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Abstract We study the kinetic Kuramoto model for coupled oscillators with coupling con-
stant below the synchronization threshold. We manage to prove that, for any analytic initial
datum, if the interaction is small enough, the order parameter of the model vanishes expo-
nentially fast, and the solution is asymptotically described by a free flow. This behavior is
similar to the phenomenon of Landau damping in plasma physics. In the proof we use a
combination of techniques from Landau damping and from abstract Cauchy–Kowalewskaya
theorem.
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1 Introduction

The Kuramoto model is a mean-field model of coupled oscillators proposed by Kuramoto to
describe synchronization phenomena (see [1,17,22]). Any oscillator has a phase ϑ , that can
be considered definedmod 2π , i.e. in the one-dimensional torus T , and a “natural frequency”
ω ∈ R. In the kinetic limit, the equation for the probability density f (t, ϑ, ω) on T × R is
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{
∂t f (t, ϑ, ω) + ∂ϑ(v(t, ϑ, ω) f (t, ϑ, ω)) = 0

v(t, ϑ, ω) = ω − μ
∫
T ×R

sin(ϑ − ϑ ′) f (t, ϑ ′, ω′) dϑ ′ dω′,
(1.1)

where
∫
T ×R

sin(ϑ −ϑ ′) f (t, ϑ ′, ω′) dϑ ′ dω′ is the mean field interaction term, and μ > 0 is
the coupling constant. The distribution of the natural frequencies is g(ω) = ∫

T f (t, ϑ, ω) dϑ ,
which is a conserved quantity.

It can be useful to represent the system (1.1) in the unitary circle of the complex plane by
considering the oscillators as particles with position eiϑ . The center of mass is in the point

R(t)eiϕ(t) =
∫
T ×R

f (t, ϑ, ω)eiϑ dϑ dω. (1.2)

R and ϕ are the “order parameters” of the model. By this notation the coupling term can be
rewritten as ∫

T ×R

sin(ϑ − ϑ ′) f (t, ϑ ′, ω′) dϑ ′ dω′ = R(t) sin(ϑ − ϕ(t)); (1.3)

so that the mean field interaction between the particles can be read as an attraction towards
the phase of the center of mass, modulated by R(t).

Existence and uniqueness results for the system (1.1) are obtained in [18], where the (1.1)
is rigorously derived by doing the kinetic limit of the particle model introduced by Kuramoto.

The model has been intensively studied in the case where g has compact support and the
coupling constant μ is sufficiently large to observe the complete asymptotic synchronization
phenomenon (see [8,10,15], and [5,12] for the simpler case of g being a Dirac delta). If
g has not compact support, the complete synchronization is impossible, and for large μ

it is expected only a partial synchronization: some oscillators synchronize and a group of
oscillators drifts along the circle (see [20,22]).

The behavior at small values of μ was first suggested by Kuramoto in the case of even
and unimodal distributions of natural frequencies: he formulated the conjecture that R = 0
is asymptotically stable if μ < μc, with μc = 2/(πg(0)); while if μ > μc synchronized
states would emerge. This conjecture is related to the stability of the “fully incoherent state”
g(ω)/(2π), which is the only stationary solution with R = 0. Note that in the sup norm this
solution can not be asymptotically stable: in particular in the free flowcase (μ = 0) R vanishes
for any initial datum fin , but the density converges only weakly to the fully incoherent state.
In [23] the linear instability of the fully incoherent state is proved for μ > μc.

In [24] the Kuramoto conjecture forμ < μc is interpreted as a Landau-damping behavior:
as in the case of the Vlasov–Poisson equation, the damping (i.e. R → 0) is due to phase
mixing, modified by the self-consistent decaying order parameter R. This dephasing result is
proved in the linearized case: the order parameter R of a perturbation of the fully incoherent
state relaxes to zero as the time goes to infinity and the density is asymptotically transported
by a free flow.

The phenomenon of nonlinear dephasing in the Kuramoto model has been studied in the
recent work [9] and the contemporary [4,11,14]. In [9], by using spectral analysis applied to
dynamical systems, for a special class of distributions g of natural frequencies, it is obtained
the first result on the Kuramoto conjecture. By studying the bifurcation at μc of the fully
incoherent state, it is shown that, if μ < μc, the order parameter decays exponentially.

