
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/276164466

On the Discovery of Declarative Control Flows for Artful Processes

Article in ACM Transactions on Management Information Systems · March 2015

DOI: 10.1145/2629447

CITATIONS

72
READS

463

2 authors:

Some of the authors of this publication are also working on these related projects:

Process Mining View project

GAIA - Green Awareness In Action View project

Claudio Di Ciccio

Sapienza University of Rome

117 PUBLICATIONS 1,636 CITATIONS

SEE PROFILE

Massimo Mecella

Sapienza University of Rome

242 PUBLICATIONS 4,535 CITATIONS

SEE PROFILE

All content following this page was uploaded by Claudio Di Ciccio on 27 July 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/276164466_On_the_Discovery_of_Declarative_Control_Flows_for_Artful_Processes?enrichId=rgreq-f27af806dcc4b4d7b732513fc5796dca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjE2NDQ2NjtBUzozODg0ODEyMDIzMTExNjhAMTQ2OTYzMjU0NDkyNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/276164466_On_the_Discovery_of_Declarative_Control_Flows_for_Artful_Processes?enrichId=rgreq-f27af806dcc4b4d7b732513fc5796dca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjE2NDQ2NjtBUzozODg0ODEyMDIzMTExNjhAMTQ2OTYzMjU0NDkyNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Process-Mining-7?enrichId=rgreq-f27af806dcc4b4d7b732513fc5796dca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjE2NDQ2NjtBUzozODg0ODEyMDIzMTExNjhAMTQ2OTYzMjU0NDkyNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/GAIA-Green-Awareness-In-Action-2?enrichId=rgreq-f27af806dcc4b4d7b732513fc5796dca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjE2NDQ2NjtBUzozODg0ODEyMDIzMTExNjhAMTQ2OTYzMjU0NDkyNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f27af806dcc4b4d7b732513fc5796dca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjE2NDQ2NjtBUzozODg0ODEyMDIzMTExNjhAMTQ2OTYzMjU0NDkyNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Claudio-Di-Ciccio?enrichId=rgreq-f27af806dcc4b4d7b732513fc5796dca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjE2NDQ2NjtBUzozODg0ODEyMDIzMTExNjhAMTQ2OTYzMjU0NDkyNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Claudio-Di-Ciccio?enrichId=rgreq-f27af806dcc4b4d7b732513fc5796dca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjE2NDQ2NjtBUzozODg0ODEyMDIzMTExNjhAMTQ2OTYzMjU0NDkyNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sapienza-University-of-Rome?enrichId=rgreq-f27af806dcc4b4d7b732513fc5796dca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjE2NDQ2NjtBUzozODg0ODEyMDIzMTExNjhAMTQ2OTYzMjU0NDkyNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Claudio-Di-Ciccio?enrichId=rgreq-f27af806dcc4b4d7b732513fc5796dca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjE2NDQ2NjtBUzozODg0ODEyMDIzMTExNjhAMTQ2OTYzMjU0NDkyNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Massimo-Mecella-2?enrichId=rgreq-f27af806dcc4b4d7b732513fc5796dca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjE2NDQ2NjtBUzozODg0ODEyMDIzMTExNjhAMTQ2OTYzMjU0NDkyNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Massimo-Mecella-2?enrichId=rgreq-f27af806dcc4b4d7b732513fc5796dca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjE2NDQ2NjtBUzozODg0ODEyMDIzMTExNjhAMTQ2OTYzMjU0NDkyNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sapienza-University-of-Rome?enrichId=rgreq-f27af806dcc4b4d7b732513fc5796dca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjE2NDQ2NjtBUzozODg0ODEyMDIzMTExNjhAMTQ2OTYzMjU0NDkyNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Massimo-Mecella-2?enrichId=rgreq-f27af806dcc4b4d7b732513fc5796dca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjE2NDQ2NjtBUzozODg0ODEyMDIzMTExNjhAMTQ2OTYzMjU0NDkyNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Claudio-Di-Ciccio?enrichId=rgreq-f27af806dcc4b4d7b732513fc5796dca-XXX&enrichSource=Y292ZXJQYWdlOzI3NjE2NDQ2NjtBUzozODg0ODEyMDIzMTExNjhAMTQ2OTYzMjU0NDkyNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A

On the Discovery of Declarative Control Flows for Artful Processes

Claudio DI CICCIO, Wirtschaftsuniversität Wien
Massimo MECELLA, Sapienza Università di Roma

Artful processes are those processes in which the experience, intuition, and knowledge of the actors are the
key factors in determining the decision making. They are typically carried out by the “knowledge workers”,
such as professors, managers, researchers. They are often scarcely formalized or completely unknown a
priori. Throughout this paper, we discuss how we addressed the challenge of discovering declarative control
flows, in the context of artful processes. To this extent, we devised and implemented a two-phase algorithm,
named MINERful. The first phase builds a knowledge base, where statistical information extracted from logs
is represented. During the second phase, queries are evaluated on that knowledge base, in order to infer the
constraints that constitute the discovered process. After an outline of the overall approach and an insight
on the adopted process modeling language, we describe in detail our discovery technique. Thereupon, we
analyze its performances, both from a theoretical and an experimental perspective. A user-driven evaluation
of the quality of results is also reported, on the basis of a real case study. Finally, a study on the fitness of
discovered models with respect to synthetic and real logs is presented.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Data Mining

General Terms: Algorithms, Management

Additional Key Words and Phrases: Process Mining, Declarative Process Model, Control-Flow Discovery,
Artful Processes, MailOfMine

ACM Reference Format:

Claudio Di Ciccio and Massimo Mecella, 2014. On the Discovery of Declarative Control Flows for Artful
Processes. ACM Trans. Manag. Inform. Syst. V, N, Article A (January YYYY), 38 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Knowledge workers [Warren et al. 2009] are those professionals working for the cre-
ation of intangible products, whose value resides in the knowledge they provide, let
be it in favor of their company, university, or the whole society. The processes that
they carry out fall under the category of knowledge-intensive processes (KIPs) [Gronau
and Weber 2004], as their value is meant to be created through the fulfillment of the
knowledge requirements of the process participants. Some characteristics of KIPs are

This work has been partly supported by the Sapienza grants TESTMED, SUPER, Premio “Ricercatori
Under-40” (2012), and the InfoSapienza center. The work of Massimo Mecella has been also partly
supported by the Italian MIUR project RoMA (Smart Cities and Communities SCN 00064) . The work
of Claudio Di Ciccio has been partly performed when a PhD candidate in Sapienza Università di Roma.
With Wirtschaftsuniversität Wien, his research has received funding from the EU Seventh Framework
Programme (FP7) under grant agreement 318275 (GET Service).
Author’s addresses: C. Di Ciccio, Wirtschaftsuniversität Wien, Department of Information Systems and
Operations, Building D2, Welthandelsplatz 1, 1020 Vienna, Austria. E-mail: claudio.di.ciccio@wu.ac.at.
M. Mecella, Sapienza Università di Roma, Dipartimento di Ingegneria Informatica Automatica e Gestionale
“Antonio Ruberti”, via Ariosto 25, 00185 Roma, Italy. E-mail: mecella@diag.uniroma1.it

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c� YYYY ACM 2158-656X/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:2 C. Di Ciccio and M. Mecella

the diversity and uncertainty of process input and output [Davenport et al. 1996] and
the variability of exceptional conditions [Di Ciccio et al. 2014]. Artful processes [Hill
et al. 2006] are a class of knowledge-intensive processes, where the decisions taken
over during the enactment of the process are usually fast and based on the expertise
and intuition of the main actors [Di Ciccio et al. 2012]. Therefore, there is an “art”
in their execution: their name, “artful”, stems from this. A typical example of artful
process is the management of a research project: knowledge workers such as project
managers, professors, technical managers, contribute to the final outcome. To this ex-
tent, they bring into play their competence, together with the best practices gathered
during their respective careers. Due to their nature, artful processes are rarely for-
malized – let alone defined formally [Hill et al. 2006]. Therefore, though frequently
repeated, they are not exactly reproducible, even by their originators – since they are
not written down – and cannot be easily shared either. Furthermore, hardly any pro-
cess management systems are currently used during the execution of such workflows.

Our objective is the automated discovery of artful processes. Understanding artful
processes involving knowledge workers can lead to valuable improvements in many
scenarios. For instance, it can be crucial in enterprise engineering, where it is important
to preserve more than just the actual documents making up the product data: knowing
the “soft knowledge” of the overall process (the so-called product life-cycle) is of critical
relevance for knowledge-heavy industries.

[Di Ciccio and Mecella 2013a] describes MAILOFMINE, namely the approach we de-
vised and the system we designed for discovering such processes out of semi-structured
texts, i.e., email messages. In this paper, we specifically focus on the control-flow dis-
covery algorithm that MAILOFMINE is based on, named MINERful.

