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Abstract. The target of our study is to approximate numerically and, in some particular

physically relevant cases, also analytically, the residence time of particles undergoing an

asymmetric simple exclusion dynamics on a two–dimensional vertical strip. The sources of

asymmetry are twofold: (i) the choice of boundary conditions (different reservoir levels) and

(ii) the strong anisotropy from a drift nonlinear in density with prescribed directionality. We

focus on the effect of the choice of anisotropy on residence time. We analyze our results by

means of two theoretical models, a Mean Field and a one–dimensional Birth and Death one.

For positive drift we find a striking agreement between Monte Carlo and theoretical results.

In the zero drift case we still find agreement as long as particles can freely escape the strip

through the bottom boundary. Otherwise, the two models give different predictions and their

ability to reproduce numerical results depend on the horizontal displacement probability.
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The topic is relevant for situations occurring in pedestrian flows or biological transport in

crowded environments, where lateral displacements of the particles occur predominantly

affecting therefore in an essentially way the efficiency of the overall transport mechanism.
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1. Introduction

The efficiency of transport of active matter in microscopic systems is an issue of paramount

importance in a number of fields of science including biology, chemistry, and logistics. Look-

ing particularly at drug–delivery design scenarios [23], ion moving in molecular cytosol [2–4],

percolation of aggressive acids through reactive porous media [18], the traffic of pedestrians

in regions with drastically reduced visibility (e.g., in the dark or in the smoke) [11,12,25] (see

also the problem of traffic of cars on single–lane highways [28]), we see that the efficiency of

a medical treatment, the properties of ionic currents thorough cellular membranes, the dura-

bility of a highly permeable material, or the success of the evacuation of a crowd of humans,

strongly depends on the time spent by the individual particle (colloid, ion, acid molecule, or

human being) in the constraining geometry (body, molecule, fabric, or corridor).

In this framework, we focus our attention on the study of the simplest 2D scenario that

mimics alike dynamics. The Gedankenexperiment we make is the following: we imagine a

vertical strip whose top and bottom entrances are in touch with infinite particle reservoirs

at constant densities. Assume particles are driven downwards by the boundary densities

difference and/or an external constant and uniform field (electrical, gravitational, generally–

accepted crowd opinion, ...). Let the residence time be the typical time a particle entering

the strip at stationarity from the top boundary needs to exit through the bottom one. In

this framework, under the assumption that particles in the strip interact only via hard–core

exclusion, we study the ballistic–like versus the diffusion–like dependence of the residence

time on the external driving force (main source of anisotropy in the system), on the length

of the strip, on the horizontal diffusion, and, finally, on the choice of the boundary condition

at the bottom.

We recover the structure of the fluxes as well as the residence times proven mathematically

by Derrida and co–authors in [14] for the asymmetric simple exclusion model on the line; see

also [21] for a more recent approach. In chemistry single file diffusion has been demonstrated
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for zeolite catalysts [22] to dramatically reduce the rate of a reaction. This happens in

particular when zeolitic microporous systems are used with linear micropores with dimensions

that are similar as the size of the molecules that are converted. Since they cannot pass single

file inhibition occurs (see, for instance, [20]).

Additionally, we discover new effects that are purely due to the choice of the 2D geometry

and which are therefore absent in a 1D lattice. The most prominent, within the precision

of our numerical simulations, is the non–monotonic behavior in changes in the horizontal

displacement probability in the bouncing back regime reported in Section 6.3. Under certain

conditions, particles start accumulating near the bottom exit of the strip. This crowding

leads to a bouncing-back effect in which particles trying to escape are reflected in the bulk.

We observe that, in such a case, increasing the frequency of horizontal movements help

particles to overcome obstacles and to find their way to the exit.

To investigate this model, we employ several working techniques including Taylor series

truncations for the derivation of the mean–field equations, ODE analysis of the stationary

case, estimates involving the structure of the stationary measure for birth and death processes

on a line, as well as Monte Carlo simulations to exploit the resources offered by the various

parameter regimes. In 1D, this model has been widely studied both by the mathematical

and physical communities, see e.g. [7, 8, 14, 16, 21, 26]. In 2D, the situation is very much

unexplored especially in the asymmetric case. We deal with this precise problem and we

give a rather complete description of the phenomenon. Our results, which are based on

a thorough study of two simplified models and extensive Monte Carlo simulations, open

new mathematical problems concerning the typical time a particle need to cross a region in

hard–core repulsion regime.

More precisely, in the paper we develop two analytic approaches to predict the mean

residence time: a macroscopic Mean Field theory and a semi–microscopic approach in which

the particle motion is imagined as that of a single particle against a prescribed background

density profile borrowed from the macroscopic Mean Field theory. These two different pre-

dictions are very similar to each other but for the regime described above in which the

non–monotonic effect is found. In this regime the horizontal displacement probability tunes

the system behavior from the macroscopic prediction to the semi–microscopic one, with the

two limits recovered, respectively, in the zero and one horizontal probability displacement

cases.

The importance of the exclusion rule on the time dependence of the typical distance

covered by a particle is not new in the scientific literature. Due to the exclusion rule, the

asymmetric process on a square lattice that we discuss here can be considered to occur on

a percolating lattice. The symmetric exclusion case has been widely explored for diffusion,
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as for instance the “ant in the labirinth” by de Gennes [1]. The distance travelled by the

ant is proportional to the square root of the time (random walk diffusion) as long as the site

occupancy is low, but, when the critical 0.5928 site occupation is approached, this changes

to a time dependence close to cubic root of time. Beyond this critical site occupancy the

order in time rapidly drops. The excluded volume problem in several dimensions has not yet

found however a satisfactory solution [15].

A related but similar phenomenon occurs in the symmetric 1D case. When site occupation

increases the distance time relation becomes the fourth root of time [19]. The asymmetric

problem in 2D, that we are interested in, can be more easily addressed as asymmetric ex-

clusion with driven diffusion, see [24] for a paper and [9] for a complete review. In the 1D

total asymmwtric case (particles can move only from the top to the bottom), using a kine-

matic wave theory related approach and the method of maximum transported current [9],

it is identified a three parameter space region as a function of the rates at which particles

would enter (from the top) or exit (from the bottom) the strip. These regions closely relate

to the particle density where percolation sets in (on a square lattice with stochastic bond

formation the percolation threshold is 0.5). In this paper we will be mainly concerned with

the case where the relative probability for a particle to enter the strip (from the top) is one.

In this case the two situations than can be distinguished are the high density phase (exit

probability smaller than 1/2) and the maximum current phase (exit probability larger than

1/2). Interestingly the difference relates to an occupation density that is larger or less than

the critical point of percolation.

In the lower density phase the average density is 1/2 and current is maximum, at the

density higher than the percolation threshold it decreases with the exit rate. [9]. We derive

an equation for the Mean Field concentration profile which, in our setup, depends only on the

vertical spatial coordinate. The profile depends on the reservoir boundary conditions and on

the vertical drift, namely, the ratio between down and up jump probabilities divided by their

sum, that, we recall, we do not considered necessarily equal to one (as in the total asymmetric

case discussed above). In the large drift case, we recover density profiles consistent with the

phase diagram described above which has been proven to be correct in the total asymmetric

case [14].

In this scenario, as already mentioned above, we setup two different analytic computations

of the residence time: a semi–microscopic approach based on the analogy with a 1D birth

and death model with not homogeneous background and a purely macroscopic Mean Field

approximation. In the last approach the residence time is finally computed in terms of the

stationary current. It is important to stress that, for zero drift, these two different approach

seem to explain the behavior of the model in two different regimes, namely, low and high
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horizontal displacement probability. From our point of view this result is of absolutely high

interest, indeed, the main issue we arise in this paper is that of understanding the influence

of lateral displacements on the typical time needed by a particle to cross a strip. Future

investigation will be needed to understand deviations from the average particle behavior. In

this perspective the residence time seems to be a very useful observable and its distribution

will be the key object of our future study.