In the most complete [11], the bifurcation analysis carried out in [9] is extended to more
general distributions g and the nonlinear stability of R = 0 is proved for both Sobolev and
analytical regularity of initial data. The dephasing result R → 0 is achieved by showing
the polynomial (in the Sobolev case) or exponential (in the analytical case) decay of all the
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Fourier modes of the solutions. It is also proved a global stability result for R = 0: it exists
a μec, depending only on the L1 norm of ĝ, such that if μ < μec then

∫ +∞
0 R2(s) ds < +∞

On the other hand, in [14], by following the work [13] about the Landau-damping for the
Vlasov-HMF model, it is shown the polynomial decaying of R for initial data of Sobolev
regularity. Unlike the above mentioned works, it is studied the solution along the free flow
f (t, ϑ + ω,ω) showing that it converges, so that the solution of the system (1.1) is asymp-
totically transported by the free flow.

A complementary result which shows the richness of possible asymptotic dephased states
is obtained in [4] where, by following the works [7,16] about the Vlasov–Poisson equation,
it is proved the existence of regular dephasing solutions with any prescribed asymptotic
behavior.

In this work, along the same line of the works [3,13] on Landau-damping for the Vlasov
equation [21], and of thework [2] for theEuler equation,we showaLandau-damping behavior
for the Kuramoto model. For small values of μ, we prove the asymptotic dephasing in the
case of analytic initial data; in particular, we show that R(t) vanishes exponentially fast. Our
results are weaker than those in [11] (and possible analytical analogues of [14]): giving up
the benefits of the linear analysis, we lose the possibility of finding the critical value. On
the other hand, we adapt abstract Cauchy–Kowalewskaya techniques to obtain a brief proof
of the result. In particular we prove the dephasing via a globally-in-time existence result in
analytic spaces, while the abstract Cauchy–Kowalewskaya Theorem gives only finite time
existence.

2 Dephasing

In terms of the order parameters, the kinetic Kuramoto equation reads as

⎧⎪⎨
⎪⎩

∂t f (t, ϑ, ω) + ∂ϑ(v(t, ϑ, ω) f (t, ϑ, ω)) = 0

v(t, ϑ, ω) = ω − μR(t) sin(ϑ − ϕ(t))

R(t)eiϕ(t) = ∫
T ×R

f (t, ϑ, ω)eiϑ dϑ dω.

(2.1)

If μ = 0, the solutions of Eq. (2.1) is

f (t, ϑ, ω) = fin(ϑ − ωt, ω)

where fin is the initial datum. Our aim is to show that, if fin(ϑ, ω) is bounded in some
analytic norm, and μ > 0 is sufficiently small, there exists an asymptotic state h∞ such that

f (t, ϑ + ωt, ω) → h∞(ϑ, ω)

exponentially fast. In other words, the solutions f (t, ϑ, ω) asymptotically approaches the
incoherent state h∞(ϑ −ωt, ω), i.e. a function transported by the free flow. In this sense, the
solutions show an asymptotic dephasing. The key ingredient of the proof is the exponential
decay of the order parameter R(t), which, as noted in [19], can only be obtained for analytic
initial data.

To state precisely our result, we define h(t, ϑ, ω) = f (t, ϑ + ωt, ω), with initial datum
h(0, ϑ, ω) = fin(ϑ, ω) and which verifies, from Eq. (2.1), the equation

∂t h(t, ϑ, ω) = μR(t) ∂ϑ (sin(ϑ + ωt − ϕ(t))h(t, ϑ, ω)) . (2.2)
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Defining for k ∈ Z and η ∈ R

ĥk(t, η) = 1

2π

∫
T ×R

dϑ dωh(t, ϑ, ω)e−iϑk−iωη

Eq. (2.2) in Fourier space is
∂t ĥk(t, η) = μL̂t h(t, k, η) (2.3)

where the operator Lt acts on a function u(t, ϑ, ω) as

L̂t u(t, k, η)
.= k

∑
m=±1

m

2
zm(t)ûk−m(t, η − mt), (2.4)

where the order parameters read as

z±1(t) = ĥ±1(t,±t) = R(t)e∓iϕ(t), |z±1(t)| = R(t).

Integrating in time Eq. (2.3) we have

ĥk(t, η) = ĥk(0, η) + μk
∑
m∈±1

m

2

∫ t

0
zm(s)ĥk−m(s, η − ms) ds. (2.5)

In the sequel, we consider separately the evolution in time of the order parameter z±1, and
of the function h; in this sense Lt can be considered a linear operator in h.

