities is arbitrary (not necessarily
closed under convex combinations) and possibly finite. Note that the probabilistic case is
subsumed by both conditions (g-R) and (g-CR), which coincide in case of probabilistic
g-lotteries.

Concerning the probabilistic modelling of uncertainty, in the literature there are
proposals for removing the hypothesis of totality on the preference relation both in
the von Neumann–Morgenstern [10] and in the Anscombe-Aumann frameworks [20]. In
such proposals, even if the preference relation is not asked to be total, the considered
set of lotteries must possess a proper mathematical structure and the preference relation
must be assessed on proper subsets of lotteries. In particular, none of the existing models
allows to deal with partial preferences on finite arbitrary sets of lotteries.

At the same time, the possibility of dealing with possibly partial preference relations
assessed on arbitrary finite sets of g-lotteries is significant in real decision problems.

This paper assumes that the set X of prizes of g-lotteries is totally ordered and that
the preferences expressed by the decision maker agree with this order. This is quite
natural if X is a subset of R, for example when X is a set of money payoffs. Otherwise,
the total order on X can be elicited by asking to the decision maker to rank the elements
of X by their strict desirability, assuming he/she could receive them with certainty. The
assumption of a totally ordered set of prizes is not substantial and has been adopted in
favour of a simpler exposition of mathematical results. Such assumption can be relaxed
by requiring that X is only totally preordered, obtaining results in line of those in this
paper but with a little more complex presentation.

The principle (g-R) is a necessary and sufficient condition for the existence of a linear
functional (as in [17]), determined by a utility function defined on all the elements of the
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power set of X. While, the principle (g-CR) is a necessary and sufficient condition for
the existence of a strictly increasing utility function u on X whose Choquet integral on
g-lotteries represents the preferences. Under both representations, the underlying choice
criterion is intended to be the maximization of the resulting functional.

In [27], the author considers the case of uncertainty expressed by a general lower
probability, presenting a comparison of functionals and choice criteria in terms of result-
ing decisions. Such paper does not cope with the determination of a utility on the prizes
and tacitly assumes a pre-assigned utility function. In our setting, it could be interesting
to provide a similar study and so to compare the effects on decisions of different choice
criteria and also of the selected utility function (which is generally not unique).

In case of an infinite set of g-lotteries, the above conditions assure the representabil-
ity of a preference relation only on finite subfamilies of g-lotteries because they do not
impose any Archimedean condition on the preferences. Nevertheless, when the pref-
erence relation is total and defined on the set of all g-lotteries, it is sufficient to add
an Archimedean condition to each of the two rationality principles to get a complete
representation.

In the probabilistic framework the rationality principle (see [5]) assures and rules
the extendibility of the relation to new lotteries, which is a useful property in order to
apply the model. The extendibility of preferences on generalized lotteries, satisfying the
two above rationality principles, is one of our future aims. Indeed, for both rationality
conditions, as underlined in Remark 4.2, the extension of a rational preference relation
is in general not unique.
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