Due to their nature, artful processes are highly flexible. Therefore, their representa-
tion by means of graphs depicting all the possible paths leading to the final outcome is
likely to result in vast entangled models: the more alternatives are allowed, the more
graphical objects have to be drawn. Intricated models lead to less comprehensibility
[Mendling et al. 2007b] and more errors [Mendling et al. 2007a]. Therefore, we opted
for the “declarative” workflow modeling [Pesic and van der Aalst 2006], which speci-
fies workflows through a listing of constraints: every execution is assumed to be valid,
as long as it respects such constraints. As stated in [van der Aalst et al. 2009a], this
leads to an effective way of representing flexible workflows, though ensuring a bal-
anced level of support for the process management. Hence, the output of MINERful is
a declarative model of the control flow.

The input for the discovery algorithm is an event log, i.e., a textual representation
of a temporarily ordered linear sequence of tasks. Each recorded event reports the
execution of a task (i.e., a well-defined step in the workflow) in a case (i.e., a workflow
instance).

A very concise description of a preliminary version of the technique was presented
in [Di Ciccio and Mecella 2012b], without the definition of important reliability and
relevance metrics for the discovered constraints. An enhanced version, with perfor-
mance evaluation over synthetic data, has been introduced in [Di Ciccio and Mecella
2013c]. The current paper gives an holistic presentation of the technique in a more
refined version. It extensively analyzes its performances, both from a theoretical and
an experimental perspective, and reports a user-driven evaluation of the quality of the
results, conducted on a real case study.

The characteristics of the approach are: (i) modularity, as it is based on two steps,
where the first step builds a knowledge base for the second, effectively verifying the
constraints as the results of specific queries;(ii) independence from the specific formal-
ism adopted for representing constraints; (iii) probabilistic approach to the inference
of constraints; (iv) capability of eliminating the redundancy of subsumed constraints.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:3

MINERful has been designed in order to be reasonably fast. The main reason for keep-
ing its computation time low mainly resides in its usage inside MAILOFMINE. Since
it runs over logs which are built on top of uncertain information (the semi-structured
text of email messages), the output strongly depends on the reliability of the log. The
log can indeed contain several outliers or misinterpreted information. Thus, if users or
experts considered the resulting process model as poorly compliant to the reality, the
mining phase might need to be repeated over refined logs, so as to improve the overall
quality of the result. A slow algorithm might undermine such an iterative approach,
making it impractical.

The remainder of the paper is organized as follows. Section 2 discusses relevant
work. The declarative process model, which is adopted by our technique, is presented
in Section 3. MINERful is described extensively in Section 4. Section 5 presents the
evaluation of the technique, and finally Section 6 concludes the paper.

2. RELATED WORK
Process Mining, a.k.a. Workflow Mining [van der Aalst 2011], is the set of techniques
that allow the extraction of process descriptions, stemming from a set of recorded real
executions. Such executions are meant to be stored in so called event logs, i.e., textual
representations of a temporarily ordered linear sequence of tasks [van der Aalst 2012].
In event logs, each recorded event reports the execution of a task (i.e., a well-defined
step in the workflow) in a case (i.e., a workflow instance). Events are always recorded
sequentially, even though tasks could be executed in parallel: the algorithm has to infer
the actual structure of the workflow, by identifying the causal dependencies between
tasks (conditions). ProM [van der Aalst et al. 2009b] is one of the most used plug-in
based software environment for implementing workflow mining techniques.

The idea to apply process mining in the context of workflow management systems
was introduced in [Agrawal et al. 1998], where processes were modeled as directed
graphs in which vertexes represented individual activities and edges stood for depen-
dencies between them. Cook and Wolf, at the same time, investigated similar issues in
the context of software engineering processes. In [Cook and Wolf 1998] they described
three methods for process discovery: (i) neural network-based, (ii) purely algorithmic,
(iii) adopting a Markovian approach. The authors consider the last two as the most
promising. The purely algorithmic approach builds a finite state machine where states
are fused if their futures (in terms of possible behaviors for the next k steps) are iden-
tical. The Markovian approach uses a mixture of algorithmic and statistical methods
and is able to deal with noise. However, the results presented in [Cook and Wolf 1998]
are limited to sequential behavior only.

From [Agrawal et al. 1998] onwards, many techniques have been proposed, in or-
der to address specific issues: pure algorithmic (e.g., ↵ algorithm, drawn in [van der
Aalst et al. 2004] and its evolution ↵++ [Wen et al. 2007]), heuristic (e.g., [Weijters and
van der Aalst 2003]), genetic (e.g., [de Medeiros et al. 2007]), etc. Heuristic and genetic
algorithms have been introduced to cope with noise, which the pure algorithmic tech-
niques were not able to manage. Algorithmic techniques rely on footprints of traces
(i.e., tables reporting whether events appeared before or afterwards) to determine the
workflow net that could have generated them. Heuristic approaches build a represen-
tation similar to causal nets. When they construct the process model, they take into
account the frequencies of events and sequences, in order to ignore infrequent paths.
Genetic process mining adopts an evolutionary approach to the discovery. It differs
from the other two in that its computation evolves in a non-deterministic way: the fi-
nal output, indeed, is the result of a simulation of the process of natural selection. The
evolutionary reproduction of the procedures is used to determine the final outcome.
[Buijs et al. 2012] discusses in depth the user-tunable metrics adopted for the genetic

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:4 C. Di Ciccio and M. Mecella

algorithm, in order to make it return qualitatively better workflows in terms of replay
fitness, precision, generalization and simplicity [van der Aalst 2011]. The accurate re-
sults are valuable, though such an algorithm suffers from unpredictability in terms of
the returned process: it can change from run to run, due to the nature of evolutionary
algorithms itself. Another drawback is the time the algorithm takes, which is generally
high.

A very smart extension to the previous research work has been achieved by the two-
steps algorithm proposed in [van der Aalst et al. 2010]. Differently from the former
approaches, which typically provide a single process mining step, it splits the compu-
tation in two phases: (i) the tunable mining of a Transition System (TS) representing
the process behavior and (ii) the automated construction of a Petri Net bisimilar to
the TS [Cortadella et al. 1998; Desel and Reisig 1996]. The first phase is “tunable”,
so that it can be either more strictly adhering (or more permissive) w.r.t. the analyzed
log traces behavior. As a consequence, the user can balance between overfitting and
underfitting. The second phase has no parameter to set, since its only aim is to synthe-
size the TS into an equivalent Workflow Net. Thus, it is fixed, while the former step
could be realized exploiting one among many of the previously proposed “one-step”
algorithms. [Weijters and van der Aalst 2003], e.g., is claimed to integrate well.

The need for flexibility in the definition of some types of process, such as artful
processes, leads to an alternative to the classical “imperative” approach: the “declar-
ative” approach. Rather than using a procedural language for expressing the allowed
sequences of activities (“closed” models), it is based on the description of workflows
through the usage of constraints: the idea is that every task can be performed, except
what does not respect such constraints (“open” models). [van der Aalst et al. 2009a]
showed how the declarative approach (such as the one adopted by Declare [Pesic et al.
2007]) can help in obtaining a fair trade-off between flexibility in managing collabora-
tive processes and support in controlling and assisting the enactment of workflows.

[Maggi et al. 2011] outlines an algorithm for mining Declare processes implemented
in ProM (Declare Miner). The approach works as follows. The user is asked to specify
a set of Declare constraint templates. Then, the system generates all the possible con-
straints stemming from them, i.e., obtained by the instantiation of those templates to
all the activities in the process. The user is required to set an additional parameter
named PoE (Percentage of Events). It is meant to be used as a threshold, in order to
avoid that “rare” events determine the final outcome. Constraints are indeed pruned
out, if the constrained activities appear less than PoE% times in the log. Thereafter,
every candidate constraint is translated into the related accepting finite automata, ac-
cording to the rules defined in [Pesic et al. 2010]. For the optimization of this task,
the tool is integrated with the technique described in [Westergaard 2011]. Traces are
thus replayed on the resulting automata. Each constraint among the candidates be-
comes part of the discovered process if and only if the percentage of traces accepted
by the related automaton exceeds a user-defined threshold, named PoI (Percentage of
Instances).