The paper is structured in the following fashion: we describe the dynamics of our stochas-

tic lattice model in Section 2. Section 3 is concerned primarily with the derivation of the

mean field equations governing the macroscopic evolution of the density. In the same section

we study the stationary mean field behavior, the thermalization time of the system (i.e. the

time that the system takes to reach the steady state) as well as the numerical testing of

the accuracy of the mean field prediction of the stationary density profile. In Section 4 we

make the direct analogy between our scenario and a biased birth and death model for which

we can calculate explicitly the unique invariant measure and the use this object to obtain

analytical lower and upper bounds on the residence time for three distinct physically relevant

scenarios, viz. (i) a homogeneous case, (ii) a linear case, (iii) a totally asymmetric case. The

core of the paper is Section 5 and Section 6. Herein we use inspiration from the handling

of the biased birth and death model to get approximate analytical bounds on the residence

time for our problem for selected parameter regimes. We also setup a purely Mean Field

macroscopic computation yielding a prediction of the residence time which is fully discussed

in the last two sections.Finally, we explore numerically the residence time for all parameter

regimes and compare the results with the derived analytical bounds.

2. The model

Let L1, L2 be two positive integers. Let Λ ⊂ Z2 denote the strip {1, . . . , L1} × {1, . . . , L2}.
We say that the coordinate directions 1 and 2 of the strip are respectively the horizontal and

the vertical direction. We shall accordingly use the words top, bottom, left, and right. On Λ

we define a discrete time stochastic process controlled by the parameters

%u, %d ∈ [0, 1] and h, u, d ∈ [0, 1] such that h+ u+ d = 1

whose meaning will be explained below.

The configuration of the system at time t ∈ Z+ is given by the positive integer n(t)

denoting the number of particles in the system at time t and by the two collections of

integers x1(1, t), . . . , x1(n(t), t) ∈ {1, . . . , L1} and x2(1, t), . . . , x2(n(t), t) ∈ {1, . . . , L2} de-

noting, respectively, the horizontal and the vertical coordinates of the n(t) particles in the

strip Λ at time t. The i–th particle, with i = 1, . . . , n(t), is then associated with the site
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Figure 1.1: Schematic representation of the model: the lattice on the left and the jumping proba-

bilites on the right.

(x1(i, t), x2(i, t)) ∈ Λ which is called position of the particle at time t. A site associated with

a particle a time t will be said to be occupied at time t, otherwise we shall say that it is free

or empty at time t. We let n(0) = 0.

At each time t ≥ 1 we first set n(t) = n(t−1) and then repeat the following algorithm n(t−
1) times. Essentially, at each step of the dynamics, a number of particles equal to the number

of particles in the system at the end of the preceding time n(t − 1) is tentatively moved.

One of the three actions insert a particle through the top boundary, insert a particle through

the bottom boundary, and move a particle in the bulk is performed with the corresponding

probabilities %uL1/(%uL1 +%dL1 +n(t)), %dL1/(%uL1 +%dL1 +n(t)), and n(t)/(%uL1 +%dL1 +

n(t)).
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Insert a particle through the top boundary. Chose at random with uniform probability the

integer i ∈ {1, . . . , L1} and, if the site (1, i) is empty, with probability d set n(t) = n(t) + 1

and add a particle to site (1, i).

Insert a particle through the bottom boundary. Chose at random with uniform probability

the integer i ∈ {1, . . . , L1} and, if the site (L2, i) is empty, with probability u set n(t) =

n(t) + 1 and add a particle to site (L2, i).

Move a particle in the bulk. Chose at random with uniform probability one of the n(t)

particles in the bulk. The chosen particle is moved according to the following rule: one of the

four neighboring sites of the one occupied by the particle is chosen at random with probability

h/2 (left), u (up), h/2 (right), and d (down). If the chosen site is in the strip (not on the

boundary) and it is free, the particle is moved there leaving empty the site occupied at time

t. If the chosen site is on the boundary of the strip the dynamics is defined as follows: the left

boundary {(0, z2), z2 = 1, . . . , L2} and the right boundary {(L1 + 1, z2), z2 = 1, . . . , L2} are

reflecting (homogeneous Neumann boundary conditions) in the sense that a particle trying

to jump there is not moved. The bottom and the top boundary conditions are stochastic in

the sense that when a particle tries to jump to a site (z1, 0), with z1 = 1, . . . , L1, such a site

has to be considered occupied with probability %u and free with probability 1− %u, whereas

when a particle tries to jump to a site (z1, L2 + 1), with z1 = 1, . . . , L1, such a site has to be

considered occupied with probability %d and free with probability 1− %d. If the arrival site

is considered free the particle trying to jump there is removed by the strip Λ (it is said to

exit the system) and the number of particles is reduced by one, namely, n(t) = n(t) − 1. If

the arrival site is occupied the particle is not moved.

We gave the definition of the model in an algorithmic way, but note that the model

is a Markov chain ω0, ω1, . . . , ωt, . . . on the state or configuration space Ω := {0, 1}Λ with

transition probability that can be deduced by the algorithmic definition.

3. Mean Field estimates

Let the occupation number of the site (z1, z2) ∈ Λ at time t be equal to 1 if such a site is

occupied by a particle at time t and to 0 otherwise. Let, also, mt(z1, z2) be the expectation

of the occupation number at site (z1, z2) ∈ Λ at time t ≥ 0. This quantity is well defined

in a stochastic context. But if one wants a more intuitive idea of what such a quantity is,

one can think of running the dynamics many times independently and then computing equal

time averages with respect to these different realizations of the process. The mean over those

independent realizations of the occupation number at site (z1, z2) at time t will be mt(z1, z2).

Now, we set up a Mean Field computation for such a mean occupation time mt. We shall

follow [27], but it is worth noting that, in 1D and on the infinite volume Z, the equation we
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shall obtain is proven rigorously to be the macroscopic limit of the discrete space random

process [13].

We need to reproduce and slightly generalize the approach in [27] since there a particular

choice for the horizontal probability has been considered, whereas we need a more general

result. Let the drift be

δ =
d− u
d+ u

. (3.1)

This is indeed the physically meaningful definition of drift, since it is the ratio between the

difference of the probabilities to move down and up and the total probability to perform a

vertical displacement. Note that, since d+ u = 1− h, a simple computation yields

d =
1− h

2
(1 + δ) and u =

1− h
2

(1− δ) . (3.2)

First of all, note that in our dynamics the probability that at time t a specific particle is

updated is of order one, since at each time we update at random n(t − 1) particles, where,

we recall, n(t) is the number of particles in the system at time t. Thus, the Mean Field

approximation consists in letting

ε =
1

L2 + 1
and τ = ε2 , (3.3)

considering the macroscopic variables

z′1 = εz1, z′2 = εz2, and t′ = τt = ε2t , (3.4)

and writing, for an arbitrary point in the bulk, the following balance equation:

mt′+τ (z
′
1, z
′
2)−mt′(z

′
1, z
′
2)

= (h/2)mt′(z
′
1 − ε, z′2)[1−mt′(z

′
1, z
′
2)] + dmt′(z

′
1, z
′
2 − ε)[1−mt′(z

′
1, z
′
2)]

+ (h/2)mt′(z
′
1 + ε, z′2)[1−mt′(z

′
1, z
′
2)] + umt′(z

′
1, z
′
2 + ε)[1−mt′(z

′
1, z
′
2)]

− (h/2)mt′(z
′
1, z
′
2)[1−mt′(z

′
1 + ε, z′2)]− dmt′(z

′
1, z
′
2)[1−mt′(z

′
1, z
′
2 + ε)]

− (h/2)mt′(z
′
1, z
′
2)[1−mt′(z

′
1 − ε, z′2)]− umt′(z

′
1, z
′
2)[1−mt′(z

′
1, z
′
2 − ε)]

= (h/2)[mt′(z
′
1 + ε, z′2)− 2mt′(z

′
1, z
′
2) +mt′(z

′
1 − ε, z′2)]

+ ((1− h)/2)[mt′(z
′
1, z
′
2 + ε)− 2mt′(z

′
1, z
′
2) +mt′(z

′
1, z
′
2 − ε)]

− δ((1− h)/2){[1−mt′(z
′
1, z
′
2)][mt′(z

′
1, z
′
2 + ε)−mt′(z

′
1, z
′
2 − ε)]

+mt′(z
′
1, z
′
2)[(1−mt′(z

′
1, z
′
2 + ε))− (1−mt′(z

′
1, z
′
2 − ε))]} .

