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Abstract: Predicting future traffic conditions in real-time is a crucial issue for applications of intelligent transportation
systems devoted to traffic management and traveller information. The increasing number of connected vehicles
equipped with locating technologies provides a ubiquitous updated source of information on the whole network. This
offers great opportunities for developing data-driven models that extrapolate short-term future trend directly from data
without modelling traffic phenomenon explicitly. Among several different approaches to implicit modelling, machine-
learning models based on a network structure are expected to be more suitable to catch traffic phenomenon because
of their capability to account for spatial correlations existing between traffic measures taken on different elements of
the road network. The study analyses and applies different implicit models for short-term prediction on a large road
network: namely, time-dependent artificial neural networks and Bayesian networks. These models are validated and
compared by exploiting a large database of link speeds recorded on the metropolitan area of Rome during seven months.
1 Introduction

The huge increase of traffic data availability is producing an
overwhelming profusion of experimental studies and a continuous
development of theoretical models for traffic state estimation and
prediction. In addition to existing traditional detectors that provide
traffic counts and aggregate speed estimates at fixed monitoring
stations, individual detection is supplied by identification
technologies such as video sensors for plate recognition,
radio-frequency identification or Bluetooth. Algorithms for optimal
location of monitoring stations and simulation models were
developed to derive some estimate on the traffic on the whole
network from point measures [1]. However, such estimates are
usually affected by a high degree of uncertainty. Personal mobile
devices embedding locating technology provide an additional source
of ubiquitous information, which make possible to monitor different
road segments on the network by periodic sampling of probe
vehicles. Unlike traditional traffic monitoring technologies, probe
vehicles provide sample estimates of both segment speeds and
individual travel times. So novel and different sources of
information offer additional opportunities for new traffic models and
prediction methods. However, they pose new problems concerning
the effect of statistical significance of measures and need
introducing new indicators to assess the reliability of estimates. A
second open issue is the capability of implicit models, which derive
future values from observed trend of traffic variables, to provide
accurate predictions of non-recurrent congestion by exploiting
spatial correlation existing among measures collected on different
segments on the network, other than their observed time series.
2 Related work

Short-term traffic predictions are object of a huge literature, whose
comprehensive up-to-date reviews have been recently published
[2, 3]. To provide a general overview of the state of the art, we
mention here the main different approaches in the literature but we
limit to quote just the earliest references for each of them, to the
best of our knowledge. Instead, we reserve more space to discuss
the few papers that have recently introduced the Bayesian
framework, which is the main focus of this paper.
Data-driven methods were applied since ‘70s for short-term traffic
predictions on single segments and later on road networks [4].
Thereafter, many different techniques with increasing levels of
complexity were designed to exploit time and spatial correlation
among sequential traffic variables observations: time-series
approaches such as AutoRegressive Integrated Moving Average
(ARIMA) [5] and seasonal ARIMA [6]; state identification methods
such as: simple cluster analysis [7], k-neighbouring [8, 9], spectral
analysis [10], neural network (NN) classifiers [11, 12], support vector
regression [13, 14]; direct applications of NNs to short-term traffic
predictions: namely, feed-forward (FF) [15, 16], time-recurrent [17],
state-space NNs [18]; and Bayesian networks (BNs) [19]. Several
authors proposed combinations of different methods. Bayes paradigm,
which merges a priori information with experimental results, provides
a rational framework for the combination purpose and is often used
for short-term traffic prediction. Zheng et al. [20] combined linearly
two single predictors – back propagation and radial basis function
NNs – into a Bayesian combined NN model. Van Hinsbergen et al.
[21] introduced the concept of a Bayesian committee, which
combines the predictions of multiple NNs with different structures
and different weight distributions. Khan [22] proposed a Bayesian
approach to combine estimates obtained by naïve estimation from
real-time detected data and estimates provided by even different
models. Wang et al. [23] modified the Bayesian combination method
by introducing a dynamic computation of credits and incorporated
three single predictors. Antoniou et al. [24] proposed a two-step
methodology, consisting of a Bayesian clustering technique for traffic
state identification and a subsequent application of a state-specific
function to estimate/predict the corresponding speed. In a recent
work, Tselentis et al. [25] compared combinatorial approaches with
traditional single time-series modelling.

