
NICP: Dense Normal Based Point Cloud Registration

Jacopo Serafin1 and Giorgio Grisetti1

Abstract— In this paper we present a novel on-line method
to recursively align point clouds. By considering each point
together with the local features of the surface (normal and
curvature), our method takes advantage of the 3D structure
around the points for the determination of the data association
between two clouds. The algorithm relies on a least squares
formulation of the alignment problem, that minimizes an error
metric depending on these surface characteristics. We named
the approach Normal Iterative Closest Point (NICP in short).
Extensive experiments on publicly available benchmark data
show that NICP outperforms other state-of-the-art approaches.

I. INTRODUCTION

Registering two point clouds consists in finding the rota-
tion and the translation that maximize the overlap between
the two clouds. This problem is a crucial building block in
several applications that solve more complex tasks. These
include simultaneous localization and mapping (SLAM),
object detection and recognition, augmented reality and many
others. Point cloud registration has been addressed by many
authors and an excellent overview is given by Pomerleau
et al. in [?]. Usually, this problem is solved by using
some variant of the Iterative Closest Point (ICP) algorithm,
originally proposed by Besl and McKey [?]. Among all these
variants, Generalized ICP (GICP) [?] showed to be one of
the most effective and robust.

The availability of affordable high speed RGB-D sensors,
like the Microsoft Kinect or the Asus Xtion, enlarged the
basin of potential users and resulted in an increased interest
from researchers. Registration techniques that were previ-
ously designed for 3D laser scanners, when used in con-
junction with these sensors, suffer from the different noise
characteristics of the depth measurements. Furthermore, an
RGB-D camera can deliver data up to 60Hz and such frame
rate is not achievable by common 3D laser scanners, that
typically require several seconds for a dense scan. RGB-D
cameras led to the development of approaches that benefit
from this high data rate like Kinect Fusion (KINFU) [?] or
Dense Visual Odometry (DVO) [?]. These methods, however,
are not well suited to deal with 3D laser scanners data since
they require a good guess of the current transformation that
is available only at high frame rates.

In this paper, we present a complete system to recursively
align point clouds that combines and extends state-of-the-
art approaches in both domains to achieve enhanced speed

*This work has partly been supported by the European Commission under
FP7-600890-ROVINA.

1Both authors are from the Department of Computer, Control,
and Management Engineering “Antonio Ruberti” of Sapienza Uni-
versity of Rome. Via Ariosto 25, I00185 Rome, Italy. Email:
{serafin,grisetti}@dis.uniroma1.it.

Fig. 1. Side views of the reconstruction of the ETH Hauptgebaude dataset.
From top to bottom: ground-truth, NICP, GICP and NDT reconstruction.
NICP was able to reconstruct consistently the scene while both NDT and
GICP generated a shortened corridor (count the arcs).

and robustness. More in particular, our system combines and
extends the point-to-plane error metric proposed in GICP,
while using a scene representation inspired by the Normal
Distribution Transform (NDT) [?]. Similarly to KINFU and
DVO, we use an image projection or line of sight criterion
to determine the data association.

In contrast to the above mentioned approaches, our method
exploits the structure of the scene not only when searching
for correspondences, but also in the solution of the alignment
problem. This is done, as described in our previous work [?],
by using an extended representation for the measurements, in
which the Euclidean coordinates of each point are augmented
with the surface normal. In the solution of the alignment, we
minimize the Mahalanobis distance of each corresponding
point pair and their normals. This results in minimizing a
distance among 6D vectors instead of 3D points. For this rea-
son, we named the approach Normal Iterative Closest Point
(NICP in short). In our previous work [?], where we focused
on a synthetic analysis of the error function, we did not
provide details on our complete registration pipeline. In this
paper we describe a full approach that can directly operate on
raw 3D sensor data, either depth images or 3D laser scans.
More in detail, we discuss how to extract the statistics from
the raw data, and how to represent the point clouds through
data structures that support efficient correspondence searches
and the least squares optimization described in [?]. In this
work we report the results of comparative experiments with
other state-of-the-art methods on 29 standard benchmarking
datasets developed by Pomerleau et al. in [?] and [?]. Our

current implementation can be run on-line on a standard
laptop, and, in our experimental evaluation, NICP showed
to outperform all the other approaches. Figure 1 shows a
comparison of our approach with GICP and NDT in the
sequential alignment of 3D laser data. An open source
implementation of our algorithm as standalone C++ library
is available at http://goo.gl/W3qXbE.