Now, we multiply and divide suitably the space and time units ε and τ to obtain

[mt′+τ (z
′
1, z
′
2)−mt′(z

′
1, z
′
2)]/τ

= (h/2) [mt′(z
′
1 + ε, z′2)− 2mt′(z

′
1, z
′
2) +mt′(z

′
1 − ε, z′2)]/ε2

+ [(1− h)/2] [mt′(z
′
1, z
′
2 + ε)− 2mt′(z

′
1, z
′
2) +mt′(z

′
1, z
′
2 − ε)]/ε2

− [δ(1− h)/ε] {[1−mt′(z
′
1, z
′
2)][mt′(z

′
1, z
′
2 + ε)−mt′(z

′
1, z
′
2 − ε)]

+mt′(z
′
1, z
′
2)[(1−mt′(z

′
1, z
′
2 + ε))− (1−mt′(z

′
1, z
′
2 − ε))]}/(2ε) .

cms-serw001.tex – 24 agosto 2015 8 9:06



Finally, if we assume that in the limit ε→ 0, namely, L2 →∞, the drift scales to zero as

δ = εδ̄ ,

we find the Mean Field limiting equation

∂mt′

∂t′
=

1

2
h
∂2mt′

∂z′1
2 +

1

2
(1− h)

∂2mt′

∂z′2
2 − δ̄(1− h)

∂

∂z′2
[mt′(1−mt′)] . (3.5)

It is worth noting that the above equation is a diffusion–like equation with a nonlinear

anisotropic flux. From the physical point of view the most interesting remark is that the

diffusion part of the equation is linear. The effect of the drift is captured in nonlinear

transport term. This term vanishes when δ̄ = 0, so that linearity is approximatively restored

at very small δ̄. It is worth noting that, by the choice of scaling, there is no inbuilt bias

towards diffusion- or drift-alone.

To compare the solution of the Mean Field equation to the numerical simulations, we

abuse the notation (recall that t, z1, and z2 denoted above integer numbers) and write

t = t′/τ , z1 = z′1/ε, and z2 = z′2/ε. The above limiting equation then reads

∂mt

∂t
=

1

2
h
∂2mt

∂z2
1

+
1

2
(1− h)

∂2mt

∂z2
2

− δ(1− h)
∂

∂z2

[mt(1−mt)] . (3.6)

Since in the top and bottom boundary densities are constant in space (along the border),

the stationary solutions to (3.6) do not depend on the space variable z1. We call %(z2) a

density profile of the stationary Mean Field equation

d2

dz2
2

%− b d

dz2

%(1− %) = 0 with b =
2δ(1− h)

1− h
= 2δ (3.7)

with the Dirichlet boundary conditions

%(0) = %u and %(L2 + 1) = %d . (3.8)

3.1. Stationary Mean Field behavior

Finding the stationary profile %(z2) means solving the ordinary differential equation (3.7)

with the Dirichlet boundary conditions (3.8). In the case δ = 0 the solution is trivially

linear. We now discuss the case δ > 0. We integrate equation (3.7) once with respect to the

space variable from 0 to z2 to get

%′ = b%(1− %) + c where c = %′(0)− b%u(1− %u) . (3.9)

The structure of the solutions of this equation, namely the phase space trajectories,

can be studied via a simple qualitative analysis (see, for instance, [5, Chapter 1]). Let
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f(%) = b%(1 − %) + c be the right hand side of (3.9). Five different situations have to be

considered: c > 0, c = 0, c < 0 and b/4+c > 0, b/4+c = 0, and b/4+c < 0. In Figure 3.2 the

phase diagram in the extended phase space is shown in the two cases c < 0 and b/4 + c > 0,

b/4 + c < 0.

6
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u

?

6

-
0 z2

u

Figure 3.2: Phase diagram corresponding to (3.7). The case c < 0 and b/4 + c > 0 is depicted on

the left. The case b/4 + c < 0 is depicted on the right.

Now, we find the solution of the stationary equation in the cases of interest. From the

picture it is clear that:

– if 1 ≥ %u > 1/2 > %d ≥ 0 the constant c has to be such that b/4 + c < 0;

– if 1 ≥ %u > %d > 1/2 the constant c has to be such that either b/4 + c < 0 or

0 > c > −b/4.

It is important to remark that in the first case the constant c has to be necessarily larger

that −b/4, while in the second case there are two different possibilities, so that we will have

to decide which is the correct one.

Case 1 ≥ %u > 1/2 > %d ≥ 0. Assume b/4 + c < 0, by performing a standard computation

we find the solution

arctan
%(z2)− 1/2√
−c/b− 1/4

= arctan
%u − 1/2√
−c/b− 1/4

− b
√
−c
b
− 1

4
z2 (3.10)

with the constant c given by

arctan
%u − 1/2√
−c/b− 1/4

− arctan
%d − 1/2√
−c/b− 1/4

= b

√
−c
b
− 1

4
(L2 + 1) . (3.11)

It is not difficult to verify the following facts: as a function of c ∈ [−∞,−b/4] the left hand

side of (3.11) is a monotonic function increasing from 0 to −π. Hence, (3.11) admits a unique

solution in this case.

We can then conclude that in such a case the stationary Mean Field equation has the

unique solution given by (3.10) with the constant c as in (3.11).
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Case 1 ≥ %u > %d > 1/2. In this case, the left hand side of (3.11) tends to zero for c→ −b/4,

so that (3.11) has a solution provided

lim
c→−b/4

arctan
%u − 1/2√
−c/b− 1/4

− arctan
%d − 1/2√
−c/b− 1/4

b

√
−c
b
− 1

4
(L2 + 1)

> 1 .

By computing the limit above, we get the condition

%u − %d

b(L2 + 1)(%u − 1/2)(%d − 1/2)
> 1 . (3.12)

We recall, now, that in this case it is also possible to find a solution of the Mean Field

equation (3.7) with 0 > c > −b/4. By a standard computation we find the solution

%(z2) =
u2 − u1 exp{−bz2(u2 − u1)− log[(%u − u1)/(%u − u2]}

1− exp{−bz2(u2 − u1)− log[(%u − u1)/(%u − u2]}
, (3.13)

where

u1 =
1−

√
1 + 4c/b

2
< u2 =

1 +
√

1 + 4c/b

2
, (3.14)

where the constant c, hidden in the expressions of u1 and u2, can be obtained by requiring

u(L2 + 1) = %d, namely,

%d =
u2 − u1 exp{−b(L2 + 1)(u2 − u1)− log[(%u − u1)/(%u − u2]}

1− exp{−b(L2 + 1)(u2 − u1)− log[(%u − u1)/(%u − u2]}
. (3.15)

By computing the limit, for c → −b/4 of the ratio on the right hand side of (3.15), it

is possible to show that such a limit is either larger or smaller than %d if and only if the

equality (3.12) is satisfied. This occurrence is related to the existence of solutions to (3.15).

Hence, we have that the solution of the stationary Mean Field equation is given by (3.10)

provided (3.12) is satisfied, otherwise it is given by (3.13).

3.2. Numerical verification of the Mean Field prediction

We now test numerically how accurate is the Mean Field prediction of the stationary density

profile. To measure experimentally such a profile we proceed as follows. We chose two

numbers 1 � tterm � tmax that are called, respectively, thermalization and maximal time.

As an estimator for the density %(z2) we use

1

L1

1

tmax − tterm + 1

tmax∑
s=tterm+1

n(s)∑
i=1

I{x2(i,s)=z2} , (3.16)
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Figure 3.3: Density profiles. Comparison with numerical results (dots) and the Mean Field solution

(solid lines). The cases described in Section 3.2 are considered: (i) top left, (ii) top right, (iii)

bottom left, and (iv) bottom right.

where I{condition} is equal to one if the condition is true and to zero otherwise.

The thermalization and maximal time are chosen ad hoc so that the measure is performed

when the system is in the stationary state and so that the measure is sufficiently stable.

We choose the geometrical parameters L1 = 100 and L2 = 200 and the probabilistic one

h = 1/2. Then we vary the remaining ones according to the following four cases:

(i) %u = 1, %d = 0, and δ = 0.008: the mean field solution is given by (3.10) with

c = −0.007887;

(ii) %u = 1, %d = 0, and δ = 0.8: the mean field solution is given by (3.10) with c =

−0.400149;

(iii) %u = 0.8, %d = 0.55, and δ = 0.008: since the first term of inequality (3.12) is equal to

5.18242, the mean field solution is given by (3.10) with c = −0.00478572;

(iv) %u = 0.8, %d = 0.55, and δ = 0.8: since the first term of inequality (3.12) is equal to

0.0518242, the mean field solution is given by (3.13) with c = −0.396.
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Figure 3.4: Numerical estimate of the ingoing (+) and outgoing (×) flux for the four cases described

in Section 3.2: (i) top left, (ii) top right, (iii) bottom left, and (iv) bottom right.

