
A Fast Branch-and-Bound Algorithm for Non-convex Quadratic Integer Optimization
Subject To Linear Constraints Using Ellipsoidal RelaxationsI

Christoph Buchheima, Marianna De Santisa, Laura Palagib

aFakultät für Mathematik, Technische Universität Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany
bDipartimento di Ingegneria informatica automatica e gestionale A. Ruberti, Sapienza Università di Roma, Via Ariosto, 25, 00185 Roma, Italy

Abstract

We propose two exact approaches for non-convex quadratic integer minimization subject to linear constraints where lower bounds
are computed by considering ellipsoidal relaxations of the feasible set. In the first approach, we intersect the ellipsoids with the
feasible linear subspace. In the second approach we penalize exactly the linear constraints. We investigate the connection between
both approaches theoretically. Experimental results show that the penalty approach significantly outperforms CPLEX on problems
with small or medium size variable domains.

Keywords: integer programming, quadratic programming, global optimization
2010 MSC: 90C10, 90C20, 90C57

1. Introduction

We address quadratic integer optimization problems with box
constraints and linear equality constraints,

min q(x) = x>Qx + c>x
s.t. Ax = b

l ≤ x ≤ u
x ∈ Zn ,

(1)

where Q ∈ Rn×n is assumed to be symmetric but not necessarily
positive semidefinite, c ∈ Rn, and w.l.o.g. A ∈ Zm×n and b ∈ Zm.
Moreover, we may assume l < u and l, u ∈ Zn. Problems of this
type arise, e.g., in quadratic min cost flow problems, where the
linear equations model flow conservation, l = 0 and u represents
edge capacities. Note that we can also handle linear inequalities
in (1) by simply introducing slack variables.

Problems of type (1) are very hard to solve in theory and
in practice. In general, the problem is NP-hard both due to
the integrality constraints and due to the non-convexity of the
objective function. Few exact algorithms have been proposed in
the literature so far, most of them based on either linearization
or convexification [1, 10] or on SDP-relaxations [3].

For the variant of (1) containing only box constraints, but no
other linear constraints, Buchheim et al. [2] recently proposed
a branch-and-bound algorithm based on ellipsoidal relaxations
of the feasible box. More precisely, a suitable ellipsoid E con-
taining [l, u] is determined and q(x) is minimized over x ∈ E.

IThe second author has been supported by the German Research Foundation
(DFG) under grant BU 2313/4. The third author has been partially supported
by the Italian project PLATINO (Grant Agreement n. PON01 01007).

Email addresses: christoph.buchheim@tu-dortmund.de (Christoph
Buchheim), marianna.de.santis@math.tu-dortmund.de (Marianna De
Santis), laura.palagi@uniroma1.it (Laura Palagi)

The latter problem is known as the trust region subproblem
[4, 6, 8] and can be solved efficiently, thus yielding a lower
bound in our context. Besides many other improvements, this
branch-and-bound algorithm mostly relies on an intelligent pre-
processing technique that allows to solve the dual of a trust re-
gion problem in each node of the enumeration tree in a very
short time, making it possible to enumerate millions of nodes
in less than a minute.

Our aim is to adapt this method to the presence of linear
equations Ax = b. For this, we propose two different, but
related approaches. In the first approach (see Section 2), we
intersect the ellipsoid E with the subspace given by Ax = b.
This leads, by considering an appropriate projection, to a trust
region type problem that, in principle, can still be solved effi-
ciently. In the second approach (see Section 3), we instead lift
the constraints into the objective function by adding a penalty
term M||Ax − b||2 drawing inspiration from the augmented La-
grangians theory [7]. A finite and computable real value M̄ > 0
exists such that the resulting quadratic problem with only the
simple constraints [l, u] ∩ Zn is equivalent to (1). Thus the
branch-and-bound algorithm defined in [2] which uses an ellip-
soidal relaxation E of the feasible set can be used in a straigh-
forward way.

In Section 4, we show that the bound obtained from the
penalty approach converges to the bound obtained in the pro-
jection approach when M → ∞. We finally present the results
of an experimental comparison of the penalty approach with
CPLEX, see Section 5.

2. Projection approach

The first approach we propose for the computation of lower
bounds for Problem (1) is based on the familiar partitioning of x
into basic and non-basic variables xB and xN . Without loss of

Preprint submitted to OR letters April 16, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/54525979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

generality we assume that rank(A) = m. Let B be a basis of A,
then the equality constraint can be written as BxB + NxN = b; a
similar idea is used, e.g., in [9]. This leads to a k-dimensional
trust region type problem, where k = n − m is the dimension of
the kernel of the matrix A.