[Maggi et al. 2012] proposes an evolution of [Maggi et al. 2011], with the adoption of
a two-phase approach. The first phase is based on the Apriori algorithm, developed by
Agrawal and Srikant for mining association rules [Agrawal and Srikant 1994]. During
this preliminary phase, the frequent sets of correlated activities are identified. The
candidate constraints are computed on the basis of the correlated activity sets only.
During the second phase, the candidate constraints are checked as in [Maggi et al.
2011]. Therefore, the search space for the second phase is reduced. In output, con-
straints constituting the discovered process are weighted according to their Support,
i.e., the probability of such constraints to hold in the mined workflow. It is calculated
as the proportion of traces where the constraint is satisfied. To filter out irrelevant

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:5

constraints, more metrics are introduced, based on the appearances of the activities
involved within the log: they are Confidence, Interest Factor and CPIR (Conditional-
Probability Increment Ratio). Since we also adopted such metrics, with slight modi-
fications, they will be described further in the following sections. The recent work of
Westergaard and Stahl [?] presents their “Unconstrained Miner”, a fast tool for mining
declarative constraints. The boost in performance is obtained thanks to the paralleliza-
tion of the computing tasks (having each thread working on different slices of the log),
and the simultaneous verification of multiple constraints (through the usage of com-
pound automata, built to this aim). As such, it serves as a rapid tool for computing the
support of constraints.

[Pichler et al. 2011] presents a first empirical study on the cognitive effort required
for understanding declarative models, in comparison with the imperative ones. Since
the imperative is a well-established approach, known to the vast majority of the Busi-
ness Process Management experts and practitioners, the declarative approach turns
out to be less intuitive to them. Therefore, comprehensibility of models is a key factor
for establishing the new approach. The seminal work on declarative modeling itself
[van der Aalst et al. 2009a] states that declarative workflow specifications may be less
readable if many (interacting) constraints are added. Thus, the minimization of con-
straints returned by declarative process mining techniques has become a main chal-
lenge. [Maggi et al. 2011] first tackles it by removing vacuously satisfied constraints.
Constraints are considered as vacuously satisfied when no trace in the log violates
them, yet no trace shows the effect of their application either. A vacuously satisfied
constraint is, e.g., that every request is eventually acknowledged, in a process instance
that does not contain requests. Vacuity detection techniques were originally proposed
by Vardi et al. [Kupferman and Vardi 2003], in the field of LTL model checking. Maggi
et al. successfully adapted them in the context of process discovery. In addition, [Maggi
et al. 2013] deals with the issue of simplifying the so called Declare “maps”, keeping
only the most significant constraints in the discovered workflows. The idea is indeed
that the discovered Declare maps can often result in cluttered diagrams, due to the
presence of constraints which are proven to hold true in logs, but redundant or unin-
teresting. The proposed technique, implemented as a ProM plug-in and named “De-
clare Maps Miner’, works as follows: after the application of the technique described in
[Maggi et al. 2012], the pruning phase takes place. It is based on three main meth-
ods: (i) the removal of weaker constraints implied by stronger constraints; (ii) the
reparation of predefined basic Declare maps; (iii) an ontology-guided search for con-
straints, linking activities that either belong to different groups of interest, or to the
same group. The last two require the user input, whereas the first does not. Due to the
nature of artful processes, we could rely neither on predefined models nor on activi-
ties’ grouping. For the removal of implied constraints, we made use of a methodology
presented in [Di Ciccio and Mecella 2013c], based on the subsumption hierarchy of
constraints.

[Lamma et al. 2007a; Chesani et al. 2009] describe the usage of inductive logic pro-
gramming techniques to mine models expressed as a SCIFF [Alberti et al. 2008] first-
order logic theory, consisting of a set of implication rules named Social Integrity Con-
straints (IC’s for short). Finally, the learned theory is automatedly translated into the
ConDec [Pesic and van der Aalst 2006] notation. [Chesani et al. 2009] proposes the
implementation of the framework, named DPML (Declarative Process Model Learner
[Lamma et al. 2007b]) as a ProM plug-in. [Bellodi et al. 2010b; 2010a] extend this
technique by weighting in a second phase the constraints with a probabilistic estima-
tion. The learned IC’s are indeed translated from SCIFF, discovered by DPML, into
Markov Logic formulae [Richardson and Domingos 2006]. Their probabilistic-based
weighting is computed by the Alchemy tool [Bellodi et al. 2010a]. Both the techniques

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:6 C. Di Ciccio and M. Mecella

in [Lamma et al. 2007a] and [Bellodi et al. 2010a], rely on the availability of compliant
and non-compliant traces of execution, w.r.t. the process to mine. For instance, a real
log from cervical cancer screening careflows is considered in [Lamma et al. 2007a]. All
the traces have been analyzed by a domain expert and labeled as compliant or non com-
pliant with respect to the protocol adopted in the screening center. [Bellodi et al. 2010b]
takes as a case study the records of the student careers belonging to the same univer-
sity of the authors. In this case, positive traces are represented by graduated students,
whilst negative traces are related to students who did not conclude their studies. For a
comprehensive insight on the logic-based approaches to declarative workflow mining,
the reader can refer to [Montali 2010].

As in the aforementioned logic-based approaches, we preferred to elaborate a tech-
nique which avoided the replay of every trace on automata in the log. Thanks to this,
the time for computing the result diminishes with respect to, e.g., the approach of
[Maggi et al. 2011]. On the other hand, we had to deal with traces which were not
labeled in advance. Therefore, our technique does not require the user’s specification
of positive and negative past executions.

3. SPECIFICATION OF DECLARATIVE WORKFLOWS AS CONSTRAINTS
Our control-flow discovery algorithm represents the mined processes as declarative
models. In particular, we adopt only a subset of Declare constraints, as in [Maggi et al.
2011].

Constraints are temporal rules constraining the execution of activities. E.g.,
Response(⇢,�) is a constraint on the activities ⇢ and �, forcing � to be executed if the
activity ⇢ was completed before. Such rules are meant to adhere to specific constraint
templates. RespondedExistence is the template of RespondedExistence(⇢,�). We further
categorize constraint templates into constraint types. For instance, RespondedExistence
belongs to the RelationConstraint type. MutualRelation and NegativeRelation are sub-
types of RelationConstraint .

In the following, we briefly summarize the Declare constraint templates we use (see
Table I). The reader may find further information in [Maggi et al. 2011; Pesic et al.
2007]. Figure 1 [Di Ciccio and Mecella 2013c] depicts the subsumption hierarchy of
Declare constraints. Such hierarchy will be exploited by the mining algorithm in or-
der to prune out redundant constraints, as explained later in this paper (Section 4.4).
Such subsumption hierarchy of constraint templates builds upon our preliminary work
[Di Ciccio and Mecella 2012a; 2012b; 2013c]. The contemporary works of [Maggi et al.
2013] and [Schunselaar et al. 2012] made analogous observations about the implica-
tions among constraint templates. Their studies lead to conclusions that mainly match
with the considerations drawn here, from different perspectives. [Maggi et al. 2013] in-
cludes the concept of transitivity in the discussion. In other words, Maggi et al. inves-
tigate the case of those constraints that, if applied to pairs of activities {A,B}, {B,C},
constrain {A,C} as well. [Schunselaar et al. 2012] investigates the case of constraint
templates instantiated to sets of activities, rather than single ones. That is to say,
Schunselaar et al. also consider the case of constraints referring to, e.g., {A, {B,C}},
or {{A,B}, {C,D}}. In this paper, we focus on the concept of subsumption, its impact
on reliability metrics and the interaction between templates.

Declare constraints are always referred to an activity at least, which they constrain.
The Existence(M, ⇢) constraint imposes ⇢ to appear at least M times in the trace. We
rename Existence(1, ⇢) as Participation(⇢). The Absence(N, ⇢) constraint holds if ⇢ oc-
curs at most N � 1 times in the trace. We call Absence(2, ⇢) as AtMostOne(⇢). Init(⇢)
makes each trace start with ⇢. End(⇢) makes each trace end with ⇢.