The numerical simulations are performed with tterm = 105 and tmax = 5 × 105 and the

corresponding results are depicted in Figure 3.3. In all the considered cases the match

between the numerical data and the Mean Field prediction is strikingly good.

3.3. Thermalization time

Since the measuring of the density profile has to be performed in the stationary states, the

choice of the thermalization time has to be done with care. One possibility to check if the

system has reached stationarity is to compare the typical number of particles entering the

system through the top boundary to that of the particles exiting from the bottom.

We proceed as following: to account for the number of particle crossing the top and

bottom boundaries, we let I(t) be the difference between the number of particles that entered

at time t through the top boundary and that of the particles that exited through the same

boundary. On the other hand, let O(t) be the difference between the number of particles

that exited at time t through the bottom boundary and that of the particles that entered

through the same boundary. Both I(t) and O(t) are stochastic variables that can be positive

or negative. We can expect that, if a stationary state is observed, in such a state I(t) and
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O(t) will both fluctuate around the same value.

We also define two additional quantities: given the positive integer T , we let the local

ingoing and outgoing fluxes at time t be as

F i
T (t) =

1

T

t∑
s=max{0,t−T}

I(s) and F o
T (t) =

1

T

t∑
s=max{0,t−T}

O(s) , (3.17)

respectively.

In Figure 3.4 we plot the local ingoing and outgoing fluxes measured on the interval

T = 100 for the four cases (i)–(iv) considered above. The data shown in the figures indicate

the choice 105 for the thermalization time.

4. A biased birth and death model

The main physical problem we discuss in this paper is that of the typical time that (at

stationarity) a particle spends in the strip before finding its way to go out. We refer to this

time as the residence time and we will discuss its definition in detail in the next section.

Since from this point of view only vertical displacements are relevant, we can think to

the “vertical” history of the particle as to the evolution of a non–homogeneous birth and

death process for the vertical coordinate with a rule depending on the stationary density

profile. In this section we recall general results on this birth and death model and in the

next section we discuss how to apply such results to our 2D model. We mainly follow [6]

for the general discussion. We derive explicit formulas in two specific simple cases, that will

turn out to be very important from the physical point of view. For the sake of completeness

we outline these computations in Subsections 4.1 and 4.2.

Let L be a positive integer, [[0, L]] := {0, 1, . . . , L}, and consider a random walk on [[0, L]]

with transition probabilities p(x, y) with x, y ∈ [[0, L]]. We denote by Xa(t), with t = 0, 1, . . .

the position of the walker at time t with initial position a. We assume that at each time

the walker either does not move or moves to one of the neighboring sites, i.e., we assume

p(x, y) = 0 for x, y ∈ [[0, L]] such that |x − y| ≥ 2. Moreover, we let px = p(x, x + 1) with

x = 0, . . . , L−1 be the probabilities to go to the right and qx = p(x, x−1) with x = 1, . . . , L

be the probabilities to go to the left. We assume 0 ≤ px−1 ≤ qx < 1 for x = 1, . . . , L,

namely, at each site the walker has the chance to go both to the left and to the right and

the walk is left–biased. Furthermore, we assume that at least one of the “rest probabilities”

p(x, x) = 1− (px + qx) is different from zero so that the chain is aperiodic. We note that the

more general situation in which the bias condition is removed can be treated as well, but for

the sake of clarity, we consider the biased case.
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In the case 0 < px−1 ≤ qx < 1 for x = 1, . . . , L, since the birth and death process is

aperiodic and positive recurrent, it has a unique invariant measure that can be written as

π(x) = π(0)
x∏
i=1

pi−1

qi
for all x = 1, . . . , L , (4.18)

see [6, equation (4.1)]. Note that the proof of the above statement is immediate, since one just

has to verify that the above measure satisfies the detailed balance equation π(x)p(x, x+1) =

π(x+ 1)p(x+ 1, x) for all x = 1, . . . , L− 1.

In [6] the authors study in detail the properties of the first hitting time of the chain to

any point of the lattice [[0, L]] with any initial condition (initial position of the walker). We

are interested only to the hitting time

T := inf{t ≥ 1, XL(t) = 0} , (4.19)

i.e., the random time that the walker started at L needs to reach the origin for the first time.

The expectation of such a hitting time is given by

E[T ] =
L∑
i=1

1

qiπ(i)

L∑
j=i

π(j) =
1

qL
+

L−1∑
i=1

1

qi

(
1 +

L∑
j=i+1

j∏
k=i+1

pk−1

qk

)
, (4.20)

see [6, equation (4.3)].

The first very simple remark is that, since the velocity of the particle is bounded by one,

the mean hitting time to 0 cannot be smaller than L. More precisely, by using (4.20) and

recalling that qx < 1 for x = 1, . . . , L we get the ballistic lower bound

E[T ] ≥ L . (4.21)

A natural question is under which assumptions on the bias there exists a ballistic upper

bound to the first hitting time to zero. We prove this bound in a very simple case, namely,

when we assume that each bond is left–biased. More precisely, we show that if there exists

0 < η < 1 such that px−1/qx ≤ η for x = 1, . . . , L, then

E[T ] ≤ L

q(1− η)
(4.22)

where we have let q = min{q1, . . . , qL}. Indeed, from (4.20) we have that

E[T ] ≤ 1

q
+

L−1∑
i=1

1

q

(
1 +

L∑
j=i+1

j∏
k=i+1

η
)

=
1

q
+

1

q

L−1∑
i=1

L−i∑
k=0

ηk ≤ 1

q
+

1

q

L−1∑
i=1

∞∑
k=0

ηk

where we have omitted few simple steps. The statement (4.22) follows recalling that η < 1.
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Finally, we remark that using equations (4.18) and (4.20) we can compute the expected

value of the first hitting time T . In practice this is explicitly feasible only for some particularly

easy choices of the probabilities px and qx. In the next subsections we discuss two physically

relevant cases.

4.1. Homogeneous case

Let 0 < p ≤ q < 1 be two real numbers and assume px = p and qx = q for all x = 0, . . . , L.

Note that this choice satisfies all the basic assumptions on the birth and death chain.

To compute the expected value of the first hitting time T it is convenient to set λ = p/q,

so that, from (4.18), we have π(x) = π(0)λx. Equation (4.20) yields

E[T ] =
1

q

L∑
i=1

1

λi

L∑
j=i

λj =
1

q

L∑
i=1

L∑
j=i

λj−i =
1

q

L∑
i=1

L−i∑
k=0

λk =
1

q(1− λ)

L∑
i=1

(1− λL−i+1) .

By reordering the sum, we obtain

E[T ] =
1

q(1− λ)

(
L−

L∑
k=1

λk
)

=
1

q(1− λ)

(
L+ 1− 1− λL+1

1− λ

)
=

L

q(1− λ)
− λ(1− λL)

q(1− λ)2
.

Recalling λ = p/q, we finally have the expression

E[T ] =
L

q − p
− p

(q − p)2

[
1−

(p
q

)L]
. (4.23)

A physical comment is useful: if p/q < 1, the behavior of the mean first hitting time on

L is ballistic. On the other hand, we can prove that

lim
p→q

E[T ] =
L(L+ 1)

2q

Hence, in the symmetric limiting case the diffusive dependence of the mean hitting time on

the length L is found. Note that the totally asymmetric limit p → 0 will be considered in

Section 4.3 and the ballistic scaling will be found.

4.2. A linear case

We now consider a case in which the transition probabilities qx and px decrease linearly in

the interval [[0, L]]. The physical interest of the peculiar choice we shall do will be clear in

the next section. Let A > 0 and take

qx = 2A+ A(L− x) and px = A(L− x) . (4.24)
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By using (4.18) for the stationary measure, we find that

π(x) = π(0)
L

L+ 1

L− 1

L

L− 2

L− 1
· · · · · · L− x+ 1

L− x+ 2
= π(0)

L− x+ 1

L+ 1
.