We use analytic norms for h so, to make the notation lighter, we give the following
definitions:

〈t〉 = (1 + t2)
1
2 , 〈k, η〉 = (1 + k2 + η2)

1
2 ; (2.6)

note that 〈·〉 verifies the triangular inequality, as follows from easy calculation:

〈k1 + k2, η1 + η2〉 ≤ 〈k1, η1〉 + 〈k2, η2〉. (2.7)

For λ, p ≥ 0, we define the weight

Aλ,p
k (η) = eλ〈k,η〉〈k, η〉p, (2.8)

and the norms:
‖ f ‖λ,p = sup

k∈Z,η∈R
Aλ,p
k (η)| f̂k(η)|. (2.9)

We call Xλ,p the space of function f with finite ‖ f ‖λ,p norm.
Using this norm, it is easy to show that if μ = 0, we obtain the exponential decay of the

order parameter z±1(t). Let us first obtain an equation for z1 = R(t)e−iϕ(t) setting k = 1
and η = t in (2.5)

z1(t) = ĥ1(0, t) + μ
∑
m=±1

m

2

∫ t

0
zm(s)ĥ1−m(s, t − ms) ds, (2.10)

where h(0, ϑ, η) is the initial datum fin(ϑ, η). Choosing λ, p ≥ 0, the first term, due to the
free flow, is bounded by

‖ fin‖λ,pe
−λ〈0,t〉〈0, t〉−p ≤ Ce−λt 〈t〉−p‖ fin‖λ,p

where, here and in the following, C is a suitable time independent constant. This estimate
suggests that we can control the quantities

rλ,p(t) = R(t)eλt 〈t〉p. (2.11)
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A uniform in time bound of rλ,p(t) is equivalent to an exponential decay of R(t). The aim of
this paper is to show that, if μ is sufficiently small, the other terms in (2.10) do not prevent
a uniform estimate for rλ,p .

3 A-priori Estimates

In the case μ > 0, rλ,p(t) can be estimated as in the following proposition.

Proposition 1 For λ, p ≥ 0

rλ,p(t) ≤ C‖ fin‖λ,p + μC‖ fin‖λ,p

∫ t

0
rλ,p(s)

(
1

〈s〉p + 1

〈t − s〉p
)
ds

+μC
∫ t

0
rλ,p(s)

‖h(s)‖λ,p

〈s〉p ds. (3.1)

Proof The first term of the r.h.s. of (2.10) is simply bounded by

Ce−λt 〈t〉−p‖ fin‖λ,p.

Since f̂0(t, η) = f̂0(0, η), the term with m = 1 is∫ t

0
z1(s) f̂0(s, t − s) ds =

∫ t

0
z1(s) f̂0(0, t − s) ds,

which is bounded by

C‖ fin‖λ,p

∫ t

0
e−λ〈0,t−s〉〈t − s〉−p|z1(s)| ds

≤ C‖ fin‖λ,p

∫ t

0
rλ,p(s)e

−λs〈s〉−pe−λ(t−s)〈t − s〉−p ds, (3.2)

where we used that 〈0, t − s〉 ≥ (t − s). Multiplying by eλt 〈t〉p , we have the estimate∫ t

0
rλ,p(s)

〈t〉p
〈t − s〉p〈s〉p ds ≤

∫ t

0
rλ,p(s)

(
1

〈s〉p + 1

〈t − s〉p
)
ds,

because 〈t〉p ≤ C(〈s〉p + 〈t − s〉p).
The term with m = −1 is bounded by∫ t

0
R(s) |h2(s, t + s)| ds ≤

∫ t

0
rλ,p(s)‖h(s)‖λ,pe

−λs−λ〈t+s〉〈s〉−p〈t + s〉−p ds. (3.3)

We conclude the estimate (3.1) by multiplying by eλt 〈t〉p and noting that 〈t〉p ≤ 〈t + s〉p . �

In order to estimate ‖h‖λ,p , we need to control the time derivative of h.