The aforementioned constraints fall under the type of ExistenceConstraints, as each
of them relates to a single activity. The following are named RelationConstraints,

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:7

Constraint Explanation Positive examples Negative examples

Existence constraints

Existence(n, a) Activity a occurs at least n
times in the trace

Participation(a) ⌘ Existence(1, a) a occurs at least once X bcac X bcaac ⇥ bcc ⇥ c

Absence(m + 1, a) a occurs at most m times

AtMostOne(a) ⌘ Absence(2, a) a occurs at most once X bcc X bcac ⇥ bcaac ⇥ bcacaa

Init(a) a is the first to occur X acc X abac ⇥ cc ⇥ bac

End(a) a is the last to occur X bca X baca ⇥ bc ⇥ bac

Relation constraints

RespondedExistence(a, b) If a occurs in the trace,
then b occurs as well

X bcaac X bcc ⇥ caac ⇥ acc

Response(a, b) If a occurs, then b occurs
after a

X caacb X bcc ⇥ caac ⇥ bacc

AlternateResponse(a, b) Each time a occurs, then b
occurs afterwards, before
a recurs

X cacb X abcacb ⇥ caacb ⇥ bacacb

ChainResponse(a, b) Each time a occurs, then b
occurs immediately after-
wards

X cabb X abcab ⇥ cacb ⇥ bca

Precedence(a, b) b occurs only if preceded
by a

X cacbb X acc ⇥ ccbb ⇥ bacc

AlternatePrecedence(a, b) Each time b occurs, it is
preceded by a and no other
b can recur in between

X cacba X abcaacb ⇥ cacbba ⇥ abbabcb

ChainPrecedence(a, b) Each time b occurs, then
a occurs immediately be-
forehand

X abca X abaabc ⇥ bca ⇥ baacb

Mutual relation constraints

CoExistence(a, b) If b occurs, then a occurs,
and viceversa

X cacbb X bcca ⇥ cac ⇥ bcc

Succession(a, b) a occurs if and only if it is
followed by b

X cacbb X accb ⇥ bac ⇥ bcca

AlternateSuccession(a, b) a and b if and only if the
latter follows the former,
and they alternate each
other in the trace

X cacbab X abcabc ⇥ caacbb ⇥ bac

ChainSuccession(a, b) a and b occur if and only if
the latter immediately fol-
lows the former

X cabab X ccc ⇥ cacb ⇥ cbac

Negative relation constraints

NotChainSuccession(a, b) a and b occur if and only if
the latter does not imme-
diately follows the former

X acbacb X bbaa ⇥ abcab ⇥ cabc

NotSuccession(a, b) a can never occur before b X bbcaa X cbbca ⇥ aacbb ⇥ abb

NotCoExistence(a, b) a and b never occur to-
gether

X cccbbb X ccac ⇥ accbb ⇥ bcac

Table I: Declare constraints

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:8 C. Di Ciccio and M. Mecella

since they constrain pairs of activities. RespondedExistence(⇢,�) holds if, whenever
⇢ is executed, � is either already executed or going to be executed – i.e., no mat-
ter if before or afterwards. Response(⇢,�), instead, imposes a temporal ordering,
since it requires that if ⇢ is performed, then � will be executed eventually after-
wards, i.e., before the enacted process ends. On the other hand, Precedence(⇢,�)
states that � cannot be executed if ⇢ was not executed beforehand, at least once.
We remark here that Precedence(⇢,�) does not specialize RespondedExistence(⇢,�),
but RespondedExistence(�, ⇢). This is due to the semantics of the constraints them-
selves. Therefore, Response(⇢,�) is subsumed by RespondedExistence(⇢,�), whilst
Precedence(⇢,�) is subsumed by RespondedExistence(�, ⇢). AlternateResponse(⇢,�) and
AlternatePrecedence(⇢,�) strengthen respectively Response(⇢,�) and Precedence(⇢,�) by
requiring that each ⇢ (�) must be followed (preceded) by at least one occurrence
of � (⇢). The “alternation” is in that the trace cannot have two ⇢s (�s) in a row
before � (after ⇢). ChainResponse(⇢,�) and ChainPrecedence(⇢,�), in turn, specialize
AlternateResponse(⇢,�) and AlternatePrecedence(⇢,�), declaring that only � (resp. ⇢) can
be performed immediately after ⇢ (before �).

The constraints of type MutualRelation are verified if and only if two
RespondedExistence (or descendant) constraints are satisfied, as it follows.
CoExistence(⇢,�) holds if both RespondedExistence(⇢,�) and RespondedExistence(�, ⇢)
are respected. Succession(⇢,�) is valid if Response(⇢,�) and Precedence(⇢,�) are veri-
fied. The same holds with AlternateSuccession(⇢,�), equivalent to the conjunction of
AlternateResponse(⇢,�) and AlternatePrecedence(⇢,�), and ChainSuccession(⇢,�), with
respect to ChainResponse(⇢,�) and ChainPrecedence(⇢,�). The aforementioned relations

MutualRelation constraint forward constraint backward constraint

CoExistence(⇢,�) RespondedExistence(⇢,�) RespondedExistence(�, ⇢)

Succession(⇢,�) Response(⇢,�) Precedence(⇢,�)

AlternateSuccession(⇢,�) AlternateResponse(⇢,�) AlternatePrecedence(⇢,�)

ChainSuccession(⇢,�) ChainResponse(⇢,�) ChainPrecedence(⇢,�)

Table II: Forward and backward relations for MutualRelation constraints

constitute the forward and backward associations in Figure 1. There, they are only
drawn for CoExistence, for the sake of readability. The comprehensive list is reported
in Table II. Finally, we consider NegativeRelation constraints: they are satisfied when
the related MutualRelations (negated , in Figure 1) are not. NotChainSuccession(⇢,�)
expresses the impossibility for � to be executed immediately after ⇢ (the opposite of
ChainSuccession(⇢,�)). NotSuccession(⇢,�) generalizes the previous. It requires that, if
⇢ is performed, no other � can be executed afterwards (Succession(⇢,�), then, is the
negated constraint). NotCoExistence(⇢,�) is even more restrictive: if ⇢ is performed, not
any � can be executed, and vice-versa (the opposite of CoExistence(⇢,�)). The “negated”
relation is depicted in Figure 1 only for the MutualRelation and NegatedRelation types.
It extends to the constraint templates as described in Table III.

Process Description 1 The example process
Response(r, p)

RespondedExistence(c, p)

Succession(p, n)

Participation(n), AtMostOne(n), End(n)

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:9

NegativeRelation constraint negated constraint

NotCoExistence(⇢,�) CoExistence(⇢,�)

NotSuccession(⇢,�) Succession(⇢,�)

NotAlternateSuccession(⇢,�) AlternateSuccession(⇢,�)

NotChainSuccession(⇢,�) ChainSuccession(⇢,�)

Table III: Negated relations for NegativeRelation constraints

Fig. 1: The declarative process model’s hierarchy of constraints. Taking into account
the UML Class Diagram graphical notations, the Generalization (“is-a”) relationships
represent the subsumption between constraint templates. The subsumed is on the tail,
the subsuming on the head. For example, AlternateSuccession is subsumed by Succession
and AlternateSuccession subsumes ChainSuccession. The Realization relationships indi-
cate that the constraint template (as well as the subsumed ones in the hierarchy)
belong to a specific type. Constraint templates are drawn as solid boxes, whereas the
constraint types’ boxes are dashed.

Here we outline a brief example: we want to model the process of defining an agenda
for a research project meeting. The schedule is discussed by email among the partic-
ipants. We suppose that a final agenda will be committed (“confirm” – n) after that
requests for a new proposal (“request” – r), proposals themselves (“propose” – p) and
comments (“comment” – c) have been circulated.

The aforementioned activities are bound to the following constraints (cf. Process De-
scription 1). If a request is sent, then a proposal is expected to be prepared afterwards
(cf. Response(r, p)). Comments can be given in order to review a proposed agenda, or
for soliciting the formulation of a new proposal. Thus, the presence of c in the trace is
constrained to the presence of p (cf. RespondedExistence(c, p)). A confirmation is sup-
posed to be mandatorily given after the proposal. Conversely, any proposal is expected
to precede a confirmation (cf. Succession(p, n)). We suppose the confirmation to be the
final activity (cf. End(n)). This mandatory task (cf. Participation(n)) is not expected to
be executed more than once (cf. AtMostOne(n)).

As an example, the following traces would be compliant: pn, pcn, rpcn, rpcpn, rrpcr-
pcrcpcn, rpprpcccrpcn.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:10 C. Di Ciccio and M. Mecella

4. MINERFUL
MINERful, the control-flow discovery technique that we propose, is based on the con-
cept of MINERfulKB: it keeps specific information extracted from the event log. Such
knowledge base represents statistical data needed to discover the constraints of the
declarative process represented by the log. In fact, MINERfulKB is queried during the
execution of the technique.

Therefore, MINERful is a two-step algorithm. The first step consists of the con-
struction of MINERfulKB (Section 4.3). The second step infers the declarative model
through the analysis of MINERfulKB (Section 4.4). The final output is a set of con-
straints, verified on the knowledge base. In the following, formal definitions are pro-
vided.

4.1. MINERfulKB
Let ⌃ be a finite alphabet: the symbols in the alphabet are meant to correspond to
activities in a process. Therefore, we will interchangeably use terms “activity”, “char-
acter” and “symbol”. A log is a collection of traces, i.e., a finite sequence of activities. We
consider T ⇢ ⌃

⇤ as the log, where ⌃

⇤ is the set of traces of elements in ⌃. We will inter-
changeably use the terms “trace” and “string” for denoting every t 2 T . We introduce
six functions mapping to integers a log T and either one character ⇢ 2 ⌃ or two char-
acters ⇢,� 2 ⌃. Such numbers are interpreted in MINERful as the result of specific
quantitative analyses performed on collections of strings (logs). The six functions are
grouped into MINERful ownplay and MINERful interplay. The former collects infor-
mation referring to single characters. The latter describes the relation between couple
of characters. We will call the possible occurrences of ⇢ and � in the string as either
pivot or searched characters, depending on the role they play in the definition of the
following functions. We will denote by ⇢0 (resp., �0) any occurrence of ⇢ (resp., �) in
a string other than the pivot or searched character. In the examples, we will assign
⌃ = {a, b, c} to the alphabet ⌃. ⇢ will be assigned as a and � as b. The assigned log
T ⇢ {a, b, c}⇤ for T will change, case by case.