Let H be a positive definite matrix that, together with the
center point x0, defines an ellipsoid

E(H) = {x ∈ Rn | (x − x0)>H(x − x0) ≤ 1}

such that [l, u] ⊆ E(H). Consider the following relaxation of
our original problem (1)

min q(x) = x>Qx + c>x
s.t. Ax = b

x>Hx ≤ 1
(2)

where w.l.o.g. we assumed x0 = 0. We show that Problem (2)
can be transformed into a trust-region type problem so that the
branch-and-bound algorithm defined in [2] can be applied. Let
us write vectors and matrices accordingly to the partition in-
duced by B and N. Thus, the xB variables can be eliminated via
substituting

xB = B−1b − B−1NxN

in (2). We obtain

min x>N Q̃xN + ĉ>xN + d
s.t. x>N H̃xN + h̃>xN ≤ 1 − b>B−>HBBB−1b

xN ∈ Rk ,

(3)

where

Q̃ = QNN + N>B−>QBBB−1N − Q>BN B−1N − N>B−>QBN

ĉ = 2(−N>B−>QBBB−1 + QNBB−1)b − (B−1N)>cB + cN

d = b>B−>QBBB−1b + c>B B−1b
H̃ = HNN + N>B−>HBBB−1N − HNBB−1N − N>B−>HBN

h̃ = 2
(
−N>B−>HBBB−1 + HNBB−1

)
b

Let

x0
N = −

1
2

H̃−1h̃

be the center of the ellipsoidal constraint in problem (3). Then
we can rewrite Problem (3) as

min x>N Q̃xN + ĉ>xN + d
s.t. (xN − x0

N)>H̃(xN − x0
N) ≤ α

xN ∈ Rk ,

where

α = 1 − b>B−>HBBB−1b +
1
4

h̃>H̃−1h̃.

Next we consider the transformation z = xN − x0
N and obtain the

following problem which is exactly of the desired form

min z>Q̃z + c̃>z + d̃
s.t. z>H̃z ≤ α

z ∈ Rk,

(4)

where

c̃ = 2Q̃x0
N + ĉ,

d̃ = ĉ>x0
N + (x0

N)>Q̃x0
N + d.

This approach can be embedded into the branch-and-bound
procedure proposed in [2], where the enumeration strategy is
depth-first and branching is done by fixing the value of the vari-
ables in a predetermined order. By the latter restriction, we
ensure that the matrices Q̃ and H̃ only depend on the depth of
the node in the branch-and-bound tree, i.e., on which variables
have been fixed so far, but not on their values: First, a basis B0

of A can be computed in the preprocessing phase. By always
fixing non-basic variables, we get at each level ` = 0, . . . , n−m
that a basis of A` (the reduced matrix A indexed by only non-
fixed variables) is B` = B0, whereas N` is obtained by simply
removing columns from N0. When all non-basic variables have
been fixed to x̄N , then the corresponding node is a leaf and ei-
ther x̄B := (B`)−1b − B−1N` x̄N ∈ Zm or the node is infeasible.

Now the matrices Q̃ and H̃ in a given node of the branch-
and-bound tree depend only on Q`, H`, B`, and N`, where Q`

and H` denote the reduced matrices Q and H on level `, which
in turn depend only on the level ` and not on the specific vari-
able fixings. In summary, Q̃ and H̃ only depend on the ordering
of variables but not on the fixings of variables. This implies that
only n different matrices Q̃` and H̃` appear in the entire branch-
and-bound tree, so that, similarly to [2], all time-consuming
calculations concerning Q̃` and H̃` can be performed in a pre-
processing phase.

On the other hand, the construction of problem (4) at every
node of the branch-and-bound tree requires the computation of
c̃, d̃, h̃, and α, which in turn depend on the values at which
the variables have been fixed, as the right hand side term b is
affected by the fixings. These vectors can however be updated
quickly in an incremental fashion.

As a final remark, we want to point out that it is also possi-
ble to use the kernel representation of the equality constraints
as {x ∈ Rn | Ax = b} = {x ∈ Rn | x = Vy + w, y ∈ Rk},
where V ∈ Rn×k is an orthonormal matrix defining a basis for
ker(A) and w ∈ Rn is any vector satisfying Aw = b. By substi-
tuting x by Vy + w in (2) and by further manipulations of the
expressions, we get again a trust region type problem. The main
difference between the two approaches consists in the computa-
tions needed to define the trust region relaxation at each node of
the branch-and-bound tree, but the resulting bounds both agree
with (2) and are hence the same.