BNs model correlation among measures by graph theory.
Sun et al. [19] noted that most of state-of-the art data-driven
methods often neglect information from adjacent roads to analyse
the trends of the object road. Thus, they proposed the use of a BN
to take into account the causal relationship between random
variables statistically and model traffic flows among upstream and
downstream road segments. Since BNs allow inferring the value of
an object node by its neighbour nodes, the message passing
mechanism of BNs can be exploited to make forecasting from
incomplete data. Yu and Cho [26] included neighbour upstream
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and downstream segments into the BN. They assumed a Gaussian
mixture model to approximate the joint probability distribution in
the BN and applied the expected maximisation (EM) algorithm to
train the model. Queen and Albers [27] introduced external
intervention in the context of BNs to identify causal relationships
between variables and in dynamic BNs to identify lagged causal
relationships between time series. Pascale and Nicoli [28]
proposed an adaptive BN method that selects the graph structure
based on the local phase detected through a mutual information
learning procedure. This method reduces complexity of the model
but reduces also prediction accuracy, as authors experienced when
applied their method to predict traffic flows on a freeway stretch.
Hofleitner et al. [29] developed a graphical model connecting
travel times with congestion state of each road segment and a
traffic theoretical model that reproduces the distribution of delay
within a road segment. The two models were combined into a
dynamic BN, which demonstrated to highly exceed performances
provided by a time-series model for travel time estimation. The
main advantage of BNs is to combine Bayesian approach to
posterior probability with network structure, which makes possible
to apply graph algorithms to estimate existing correlations among
variables. Traffic prediction is a particularly favourable case, since
the road network topology provides direct information on the
structure of BN that reflects correlations among traffic variables.

Our contribution focuses on opportunities and issues given by big
data collected from floating cars. We study the most suitable
structure of BNs and NNs to exploit such data. With respect to
previous works, the BN architecture we introduce is closer to
Bayes approach. It assumes the a priori estimate be independent of
current measures and derives it from patterns obtained from
analysis of historical data. Since current measures from floating
cars are often unreliable or are lacking at all, a multi-level
structure is envisaged to get information from farther segments
when data from adjacent segments are defective. Moreover, a
multi-period structure is introduced to provide predictions on
several time intervals in the future in a compact form.

Finally, we present a test application on a large portion of the road
network of Rome, Italy, where a big dataset from floating car data
allows a systematic investigation of the most suitable BN structure
for segment speed estimates. This BN is then compared with two
different state-of-the-art architectures of artificial NNs: FF NN, as
previously implemented in [15, 16] and non-linear auto-regressive
(NARX) model with exogenous inputs [17], other than a simple
naïve method and statistical estimate.
3 Methodology

3.1 FF neural network

FF is a static non-linear vector multivariate function that relates
future values of speed on an output segment ṽ (t + 1, t + 2, …, t +
h) = {v1(t + 1), v1(t + 2), …, v1(t + h)} within a time horizon h to
the observed speed u(t, t–1, …, t–k) = {v1(t), v1(t–1), …, v1(t–k),
…, vm(t), vm(t–1), … vm(t–k)} detected in k previous time intervals
on segments 1, 2, …, m, including the output one

ṽ (t + 1, t + 2, …, t + h) = fc(Cz + ϑC)
z = fc(Bu(t, t−1, …, t–k) + ϑD)

where t is the current time interval, k is the number of previous time
intervals taken into consideration, u is the input vector, z is a vector
representing the output of the hidden layer, fc is a non-linear
activation function and ϑC and ϑD are threshold values associated
to the output and hidden layers, respectively. The coefficient
matrices, B and C must be estimated during the training phase.
3.2 NARX NN with eXogenous inputs