Proposition 2 Given z±1(t), for λ, p ≥ 0,Lt is a continuous operator fromXλ,p+1 toXλ,p:

‖Lt h(t)‖λ,p ≤ C
(
rλ,0(t)‖h(t)‖λ,p+1 + rλ,p(t)‖h(t)‖λ,1

)
. (3.4)

Lt is also continuous from Xλ′,p to Xλ,p, when λ′ > λ, in fact

‖ f ‖λ,p+1 ≤ 1

λ′ − λ
‖ f ‖λ′,p. (3.5)
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Proof Recalling the definition of Aλ,p in (2.8), we write

Aλ,p
k (η)|L̂t h(t, k, η)| ≤ 1

2
|z1(t)| |k|

∑
m=±1

eλ〈k,η〉〈k, η〉p|ĥk−m(t, η − mt)|;

then, by the triangular inequality,

〈k, η〉 ≤ 〈k − m, η − mt〉 + 〈m,mt〉,
and that, when |m| = 1, 〈m,mt〉 ≤ C + t , we have

eλ〈k,η〉 ≤ Ceλteλ〈k−m,η−mt〉.

Since 〈m,mt〉 also verifies 〈m,mt〉 ≤ C〈t〉, it is true that
〈k, η〉p ≤ C

(〈k − m, η − mt〉p + 〈t〉p) ,

which implies

Aλ,p
k (η)|L̂t h(t, k, η)|

≤ Ceλt R(t)
∑

m=±1 e
λ〈k−m,η−mt〉|k|〈k − m, η − mt〉p|ĥk−m(η − mt)|

+Ceλt R(t)
∑

m=±1 e
λ〈k−m,η−mt〉|k|〈t〉p|ĥk−m(η − mt)|.

Using that |k| ≤ 〈k − m, η − mt〉, we conclude the proof by estimating the first term with

Crλ,0(t)‖h(t)‖λ,p+1

and the second with

Crλ,p(t)‖h(t)‖λ,1.

�

Let us discuss how to choose the norms that will allow us to obtain closed estimates for h

and z±1. In the Landau Damping type results in the case of Sobolev regularity of order γ , the
choice of a suitable Hilbert spaceHγ , with norm ‖h‖Hγ , guarantees that Lt is a continuous
map from Hγ in the same Hγ (see [14]). Then the results are achieved estimating, globally
in time, a term of the type ‖h(t)‖Hγ /〈t〉, for suitable values of γ , and, correspondingly,
〈t〉γ R(t). In the case of analytical regularity we can not obtain this behavior and we have to
take into account that in (3.4) we can only estimate Lt h in a norm that is weaker than the one
of h. We give closed estimates by mixing the typical norms used in Landau-Damping type
results with the norms needed for the proof of the abstract Cauchy–Kowalewskaya theorem,
following in particular [6].

Given λ0 > 0 and a such that 0 < a < 2λ0/π , for t ≥ 0 and λ < λ0, we define the
weight

β(t, λ) = βa(t, λ) = λ0 − λ − a
∫ t

0

ds

〈s〉2 = λ0 − λ − a arctan t. (3.6)

This function is positive for decreasing in time values of λ, and, as in abstract Cauchy–
Kowalewskaya theorems, we use it to taking into account the loss of analytical regularity
due to the spatial derivative in ϑ in the operator Lt . In [6] and in other proofs of the abstract
Cauchy–Kowalewskaya Theorem, the time dependence of the weight is linear and the solu-
tions exists only for finite time. Here the Landau-Damping type estimates allow us to choose
a weight convergent in time, which, if a < 2λ0/π give the analyticity also for t → +∞.
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More precisely, we define the Banach space B̃a,p as the space of the functions h(t) such
that, if β(t, λ) > 0, h(t) ∈ Xλ,p . The norm in B̃a,p is

|||h|||a,p = sup
λ,t :β(t,λ)>0

β1/2(t, λ)‖h‖λ,p. (3.7)

Finally, fixing γ ≥ 3, we define the norm

|||h|||a = |||h|||a,1 + |||h(·)/〈·〉|||a,γ , (3.8)

and the corresponding Banach space Ba , of the function h with |||h|||a bounded. With little
abuse of notation, we write:

|||R|||a = sup
λ,t :β(t,λ)>0

rλ,γ (t) = sup
λ,t :β(t,λ)>0

R(t)eλt 〈t〉γ (3.9)

Now, we prove the a-priori estimates in Ba which allow us to construct the solutions.