3. Penalty approach

In the second approach we take inspiration from an old idea
based on Lagrangian relaxation, in which the squared violation
of linear constraints ‖Ax−b‖2 is lifted to the quadratic objective
function (see [7] and references therein). Indeed Poljak et al.
[7] prove the existence of a value M̄ such that problem (1) is
equivalent to

min
x∈X

q(x) + M‖Ax − b‖2 for all M ≥ M̄

2

whenever X is a finite set. In the following we explain how to
obtain a finite value of M̄ for which this equivalence holds.

More generally, consider the problem

q(x∗) = min q(x) = x>Qx + c>x
s.t. x ∈ F ∩ X (5)

where X ⊆ Rn is again a finite set and F ⊆ Rn is arbitrary. Let
dF (x) : Rn → R+

0 be a function such that

dF (x) = 0 if x ∈ F ;
dF (x) > 0 otherwise.

Since X is a finite set we can define

dmin
F

= min
x∈X,x<F

dF (x).

We notice that dmin
F

> 0 by definition of dF (x).
Let M > 0 and f : Rn → R be the following penalty function

f (x) = q(x) + M
(

dF (x)
dmin
F

)2

.

Let us consider the problem

min f (x)
s.t. x ∈ X. (6)

We first note that a solution of problem (6) provides a lower
bound for problem (5) for every M > 0. Indeed we have

min
x∈F∩X

q(x) = min
x∈F∩X

f (x) ≥ min
x∈X

f (x).

Now let lb be any lower bound for problem (5), e.g., obtained
by minimizing q(x) over any relaxation C of F ∩ X. Moreover,
let ub be any upper bound for problem (5), e.g., obtained as
ub = q(x̂) for some x̂ ∈ F ∩ X. Then obviously

lb ≤ q(x∗) ≤ ub.

We show that for M > ub − lb ≥ 0 problems (5) and (6) are
equivalent.

Theorem 1. Let M > ub − lb ≥ 0. Then problems (5) and (6)
have the same minimizers.

Proof. First we observe that by definition of dmin
F

we have

d(x,F)
dmin
F

≥ 1 ∀ x ∈ X, x < F

so that
f (x) ≥ q(x) + M ∀ x ∈ X, x < F .

Further, by definition, d(x,F) = 0 for all x ∈ F so that

f (x) = q(x) ∀ x ∈ F .

We first prove that if x∗ is a solution of (5) then x∗ is a solution
of (6). Let x∗ be a solution of (5), then we have

q(x∗) ≤ q(x) ∀x ∈ F ∩ X. (7)

Suppose by contradiction that there exists a point x̄ ∈ X such
that

f (x̄) < f (x∗) = q(x∗). (8)

We consider two cases:

i. Suppose that x̄ ∈ F , that is d(x̄,F) = 0. Then, from (7)

f (x̄) = q(x̄) ≥ q(x∗)

which contradicts (8).

ii. Now assume that x̄ < F , that is d(x̄,F) > 0.

Since q(x̄) ≥ lb and d(x̄,F)
dmin
F

≥ 1, we have

f (x̄) = q(x̄) + M
(

d(x̄,F)
dmin
F

)2
≥

≥ lb + M > lb + ub − lb = ub
≥ q(x∗)

(9)

which again contradicts (8).

We now prove that if x̄ is a solution of (6) then it is a solution
of (5). As a solution of (6) we have that x̄ ∈ X. We first prove
that x̄ ∈ F ∩ X. By contradiction, we suppose that x̄ < F , then,
as in (9), we have

f (x̄) = q(x̄) + M
(

d(x̄,F)
dmin
F

)2

> ub = q(x̂),

where x̂ ∈ F ∩ X. This contradicts the fact that x̄ is a solution
for (6).

Now, suppose by contradiction that there exists a solution
x∗ ∈ F ∩ X of problem (5) such that

q(x∗) < f (x̄) = q(x̄). (10)

Since x∗ ∈ F ∩ X we have that f (x∗) = q(x∗), then (10) im-
plies that f (x∗) < f (x̄), which contradicts the fact that x̄ is an
minimizer for problem (6). 2

As an immediate consequence of the preceding theorem, we
get the following equivalence result.