By (4.20), we get

E[T ] =
1

A

L∑
i=1

1

L+ 2− i
1

L+ 1− i

L∑
j=i

(L+ 1− j) .

Since, it holds that
L∑
j=i

(L+ 1− j) =
1

2
(L+ 2− i)(L− i+ 1) ,

we finally get

E[T ] =
L

2A
. (4.25)

It is worth noting that, if A is a constant then the scaling is ballistic. But if A is small with

L, then we can possibly expect to have a diffusive scaling.

4.3. The totally asymmetric case

A situation that will be useful in our discussion and that is not included in the results

discussed above is the case 0 = px−1 < qx < 1 for x = 1, . . . , L, which we refer as the totally

asymmetric case. In such a case, by using the same strategy of proof as in [6], it is easy to

show that

E[T ] =
L∑
i=1

1

qi
. (4.26)

The dependence of the mean hitting time to zero on the length of the system is, in this

case, trivially ballistic. Indeed, from (4.26) we get the bounds

E[T ] ≥ L

q̄
and E[T ] ≤ L

q
, (4.27)

where we have set q = min{q1, . . . , qL} and q̄ = max{q1, . . . , qL}. Note that in the totally

asymmetric homogeneous case, that is to say, 0 < qx = q < 1 for x = 1, . . . , L, we get

E[T ] = L/q.

5. Residence time at stationarity

The main question we pose in this paper is to find estimates for the typical time spent by a

particle in the strip before exiting through the bottom boundary.
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To give a precise definition of such a time for the simple exclusion model on the strip

defined in Section 2 we set %u = 1 so that particles cannot exit the strip through the top

boundary. Once the stationary state is reached, we look at the particles that enter from the

top boundary and exit from the bottom one. We count after how many steps of the dynamics

the particle exits from the bottom boundary and call residence time the average of such a

time over all the particles entered in the system after the stationary state is reached. Note

that, at each step of the dynamics, a number of particles equal to the number of particles in

the system at the end of the preceding time step is tentatively moved.

Despite its evident physical interest, the residence time is quite a difficult object to treat

mathematically. In this section we discuss a microscopic approach in which we follow the

motion of a single particle in a stationary density profile that is treated as a fixed background.

In Section 5.6 we shall treat the problem macroscopically, by using the Mean Field theory.

Recall that, at stationarity, the average density profile is given by a function that we have

denoted by %(z2). Making a thought experiment, imagine that a new particle is injected

into the stationary system through the top boundary. To estimate the typical time this

particle needs to find its way out through the bottom boundary we note that only vertical

displacements are relevant. Moreover, we can think of the “vertical” history of the particle

as to the evolution of the not homogeneous birth and death process defined in Section 4 with

the peculiar choice of the jump probabilities px and qx that will be discussed below. We

let L = L2 and imagine that the value x = 0 of the birth and death process represents the

particle at the row L2 + 1 of the lattice (bottom boundary), the value x = L2 represents the

particle at the row 1 of the lattice (the row close to the top boundary), and the generic value

x represents the particle at the row L2 + 1 − x of the lattice. The only not zero transition

probabilities of the birth and death process are chosen as
qx =

1− h
2

(1 + δ)[1− %(L2 + 1− x+ 1)] for x = 1, . . . , L2

px =
1− h

2
(1− δ)[1− %(L2 + 1− x− 1)] for x = 0, . . . , L2 − 1

. (5.28)

Indeed, recalling the expressions (3.2) for the probabilities u and d, the prefactor (1−h)(1 +

δ)/2 in the expression of qx is nothing but the probability d to move the particle in the real

space downwards; while the second factor is nothing but the probability that, at stationarity,

the site where the particle tries to jump is empty. The expression for px can be justified

similarly. The rest probability 1− (px + qx) is nonzero as the particle can stay at the same

site or perform a unit step in the horizontal direction.

We now propose a conjecture for the residence time of the exclusion model and we will

test it numerically in the next section.
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Analogy The residence time1 of the model introduced in Section 2 is equal to the mean

value of the first hitting time to 0 for the birth and death process started at L2.

The main properties of birth and death processes have been recalled in Section 4. Those

results and the conjecture based on the above analogy suggest that, for δ < 1, the residence

time is given by equation (4.20) where the stationary measure π is given by (4.18) with the

jump probabilities pi and qi defined in (5.28). Since the stationary density profile is given

with great accuracy by the stationary Mean Field equation, we can use these equations

to give an estimate of the residence time of the model. It is worth noting that, since the

expression of the stationary density profile is rather complicated, see (3.10) and (3.13), it

will not be possible to derive in general explicit formulas for the residence time. On the other

hand, since in (4.20) and (4.18) only finite product and sums are involved, we will be able

to compute estimates for the residence time numerically for any values of the parameters of

the model. In the case δ = 1 the expression (4.26) should be used.

Let us now discuss three simple cases in which explicit expressions of the residence time

can be derived explicitly.

5.1. Totally vertically asymmetric model

Recall we assumed %u = 1. Consider, more, the case δ = 1. From the profiles in Figure 3.3

(graphs on the right) it is rather clear that in this situation the density profile is with very

good approximation constant throughout the strip.

Denote by %̄ such a constant value of the density profile. By (5.28), it follows that the

birth and death model has the jump probabilities

qx = (1− h)(1− %̄) x = 1, . . . , L2 and px = 0 x = 0, . . . , L2 − 1

Hence, by the results in Section 4.3, we have that the residence time is given by

R =
L2

(1− h)(1− %̄)
. (5.29)

In particular, the large L2 behavior of the residence time given by (5.29) is ballistic with a

slope depending on the parameters h and %̄.

5.2. Large drift case

1Since in the real model a particle at the fictitious row L2 + 1 cannot jump back to the real row L2, one

should set the probability p(0, 1) = 0. This would be a problem for the birth and death process, where all

the jumping probabilities has to be assumed strictly positive, but for our purpose it is not necessary, since

we are only interested to the first hitting time to 0, so that when the 1D birth and death process reaches

such a state it is stopped. Hence all our results will not depend on the choice of the probability p(0, 1).
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Recall we assumed %u = 1. Consider δ close to one. From the profiles in Figure 3.3 (graphs

on the right) it is rather clear that in this situation the density profile is with very good

approximation equal to a constant, denoted again by %̄. By (5.28) it follows that the birth

and death model has the jump probabilities

qx =
1− h

2
(1 + δ)(1− %̄) x = 1, . . . , L2 and px =

1− h
2

(1− δ)(1− %̄) x = 0, . . . , L2 − 1

Hence, by (4.23), we have that the residence time is given by

R =
L2

(1− h)(1− %̄)δ
− 1− δ

2(1− h)(1− %̄)δ2

[
1−

(1− δ
1 + δ

)L2
]
. (5.30)

The formula (5.30) suggests that in this case the dependence of the residence time on L2 is

ballistic, but this statement needs more care. Indeed, the equation above is based on the

assumption that the density profile is constant with good approximation in this regime and

such an assumption is based on the results obtained via the Mean Field equation. But we

have to recall that the Mean Field equation has been (not rigorously) derived in the large

volume limit with the drift parameter scaling to zero with L2. For this reason it is not

correct, in principle, to fix δ and let L2 →∞ in the above formula.

We remark, that in this case we shall as well be able to deduce the ballistic scaling of the

residence time with L2 in Section 5.4 via a different argument.

5.3. Zero drift

Consider, now, the case δ = 0 (zero drift) again for %u = 1. In the absence of drift the

stationary density profile is linear, hence

%(z2) = 1− 1− %d

L2 + 1
z2 (5.31)

for z2 = 0, . . . , L2 + 1. By (5.28), we get also that

qx =
1− h

2

1− %d

L2 + 1
(L2 + 2− x) and px =

1− h
2

1− %d

L2 + 1
(L2 − x) .

Thus, by using the result (4.25) from Section 4.2, we find the residence time

R =
L2(L2 + 1)

(1− h)(1− %d)
. (5.32)

As expected, the large volume (L2 →∞) behavior of the residence time is quadratic in the

purely diffusive zero drift case.

5.4. Dependence of the residence time on the length of the strip
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In this section we focus on the dependence of the residence time on the length L2 of the

strip. We expect that for δ > 0, since there is a preferred direction in the movement, the

particles will have a not zero average vertical velocity. As a consequence, we expect a ballistic

behavior and a linear dependence of the residence time on L2.