Additionally, on top of our registration pipeline we imple-
mented a naive mapping algorithm which renders our system
a complete depth-tracker. In our extended experiments, this
algorithm is reported to outperform the well known KINFU
approach, at a fraction of the computation and without
requiring a GPU implementation. Yet, our method is very
suitable for being ported to such platforms, but it is out of
the scope of this paper.

The remainder of this paper is organized as follows: in
Sec. II we give an overview of the state-of-the-art methods
for point cloud registration; in Sec. III we shortly introduce
the ICP algorithm; subsequently in Sec. IV we present our
system; Sec. V shows comparative experiments and Sec. VI
conclude the paper.

II. RELATED WORK

The problem of registering two point clouds has been
addressed since more than two decades and the available
methods can be categorized in two main groups: sparse
approaches that rely on few meaningful points in the scene,
and dense approaches that directly operate on the entire
set of points. Sparse approaches perform data association
based on the local appearance of points. For this reason they
can be used when no prior information about the relative
position between the clouds is available. This comes at the
cost of a more complex system. On the contrary, dense
approaches align two clouds by considering every point and
using simple heuristics to determine the data association.
Dense methods are usually faster and easier to implement
than sparse approaches and therefore, preferred for tracking
purposes. As a counterpart however, they are more sensitive
to wrong initial guesses. Our approach belongs to the class
of dense algorithms.

The Iterative Closest Point (ICP) algorithm [?] is one of
the earliest and most used techniques for registering point
clouds. It is an iterative algorithm that refines an initial
estimate of the relative transformation. At each step the
algorithm tries to match pairs of points between the two
clouds starting from the current transform estimate. Once
these correspondences are determined, an improved transfor-
mation is usually computed through the Horn [?] formula that
minimizes the Euclidean distance between corresponding
points. After its introduction, ICP has been subject to several
improvements. Most notably, Chen et al. [?], replaced the
Euclidean distance error metric used by the original ICP with
a more robust point-to-plane criterion. This captures the idea
that the points measured by the sensors are sampled from a
locally continuous and smooth surface.

Segal et al. [?] developed a probabilistic version of ICP
called Generalized-ICP (GICP). GICP models the sensor

noise and utilizes the local continuity of the surface sampled
through the cloud. This algorithm, is a point-to-plane variant
of ICP that exploits the surface normals when assigning the
weight to each matching correspondence in the objective
function. The error metric minimized is still a scaled distance
between 3D points. In contrast to GICP, our method utilizes
an extended measurement vector composed by both the
point coordinates and its surface normal. Therefore our error
metric measures a distance in a 6D space. Billings et al. [?]
extended GICP by modeling measurement noise in each
shape, whether isotropic or anisotropic.

Steinbrücker et al. [?] proposed Dense Visual Odometry
(DVO) that takes advantage of the additional light intensity
channel available on RGB-D sensors. The main idea be-
hind this approach is to compute an image containing the
neighborhood of the edges in the RGB image. Thanks to the
depth channel these edges correspond to 3D points, and thus
they can be straightforwardly reprojected in the image plane.
The transformation is found by minimizing the reprojection
distance of the edges on that plane. The objective function
thus minimizes a set of 2D distance and this further reduces
the observability of the transform resulting in a narrow
convergence basin. On the other end, thanks to the reduced
amount of data considered by DVO, it can run at high frame
rates. This makes the assumption of a good initial guess
almost always verified. Unfortunately, DVO suffers from the
noise and the blur affecting moving RGB cameras, and it is
sensitive to illumination conditions. In fact, this is more a
limitation of the sensor than of the algorithm, however these
issues make the approach inadequate to operate in scenarios
characterized by poor illumination and robots moving fast.
The main advantage coming from the use of the RGB
channel is that in case of poor structure in the 3D data (e.g.
when looking at a flat wall), the algorithm is still able to
track the camera pose without getting lost if some texture is
present. Similarly to DVO, our method uses a line of sight
criterion to find correspondences. Our approach, however,
rejects false matching point pairs based on normals.