NARX is a recurrent NN that relates the future values of speed on the
output segment v1(t + 1) to previous values of traffic variables on the
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same segment {v1(t), v1(t–1), …, v1(t–k)} and on other segments x
(t) = {v2(t), v3(t), …, vm(t)}, x(t–1) = {v2(t–1), v3(t–1), …, vm(t–
1)}, …, x(t–k) = {v2(t–k), v3(t– k), …, vm(t–k)}, which represent
the exogenous inputs, through tapped delay line connections that
provide delayed values of speed to be used in short-term predictions

ṽ(t + 1) = f (v1(t), v1(t–1), …, v1(t–k), x(t), x(t–1), …, x(t–k))

with the same meaning of the symbols and f denoting a non-linear
transfer function.

3.3 Bayesian networks

BNs are probabilistic graphical models. This definition outlines the
two components of a BN: a graphical component, represented by a
directed acyclic graph and a probabilistic component, expressed by
probability distributions. Each node of the graph represents a
random variable, whereas each link represents a probabilistic
dependency between the random variables corresponding to the
nodes connected by the link. BN provides the joint probability
density function p of future values of speed on the output road
segment v1(t + 1), v1 (t + 2), …, v1(t + h) conditioned by their a
priori estimate p0, the previous traffic states x(t, t–1, …, t–k) on
the estimated segment and on the previous traffic states on the
conditioning segments, whose nodes of the BN are connected with
the output nodes. The set B of connected nodes, called parents,
can be seen as time dependent, because when measures on a
parent road segment are defective, the joint probability is
estimated by using its parent values. By assuming that the
probability density functions of parents are normally and
independently distributed and applying the chain rule, the density
function of the predicted speed is

pV1 ṽ1 t + 1( ), . . . , ṽ1 t + h( )( ) = ∏h

i=0
p0V1 v1 t + i( )( )

×
∏

l[B t( )
∏k

j=0
pvl vl t − j

( )( )

3.4 Remarks

The expected advantage of prediction methods based on network
architecture such as NNs and BNs is that their graph structure
should have the capability to catch the time-dependent spatial
correlation of traffic states on the road network. Several
architectural specifications shall be preliminary studied and tested
to represent the time–space correlation among different segments
on the road network. Both upstream and downstream segments of
the prediction segment should be included to take into account
both forward flow progression that occur in light traffic and
spillback progression that arises in congested conditions.
4 Application to the case study

A case study is presented that exploits a large database consisting of
speed estimates from individual floating car data supplied by
TomTom within a research project. Speed estimates were
aggregated every 5 min. A confidence factor was provided that
expresses an informal degree of belief in the reliability of the
estimated values of the average segment speed.

For both NN and BNmodels, the training phase was carried out on
about the 70% of the dataset. The remaining data was used for the
validation.

The following measures of errors are applied for evaluating
models accuracy

mean absolute error (MAE):
∑n

i=1 |ṽi − vi|/n
( )

,

mean absolute percentage error (MAPE):
100%/n
( )∑n

i=1 |ṽi − vi|/vi
( )

,
root mean square error (RMSE):

���������������������∑n
i=1 (ṽi − vi)

2/n
( )√

and

root mean square percentage error (RMSEP)
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Fig. 1 Segments selected for NN architecture selection
100%
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i=1 ṽi − vi/vi

( )( )2
n

√
,

where ṽi is the forecast, vi is the observed value at time i and n is the
size of observation set.
4.1 Training and model selection

Model selection consists of choosing the most appropriate
architecture and its correspondence to variable specification: that
is, for NNs, defining the number of layers, nodes, connections and
the length of past and prediction horizon. Different tests were
performed by exploring the neighbourhood of the target road
segment and including different numbers of upstream and
downstream segments, on the basis of correlations observed
between target segment and surrounding segments. The best
trade-off between complexity of the architecture and accuracy of
predictions was provided by a simple structure composed by the
segment itself, the backward star and the forward star. This
structure has also two great practical advantages: it is modular and
can be easily implemented on large networks through simple
automatic routines that explore the road graph and select the
forward star of end node and the backward star of initial node for
each prediction segment. Architecture with one hidden layer was
chosen for both FF and NARX, since it is demonstrated that such
architecture can approximate any non-linear function.
Fig. 2 Mean square errors resulting after the training phase of four different NN
methods
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4.2 NARX neural networks