Corollary 1. Let M > ub − lb ≥ 0 and p : Rn → R be a
function such that

p(x) ≥
(

d(x,F)
dmin
F

)2

for all x ∈ Rn. Then, problem (5) has the same minimizers as

min q(x) + Mp(x)
s.t. x ∈ X.

Going back to Problem (1), we have that

X = [l, u] ∩ Zn, F = {x ∈ Rn : Ax = b}

and A, b have integer entries. Our set F is closed and convex,
therefore it is possible to choose dF (x) as

dF (x) = min
y∈F

d(x, y),

with d(x, y) being defined as d(x, y) = ‖A(x − y)‖ so that

dF (x) = ‖Ax − b‖.

3

With this choice we have that

m := dmin
F

= min
x∈X,Ax,b

‖Ax − b‖ (11)

and we can consider(
d(x,F)

dmin
F

)2

=
‖Ax − b‖2

m2 .

Computing m by (11) is NP-hard as it is equivalent to solving
a shortest vector problem. However, from the integrality of A
and b, we derive m ≥ 1. This means that

p(x) = ‖Ax − b‖2 ≥
‖Ax − b‖2

m2 =

(
d(x,F)

dmin
F

)2

is a function that satisfies the conditions of Corollary 1, so that
solving (1) is equivalent to solving

min q(x) + M‖Ax − b‖2

s.t. x ∈ X (12)

with M > ub − lb ≥ 0. Problem (12) is a quadratic integer
optimization problem with only box constraints and the branch-
and-bound algorithm proposed in Buchheim et al. [2] can be
used in a straightforward way. We recall that this leads, at each
node, to the solution of the dual of the following trust region
problem

min x>Qx + c>x + M‖Ax − b‖2

s.t. x>Hx ≤ 1,

for some H � 0 such that E(H) = {x ∈ Rn | x>Hx ≤ 1} ⊇ [l, u].
Finally, we want to mention how we determine the values lb

and ub needed to compute M. In order to compute a valid upper
bound ub, a feasibility problem needs to be solved. A possibil-
ity is that of solving the following integer linear programming
problem

min 0
s.t. Ax = b

x ∈ X.
(13)

For what concerns the computation of a valid lower bound lb,
a continuous relaxation of problem (1) needs to be solved. A
possibility, in order to deal with an easily solvable continuous
relaxation, is to consider the following trust region problem

min x>Qx + c>x
s.t. x>Hx ≤ 1, (14)

with H � 0 such that E(H) = {x ∈ Rn | x>Hx ≤ 1} ⊇ [l, u].

4. Theoretical comparison of the two approaches

From standard results in continuous optimization we can
prove the following result, that helps us in interpreting how the
penalty and the projection approaches compare to each other.
For any given H � 0 let

q∗H := min{q(x) | Ax = b; x>Hx ≤ 1}

and

f ∗H(M) := min{q(x) + M‖Ax − b‖2 | x>Hx ≤ 1} .

Theorem 2. Let H � 0 such that

[l, u] ∩ Zn ⊆ {x ∈ Rn | x>Hx ≤ 1}.

Then
q∗H = lim

M→∞
f ∗H(M) .

Proof. Let x∗ be a solution of the problem

min q(x)
s.t. Ax = b

x>Hx ≤ 1.

For k ∈ N, consider the problem

min Fk(x)
s.t. x>Hx ≤ 1 (15)

where
Fk(x) = q(x) + k‖Ax − b‖2.

Since Fk(x) is continuous and {x ∈ Rn | x>Hx ≤ 1} is com-
pact, Problem (15) satisfies the assumptions of the Weierstrass
Theorem for every k.

Let {xk} be the sequence of optimal solutions of problem (15).
We prove that q(x̄) = q(x∗) for every limit point x̄ of {xk}. For
every k, since xk is the optimal solution of Problem (15), we
have

Fk(xk) = q(xk) + k‖Axk − b‖2 ≤ Fk(x∗) = q(x∗). (16)

Since q(xk) is bounded over {x ∈ Rn | x>Hx ≤ 1} we obtain

lim
k→+∞

‖Axk − b‖ = 0 .