Newcomb et al. proposed Kinect Fusion (KINFU) [?],
which represents a major breakthrough in dense depth map-
ping. It is a complete system that combines components of
mapping and point cloud registration. The implementation
takes advantage of the brute force of the GPU to effectively
update the environment representation. The camera tracking
is a point-to-plane version of ICP that uses image projection
to determine the correspondences. This tracker, however, can
easily fail if the sensor is moved too fast resulting in ICP
to get lost. As in the case of GICP, our approach shows an
increased robustness to these kind of situations.

Magnusson et al. [?] proposed to represent the points with
3D Normal Distribution Transforms (3D-NDT). The idea
behind this method is to model the scene, similarly to [?],
with a set of small Gaussian distributions computed from the
neighborhood of each point. Using this representation it is
possible, like in the other algorithms, to apply standard nu-
merical optimization methods to compute the transformation
between two point clouds. Our method uses an NDT-like

representation of the scene, but the statistics are computed
on an image projection instead of a voxel-grid or a KD-tree.

III. ICP

The problem of registering two point clouds consists in
finding the rotation and the translation that maximize the
overlap between the two clouds. More formally, let Pr =
{pr

1:Nr} and Pc = {pc
1:Nc} be the two set of points, we want

to find the transformation T∗ that minimizes the distance
between corresponding points in the two scenes:

T∗ = argmin
T

∑
C

(
pc
i −T⊕ pr

j

)T
Ωij

(
pc
i −T⊕ pr

j

)
.

(1)
In Eq. 1 the symbols have the following meaning:
• T is the current estimate of the transformation that maps
Pr in the reference frame of Pc;

• Ωij is an information matrix that takes into account the
noise properties of the sensor or of the surface;

• C = {〈i, j〉1:M}, is a set of correspondences between
points in the two clouds. If 〈i, j〉 ∈ C, means that the
point pr

j in the cloud Pr corresponds to the point pc
i in

the cloud Pc;
• ⊕ is an operator that applies the transformation T to

the point p. If we use the homogeneous notation for
transformations and points, ⊕ reduces to the matrix-
vector product.

In practice the correspondences are not known, however,
in presence of a good approximation for the initial trans-
form, they can be found through some heuristic like nearest
neighbor. In its most general formulation, ICP iteratively
refines an initial transform T by alternating the search for
correspondences and the solution of Eq. 1. At each new step
the correspondences are recomputed by taking into account
the most recent transformation.

Over time ICP has evolved in a large number of variants
of increased robustness and performance, which differ by
the choice of the information matrix Ωij or by the heuristic
chosen to find the correspondences. By setting Ωij to the
identity, the problem reduces to the original ICP formulation
and minimizes the Euclidean distance between corresponding
points. Choosing an Ωij with a null eigenvalue along the
normal direction, minimizes the point-to-plane metric. In a
similar way, the heuristics to determine the correspondences
can be refined by taking into account the appearance of the
neighborhood of the points.

IV. DENSE NORMAL BASED POINT CLOUD
REGISTRATION

Our algorithm is an instance of ICP that deviates from the
general scheme presented in Section III. Rather than just
considering the Euclidean distance between the points, it
takes into account the local properties of the surface both
in the search for correspondences, and in the computation of
the alignment.

Given the raw sensor data (3D scan or depth image),
we compute the point cloud by applying an unprojection

function, as discussed in Section IV-A. Once we have the 3D
cloud, our method labels each of its points with the properties
of the surface around them, namely normal and curvature.
We describe in Section IV-B how this operation is carried
on efficiently. Then, our algorithm finds the correspondences
based on the computed features, as explained in Section IV-
C. Subsequently, we determine a candidate transformation
by solving a least squares problem that minimizes the
distance between the corresponding features, as described
in Section IV-D. This differs from all the ICP variants that
just minimize the distance between corresponding points.
Compared to the more traditional point-to-plane metric, our
least squares formulation allows to solve an additional degree
of freedom in the orientation of the surfaces, and it has a
larger convergence basin. The procedure is iterated up to a
maximum number of times, or until convergence is reached.

We remark that two matching points in two different
clouds are unlikely to be the same point in the space. Thus,
minimizing the Euclidean distance of points that are not the
same, introduces an arbitrary error. We overcome this issue
by reformulating the correspondence between points as a
partial overlap between small surfaces centered in the points,
and introducing an error metric that takes into account this
aspect.