We have already shown in Section 5.1 that this is indeed the case for δ = 1. Assume,

now, that the drift δ is fixed and 0 < δ < 1. From (5.28), we see

px−1

qx
=

1− δ
1 + δ

1− %(L2 + 1− x)

1− %(L2 + 1− x+ 1)

for any x = 1, . . . , L2. Since, %u = 1 > %d ≥ 0 we can reasonably assume that the density

profile is a decreasing function of the vertical spatial coordinate. Thus, %(L2 + 1 − x) >

%(L2 + 1 − x + 1) implies that there exists η < 1 such that px−1/qx ≤ η. This remark and

(4.22) ensure that, for any positive finite δ, the residence time has a ballistic dependence on

the length of the strip.

Finally, for δ = 0 we have shown in Section 5.3, cf. (5.32), that the residence time is

quadratic in L2 (diffusive scaling). We stress that this result is not trivial at all. Indeed,

even in the case δ = 0 the birth and death model that we use to investigate the property of

the residence time is not symmetric. The lack of symmetry is due to

qx − px−1 =
1− h

2

1− %d

L2 + 1

for any x = 1, . . . , L2. The diffusive scaling is a consequence of the fact that this difference

vanishes as 1/(L2 + 1).

5.5. Single file regime

The model we study is two-dimensional. Particles move in a strip from the top boundary

towards the bottom one due to the presence of a drift δ or just because of a vertical biased

diffusion due to the difference between the boundary densities on the top and on the bot-

tom end of the strip. The particles are subjected also to horizontal displacements whose

probability is controlled by the parameter h.

In the particular case h = 0, our model becomes 1D and particles move, each on its

vertical line, as in a single file system. In other words in this case our model reduces to

the 1D simple exclusion model with open boundaries. The specification “open boundaries”

means that the system is finite and at the boundaries there is a rule prescribing the rate at

which particles can either enter or leave the system.

This model has been widely studied, see for instance [14] for the seminal paper where the

model was solved exactly in the totally asymmetric case. See, also, [9] for a general review.
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Our results can be compared easily to those in [14] which refer to the totally asymmetric

case, namely, for our case δ = 1. In [14] one computes the stationary current J , namely,

the net number of particles that for unit of time crosses one bond at stationarity. With our

notation one finds

J =

{
1/4 for %d ≤ 1/2

%d(1− %d) for %d > 1/2
(5.33)

in the case %u = 1 (see [14, equations (58) and (60)]).

Now, since in the totally asymmetric case the stationary density throughout the system

is equal to a constant %̄, we can write J ≈ %̄L2/R. Hence, we have that

R ≈ %̄
L2

J

which reduces to our result (5.29) with h = 0 once we use (5.33) and notice that %̄ = 1/2 for

%d ≤ 1/2 and %̄ = %d for %d > 1/2.

Additionally, we mention here an interesting result which is valid for the symmetric

simple exclusion model in 1D on the whole line (no boundary). In both [19] and [17], the

authors compute the variance of the position of a tagged particle and they prove that it is

proportional to the square root of time, meaning that the typical distance spanned by the

(symmetric) walker is proportional to t1/4. In our problem we do not find any L4
2 scaling for

the residence time even in the single–file regime. Indeed, we think that there is no direct

connection between the two problems. One important point is that the results in [17, 19]

deal with a simple exclusion model without drift (symmetric) and without boundaries. In

our problem, even in the zero drift (δ = 0) case, a net flux is present due to the boundary

conditions.

5.6. Mean Field approximation for the residence time

In this section we approach the residence time computation from a macroscopic point of view.

In the Mean Field approximation the evolution of the systems can be described in terms of

the density profile mt(z1, z2) evolving according to the Partial Differential Equation (3.6).

Such an equation can be tought of as a continuity equation for the current two–dimensional

vector
~Jt = −1

2
h
∂mt

∂z1

~e1 +
(
− 1

2
(1− h)

∂mt

∂z2

+ δ(1− h)mt(1−mt)
)
~e2

where ~e1 and ~e2 are the unitary vectors of the lattice.

At stationarity, the density profile %(z2) does not depend on the horizontal coordinate,

so that the current is parallel to the vertical direction and its intensity is given by

J = −1

2
(1− h)

∂%

∂z2

(z2) + δ(1− h)%(z2)[1− %(z2)] = −1

2
(1− h)%′(0) (5.34)
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where we have used (3.7), (3.9), and the fact that %u = 1. Note that −2J/(1 − h) is the

constant c appearing in equation (3.9).

As we have already done in Section 5.5, we can relate the stationary current to the

residence time. Indeed, in the Mean Field (continuous space and time) model the stationary

velocity of a particle v(z2) is such that %(z2)v(z2) = J . Then, an easy integration gives

R =

∫ L2+1

0

%(z2)

J
dz2 = − 2

(1− h)%′(0)

∫ L2+1

0

%(z2) dz2 (5.35)

In the next section we shall compare this Mean Field prediction of the residence time with

the numerical results.

For finite values of the length, we cannot use the above equation to write an explicit

expression of the residence time in terms of the parameter of the model, indeed %′(0) is

nothing but the constant c in equation (3.9) (recall %u = 1) which is, in turn, the solution of

either the equation (3.11) or (3.15).

On the other hand it is possible to write a nice parametric representation of the residence

time in terms of J . Indeed, by using (3.9) and recalling c = −2J/(1− h) we get

L2 + 1 =

∫ %d

1

d%

2δ%(1− %)− 2J/(1− h)
(5.36)

Moreover, by performing the change of variables z2 → %(z2) in (5.35) and using again (3.9)

we get

R =

∫ L2+1

0

%(z2)

J
dz2 =

1

J

∫ %d

1

%

%′
d% =

1

J

∫ %d

1

%

2δ%(1− %)− 2J/(1− h)
d% (5.37)

Note, finally that (5.36) and (5.37) provide a nice parametric representation of the residence

time R in terms of the parameter J .

We show, now, how we can use the above representation of the residence time to find

explicit formula in some asymptotic cases. For instance in the case δ close to 1, we know that

the density profile is approximatevely equal to a constant %̄. In this case, then, by (5.36)

and (5.37) we get

L2 + 1 =
%d − 1

2δ%̄(1− %̄)− 2J/(1− h)
and R =

1

J

%d − 1

2δ%̄(1− %̄)− 2J/(1− h)
%̄

which implies

R =
1

J
%̄(L2 + 1) ≈ 1

δ(1− %̄)(1− h)
L2 (5.38)

for L2 large. Note that the Mean Field result is close to the first term obtained in (5.30) by

means of the birth and death model.
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On the other hand, in the zero drift δ = 0 case we have that (5.36) and (5.37) reduce to

the equalities

L2 + 1 =
1− h

2J
(1− %d) and R =

1− h
4J2

(1− %2
d)

which imply

R =
1

(1− h)

1 + %d

1− %d

(L2 + 1)2. (5.39)

This formula has to be compared to the prediction (5.32) for the residence time in the zero

drift case obtained in the framework of the birth and death model approximation.

The mean field residence time expression (5.39) can be considered the residence time

according to the birth and death model corrected by a term proportional to %d/(1 − %d).

When %d is zero both expressions are the same. The correction can be understood is due

to the correlated motion in the one dimensional bouncing back case. Using renormalisation

techniques, Fedders [19] found that the diffusion constant has to be corrected by a similar

term in the stationary case. We will see that expression (5.39) only agrees well the Monte

Carlo simulations as long as h = 0.

6. Numerical estimates of the residence time

In this section we test numerically the validity of the analytic computations developed

in Section 5. We choose the parameters of the model as follows: take %u = 1, L1 = 100, and

consider the cases

L2 = 100, 200, δ = 0, 0.2, 0.4, 0.6, 0.8, 1, %d = 0, 0.4, 0.8, h = 0, 0.4, 0.8.
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Figure 6.5: Residence time versus drift in the cases %d = 0 and L2 = 100 (left) and L2 = 200

(right). The symbols •, N, and � refer, respectively, to the cases h = 0, 0.4, 0.8. The inset in the

left picture is just a zoom of part of the data of the same picture. Solid lines are the birth and

death theoretical prediction. Open circles are the Mean Field theoretical prediction (5.35).
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Figure 6.6: Residence time versus the horizontal displacement probability h in the cases %d = 0

and L2 = 100 (left) and L2 = 200 (right). The symbols �, •, and N refer, respectively, to the cases

δ = 0.6, 0.8, 1. Solid lines are the birth and death theoretical prediction. Open squares are the

approximated theoretical prediction (5.30) with %̄ = 1/2, which is valid in the large drift regime.