Proposition 3 Given z±1(t) with |||R|||a < +∞, if h = h(t, ϑ, η) solves Eq. (2.3) then it
satisfies

|||h|||a ≤ C‖ fin‖λ0,γ + Cμ|||R|||a |||h|||a . (3.10)

Proof First we estimate ‖h(t)‖λ,1, for λ such that β(t, λ) > 0. Using (2.5) and the estimate
(3.4) with p = 1, we have

‖h(t)‖λ,1 ≤ C‖ fin‖λ0 + Cμ

∫ t

0
rλ,γ (s)

(
1

〈s〉γ−1

‖h(s)‖λ,γ

〈s〉 + 1

〈s〉γ−1 ‖h(s)‖λ,1

)
ds.

(3.11)
Multiplying by β1/2(t, λ):

β1/2(t, λ)‖h(t)‖λ,1 ≤ C‖ fin‖λ0 + Cμ|||h|||a |||R|||a
∫ t

0

1

〈s〉2
β1/2(t, λ)

β1/2(s, λ)
ds, (3.12)

where we have used that for γ ≥ 3, 〈s〉γ−1 ≥ 〈s〉2. Using that β(t) ≤ β(s) we estimate the
time integral with a constant, then

|||h|||a,1 ≤ C‖ fin‖λ0,γ + Cμ|||R|||a |||h|||a .
Now we estimate ‖h‖λ,γ : using Eq. (2.5) and the estimates (3.4), (3.5) with p = γ

‖h(t)‖λ,γ ≤ C‖ fin‖λ0,γ + Cμ

∫ t

0
rλ,γ (s)

(
1

〈s〉γ
‖h(s)‖λ′(s),γ
λ′(s) − λ

+ ‖h(s)‖λ,1

)
ds, (3.13)

for any λ′(s) > λ such that λ0 − λ′(s) − a arctan(s) > 0. Dividing by 〈t〉 and multiplying
by β1/2(t, λ), we obtain

β1/2(t, λ)

〈t〉 ‖h‖λ,γ ≤ C‖ fin‖λ0,γ + Cμ|||h|||a |||R|||a(I1 + I2), (3.14)

where

I1 = β1/2(t, λ)

〈t〉
∫ t

0

ds

〈s〉2β1/2(s, λ)(λ′(s) − λ)
,

I2 = 1

〈t〉
∫ t

0

β1/2(t, λ)

β1/2(s, λ)
ds.

I2 is less than a constant because β(t, λ) ≤ β(s, λ), for s ≤ t .
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In I1, we chose λ′ = λ′(s) > λ as

λ′(s) = 1

2
(λ0 − a arctan s) + λ

2
,

which verifies

β(s, λ′(s)) = 1

2
β(s, λ) > 0,

and

λ′(s) − λ = 1

2
β(s) ≥ 1

2
β(t) > 0.

Then I1 is bounded by

I1 ≤ 2
β1/2(t, λ)

〈t〉
∫ t

0

ds

〈s〉2β(s, λ)3/2
.

Since dβ/ ds = −a/〈s〉2, the time integral can be explicitly computed and gives:∫ t

0

ds

〈s〉2β(s)3/2
= 2

a

(
1

β1/2(t, λ)
− 1

β1/2(0, λ)

)
,

then also I1 is less than a constant. �

Now we estimate |||R|||a .

Proposition 4 Fixed h such that |||h|||a < +∞, if z±1(t) = R(t)e∓iϕ(t) solves (2.10), then

|||R|||a ≤ C‖ fin‖λ0,γ (1 + μ|||R|||a) + Cμ|||R|||a |||h|||a . (3.15)

Proof We use (3.1) with p = γ : the estimate of the first two terms are obvious; the last one
is bounded by μC |||R|||a |||h|||a times the integral∫ t

0

ds

〈s〉2β1/2(s, λ)
= 2

a

(
β1/2(0, λ) − β1/2(t, λ)

) ≤ 2

a
λ
1/2
0

4 The Main Theorem

Theorem 1 For λ0 > 0 and γ ≥ 3, if ‖ fin‖λ0,γ is bounded, for μ sufficiently small, the
unique solution h(t, ϑ, ω) of (2.2) with initial datum fin(ϑ, ω) verifies |||h|||a < C and
|||R|||a < C.

As a consequence, R(t) → 0 exponentially fast and there exists h∞(ϑ, ω)with ‖h∞‖λ̄,γ <

+∞ for some λ̄ > 0, such that

f (t, ϑ + ωt, ω) = h(t, ϑ, ω) → h∞(ϑ, ω)

exponentially fast.