A. Projection and Unprojection of a 3D Point Cloud onto a
Range Image

At low level, 3D sensors provide an indirect measure
of the cloud. For instance, depth cameras provide a depth
image where the value of the pixel (u, v) has the depth d
of the object closest to the observer, and lying on a beam
passing through that pixel. To obtain a 3D cloud, one needs
to apply an unprojection function that depends on the camera
parameters. Similarly, a 3D laser provides for each point an
azimuth θ, elevation φ and the range d measured at that
elevation. Typically, both azimuth and elevation are subject
to quantization and one can see a 3D scan as a range image
where (θ, φ) are the coordinates of a pixel on a spherical
surface. The value d of the pixel is its depth. Thus, without
loss of generality, we can introduce a projection function
s = π(p) that maps a point p from the Cartesian to the
measurement space. The point in measurement space s is
either a (u v d) triplet in case of a depth camera, or a
(θ φ d) triplet in case of a 3D scanner. Let then be the
function p = π−1(s) the inverse of a projection function,
π−1 maps a triplet of sensor coordinates into a point in the
Cartesian space.

The first step of our algorithm is to apply the unprojection
function to the raw measurements to compute a Cartesian
representation of the cloud. This is done only once at the
beginning of the computation, for both input measurements.

B. Extraction of the Statistics of the Surface

A point measurement gathered by a range sensor is a
sample from a piece-wise continuous surface. This intuition
is at the base of the point-to-plane metric used by Chen et
al. in [?] and GICP [?].

Fig. 2. This figure shows the effect of extracting the surface statistics.
According to their curvature σ, green ellipsoids corresponds to points lying
on flat regions while red ones to corners.

We locally characterize the surface around a point pi with
its normal ni and curvature σi. To compute the normal we
extract the covariance matrix of the Gaussian distribution
N s
i (µs

i , Σs
i) of all the points that lie in a sphere of radius

R centered in the query point pi. In our experiments R
ranged between 10 cm for depth camera datasets to 25 cm
for the 3D laser ones. If the surface is well defined, it can
be approximated by a plane and only one eigenvalue of
the covariance will be substantially smaller than the other
two. The normal is taken as the smallest eigenvector and, if
needed, reoriented towards the observer.

More formally, for each point pi we compute the mean
µsi and the covariance Σs

i of the Gaussian distribution as
follows:

µsi =
1

|Vi|
∑

pj∈Vi

pi (2)

Σs
i =

1

|Vi|
∑

pj∈Vi

(pi − µi)T (pi − µi) (3)

where Vi is the set of points composing the neighborhood
of pi and µi is the centroid of Vi.

A naive implementation of the above algorithm would re-
quire expensive queries on a kd-tree where the cloud is stored
to determine the points inside the sphere. Subsequently, to
compute the sums in Eq. 2 and 3, we need to iterate on this
set twice. To speed up the calculation, we use an approach
based on integral images, described in [?], where we evaluate
Eq. 2 and 3 in constant time. Once we have the parameters
of the Gaussian, we compute its eigenvalue decomposition
as follows:

Σs
i = R

λ1 0 0
0 λ2 0
0 0 λ3

RT . (4)

Here λ1:3 are the eigenvalues of Σs
i in ascending order, and

R is the matrix of eigenvectors that represent the axes of
the ellipsoid approximating the point distribution. We use
the curvature σi = λ1 / (λ1 + λ2 + λ3) to discriminate how
well the surface is fitted by a plane (see [?] for more details).
The smaller the σ, the flatter is the surface around the point.

In practice, due to the sensor noise, even surfaces that are
perfectly planar will not have a 0 curvature (or alternatively
an eigenvalue that is null). To reduce the effect of this
noise, when needed, we modify the covariance matrix Σs

i

by imposing a “disc” shape. This is done by adjusting the
length of the axis of the ellipsoid:

Σs
i ← R

ε 0 0
0 1 0
0 0 1

RT (5)

where ε is a small coefficient, in our experiments we set
ε to 0.001. If the surface is not well approximated by a
local plane, we leave Σs

i untouched. This process has been
introduced first by GICP.

At the end of this procedure, each point pi is labeled with
its surface characteristics 〈µs

i , Σs
i , σi〉. Figure 2 shows its

typical outcome.