Definition 4.1 (MINERful interplay). A tuple I = h⌃, �,�!,� i, where:

�(T, ⇢,�, d). � : ⌃⇤ ⇥⌃⇥⌃⇥ Z! N+ is the distance function. It maps a distance1

d 2 Z between pivot ⇢ 2 ⌃ and searched � 2 ⌃ to the number of cases when they
appeared at distance d, in the traces of log T (e.g., �(T, a, b, 2) = 4 means that we
have the evidence of a searched b appearing 2 characters after the pivot a in 4

cases, given T = {cacbcc, acbcacba, acbaaa}); we recall that N+ is the set of natural
integers excluding zero2;
�!(T, ⇢,�). �! : ⌃

⇤ ⇥ ⌃ ⇥ ⌃ ! N is the in-between onwards appearance func-
tion. Given a pivot ⇢ and the closest following occurrence of searched �, it counts
the number of ⇢0s in-between, for every string of log T in which both ⇢ and � oc-
cur. By closest following occurrence we mean that no other �0 is read after ⇢ and
before �. �!(T, a, b) = 2 means, e.g., that a appeared 2 times between the preced-
ing occurrence of pivot a and the closest following occurrence of searched b, as in
T = {accaacb}, T = {accabcaab}, or T = {accab, caab});
� (T, ⇢,�). � : ⌃

⇤ ⇥ ⌃ ⇥ ⌃ ! N is the in-between onwards appearance func-
tion. Given a pivot � and the closest preceding occurrence of searched ⇢, it counts

1The distance represents the number of characters between ⇢ and �. It is a positive value if � follows ⇢,
negative if � precedes ⇢.
2Thus, we do not consider the concurrency of events in a log, i.e., no pair of characters is read in the same
position.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:11

Function Extended Abbreviated
Distance �(T, ⇢,�, d) �

⇢,�

(d)

In-between onwards appearance �!(T, ⇢,�) �!
⇢,�

In-between backwards appearance � (T, ⇢,�) �
⇢,�

Global appearance �(T, ⇢, n) �
⇢

(n)

Initial appearance ↵(T, ⇢) ↵
⇢

Final appearance !(T, ⇢) !
⇢

Table IV: Abbreviations for the functions of MINERfulKB

the number of �0s in-between, for every string of log T in which both ⇢ and � oc-
cur. By closest preceding occurrence we mean that no other ⇢0 is read before � and
after ⇢. � (T, a, b) = 3 means, e.g., that b appeared 3 times between the follow-
ing occurrence of pivot b and the closest preceding occurrence of searched a, as in
T = {acbcbbcb}, T = {accbbcbcabb}, or T = {accbbcb, cabb}).

Definition 4.2 (MINERful ownplay). A tuple O = h⌃, �,↵,!i, where:

�(T, ⇢, n). � : ⌃

⇤⇥⌃⇥N! N is the global appearance function. It maps the pivot
⇢ and a natural number n 2 N to the number of traces of T in which ⇢ was read
n times (e.g., �(T, a, 4) = 2 means that the pivot a happens to be read exactly four
times in only two strings in the log, as in T = {aabbabcca, babacaa});
↵(T, ⇢). ↵ : ⌃

⇤ ⇥ ⌃ ! N is the initial appearance function. It represents the
number of strings where the pivot ⇢ appeared as the initial symbol (e.g., if ↵(T, a) =
5, five traces started with a, as in T = {abc, abbc, aca, aa, a});
!(T, ⇢). ! : ⌃

⇤⇥⌃! N is the final appearance function. It represents the number
of strings where the pivot ⇢ appeared as the last symbol (e.g., if !(T, a) = 0, no trace
ended with a, as in T = {abc, abbc}).

Definition 4.3 (MINERfulKB). A tuple KB = hI,Oi where I = h⌃, �,�!,� i is the
MINERful interplay, and O = h⌃, �,↵,!i is the MINERful ownplay.

Notational convention. For the sake of readability, we will put input characters as
indexes in the subscript of the function symbols. We will remove the explicit reference
to log T , too. Hence, we will have the abbreviations listed in Table IV.

With a slight abuse of notation, we consider �
⇢,�

(+1), i.e., �(T, ⇢,�,+1), and
�
⇢,�

(�1) , i.e., �(T, ⇢,�,�1), as the number of cases in which the searched �, respec-
tively, did not appear in a string after the pivot ⇢, and did not appear in a string before
⇢. �

⇢,�

(±1), alias �(T, ⇢,�,±1), represents the number of cases in which the searched
� did not appear at all in the strings where ⇢ occurred, i.e., neither before nor after.

For the sake of brevity, here we also define the following function:

�

⇢

=

X

n> 0

�
⇢

(n) · n

It is meant to count the number of appearances of ⇢ in log T .

As an example, let us suppose to interpret MINERfulKB over T = {aabbac} (for
simplicity, a log with a single trace). Then, for what a, b and c are concerned, I is

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:12 C. Di Ciccio and M. Mecella

�1 · · · �5 �4 �3 �2 �1 ±1 +1 +2 +3 +4 +5 · · · +1

�a,b 2 0 0 0 0 1 1 0 1 2 1 0 0 0 1

�a,c 3 0 0 0 0 0 0 0 1 0 0 1 1 0 0

�b,a 0 0 0 0 1 2 1 0 1 1 0 0 0 0 0

�b,c 2 0 0 0 0 0 0 0 0 1 1 0 0 0 0

�c,a 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1

�c,b 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1

(a) The � function

�!a,b = 1; � a,b = 1

�!a,c = 2; � a,c = 0

�!b,a = 1; � b,a = 0

�!b,c = 1; � b,c = 0

�!c,a = 0; � c,a = 0

�!c,b = 0; � c,b = 0

(b) The �! and � functions

Table V: An example of MINERful interplay, interpreted over T = {aabbac}

shown in Table V, and O is as follows:
*

�a(n) =

(

1 n = 3

0 n 2 N \ {3}

)

, ↵a = 1, !a = 0

+

*

�b(n) =

(

1 n = 2

0 n 2 N \ {2}

)

, ↵b = 0, !b = 0

+

*

�c(n) =

(

1 n = 1

0 n 2 N \ {1}

)

, ↵c = 0, !c = 1

+

4.2. The algorithm: a bird’s eye view
Algorithm 1 presents a bird’s eye view of the technique. The algorithm accepts in input
a set of strings T and an alphabet ⌃. It requires that the characters of the strings in
T belong to the alphabet ⌃. The output is a set of discovered constraints, B+. The al-
gorithm computes the values of metrics specifying reliability (Support) and relevance
(Confidence Level and Interest Factor) for each constraint in B+. Optionally, the user
can specify thresholds for those metrics, in order to remove those constraints that
are not associated to a sufficient degree of reliability or relevance. The different steps
of the algorithm will be detailed in the following sections. We will describe how the
MINERfulKB is computed in Section 4.3. Section 4.4 will explain the procedure for
discovering constraints. The construction of the knowledge base is delegated to the

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:13

Algorithm 1 The MINERful pseudo-code algorithm, in its simplest form (bird’s eye
view)

KB COMPUTEKBONWARDS(T,⌃, ;)
KB COMPUTEKBBACKWARDS(T,⌃,KB)
B+ DISCOVERCONSTRAINTS+(KB,⌃, |T |)
return B+

COMPUTEKBONWARDS and COMPUTEKBBACKWARDS procedures. They are designed
to be completely on-line. Indeed, they refine the MINERfulKB as new strings occur
and new characters are read. DISCOVERCONSTRAINTS leverages on the outcome of
COMPUTEKBONWARDS and COMPUTEKBBACKWARDS, in order to return the discov-
ered process.