Proof We construct the solution with an iterative procedure. For n ≥ 0

∂t ĥ
n+1
k (t, η) = μ ̂Ln

t hn+1(t, k, η), (4.1)

where the operators Ln
t act on a generic function u(t, ϑ, ω) as

L̂n
t u(t, k, η)

.= k
∑
m=±1

m

2
znm(t)ûk−m(t, η − mt), (4.2)
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with znm(t) solution of

zn1(t) = ĥn1(0, t) + μ
∑
m=±1

m

2

∫ t

0
znm(s)ĥn1−m(s, t − ms) ds, zn−1(t) = zn1(t). (4.3)

The procedure starts with
h0(t, ϑ, ω) = fin(ϑ, ω). (4.4)

The linear problems in Eq. (4.3) and in Eq. (4.1) are easily solvable, and the solutions verify
the analogous of the a-priori estimate provided by Propositions 3 and 4:

|||Rn |||a ≤ C‖ fin‖λ0,γ

(
1 + μ|||Rn |||a

) + Cμ|||Rn |||a |||hn|||a
and

|||hn+1|||a ≤ C‖ fin‖λ0,γ + Cμ|||Rn |||a |||hn+1|||a .
Using that |||h0|||a ≤ C‖ fin‖λ0,γ we can inductively prove that, if μ‖ fin‖λ0,γ is sufficiently
small, then

|||hn |||a ≤ C‖ fin‖λ0,γ , and |||Rn|||a ≤ C‖ fin‖λ0,γ ,

uniformly in n. Choosing a′ > a with a′ < 2λ0/π , and estimating the operator Ln
t as

in Proposition 2, we have that all the first derivative of hn are uniformly bounded in the
region defined by βa′(t, λ) > 0; then, for subsequences, hn converges to some h ∈ B̃a′,γ .
Correspondingly, zn±1 converges to z±1 with |||z±1|||a bounded. The function h and z±1 solve
the coupled equations (2.3) and (2.10). Moreover, putting k = 1 and η = t in (2.5)

ĥ1(t, t) = ĥ1(0, t) + μ
∑
m=±1

∫ t

0

m

2
zm(s)ĥk−m(s, η − ms) ds = z1(t)

as follows form (2.10). Then h solves the non linear equation (2.3), and its uniqueness is
guaranteed by the uniqueness of regular solutions (see [18]) (note that the uniqueness implies
the convergence to h and z for the full sequences hn and zn).

Finally, let λ̄ > 0, with λ̄ < λ0 − a′π/2. Then

‖Lt h‖0,γ ≤ C

λ̄
|||R|||a′ |||h|||a′e−λ̄t .

This inequality implies the existence of

lim
t→+∞ h(t) = h∞,

with h∞ ∈ Xλ̄,γ because h ∈ Ba′,γ . Being γ ≥ 3, the norm ‖h‖0,γ dominates the sup norm
in ϑ and ω, then h(t) converges exponentially fast to h∞ in the sup norm. �


Remark 1 In the analysis carried out in this work the term ĥ0(t, η) = ĝ(η)√
2π

can be separated
from the other Fourier modes: in the Proposition 1 and its following, we can bound separately
the zero and nonzero modes, so that, being more careful in the estimates, it is true that

|||R|||a ≤ C
∣∣∣∣∣∣ fin − g

2π

∣∣∣∣∣∣
λ0,γ

+ Cμ|||g|||a |||R|||a + Cμ|||R|||a
∣∣∣∣∣∣∣∣∣h − g

2π

∣∣∣∣∣∣∣∣∣
a∣∣∣∣∣∣∣∣∣h − g

2π

∣∣∣∣∣∣∣∣∣
a

≤ C
∣∣∣∣∣∣ fin − g

2π

∣∣∣∣∣∣
λ0,γ

+ Cμ|||g|||a |||R|||a + Cμ|||R|||a
∣∣∣∣∣∣∣∣∣h − g

2π

∣∣∣∣∣∣∣∣∣
a
.
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Using these estimates, we can prove the thesis of the main theorem assuming μ|||g|||a small,
and fin close to the fully incoherent state g

2π .
The same results have been proved in the Sobolev case in [14]. Note that in [11,14] it is

assumed a “stability condition” on μ of the type

1 − μ

2

∫ +∞

0
ĝ(η)e−ηz dη �= 0

for z ∈ C with �z > −b, b > 0 (exponential decay) or �z ≥ 0 (polynomial decay), and a
smallness condition for fin − g

2π . These conditions can be verified also for large values of
μ, but are obviously satisfied if μ is small, as in our case.
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