Therefore every limit point x̄ of {xk} satisfies Ax̄ = b.
Since the term k‖Axk − b‖2 is nonnegative for every k,

from (16) we get

q(xk) ≤ Fk(xk) ≤ q(x∗). (17)

Taking the limit of (17) we have q(x̄) ≤ q(x∗), but since

x̄ ∈ {x ∈ Rn | Ax = b, x>Hx ≤ 1}

this implies q(x̄) = q(x∗) by the optimality of x∗. 2

Equation (16) in the proof of Theorem 2 states that for M > 0
and H � 0 the lower bound computed by the penalty approach
is less or equal (i.e. not stronger) than the one computed by the
projection approach.

5. Numerical experience

In this section we report computational results on a set of ran-
dom integer quadratic instances with only one linear equality
constraint. We consider an exact method based on the penalty
formulation because, although in principle the bound is not bet-
ter than in the projection approach, the implementation effort is
milder.

4

Given an instance of Problem (1), we first compute a valid
upper bound ub and a valid lower bound lb by solving prob-
lem (13) and problem (14), respectively. We then use M =

ub − lb + 0.01 and consider problem (12). According to the re-
sults in Section 3, solving problem (12) with such a setting for
the penalty parameter M is equivalent to solving our original
instance.

Hence, we can use the branch-and-bound scheme GQIP de-
fined in [2] to solve the box constrained quadratic integer pro-
gramming problem (12). In the following, we compare the per-
formance of GQIP and the MIQP solver of CPLEX 12.6 [5].
In running GQIP we take into account the time needed to
compute M, i.e., the time needed for solving problem (13)
and problem (14). All experiments were carried out on Intel
Xeon processors running at 2.60 GHz. We considered the con-
strained integer quadratic instances in http://cedric.cnam.

fr/~lamberta/Library/eiqp_iiqp.html. These instances
are of dimension n = 20, 30, 40 and have only one constraint
each, consisting in a linear equation with all positive entries.
For each dimension 15 instances are available. As already
pointed out in [2] the performance of GQIP strongly depends on
how large is the integer domain. For this reason we decided to
deal with different domains of variables [0, u], with u = 1, 2, 10.
We also considered three different right hand sides for the lin-
ear constraint a>x = b, for a total of 405 instances. Namely we
chose

b =
u
2

n∑
i=1

ai, b =
u

10

n∑
i=1

ai, b =
u
n

n∑
i=1

ai .

We state average results respectively in Table 1, in Table 2
and in Table 3. The results are grouped by dimension n. In the
columns of the tables we list the number of instances solved to
proven optimality within the limit of 3 hours, out of the 15 in-
stance (Sol), the average over the successfully solved instances
of the time spent to solve the instance to optimality (Time) and
the average number of nodes (] nodes). The running times are
given in CPU-seconds. By taking a look at the tables, we can
notice that the instances seem to be harder the bigger is the right
hand side of the linear constraint.

For the [0, 1] instances, both CPLEX and GQIP are able to
solve all the instances within the time limit and are very fast.
On average, GQIP is faster than CPLEX on all instances but the
ones with biggest right hand side, where CPLEX is slightly faster
than GQIP. For the [0, 2] instances, we see that GQIP and CPLEX

are able to solve 124 and 100 instances out of 135, respectively.
We can notice that GQIP is much faster than CPLEX, especially
for the instances with b = u

2
∑n

i=1 ai and b = u
10

∑n
i=1 ai. For

the [0, 10] instances, we see that GQIP and CPLEX are able to
solve 8 and 128 instances out of 135, respectively. It is evident
that GQIP suffers by the enlargement of the feasible domain.
Indeed, the branch-and-bound framework of GQIP requires to
solve a huge number of subproblems, which depends both on n
and on the number of integer values in [l, u].

We can conclude that the penalty formulation embedded into
a branch-and-bound scheme as the one defined in [2] seems to
be quite promising for solving integer quadratic problems with

[0,1]
n Alg Sol Time] nodes

20 GQIP 15 0.01 3501.40
CPLEX 15 0.51 123.47

30 GQIP 15 0.09 17938.47
CPLEX 15 1.98 314.07

40 GQIP 15 1.15 169471.40
CPLEX 15 7.50 640.20

[0,2]
n Alg Sol Time] nodes

20 GQIP 15 0.05 34303.47
CPLEX 15 131.42 191111.20

30 GQIP 15 3.18 1066773.87
CPLEX 2 5957.31 2847726.00

40 GQIP 11 63.28 10085272.82
CPLEX 1 1554.17 239087.00

[0,10]
n Alg Sol Time] nodes

20 GQIP 1 32.98 18428173.00
CPLEX 15 18.77 9339.00

30 GQIP 0 – –
CPLEX 14 1203.30 130090.64

40 GQIP 0 – –
CPLEX 6 2864.64 151549.00

Table 1: Results for instances with b = u
2
∑n

i=1 ai.

small integer domains {l, . . . , u}. We also notice that the opera-
tions required at each node of the branch-and-bound scheme do
not depend on the number of constraints. Indeed the matrix A
plays a role only for the hessian of the quadratic function, and
the solution of problem (13) and all calculations needed can be
performed in the preprocessing phase.