Four alternative architectures were tested on one target segment,
labelled 55,932 in Fig. 1, by considering different inputs
corresponding to different correlated segments, other than the speed
profile of the same segment and a number representing the weekday:

Architecture 0: average speed on segment 55,932, speed profile on
segment 55,932, number of weekday;
Architecture 1: as Architecture 0 and average speed on upstream
segment 54,295;
Architecture 2: as Architecture 0 and average speed backward star
segments 54,295, 239,947, 220,688; and
Architecture 3: as Architecture 0 and average speed on backward star
segments 54,295, 239,947, 220,688 and on forward star segment
30,915.

Each model was trained on the set of data collected in March,
April and May 2014. Since NN training is an NP-complete
process, the result of training depends on the specific algorithm
used. Classical Levenberg–Marquardt and Levenberg–Marquardt
with Bayesian regularisation algorithms were applied and
compared. Performances of the training process of NARX with
different numbers of hidden neurons, carried out by the two
training algorithms, are shown in Fig. 2.

It is evident from this figure that Bayesian regularisation realises
an approximately linear trend of the mean square error function,
which decreases as the number of hidden layers increases and
outperforms Levenberg–Marquardt. This figure underlines also a
significant distinction between different network architectures.
Specifically, including the forward and backward star improves the
mean square error up to 4 km2/h2 (∼20%) with respect to past
information on the target segment only. Additional tests on
positive signs of outputs, convergence of training algorithm, no
cross-correlation between inputs and errors and autocorrelation of
inputs revealed that architectures with more than 22 hidden
neurons do not fulfil all tests.

A second step of model selection is the definition of time intervals
in the past horizon. Different NARX NNs, structured according to
Architecture 3 defined above, were trained assuming different
combinations of the number of hidden neurons and time intervals.
Tests results show (Fig. 3) that there is not a strict decrease of
errors when the number of previous time intervals increases, for a
given number of hidden neurons. Since NARX with 16 hidden
neurons did not comply additional tests on correlation and
convergence, the selected architecture has 12 hidden neurons and
input nodes corresponding to speeds observed for six previous
time intervals on road segments selected in Architecture 3 (target
segment, forward and backward star).
4.3 FF neural networks

While NARX are time-dependent recursive networks, FF has a static
structure. Predictions on different future time periods can be
architectures versus the number of hidden neurons, for two different training
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Fig. 3 Mean square errors resulting after training of NARX NNs for
different numbers of hidden neurons and different delay time intervals
performed by applying two different methods. In the first (denoted in
the following simply as FF), a different FFNN is trained for each
future time interval which the forecast is related to; in the second
Fig. 4 Selected architectures

a NNs architectures: NARX
b One output FF FF
c Multiple output FF FF′

4

(denoted in the following as FF’), a unique FFNN is trained to
provide forecasts on all time intervals composing the prediction
horizon simultaneously. The two alternative models FF and FF’
have been trained and tested against the same time horizon,
assuming the same architecture of input and hidden neurons found
to be optimal for the NARX network. Specifically, five FFNNs
were trained to provide single predictions for each of the time
intervals 5; 15; 30; 45 and 60 min; one FF’ was trained to provide
multiple predictions for each period of the prediction interval
simultaneously. Levenberg–Marquardt algorithm was used for
training in both cases. Selected architectures are shown in Fig. 4.
Results of the comparative training highlighted that the two
methods have very similar performances. Thus, they were both
selected for the validation phase.
4.4 Bayesian network

The selection of the best BN architecture was performed by
conducting an empirical analysis of performances of different
networks, whose architectures describe existing correlations between
IET Intell. Transp. Syst., pp. 1–9
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Fig. 5 Multi-period BN structure with a priori estimate
the speed on target segment and the speed previously observed on
the same segment and on different surrounding segments.