C. Correspondence Finding Through Projection

Similar to [?] and [?] our approach selects the corre-
spondences by using a line-of-sight criterion. Namely, both
clouds are projected on a range image whose viewpoint is
the actual estimate of the transformation, and points that
fall in the same pixel that have compatible normals and
curvature are said to correspond. While the approach by
itself is straightforward, an efficient implementation is not,
due to the potentially large amount of data the algorithm has
to manipulate. In the remainder of this section we describe
a procedure that reduces the memory movements and does
not manipulate the clouds. We assume the point clouds are
stored in arrays and are not necessarily ordered in any way.
To describe our procedure we first introduce the concept of
index image. Given a projection model, π(<3) → <2, an
index image I is an image where the pixel Iuv = i contains
the index of the point pi in the array such that π(pi) →
(u, v, d)T . If multiple points fall in the same pixel we select
the closest and with a normal oriented towards the center of
projection. This operation can be simply implemented by a
depth buffer.

Let I(π,P) be an index image computed from the cloud
P through the projection π. Once at the beginning of the
iterations, we compute the current index image by projecting
all points of the current cloud Pc:

Ic = I(π,Pc). (6)

Since our optimization procedure does not move the current
cloud, Ic stays fixed during the entire alignment, and we do
not need to recompute it at every iteration.

Conversely, we recompute the index image Ir of the
reference cloud Pr at each iteration, after applying the actual
estimate T that maps the reference cloud in the frame of the
current cloud:

Ir = I(π,T⊕ Pr). (7)

Here ⊕ applies the transformation T to the entire cloud Pr.
Finally, from Ir and Ic we generate a candidate corre-

spondence for each pixel coordinate as 〈i, j〉uv = 〈Icuv, Iruv〉.

Fig. 3. This picture shows found correspondences as violet lines connecting
corresponding points in the blue and green clouds.

A candidate correspondence 〈i, j〉 between the point pc
i and

the point pr
j is discarded if one of the following holds:

• Either pc
i or pr

j do not have a well defined normal;
• The distance between the point in the current cloud and

the reprojected point in the reference cloud is larger
than a threshold:

‖pc
i −T⊕ pr

j‖ > εd; (8)

• The magnitude of the log ratio of the curvatures of the
points is greater than a threshold:

| log σc
i − log σr

j | > εσ; (9)

• The angle between the normal of the current point and
the reprojected normal of the reference point is greater
than a threshold:

nc
i ·T⊕ nr

j < εn. (10)

In our experimental setup we set εd, εn and εσ respectively
to 0.5 m, 0.95 and 1.3 for depth camera datasets, while we
used 1.5 m, 0.9 and 1.3 for 3D laser data. When processing
the same class of datasets (depth camera or laser scans) we
kept the parameters fixed to these nominal values.

Figure 3 illustrates an example of the correspondence
selection. By using index images, we avoid copying points,
normals and covariance matrices in auxiliary structures,
resulting in an increased speed.

D. Determining the Transformation Given the Correspon-
dences

Once we have a set of candidate correspondences C =
〈i, j〉1:M , we compute the transformation between the two
frames by using an iterative least squares formulation. We
recall that, given the ith point in a cloud, we have the
following information from the previous steps: the Cartesian
coordinates pi, the surface curvature σi, the surface normal
ni and the covariance matrix Σs

i .
Let p̃ be a point with normal p̃ =

(
pT nT

)T
and T be

a transformation matrix parametrized by a rotation matrix R
and a translation vector t. The ⊕ operator on points with
normals is:

p̃′ = T⊕ p̃ =

(
Rp + t

Rn

)
(11)

Given a correspondence and a current transform T , the error
eij(T) is a 6D vector

eij (T) =
(
p̃c
i −T⊕ p̃r

j

)
. (12)

Substituting Eq. 12 in Eq. 1 leads to the following objective
function: ∑

C
eij (T)

T
Ω̃ijeij (T) . (13)

Here Ω̃ij is a 6 × 6 information matrix that scales the
components of the errors. Ideally, we want to have an Ω̃ij

that rotates corresponding points so that their normals align,
and that penalizes mostly the distance along the normal
direction, while neglecting the distance along the plane
tangents. To this end, we impose independence between the
translational and the normal components, and we select an
Ω̃ij of the following form

Ω̃ij =

(
Ωs
i 0

0 Ωn
i

)
. (14)

Here Ωs
i = Σs

i
−1 is the surface information matrix around

the current point pc
i , and Ωn

i is the information matrix of
the normal. If the curvature is small enough we set Ωn

i as
follows:

Ωn
ij ← R

 1
ε 0 0
0 1 0
0 0 1

 RT , (15)

otherwise we impose Ωn
i to the identity. With these infor-

mation matrices, a correspondence between two points is
minimized by allowing the points to slide onto each other
along the tangential direction of the surface, and rotating
them so that their normals align. Note that setting Ωn

i to
zero makes our objective function identical to GICP.