4.3. Construction of MINERfulKB
The input of this algorithm is an alphabet of activities and a log, which are possible
assignments for (resp.) ⌃ and T , referring back to the definitions of Section 4.1. Here
we call the input log L and the input process alphabet A. For each activity a 2 A,
a unique identifier is considered. For each trace l 2 L, a string of unique activities’
identifiers is taken into account. We recall that ⌃ pertains to the interpretation of
MINERful interplay I and MINERful ownplay O, whereas T is the collection of strings
passed as a parameter to all functions in I and O. Therefore, the algorithm computes
an interpretation function

�L,A·� for MINERfulKB KB over L and A, considering the
activities in A as the characters of ⌃ and the traces of L as the strings of T . At the end
of the run, we have the interpretations for both MINERful interplay and MINERful
ownplay on the basis of L and A, i.e.,

L,AKB =

⌦L,AI, L,AO↵

where
L,AI = hL,A

⌃, L,A�, L,A�!, L,A� i
and

L,AO = hL,A
⌃, L,A�, L,A↵, L,A!i

(see Section 4.1).
The L,A· notation will be omitted in the remainder, in order to ease the reading of

text and formulae. Thus, we will implicitly refer to the interpreted MINERfulKB, when
mentioning KB and all the related functions.

Before starting the description of Algorithm 2, we resume here the adopted nota-
tion. Sets differ from lists in that they cannot have multiple copies of the same value.
Therefore, if, e.g., X = {x, y} then X [{x} = {x, y}, i.e., unions only consider distinct
items (cf. line 13 in Algorithm 2). Lists have an explicit positional indexing over the
inserted values. Hence, �!p

⇢

[j] (see line 27 in Algorithm 2), is pointing at the j-th ele-
ment in the �!p

⇢

list. Strings are considered as lists of characters: thus, t[i] refers to the
i-th character in the string t (see line 12 in Algorithm 2), where i ranges from 1 to |t|.
Lists and strings are provided with a concatenation function �: for instance, the effect
of �!p

�

 �!p
�

� {i} is to add i as the last element in �!p
�

(see line 14 in Algorithm 2). For
pointing at a specific element in a map (indexed multi-set), we specify the “coordinates”
between pairs of brackets, as for a bi-dimensional array: e.g., N[r][s] is the element in N
corresponding to r and s (see line 7 in Algorithm 2). When pointing at the whole sub-
map corresponding to a single character, we insert only the target symbol, as selecting
a row in a bi-dimensional array: e.g., N[r] is the sub-map in N corresponding to r (see
line 41 in Algorithm 2).

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:14 C. Di Ciccio and M. Mecella

Algorithm 2 The COMPUTEKBONWARDS procedure’s pseudo-code
1: procedure COMPUTEKBONWARDS(T,⌃,KB)
2: 8d 2 Z 8⇢ 2 ⌃ 8� 2 ⌃ . �

⇢,�

(d) 0
3: 8n 2 N+ 8⇢ 2 ⌃ . �

⇢

(x) 0
4: for all t ✓ T do

5: ↵

t[1] ↵

t[1] + 1
6: R := ; # R: set of characters already appeared in t

7: 8r, s 2 ⌃ . N[r][s] := 0 # N: bi-indexed map, counting the missing s’s after r

8: 8r 2 ⌃ .

�!p
r

:= {} # �!p
r

: list of indexes where r appears in t

9: 8r, s 2 ⌃ . W[r][s] := 0 # W: counts the r’s repeated before the next s
10: 8r, s 2 ⌃ .

\W[r][s] := ? # bW: flags granting the update of W
11: for i = 1! |t| do

12: � := t[i]
13: R := R [{�}
14: �!p

�

:= �!p
�

� {i}
15: for all ⇢ 2 R do

16: if ⇢ = � then

17: for all s 2 ⌃ \ {⇢} do

18: N[⇢][s] := N[⇢][s] + 1

19: if

\W[⇢][s] = ? then

20: \W[⇢][s] := >
21: else

22: W[⇢][s] := W[⇢][s] + 1
23: end if

24: end for

25: else

26: for j = 1! |�!p
⇢

| do

27: �

⇢,�

(i��!p
⇢

[j]) �

⇢,�

(i��!p
⇢

[j]) + 1
28: end for

29: N[⇢][�] := 0

30: if

\W[⇢][�] = > then

31: �

!
⇢,�

 �

!
⇢,�

+ W[⇢][�]

32: \W[⇢][�] := ?, W[⇢][�] := 0
33: end if

34: end if

35: end for

36: end for

37: for all r 2 R do

38: for all s̄ 2 ⌃ \ R do

39: �

r,s̄

(±1) �

r,s̄

(±1) + |�!p
r

|
40: end for

41: for all s̄ 2 ⌃ \ {r} do

42: �

r,s̄

(+1) �

r,s̄

(+1) + N[r][s̄]
43: end for

44: end for

45: for all s 2 ⌃ do

46: �

s

(|�!p
s

|) �

s

(|�!p
s

|) + 1
47: end for

48: !

t[|t|] !

t[|t|] + 1
49: end for

50: return KB
51: end procedure

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:15

In order to make it easier for the reader to distinguish between assignments of tem-
porary variables and the update of the interpretation for MINERfulKB, we denote the
former with := (see Algorithm 2 from line 6 to line 10), the latter with (see e.g.,
line 5 in Algorithm 2).

From line 2 to line 3, the interpretations of the � and � functions are initialized,
supposing that they are constant and equal to 0. Then, for each string t in T (line 4),
the first character appearing (t[0]) is recorded into the related ↵

t[0] as the first one (line
5). After the initialization of auxiliary data structures (whose role is briefly explained
in-line in the code itself and later in this Section), the analysis of the single characters
in the string begins (line 11).

First of all, the encountered character � is added to the set of appeared characters in
t, namely R. Then, the current index is concatenated (� operation) to the list of positions
where � was read in t (�!p

�

), at line 14. On line 15 the algorithm starts the computation
of interleaving statistics between characters.

Within a cycle over each character already found in the string, ⇢ 2 R, the algorithm
proceeds differently, depending on whether the condition at line 16 is satisfied or not.
Specifically, the statement at line 16 checks whether the currently read character, �,
has already appeared in the string (i.e., � coincides with ⇢). If this is the case, N[⇢][s] is
incremented by 1 (line 18), where s is any character in the alphabet besides ⇢ (s 2 ⌃\⇢).
N[⇢][s] indeed is a temporary structure counting the number of times in which ⇢ is read
but s does not occur any later in the string. Such counter will be reset if s appears
afterwards (see line 29). Otherwise, its value is going to be “flushed” into �

⇢,s

(+1) at
the end of string t (see line 42). We recall that �

⇢,s

(+1) counts the number of times in
which ⇢ is read in the string whilst s does not occur afterwards. A running example of
such operations is shown in Table VI.

From line 19 to line 23, the algorithm updates the counters for repeated occurrences
of ⇢ before the next occurrence of s: \W[⇢][s] is the flag for incrementing the W[⇢][s] counter;
hence, if it is set to false, it gets true, whereas if it is already true, W[⇢][s] is incremented
by 1. This is due to the fact that when the next occurrence of s is found in the string, the
value of W[⇢][s] will be flushed as an increment to �!

⇢,s

(see line 31). Thereafter, \W[⇢][s]
and W[⇢][s] will be reset, respectively, to ? and 0 (line 32). A running example showing
the evolution of bW, W, and �!·,· is shown in Table VII.

At line 27, �
⇢,�

(i � �!p
⇢

[j]) is incremented by 1 for every element in �!p
⇢

. �
⇢,�

(d) counts
how many times � followed ⇢ after d characters along the log. The update instruction is
entered because the condition at line 16 is not satisfied, i.e., the encountered � differs
from ⇢ in the loop over R. Therefore, the value assumed by �

⇢,�

at the current distance
between ⇢ and � has to be incremented by 1. However, we may have not only one
position where ⇢ occurred, but many. E.g., let us consider aaccccacab . . .: there, the pivot
a was read at position 1, 2, 7 and 9, and the searched b at position 10. Thus, b must
be recorded to appear at distance 1, 3, 8 and 9 from a. Recalling that �!p

⇢

collects all the
indexes where ⇢ is read (see line 14), this is what happens at line 27. Such operation
is repeated for each position of ⇢ in �!p

⇢

, i.e., inside the loop starting at line 26. In the
example, i would point at the last character read, b. Therefore, let us assume that i is
equal to 10. �!pa = {1, 2, 7, 9}, index j in loop at line 26 ranges from 1 to 4 and, thus, we
have:

— for j = 1, (i��!pa[j]) is equal to 9,
— for j = 2, (i��!pa[j]) is equal to 7,
— for j = 3, (i��!pa[j]) is equal to 2,
— for j = 4, (i��!pa[j]) is equal to 1.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:16 C. Di Ciccio and M. Mecella

hN, �·,·(+1)i\�2t a a b b a c

hN[a][b], �a,b(+1)i h1,�i h2,�i h0,�i h0,�i h1,�i h1,�i h0,+1i
hN[a][c], �a,c(+1)i h1,�i h2,�i h2,�i h2,�i h3,�i h0,�i h0,+0i

hN[b][a], �b,a(+1)i h0,�i h0,�i h1,�i h2,�i h0,�i h0,�i h0,+0i
hN[b][c], �b,c(+1)i h0,�i h0,�i h1,�i h2,�i h0,�i h0,�i h0,+0i

hN[c][a], �c,a(+1)i h0,�i h0,�i h0,�i h0,�i h0,�i h1,�i h0,+1i
hN[c][b], �c,b(+1)i h0,�i h0,�i h0,�i h0,�i h0,�i h1,�i h0,+1i

Table VI: The evolution of N and �·,·(+1), over the reading of a string t = aabbac

Therefore, the following values have to be incremented by 1: �a,b(9), �a,b(7), �a,b(2) and
�a,b(1). This is probably one of the most difficult steps of the algorithm. However, it
prevents the analysis to be repeated like a transitive closure, on each string for every
appeared character.