Open circles are the Mean Field theoretical prediction (5.35).

In all these cases, the residence time has been evaluated by averaging over all the particles

entered in the system through the top boundary after the time tterm, namely, at stationarity,

and exited through the bottom one at a time smaller than tmax. The simulations have been

performed with tterm = 5× 105 and tmax = 5× 106.

To check the dependence of the residence time on the length of the strip we had to consider

a few more cases with larger L2, viz. L2 = 300, 400. In these cases, due to the length of the

strip, we had to use tterm = 106 and increase tmax up to 4×107 in the more delicate situations

(h = 0.8). It is important to note that in the cases L2 = 300, 400 and %d = 0.8, the initial

configuration of the system has been chosen by populating the system by putting particles

with probability 0.95. Indeed, by starting the system with all the sites empty, the dynamics

was trapped in a sort of “meta–stationary” state with density approximatively constant and

slightly larger than 0.8.

In all the pictures the vertical bar representing the statistical error is not visible since it

is smaller than the symbol representing the measured value of the residence time.

We compare the numerical results with the theoretical predictions based both on the

birth and death analogy and on the Mean Field approach. In general the birth and death

theoretical prediction of the residence time is the value given by (4.20) with the stationary

measure π given by (4.18) where the jump probabilities pi and qi are defined in (5.28). Since

we could not derive explicit expressions in terms of the model parameters, the birth and death

theoretical prediction has been computed by performing sums and products numerically. In

the case δ = 1 (see, the discussion in Section 6.2) the birth and death theoretical prediction

is the value given by (4.26) with the qi’s defined in (5.28). In the case δ = 0 (see for instance
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Figure 6.7: Residence time versus length of the strip L2 in the case %d = 0 and h = 0.4. The

symbol � refers to the case δ = 0 (left picture) while the symbols • and N refer, respectively, to

the cases δ = 0.6, 1. Solid lines are the theoretical prediction based on the birth and death model;

in the picture in the left the explicit expression (5.32) is used, Open squares are the approximated

theoretical prediction (5.30) with %̄ = 1/2, which is valid in the large drift regime. Open circles are

the Mean Field theoretical prediction (5.35).

the discussion in Section 6.3) the theoretical prediction is given explicitly by (5.32).

We find that the match between the theoretical predictions based both on the birth and

death analogy and on the Mean Field approach and the numerical data is perfect for any

choice of the parameters of the model provided either %d = 0 or δ = 1 (or both). To illustrate

this fact we first discuss our data at %d = 0 and let h = 0, 0.4, 0.8 and δ = 0, 0.2, 0.4, 0.6, 0.8, 1.

Then, we consider δ = 1 and let h = 0, 0.4, 0.8 and %d = 0, 0.4, 0.8.

Finally, for the region where the match between the theoretical predictions and the

numerical results is not good, we consider the worst case from the point of view of drift,

namely, we choose δ = 0 and let, again, h = 0, 0.4, 0.8 and %d = 0, 0.4, 0.8. We shall notice

that the match between theory and experiment, even if qualitatively correct, it becomes

progressively worse with increasing %d.

6.1. Case %d = 0

We discuss first the case %d = 0 and show that here the theoretical predictions of the residence

time based on both the birth and death analogy and the Mean Field computation discussed

in Section 5 agree perfectly with the numerical results.

In Figure 6.5 it is shown the dependence of the residence time on the drift δ for %d = 0

and for different values of the horizontal displacement probability h. The dependence of the

residence time on the horizontal displacement probability for different values of the drift is

shown in Figure 6.6.

The fact that the residence time decreases with the drift and increases with the horizontal

displacement probability is completely reasonable. The match between the simulation data
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Figure 6.8: Residence time versus the horizontal displacement probability h in the cases δ = 1 and

L2 = 100 (left) and L2 = 200 (right). The symbols •, N, and � refer, respectively, to the cases

%d = 0, 0.4, 0.8. Note that bullets and black triangle are perfectly coinciding, this is due to the fact

that in this regime the residence time does not depend that much on the bottom boundary density,

provided it is smaller that 1/2. In such a case, indeed, the density profile inside the strip is almost

perfectly constant and equal to 1/2. Solid lines are the theoretical prediction based on the birth

and death model. Open squares are the approximated theoretical prediction (5.30) valid in the

large drift regime with %̄ = 1/2 for the cases %d = 0, 0.4 and with %̄ = 8/10 in the case %d = 0.8.

Indeed, in the first two cases the density profile is almost constantly equal to 1/2, while in the last

case it is almost constantly equal to 8/10. Open circles are the Mean Field theoretical prediction

(5.35).

and the theoretical predictions is perfect. It is remarkable the fact that even the approxi-

mated expression (5.30) (which in the case δ = 1 reduces to (5.29)) gives a perfect estimate

of the residence time. This is due to the fact that for the values of the parameter that we

have chosen the stationary density profile throughout the system is constantly equal to 1/2

with very a good approximation.

In Figure 6.7, the residence time in the case %d has been plotted as a function of the

length L2 of the strip for different values of the drift and for h = 0.4. It is remarkable

to note the striking match between theory and simulation. In particular the fact that the

behavior is linear (ballistic) for δ > 0 and quadratic (diffusive) for δ = 0, see the theoretical

discussion in Section 5.4, is confirmed by the numerical experiment.

6.2. Case δ = 1

This is the case of totally asymmetric simple exclusion rule along the vertical direction.

Here, particles can never jump upwards. We show that, for this scenario, the theoretical

predictions of the residence time based on both the birth and death analogy and the Mean

Field computation discussed in Section 5 agree perfectly with the numerical results.

We show three pictures: the dependence of the residence time on the horizontal dis-
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Figure 6.9: Residence time versus the bottom boundary density %d in the cases δ = 1 and L2 = 100

(left) and L2 = 200 (right). The symbols •, N, and � refer, respectively, to the cases h = 0, 0.4, 0.8.

Solid lines are the theoretical prediction based on the birth and death model. Open squares are the

approximated theoretical prediction (5.30) valid in the large drift regime with %̄ = 1/2 for %d ≤ 1/2

and with %̄ = %d for %d > 1/2. Indeed, when %d < 1/2 the density profile is almost constantly equal

to 1/2, while for %d > 1/2 it is almost constantly equal to %d. Open circles are the Mean Field

theoretical prediction (5.35).

placement probability h (Figure 6.8), the dependence on the bottom boundary density %d

(Figure 6.9), and, finally, the dependence on the length of the strip L2 (Figure 6.10).

We do not repeat the discussion in detail. We just mention that the linearity of the

residence time with respect to the length of the strip is confirmed by the experimental data

and refer the reader to the caption of the pictures for more specific comments.

6.3. Case δ = 0

We discuss now the case of a symmetric simple exclusion rule along the vertical direction.

As we already mentioned at the beginning of this section, in this case the match between

the theoretical prediction and the numerical data is only qualitatively good and quantitavely

worst when %d is increased.

We also remark that, fixed %d, the match with the prediction based on the birth and

death analogy is better at larger values of the horizontal displacement probability h. On the

other hand, fixed %d, the match with the Mean Field prediction is better at smaller values

of the horizontal displacement probability h and perfect at h = 0.

The physical interpretation of this fact is that at large %d particles accumulate at the

bottom exit and, due to bouncing back of particles, fluctuations are not more negligible.

For this reason our theoretical predictions, which are based only on the stationary shape

of the density profile, are not anymore always efficient. We shall discuss this point also in

Section 6.4.

We show three pictures: the dependence of the residence time on the horizontal dis-
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Figure 6.10: Residence time versus the vertical length of the strip L2 in the case δ = 1 and h = 0.4.