Our algorithm minimizes Eq. 13 by using a local
parametrization of the perturbation in the following form:
∆T = (∆tx ∆ty ∆tz ∆qx ∆qy ∆qz)T . It con-
sists of the translation vector ∆t and the imaginary part of
the normalized quaternion ∆q. By using a damped Gauss-
Newton algorithm, at each iteration, our method solves the
following linear system

(H + λI)∆T = b. (16)

Here, H =
∑

JTijΩ̃ijJij is the approximated Hessian and
b =

∑
JTijΩ̃ijeij(T) is the residual. Once we determined

the perturbation ∆T from Eq. 16, we refine the current one
by applying ∆T as:

T←∆T⊕T. (17)

The Jacobian Jij is obtained by computing the derivative
of Eq. 12 evaluated in ∆T = 0:

Jij =
∂eij (∆T⊕T)

∂∆T

∣∣∣∣
∆T=0

=

(
−I 2[T⊕ pr

j]×
0 2[T⊕ nr

j]×

)
(18)

where [p]× is the cross product matrix of the vector p. In
practice, by exploiting the block structure of the Jacobian and
its substantial sparsity, it is possible to construct efficiently
the linear system in Eq. 16.

TABLE I
MEAN OF RELATIVE TRANSLATIONAL AND ROTATIONAL ERROR FOR THE DEPTH CAMERA DATASETS. GREEN CELLS IN THE TABLE HIGHLIGHT THE

BEST RESULT FOR EACH SPECIFIC DATASET AMONG ALL THE COMPARED ALGORITHMS (GICP, DVO, NDT AND NICP).

Relative Translational Error [m] Relative Rotational Error [deg ◦]
Dataset GICP DVO NDT NICP GICP DVO NDT NICP
high-fast-fly 0.284 1.150 0.452 0.291 20.203 41.831 17.552 24.119
high-fast-rot 0.892 0.824 1.142 0.357 35.386 24.718 29.081 14.260
high-fast-tr 0.115 0.174 0.132 0.096 5.933 5.393 6.438 5.308
high-medium-fly 0.076 0.249 0.225 0.069 4.760 9.372 9.833 5.886
high-medium-rot 0.123 0.276 0.217 0.103 8.403 8.636 9.960 8.369
high-medium-tr 0.046 0.147 0.112 0.043 2.538 4.614 5.602 2.524
high-slow-fly 0.055 0.128 0.150 0.053 3.189 4.713 4.857 3.300
high-slow-rot 0.090 0.226 0.213 0.090 3.956 6.091 5.854 3.785
high-slow-tr 0.038 0.150 0.064 0.042 1.706 4.531 2.911 1.433
low-fast-fly 0.282 1.204 0.704 0.294 12.783 36.736 19.885 14.643
low-fast-rot 0.329 1.094 0.614 0.316 20.775 29.819 26.936 15.481
low-fast-tr 0.073 0.519 0.175 0.072 4.938 14.499 6.465 4.961
low-medium-fly 0.069 0.521 0.280 0.077 3.750 13.908 6.937 4.301
low-medium-rot 0.075 0.488 0.185 0.054 6.979 12.686 8.703 6.750
low-medium-tr 0.063 0.346 0.094 0.063 3.828 8.872 4.899 3.741
low-slow-fly 0.059 0.407 0.162 0.052 2.842 14.647 3.968 2.659
low-slow-rot 0.100 0.466 0.231 0.089 4.321 11.435 5.915 3.741
low-slow-tr 0.048 0.418 0.114 0.039 1.971 9.059 3.013 1.632
medium-fast-fly 0.460 1.282 0.652 0.343 33.917 38.484 35.010 29.471
medium-fast-rot 0.744 0.614 0.330 0.285 27.339 18.163 15.617 13.920
medium-fast-tr 0.090 0.217 0.128 0.086 5.167 5.716 6.278 5.012
medium-medium-fly 0.070 0.422 0.236 0.058 4.275 12.702 11.081 4.132
medium-medium-rot 0.114 0.280 0.160 0.076 8.572 6.209 8.479 7.693
medium-medium-tr 0.036 0.229 0.091 0.038 1.978 5.998 3.937 1.953
medium-slow-fly 0.050 0.204 0.113 0.040 2.742 6.106 3.564 2.560
medium-slow-rot 0.060 0.212 0.111 0.055 2.993 5.245 4.532 2.433
medium-slow-tr 0.032 0.215 0.074 0.034 1.610 6.240 3.068 1.432