A preliminary statistical analysis was performed to compute the
average speed for every weekday in the training period, which was
taken as a priori prediction.

Since the EM training algorithm of the BN can deal with
incomplete data by exploiting existing correlations between other
observed random variables, the database could be cleaned by
removing measures having a low confidence factor, in order to
train and then validate the model only against reliable data.
Moreover, many model structures were investigated. Several
upstream or downstream road segments were included in the BN
structure and were connected among them consistently with the
road network topology.

The analysis conducted by training such architectures did not
point out significant differences among them. Architectures formed
by many upstream or downstream segments provided only slight
Table 1 Measures of errors for different NN models (complete dataset)

RMSE RMSEP MAE MAPE

5 min FF 8.56 29.35 6.48 19.28
FF′ 8.60 29.55 6.57 19.52

NARX 8.43 28.85 6.41 19.08
15 min FF 10.54 39.71 9.18 28.00

FF′ 10.54 39.74 9.21 28.11
NARX 10.29 38.87 8.74 26.96

30 min FF 11.12 44.38 9.91 31.01
FF′ 11.13 44.47 9.93 31.10

NARX 11.09 45.30 9.53 30.82
45 min FF 11.51 48.11 10.32 33.06

FF′ 11.49 47.72 10.29 32.88
NARX 11.53 49.74 9.95 33.03

60 min FF 11.80 51.07 10.56 34.40
FF′ 11.81 51.08 10.57 34.45

NARX 12.26 58.61 10.51 37.00
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improvements of speed estimates with respect to the architecture
formed by forward star and backward star segments.

On the other hand, with a view to the implementation of an
automated procedure that builds one prediction model for each
segment of the road network, architectures formed by many
segments seem to be less suitable than that identified by the
forward star and backward star, since they would require a more
burdensome exploration of the graph.

Thus, the selected multi-period architecture whose nodes represent
random variables V is shown in Fig. 5. It relates the future speed on
the target segment with the current speed on road segments forming
the forward star and backward star, other than the link itself and a
priori estimates from historical data. Forecasts are provided on
three future intervals simultaneously.
5 Validation and comparison of different models

Comparison of different models selected in the training and test
phases was performed on a different set of data, collected in the
period August–December 2014 on the segment having the
opposite direction of that used for model selection. All selected
models were trained on the dataset formed by observations
collected in August, October, November and December and
validated against the data gathered during the month of September.

The comparison was conducted in two phases, against two
different databases: the complete database and the cleaned
database, formed by only reliable speed measures.

The need for introducing two distinct phases comes from the
different structure of the models. In fact, the NARX network is a
recursive model that needs working on uninterrupted time series of
data; however, BN trained by the EM algorithm is designed to
deal with even incomplete data. Finally, FFNN is a static model
that applies an input–output relation between a set of data and
does not require outputs to be in a regular time sequence.
5



Table 2 Measures of errors for different prediction network models
(clean dataset)

RMSE RMSEP,% MAE MAPE, %

5 min historical Avg. 7.33 34.65 5.83 23.81
naïve 10.12 39.47 6.91 24.86
BN 6.13 25.69 4.69 18.03
FF 5.6 23.83 4.22 16.16

15 min historical Avg. 7.33 34.65 5.83 23.81
naïve 13.76 55.75 10.64 39.54
BN 6.85 31.50 5.44 21.83
FF 6.55 30.30 5.17 20.71

30 min historical Avg. 7.33 34.65 5.83 23.81
naïve 14.95 63.65 11.93 24.86
BN 7.07 33.56 5.62 22.93
FF 7.01 34.33 5.59 23.03

45 min historical Avg. 7.33 34.65 5.83 23.81
naïve 15.36 67.58 12.36 47.82
BN 7.16 34.36 5.72 23.52
FF 7.38 37.55 5.88 24.82