The final part of the outermost cycle updates the counters on the basis of the pre-
viously gathered information. The instruction of line 39 records the number of times
in which the read character, r, occurred in the current string t, but s̄ did not. In fact,�!p
r

records the indexes where character r occurred in the string. �
r,s̄

(±1) counts how
many times r is read in the strings where s̄ does not occur. Therefore, it is incremented
by |�!p

r

|. For instance, if the alphabet ⌃ comprises a, b and c, and aababbb is read, we
have that a occurred at positions 1, 2 and 4. Therefore, �!pa = {1, 2, 4} and thus |�!pa | = 3.
Following the same rationale, |�!pb| = 4 and |�!pc | = 0. Since no c was read, ⌃ \ R = {c}.
Therefore, �a,c is incremented by 3 (3 is the value of |�!pa |) and �b,c is incremented by 4

(|�!pb|).
On line 46, �

s

(|�!p
s

|) is updated for each s 2 ⌃. In fact, �
s

(n) counts in how many
strings the character s appeared n times. Therefore, the number of occurrences of s in
t, namely |�!p

s

|, is the argument, and the referred value is incremented by 1. |�!p
s

| can
amount to 0 as well, if s was never read in t. Again, if, e.g., the alphabet ⌃ comprises
a, b and c, and aaabbbb is read, then |�!pa | = 3, |�!pb| = 4 and |�!pc | = 0. Therefore, �a(3) is
incremented by 1, as well as �b(4) and �c(0).

In the end, (line 48), !
t[|t|] is incremented by 1. This is because !· stores the number of

appearances of a given character as the last in the string, and t[|t|] is the last character
appearing in t. For instance, when a string t = aabbac is read, !c increments its value
by 1.

COMPUTEKBBACKWARDS is the analog of COMPUTEKBONWARDS, as both build
the knowledge base. However, the latter reads the strings from left to right,
whereas the former parses the strings from right to left. Therefore, here we
only reported the pseudo-algorithm of COMPUTEKBONWARDS (Algorithm 2), since
COMPUTEKBBACKWARDS differs from it in few details. The only differences are in
that COMPUTEKBBACKWARDS:

— does not update either the �, nor the ↵ nor the ! functions (namely, it does not
contribute to give an interpretation to MINERful ownplay, being this task already
fulfilled by COMPUTEKBONWARDS);

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:17

hhbW, Wi, �!·,·i
\�2t a a b b a c

hh[W[a][b], W[a][b]i, �!a,bi hh>, 0i,�i hh>, 1i,�i hh?, 0i,+1i hh?, 0i,�i hh>, 0i,�i hh>, 0i,�i

hh[W[a][c], W[a][c]i, �!a,ci hh>, 0i,�i hh>, 1i,�i hh>, 1i,�i hh>, 1i,�i hh>, 2i,�i hh?, 0i,+2i

hh[W[b][a], W[b][a]i, �!b,ai hh?, 0i,�i hh?, 0i,�i hh>, 0i,�i hh>, 1i,�i hh?, 0i,+1i hh?, 0i,�i

hh[W[b][c], W[b][c]i, �!b,ci hh?, 0i,�i hh?, 0i,�i hh>, 0i,�i hh>, 1i,�i hh>, 1i,�i hh?, 0i,+1i

hh[W[c][a], W[c][a]i, �!c,ai hh?, 0i,�i hh?, 0i,�i hh?, 0i,�i hh?, 0i,�i hh?, 0i,�i hh>, 0i,�i

hh[W[c][b], W[c][b]i, �!c,bi hh?, 0i,�i hh?, 0i,�i hh?, 0i,�i hh?, 0i,�i hh?, 0i,�i hh>, 0i,�i

Table VII: The evolution of bW, W, and �!·,· over the reading of a string t = aabbac

— does not update �·,·(±1), since COMPUTEKBBACKWARDS already detected charac-
ters never appeared in the string, if any;

— reverses the sign of i, the counter of the current index in the string (namely, it is
initialized with �1 and proceeds being decremented by 1 at each step);

— updates the � function for�1 values, instead of +1, whenever the same conditions
of line 41 in Algorithm 2 are verified;

— updates the �
⇢,�

function at line 31, instead of �!
⇢,�

.

The procedure for building the knowledge base of MINERful (Algorithm 2), is

(1) linear time w.r.t. the number of strings in the log,
(2) quadratic time w.r.t. the size of strings in the log,
(3) quadratic time w.r.t. the size of the alphabet;

therefore, the complexity is O(|T | · |t
max

|2 · |⌃|2). The proof is reported in the on-line
appendix. Intuitively, we recall here that the nature of MINERfulKB itself allows us
to specify an algorithm which is on-line, i.e., it refines MINERfulKB as new strings
occur (1) and new characters in the string are read, with no need to go back on already
processed data in the end. For each symbol picked up from the string, the temporary
data structures related to the occurrences of characters that have already appeared
are updated (2). Finally, every activity is linked to every other activity in the alphabet
3, within the knowledge base.

4.4. Discovery of constraints and their metrics
The set of constraints mined by our technique is listed in Table VIII. In particular, Ta-
ble VIII shows the functions used in order to compute Support, with respect to MINER-
fulKB. Support is the normalized fraction of cases in which the constraint is verified,
over the set of traces in T . Its value ranges from 0 to 1 and estimates the likelihood for
a constraint to hold true in the discovered process. The functions in Table VIII are all
based on mathematical operations performed on data coming from the MINERfulKB.
In addition, they consider the size of T , i.e., how many strings were read. For ease
of readability, we omit the KB and |T | parameters from the list of each function, since
they can be considered as a common shared knowledge. The rationale of such functions
is based on the semantics of constraints and classical probability definitions, as largely
discussed in the on-line appendix.

Support is a metric adopted in [Maggi et al. 2012] as well, but with a slight differ-
ence in the computation. There, it corresponds to the number of traces where the con-
straint is satisfied, w.r.t. the number of traces in the log. Here, instead, we changed the

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:18 C. Di Ciccio and M. Mecella

Constraint Support function

Existence(n, ⇢) 1�
Pn�1

i=0 �⇢(i)
|T |

Participation(⇢) 1� �⇢(0)
|T |

Absence(m, ⇢)
Pm

i=0 �⇢(i)
|T |

AtMostOne(⇢)
�⇢(0)+�⇢(1)

|T |

Init(⇢)
↵⇢

|T |

End(⇢)
!⇢

|T |

RespondedExistence(⇢,�) 1� �⇢,�(±1)
�⇢

Response(⇢,�) 1� �⇢,�(+1)
�⇢

Precedence(⇢,�) 1� �⇢,�(�1)
��

AlternateResponse(⇢,�) 1� �

!
⇢,�+�⇢,�(+1)

�⇢

AlternatePrecedence(⇢,�) 1� �

⇢,�+��,⇢(�1)

��

ChainResponse(⇢,�)
�⇢,�(1)

�⇢

ChainPrecedence(⇢,�)
��,⇢(�1)

��

CoExistence(⇢,�) 1� �⇢,�(±1)+��,⇢(±1)
�⇢+��

NotCoExistence(⇢,�)
�⇢,�(±1)+��,⇢(±1)

�⇢+��

Succession(⇢,�) 1� �⇢,�(+1)+��,⇢(�1)
�⇢+��

NotSuccession(⇢,�)
�⇢,�(+1)+��,⇢(�1)

�⇢+��

AlternateSuccession(⇢,�) 1� �

!
⇢,�+�⇢,�(+1)+�

⇢,�+��,⇢(�1)

�⇢+��

ChainSuccession(⇢,�)
�⇢,�(1)+��,⇢(�1)

�⇢+��

NotChainSuccession(⇢,�) 1� �⇢,�(1)+��,⇢(�1)
�⇢+��

Table VIII: Functions computing constraints’ Support

perspective for Relation Constraints, making Support related to single events rather
than to the entire trace. As a clarifying example, the following trace can be considered:
acbcacbaabac. MINERful would assign a Support equal to 0.80 to Response(a, b), be-
cause four “a” out of five respect the constraint. According to the approach of [Maggi
et al. 2012], Support would be 0 instead.