V. EXPERIMENTS

We compared our system with several state-of-the-art
approaches by using publicly available benchmark data ac-
quired with both depth cameras and laser scanners.

When operating with depth cameras we compared NICP
with GICP, DVO, NDT and KINFU. Note that KINFU is
not a simple registration algorithm, since it combines a
registration and a mapping algorithm. Each time a new cloud
is available, KINFU registers it on a local map (which is a
point cloud in a global reference frame) and then it adds the
new data to the local map. Using local maps helps to reduce
drift in the estimate.

To allow for a fair comparison, we built on top of our reg-
istration algorithm a mapping component. In the remainder
of this paper we will refer to this algorithm as NICP+. In
NICP+, the registration occurs always between a new cloud
and a local map. Similarly to KINFU, each time new clouds
arrive we register them onto the local map and we augment it
by adding all the points of the new aligned clouds. To prevent
the linear growth in the number of points, we decimate the
elements of the local map by voxelizing them at a resolution
of 2.5 cm. Points that fall in the same voxel are averaged.

We used the KINFU implementation provided by the Point
Cloud Library (PCL) [?], while for DVO and NDT we
considered the ROS [?] package suggested by the authors
and available on the web. Since GICP is a special case of
our algorithm, where the error in the normal part of the
optimization stage is neglected, and the correspondences are
selected based only on point distance, we used our own

GICP implementation. Whereas DVO requires the intensity
channel, thus it does not belong to the same class of the
other algorithms, we included it in the comparison since
it is very fast and stable when the lighting conditions are
favorable. Note that our implementation of GICP benefits of
all the data structures and of surrounding algorithms that
are used in NICP, namely the extraction of the statistics
and the calculation of the correspondences. To stress this
aspect, we performed additional experiments on 3D laser
data where we gradually transformed GICP in NICP, by
increasing the weight of the normal component. We did
not consider KINFU and DVO for 3D laser data because
they require respectively Kinect-like depth images and RGB
images. To measure the performance of an algorithm we
used the benchmarking tools of Sturm et al. [?], and we
computed the Relative Pose Error (RPE). The RPE measures
the pairwise alignment error between successive poses and it
is one of the best metric for the evaluation of visual odometry
or camera tracking systems. All datasets have been processed
on a i7-3630QM running at 2.4 GHz and with an nVidia
GeForce GT 650M graphic card. All the parameters used in
the experiments can be found on the website linked before.

As shown in Table II, in terms of processing time, NDT
resulted to be the slowest algorithm in computing a single
registration. It required in fact about 100 ms. KINFU took

TABLE II
AVERAGE CLOUD REGISTRATION TIME FOR EACH ALGORITHM.

GICP DVO NDT KINFU NICP NICP+
12 ms 3 ms 100 ms 50 ms 12 ms 33 ms

Fig. 4. Mean relative translational (left) and rotational (right) error obtained with KINFU and NICP+ on the depth camera datasets.

about 50 ms to process each new point cloud but this low
frame rate is probably mainly due to the low end video
card in our system. All other approaches, GICP, DVO, NICP
and NICP+, were able to execute in real time computing
respectively a registration in about 12 ms, 3 ms, 12 ms and
33 ms. As explained before, NICP+ is slower with respect to
NICP because of the mapping component needed to augment
the reference cloud. DVO reaches the highest frame rate,
since it processes a substantial smaller quantity of data.