[1] Billionnet, A., Elloumi, S., Lambert, A., 2014. A branch and bound al-
gorithm for general mixed-integer quadratic programs based on quadratic
convex relaxation. Journal of Combinatorial Optimization 28 (2), 376–
399.

[2] Buchheim, C., De Santis, M., Palagi, L., Piacentini, M., 2013. An exact
algorithm for nonconvex quadratic integer minimization using ellipsoidal
relaxations. SIAM Journal on Optimization 23, 1867–1889.

[3] Buchheim, C., Wiegele, A., 2013. Semidefinite relaxations for non-
convex quadratic mixed-integer programming. Mathematical Program-
ming 141 (1-2), 435–452.

[4] Conn, A. R., Gould, N. I. M., Toint, P. L., 2000. Trust-region methods.
SIAM/MPS Series on Optimization, SIAM.

[5] IBM ILOG CPLEX Optimizer, 2014.
Www.ibm.com/software/commerce/optimization/cplex-optimizer.

[6] Moré, J., 1993. Generalization of the trust region problem. Optimization
Methods and Software 2, 189–209.

[7] Poljak, S., Rendl, F., Wolkowicz, H., 1995. A recipe for semidefinite re-
laxation for (0,1)-quadratic programming. Journal of Global Optimization
7 (1), 51–73.

[8] Pong, T., Wolkowicz, H., 2014. The generalized trust region subproblem.
Computational Optimization and Applications 58 (2), 273–322.

[9] Sherali, H., Dalkiran, E., Liberti, L., 2012. Reduced RLT representations
for nonconvex polynomial programming problems. Journal of Global Op-
timization 52, 447–469.

[10] Sherali, H. D., Adams, W. P., 1999. A reformulation-linearization tech-
nique for solving discrete and continuous nonconvex problems. Vol. 31

5

[0,1]
n Alg Sol Time] nodes
20 GQIP 15 0.01 1364.87

CPLEX 15 0.15 12.80
30 GQIP 15 0.08 12505.00

CPLEX 15 0.70 161.93
40 GQIP 15 0.68 96701.13

CPLEX 15 1.30 209.27
[0,2]

n Alg Sol Time] nodes
20 GQIP 15 0.04 27114.33

CPLEX 15 3.61 4517.67
30 GQIP 15 3.83 1336027.73

CPLEX 15 454.07 561628.53
40 GQIP 9 54.90 9353147.11

CPLEX 7 6363.40 3775002.57
[0,10]

n Alg Sol Time] nodes
20 GQIP 3 49.87 31859582.67

CPLEX 15 1.70 1590.40
30 GQIP 0 – –

CPLEX 15 48.95 18069.73
40 GQIP 0 – –

CPLEX 15 202.32 33115.07

Table 2: Results for instances with b = u
10

∑n
i=1 ai.

[0,1]
n Alg Sol Time] nodes
20 GQIP 15 0.01 882.08

CPLEX 15 0.01 0.00
30 GQIP 15 0.04 4596.07

CPLEX 15 0.02 0.00
40 GQIP 15 0.29 31308.00

CPLEX 15 0.16 6.60
[0,2]

n Alg Sol Time] nodes
20 GQIP 15 0.03 15923.00

CPLEX 15 0.48 328.40
30 GQIP 15 1.09 361899.73

CPLEX 15 5.75 1105.93
40 GQIP 14 31.49 6236915.86

CPLEX 15 38.50 2981.00
[0,10]

n Alg Sol Time] nodes
20 GQIP 4 31.98 18194087.50

CPLEX 15 1.94 2075.73
30 GQIP 0 – –

CPLEX 15 4.28 1868.20
40 GQIP 0 – –

CPLEX 15 6.58 1269.00

Table 3: Results for instances with b = u
n
∑n

i=1 ai.

of Nonconvex Optimization and its Applications. Kluwer Academic Pub-
lishers, Dordrecht.

6