The symbols •, N, and � refer, respectively, to the cases %d = 0, 0.4, 0.8. Note that bullets and

black triangle are perfectly coinciding, this is due to the fact that in this regime the residence time

does not depend that much on the bottom boundary density, provided it is smaller that 1/2. In

such a case, indeed, the density profile inside the strip is almost perfectly constant and equal to

1/2. Solid lines are the theoretical prediction based on the birth and death model. Open squares

are the approximated theoretical prediction (5.30) valid in the large drift regime with %̄ = 1/2 for

the cases %d = 0, 0.4 and with %̄ = 8/10 in the case %d = 0.8. Indeed, in the first two cases the

density profile is almost constantly equal to 1/2, while in the last case it is almost constantly equal

to 8/10. Open circles are the Mean Field theoretical prediction (5.35).

placement probability h (Figure 6.11), the dependence on the bottom boundary density %d

(Figure 6.12), and, finally, the dependence on the length of the strip L2 (Figure 6.13).

Note that in this section, since δ = 0, the theoretical prediction based on the birth and

death analogy is given by the explicit formula (5.32), whereas the Mean Field prediction is

(5.39).

The relevant comment now, see Figures 6.11, 6.13, and 6.14, is that the match between

the Mean Field prediction and the experiment is perfect at h = 0, whereas it gets worst when

h is increased. On the other hand, the birth and death analogy poorly predicts the residence

time behavior h = 0, whereas it captures the phenomenon better when h is increased. This

phenomenon can be explained via two mechanisms: bouncing back and the possibility to

bypass clusters of blocking particles. The former suggests that fluctuations become important

in this regime so that a model based only on the average stationary density profile cannot

explain the behavior of the system. On the other hand, the latter phenomenon suggests that

the effect of bouncing back is milder when the horizontal displacement probability is larger,

since particles have a good chance to avoid blocking clusters.

It is interesting to remark that the Mean Field expression (5.39) for the case δ = 0, and

L2 large, is given by the expression (5.32) predicted by the birth and death analogy plus a
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Figure 6.11: Residence time versus the horizontal displacement probability h in the cases δ = 0

and L2 = 100 (left) and L2 = 200 (right). The symbols •, N, and � refer, respectively, to the cases

%d = 0, 0.4, 0.8. Solid lines are the theoretical prediction (5.32) from the bottom to the top for the

cases %d = 0, 0.4, 0.8. Dotted lines are the Mean Field prediction (5.39) from the bottom to the

top for the cases %d = 0, 0.4, 0.8. The dotted and the solid lines corresponding to the case %d = 0

cannot be distinguished in the picture. The insets are just a zoom of part of the data of the same

picture.

term that can be ascribed the two point correlations, see [19]. We could then guess that the

correct expression of the residence time could be the birth and death prediction plus the two

point correlation contribution weighted by a function depending on h tending to 1 for h→ 0

and to 0 for h→ 1.

6.4. Non–monotonic behavior in the bouncing back regime

As it has been seen in the previous section the residence time is typically an increasing

function of the horizontal displacement probability. This is an obvious fact. Indeed, when h

is increased particles spend a lot of time in performing horizontal jumps which are a waste

of time in the run towards the bottom exit.

In this section we show that in the regime in which the bouncing back phenomenon

is present a small not zero horizontal probability displacement can favour the exit of the

particles.

We have performed the following simulations: %u = 1 (as always), L1 = 100, L2 = 200,

δ = 0,

%d = 0, 0.05, . . . , 0.5, 0.6, 0.7, 0.8, and h = 0, 0.005, 0.010, . . . , 0.125 .

As before, in all these cases, the residence time has been evaluated by averaging over all the

particles entered in the system through the top boundary after the time tterm, namely, at

stationarity, and exited through the bottom one at a time smaller than tmax. The simulations

have been performed with tterm = 1× 106 and tmax = 1× 107.
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Figure 6.12: Residence time versus the bottom boundary density %d in the cases δ = 0 and L2 = 100

(left) and L2 = 200 (right). The symbols •, N, and � refer, respectively, to the cases h = 0, 0.4, 0.8.

Solid lines are the theoretical prediction (5.32) from the bottom to the top for the cases h =

0, 0.4, 0.8. Dotted lines are the Mean Field prediction (5.39) from the bottom to the top for the

cases h = 0, 0.4, 0.8. The insets are just a zoom of part of the data of the same picture.

In Figure 6.15, the residence time is plotted as function of the horizontal displacement

probability. It is remarkable the presence of a minimum at small values of h. This fact

can be interpreted as follows: in the bouncing back regime, namely, when %d is high and

δ low, a particle can find a blocking cluster of particles in its way out through the bottom

boundary. In such a situation, then, having a larger horizontal displacement probability

can help the particle to bypass the obstacle. Obviously, if h is increased too much this

effect disappears due to the time wasted by the particles in horizontal movements. A similar

non-monotonicity effect has been noticed in [10], for a scenario refereeing to the motion of

self-propelled particles in heterogeneous environments. The role of our parameter h is played

there by a noise indicator.

7. Conclusions

We focused our attention on the study of the simplest 2D model that mimics the flow of

particles in a straight strip under the effect of different driving boundary conditions and

external fields. We studied the residence time, i.e., the typical time a particle entering the

strip at stationarity from the top boundary needs to exit through the bottom one, under

the assumption that particles in the strip interact only via hard–core exclusion and vertical

boundaries are reflecting.

We explored the dependence of the residence time on the external driving force, length

of the strip, horizontal diffusion, and boundary conditions. We have shown that, in almost

all the considered regimes, the mean residence time is equal to the average time needed to

cross the strip by a particle performing a random walk in a background prescribed by the
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stationary density profile of the original model. In this way, in particular, we recover the

structure of the fluxes as well as the residence times proven mathematically in 1D in [14].

A completely macroscopic point of view has also been alternatively adopted, i.e. a Mean

Field computation of the residence time has been performed by connecting such a quantity

to the stationary current in the system. It has been shown that also this point of view

porvides very satisfactory results.

This picture fails to be correct in the case in which there is a particle accumulation close

to the bottom boundary (exit). In this regime, we discover new effects that are consequence

of the two–dimensionality of the system. The most relevant is the non–monotonic behavior

in changes in the horizontal displacement probability in the bouncing back regime.

A second very interesting result is the fact that in this bouncing back regime the Mean

Field approach gives a very good prediction of the residence time in the single file (zero

horizontal displacement probability) case. On the other hand, if the horizontal displacement

probability is large (close to one) the Mean Field prediction is poor and the one based on the

analogy with the birth and death model on the background of the stationary density profile

yield a very good prediction. The comparison between the two theoretical models in the zero

drift case is summarized in figure 7.16 in which the difference (normalized with respect to the

Monte Carlo measure) between the theoretical predictions and the Monte Carlo residence

time measure is plotted as a function of δ and %d in the case L2 = 100 for different values of

the horizontal displacement probability.

This particle accumulation situation can be realized artificially by inserting obstacles in

the strip. We then expect interesting non–linear phenomena to show up. We shall study

this regime in a follow–up paper.
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Figure 6.13: Residence time versus the vertical length of the strip L2 in the case δ = 0 and

h = 0, 0.4, 0.8 from the top to the bottom. The symbols •, N, and � refer, respectively, to the

cases %d = 0, 0.4, 0.8. Solid thin lines are the theoretical prediction (5.32). Dotted lines are the

Mean Field prediction (5.39). The solid thick lines are quadratic fitting of the experimental data:

3.16 × L2
2 in the case h = 0.4 and %d = 0.4 and 10.53 × L2

2 in the case h = 0.4 and %d = 0.8, The

dotted and the solid lines corresponding to the cases %d = 0 cannot be distinguished in the picture.
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Figure 6.14: Residence time versus the horizontal displacement probability in the case L2 = 200,

δ = 0, and and %d = 0.1 (left) and %d = 0.4 (right). Solid thin lines are the theoretical prediction

(5.32). Dotted lines are the Mean Field prediction (5.39).
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Figure 6.15: Residence time versus the horizontal displacement probability h in the case δ =

0 and L2 = 200. From the left to the right and from the top to the bottom the cases %d =

0, 0.05, 0.01, . . . , 0.045, 0.5, 0.6, 0.7, 0.8 are depicted.

cms-serw001.tex – 24 agosto 2015 38 9:06



Figure 7.16: The difference (normalized with respect to the Monte Carlo measure) between the

theoretical predictions (birth and death on the left and mean field on the right) and the Monte

Carlo residence time measure is plotted as a function of δ and %d in the case L2 = 100 and δ = 0

for h = 0, 0.2, 0.4, 0.8 (from the top to the bottom).
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