60 min historical Avg. 7.33 34.65 5.83 23.81
naïve 15.91 71.01 12.93 50.81
BN 7.24 34.89 5.77 23.80
FF 7.66 40.10 6.12 26.23
5.1 Overall prediction performances on the complete
dataset

Thus, a first comparison phase concerning the FF and NARX NNs
was conducted on the complete database, both for training and
Fig. 6 Observed values and speed forecasts for 5, 15, 30, 60 min intervals provi
Colombo
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validation phases. Results reported in Table 1 highlight that the
NARX provides more accurate estimates of the speed on the target
segment than FF for shorter time intervals, when a higher
autocorrelation exists among data. However, FFNNs outperform
NARX for predictions on time intervals farther than 30 min.
Differences between the two models are anyway small; for instance,
the difference of RMSE between NARX and FF ranges from −2
to 4%. The two FF and FF’ models exhibit almost equivalent
performances, with a slight outperformance of FF for shorter-term
predictions, up to 15 min. The simpler FF model, formed by
independent predictions for each time horizon, should be preferred.

5.2 Overall prediction performances on the clean
dataset

The second comparison phase was carried out on the clean database
formed only by speed measures with a high confidence factor. BN
and FF architecture were trained and validated on only the reliable
data collected during the month of September.

The two models were compared, other than with each other, with the
statistical average speed profile computed for every weekday in training
period and a naïve prediction method consisting on assuming the last
observed value as forecast for the prediction time interval.

The following remarks can be drawn from Table 2:

(a) Naïve forecasts are always the worst method.
(b) BN always improves the statistic average, which represents the a
priori estimate, though improvements reduce as the prediction time
ded by FFNN, BN and historical average (historical Avg.) on via Cristoforo

IET Intell. Transp. Syst., pp. 1–9
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Fig. 7 Observed values and speed forecasts for 5, 15, 30, 60 min intervals provided by FFNN, BN and historical average (historical Avg.) on Lungotevere Tor
Di Nona
interval becomes farther (for instance, RMSE for predictions based
on the historical average is 7.33 km/h; RMSE for BN is 6.13 km/h
for 5 min forecasts; and 7.24 km/h for 60 min forecasts).

FF performances are better than those of BNs for predictions up to
15 min (RMSE for 5 min forecasts is 5.60 km/h) but deteriorate for
longer time intervals and become worst than historical average for
60 min predictions (RMSE for FFNN is 7.66 km/h).

It is worth noting that the errors experienced on the clean dataset
are significantly lower than those measured on the complete dataset,
which were biased by unreliable data.
5.3 Analysis of prediction performances under different
traffic conditions

In addition to average error measures, it is worth investigating the
performances of the various models in different traffic conditions.
Some examples are provided in the following figures, which
illustrate the observed values of speed on the target segment in
two representative days and the corresponding forecast values
provided by historical average, Bayesian network BN and
feed-forward NN FF. Only forecasts corresponding to time
intervals whose measures have a high confidence factor are shown.
Fig. 6 refers to different prediction intervals (5; 15; 30 and 60
min) on the target segment on a typical workday.

Measured values have two very different patterns: in the peak
hours (from about 4 a.m. to 9 a.m. Greenwich Mean Time,
equivalent to 6 a.m. to 11 a.m., legal time in Central European
Summer Time) measured speed exhibits an evident U-shaped
IET Intell. Transp. Syst., pp. 1–9
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trend, with frequent small oscillations; in the off-peak hours, it is
characterised by frequent high oscillations from values close to the
historical average and free-flow speed, whose values were inputted
in the database when too few measures were detected in real-time.

Short-term forecasts by both models are very close to the observed
values in the peak hours. As for 5 min predictions, FF provides an
excellent approximation to data, which revealed a slightly higher
congestion than the average for that workday. The BN forecasts
provide an as good approximation as the FF at the beginning and
at the end of peak period, when congestion is lighter; they
overestimate the segment speed in the middle of the peak period
and are closer than FF to the historical average, which was used as
a priori estimate.