A. Depth Camera Datasets

We performed a comparison of the above mentioned ap-
proaches on the benchmark data in [?]. Each dataset consists
in a sequence of depth and RGB images acquired with a
RGB-D camera. For benchmarking purposes, the ground-
truth is available. The datasets cover 3 environments of
increasing complexity (low, high, medium), with 3 types of
motions (rotational, translational, fly) at 3 different speeds
(slow, medium, fast). Using datasets where the motion of
the camera is high allows to test the robustness of the
algorithms to poor initial guesses. Indeed a big camera
velocity implies an increasing average distance between two
processed frames.

Table I reports the results obtained in processing all the
benchmarking datasets with GICP, DVO, NDT and NICP
algorithms. For each approach and for each dataset, we
processed all the images in sequence and we generated the
estimated trajectories. Note that, since these datasets are
recorded with a high frame rate, the RPE is computed on
poses with a difference in time of 1 second. Green cells in
the table highlight the best result for each specific dataset
among all the compared algorithms. NICP is almost always
more accurate than GICP, DVO and NDT. The effect of
using normals in the error function minimization allows to
better reduce the rotational error and, as a result, also the
translational error benefits from this.

For the reasons explained before, to compare results also
with respect to KINFU, we performed an other set of experi-
ments using the NICP variant NICP+. Figure 4 demonstrates
how NICP+ performs better with respect to KINFU. The
reader might notice that KINFU obtains its worst results

when dealing with datasets where the camera does not move
slowly. This is due to the fact that KINFU assumes to have a
good initial guess, that could not be verified in those cases.

B. 3D Laser Data

Here we show a comparison between GICP, NDT and
NICP on 3D laser benchmarking datasets provided by
Pomerleau et al. in [?]. We present the results on two
different datasets:
• ETH Hauptgebaude captures the main building of

ETH Zurich and the laser moved basically along a
straight direction in a long corridor;

• ETH Stairs is a record of the internal and external part
of a building, the laser moved along a corridor and it
went outside passing through two doorways. Between
the doorways the scanner climbed five steep stairs.

Like for the depth camera datasets we evaluated the algo-
rithms computing the RPE error. Instead of considering an
interval of time of one second between two poses, however,
we computed the error at each frame. This has been done
because the frame rate of 3D laser datasets are much lower.

The images in Fig. 1 and Fig. 5 illustrate the ground-truth,
and the reconstructions obtained with NICP, NDT and GICP.
While NICP was able to consistently reconstruct both scenes
from the datasets considered, GICP and NDT were not. Note
that, despite the fact that the ETH Hauptgebaude dataset
is mostly composed of curved surfaces, NICP performed
very well. Since NICP is an extended version of GICP
that makes use of the normals in the error function, we
run another experiment to quantify this effect. To this end
we executed NICP with different scaling factors for the
information matrices Ωn of the normals: 0 (GICP), 0.33,
0.66 and 1 (NICP). Note that when Ωn is null, the block of
the error vector relative to the normals is always null. This,
together with computing the correspondences based only on
point distance, results in NICP behaving as GICP. The more
we increase this scaling factor, the more accurate is the
result and the lower the standard deviation (Figure 6). These
results show that the normals provide relevant information
that contributes to increase the results and the robustness of
NICP.

Fig. 5. Side views of the reconstruction of the ETH Stairs dataset. Top-left: ground-truth. Top-right: NICP reconstruction. Bottom-left: GICP reconstruction.
Bottom-right: NDT reconstruction. Both NICP and NDT consistenly reconstructed the scene, GICP failed in aligning the part on the back of the stairs.

Fig. 6. Evolution of the mean of the RPE, and its standard deviation, when incrementally increasing the weight of the surface normals in the algorithm.
The first and second plot illustrate respectively the translational and the rotational part of the error for the ETH Hauptgebaude dataset. The third and fourth
plot illustrate respectively the translational and the rotational part of the error for the ETH Stairs dataset.

VI. CONCLUSIONS

In this paper we presented a novel system to register point
clouds that takes into account an extended measurement
vector. We discussed all the relevant steps needed for the
implementation of such a system, and we provided open
source reference code. We performed statistical experiments
comparing our approach to other state-of-the-art methods

showing that our algorithm offers better results and higher
robustness to poor initial guesses. Moreover, our method
demonstrated to be able to run on-line on a mid-range laptop.

In the future we plan to provide a GPU implementation of
our system. Since the algorithms and the data structures are
highly parallelizable we expect to achieve good performances
also on embedded systems.