A priori knowledge is clearly advantageous for 60 min forecasts,
where BN replays historical average, while FF is affected by an
evident delay with respect to the true values.

Fig. 7 exemplifies an interesting case of non-recurrent congestion,
occurred on Saturday afternoon on Lungotevere Tor di Nona, a
segment belonging to a main road corridor in the historic Centre
of Rome, which runs aside the embankment along the Tiber River.
It is evident from this figure that the measured speeds from 3 p.m.
to about 12 p.m. were much lower than the average values
detected during the same time period on that road segment. Also,
in this case FF provides good short-term forecasts for the next 5
min; BN forecasts exhibit a very similar shape to observed values
but overestimate them slightly in the shorter-term. For 15 and 30
min forecasts, FF is still able to capture the anomalous conditions
occurring in the afternoon while forecasts of the BN for 30 and
60 min approximate the historical average value: the influence of a
7



Fig. 8 Observed values and speed forecasts for 5, 15, 30, 60 min intervals provided by FFNN, BN and historical average (historical Avg.) on via Cristoforo
Colombo
priori estimate becomes stronger for longer-term predictions as well
as for anomalous conditions. It is worth noting the recurrent but
unstable traffic conditions with marked oscillations occurring from
9 a.m. to 10 a.m. It can be seen that FF forecasts for this period
are very noisy and overestimated for 15 and 30 min. This result
can be explained by the fact that the FF forecasts are based only
on the information concerning the previous traffic state; in case of
significant fluctuations of input data the forecasts exhibit even
increased fluctuations that reduce model robustness.

Another case of non-recurrent congestion is shown in Fig. 8. The
observation refers to a portion of via Cristoforo Colombo, a main
artery connecting the historic Centre of Rome to the seaboard.
Non-recurrent congestion conditions occurring from 4:30 p.m to
6:30 p.m are well forecasted by both models for 5 min forecasting
interval; however, for 15 and 30 min intervals only FF is able to
forecast the actual trend of speed, while BN approaches the
historical average profile (resulting MAE of about 10 km/h).
6 Conclusions

This paper presented a comparative analysis of different implicit
short-term traffic prediction models, designed for online applications.
A large dataset of average speeds detected through floating car data
for ten months was used for tests and comparisons of the models.

NARX model with exogenous inputs NN and two models of
FFNNs were introduced and compared. These models exhibited
similar performances. The model consisting in one independent
8

FFNN for each prediction time interval, which is the simplest
among the three tested, can be seen as the most convenient for this
case study. A BN that exploits a priori knowledge consisting in
historical average outperforms the NN in medium-term forecasts
(that is, from 30 to 60 min later), on average.

On the other hand, NNs provide more accurate forecasts in the
short-term (that is, from 5 to 15 min later) and in case of
non-recurrent conditions. So, NNs appear to be a convenient model
for online applications of intelligent transportation system, which
require high promptness to face sudden congestion occurrences and
reliable predictions of anomalous conditions. However, BNs have to
be seen anyway as a very powerful tool, which can be better
exploited in database having a highly detailed level of information.
The proposed FFNN model provides speed forecasts based only on
the current traffic state condition which can reduce the model
robustness in case on unstable traffic conditions. A contemporary
study performed by the same authors (Fusco et al. [30]) on a
different database composed by individual floating car data made it
possible to include inter-vehicle variance of speeds into the model
and to provide the BN with estimates of data reliability and
uninterrupted time series. The qualitative difference in the
performance of the two models suggests a further enhancement,
which is object of the ongoing research, consisting in combining
two models that exhibit complementary characteristics and
introducing an additional model that acts as a supervisor. The
supervisor should select the most appropriate forecast according to
specific detected conditions or should merge different forecasts with
suitable weights when they both correspond to reasonable conditions.
IET Intell. Transp. Syst., pp. 1–9
& The Institution of Engineering and Technology 2016
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