Taking inspiration from [Maggi et al. 2012], we also associated to Support the Confi-
dence Level (or Confidence for short) and Interest Factor metrics. Both estimate a level
of relevance for a constraint, based on the assumption that the more the constrained
activities appear in the log, the more their constraints should be taken into account.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:19

Roughly speaking, if an activity a appears once in the whole log, made of hundreds of
thousands of events, there is likely to be a glitch in the normal execution. Our adap-
tation of such metrics does not completely match the version of [Maggi et al. 2012],
though. The reader can find the procedure computing Confidence and Interest Factor
in Algorithm 4, discussed later in this Section. The overall DISCOVERCONSTRAINTS+

algorithm is presented in Algorithm 3. It consists of three procedure calls.

Algorithm 3 The pseudo-code of the DISCOVERCONSTRAINTS+ algorithm
Require: ⌧s = 1.0 , ⌧c = 0.0 , ⌧i = 0.0 # Optional user-defined thresholds

1: procedure DISCOVERCONSTRAINTS+(KB,⌃, |T |)
2: B+ CALCMETRICSFORCONSTRAINTS(KB,⌃, |T |)
3: B+ CLEANOUTPUT(B+)
4: B+ FILTEROUTPUTBYTHRESHOLD(B+

, ⌧s , ⌧c , ⌧i)
5: return B+

6: end procedure

Algorithm 4 The pseudo-code of the CALCMETRICSFORCONSTRAINTS procedure
1: procedure CALCMETRICSFORCONSTRAINTS(KB,⌃, |T |)
2: B+ ; # Inizialization of the extended bag of constraints
3: for all ⇢ 2 ⌃ do

4: if �
⇢

> 0 then

5: for all b

x(⇢) v {ExistenceConstraint} do

6: s

x

b

 CALCSUPPORT(bx(⇢))

7: c

x

b

 s

x

b

·
⇣
1� �⇢(0)

|T |

⌘

8: i

x

b

 c

x

b

·
⇣
1� �⇢(0)

|T |

⌘

9: B+ B+ [hbx(⇢), sx
b

, c

x

b

, i

x

b

i
10: end for

11: for all � 2 ⌃ do

12: for all b

y(⇢,�) v {RelationConstraint} do

13: s

y

b

 CALCSUPPORT(by(⇢,�))
14: if ¬(by(⇢,�) v {Precedence,AlternatePrecedence,ChainPrecedence}) then

15: c

y

b

 s

y

b

·
⇣
1� �⇢(0)

|T |

⌘

16: else

17: c

y

b

 s

y

b

·
⇣
1� ��(0)

|T |

⌘

18: end if

19: if ¬(by(⇢,�) v {NotCoExistence}) then

20: i

y

b

⇣
1� �⇢(0)

|T |

⌘
·
⇣
1� ��(0)

|T |

⌘

21: else

22: i

y

b

⇣
1� �⇢(0)

|T |

⌘
·
⇣

��(0)
|T |

⌘

23: end if

24: B+ B+ [hby(⇢,�), sy
b

, c

y

b

, i

y

b

i
25: end for

26: end for

27: end if

28: end for

29: return B+

30: end procedure

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:20 C. Di Ciccio and M. Mecella

The first one, CALCMETRICSFORCONSTRAINTS (Algorithm 4), populates the B+ bag.
B+ is a collection of tuples hb, s

b

, c
b

, i
b

i, each associating to a constraint b the related

(1) Support, s
b

,
(2) Confidence Level, c

b

,
(3) Interest Factor, i

b

.

For each constraint, let it be either (i) bx(⇢) if it belongs to the type of
ExistenceConstraints and constrains ⇢ (line 5), (ii) by(⇢,�) if it belongs to the type of
RelationConstraints and constrains ⇢ and � (line 12). The v operator specifies whether
a given constraint belongs to a type or a template.

The Support value is computed by the CALCSUPPORT procedure (resp., lines 6
and 13). Here we do not report its pseudo-code, because it applies the functions listed
in Table VIII, according to the constraint template that bx(⇢) or by(⇢,�) belong to. In
order to explain how the computations of Confidence Level and Interest Factor work,
we need to introduce two notions:

— activity-related log fraction, namely the fraction of traces in the log where a given
activity appears at least once;

— activity-unrelated log fraction, namely the fraction of traces where a given activity
does not occur.

We consider Confidence Level, c
b

, as the product of the constraint’s Support and
one constrained activity-related log fraction. The activity-related log fraction is cho-
sen on the basis of the constraint type. ExistenceConstraints constrain a single activity
(⇢). Due to this, the second term of the product is the ⇢-related log fraction (line 7).
RelationConstraints constrain two activities. Therefore, the second term of the product
is:

(1) the ⇢-related log fraction (line 15), for all constraints but Precedence or Precedence-
subsumed ones;

(2) the �-related log fraction, otherwise (line 17).

Precedence and Precedence-subsumed constraints have an impact on the structure of
the string when � occurs: if � does not appear, no condition on the string is imposed
(see the definition in Section 3). Therefore, Confidence for Precedence(⇢,�) is computed
on the basis of the �-related log fraction. The same holds for AlternatePrecedence(⇢,�)
and ChainPrecedence(⇢,�). For all the other constraints, the ⇢-related log fraction is
taken into account.

The Interest Factor is computed on the basis of the product of Support and two
activity-related log fractions. Indeed, it as either:

(1) Confidence Level multiplied by the constrained activity-related log fraction, if the
constraint is an ExistenceConstraint , or

(2) the product of the activity-related log fractions, if the constraint is either a
RelationConstraint or a NegativeRelationConstraint , besides NotCoExistence,

(3) the multiplication of activity-related log fraction of one constrained activity and the
activity-unrelated log fraction of the other, if the constraint is a NotCoExistence.

The reasons why the definition of Interest Factor changes according to the type of
the constraint template are that:

(1) ExistenceConstraints affect only one activity.
(2) RelationConstraints and NegativeRelationConstraints tie pairs of activities.
(3) The default formulation of Interest Factor for RelationConstraints does not suit

NegativeRelationConstraints.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:21

For what the last point is concerned, we recall here that NotCoExistence(⇢,�) holds
when the occurrence of ⇢ implies the absence of � in the trace. Therefore, the higher
the number of traces where ⇢ is read, the lower the activity-related log fraction for the
other activity. This is the reason why we consider the activity-related log fraction for ⇢
and the activity-unrelated log fraction for �. The remaining NegativeRelationConstraints
do not impose the absence of � in the trace, but only in the part that follows ⇢
(NotSuccession(⇢,�)), or in the next character (NotChainSuccession(⇢,�)): therefore, the
common computation of the Interest Factor for RelationConstraints can be considered
valid.

Finally, we want to focus on line 4 of Algorithm 4. Given that ex falso quod libet, a
character that was never read might be declared as supporting each constraint. How-
ever, it would be senseless to the mining purpose, as it would add no bit of information
to the gathered knowledge. Because of this, the condition stated in line 4 avoids that
missing activities in the log get involved in any inferred constraint.

In order to filter the irrelevant constraints out of the output, we make use of two
methods, the aim of which is: (i) not to show trivially deducible constraints3; (ii) let
the user decide thresholds of reliability and relevance, i.e., decide what are the least
Support, Confidence and Interest Factor for a constraint to be considered valid and
significant.

The first objective is fulfilled by Algorithm 5, CLEANOUTPUT, which requires no user
intervention. The latter is obtained by Algorithm 6, FILTEROUTPUTBYTHRESHOLD,
which expects a triple of parameters, (optionally) provided by the user (see line 0 in
Algorithm 3):

(1) ⌧s , the Support threshold;
(2) ⌧c , the Confidence threshold;
(3) ⌧i , the Interest Factor threshold.

In Algorithm 5, the block between lines 4 and 17 involves every RelationConstraint
(see the hierarchy in Figure 1). When a constraints b has a subsuming constraint p and
its support (s

b

) is less than p’s one (s
p

> s
b

), it is removed. Otherwise, p and all its sub-
suming constraints (the “ancestors”) are removed. By definition (see Table VIII), the
Support of a subsumed constraint is in fact less than or equal to the subsuming’s one.
Therefore, the block from line 6 to line 9 raises along the hierarchy of Figure 1, from
the current constraint to the subsuming one. Due to the monotonic increase of Support
along the hierarchy, the loop from line 7 to line 9 stops when either (i) a subsuming
constraint has a Support which is greater than the constraint under analysis, or (ii) no
more “ancestors” along the hierarchy exist (i.e., the whole hierarchy share the same
Support). In the first case, the current constraint is removed from bag B+. In the sec-
ond case, its “parent” is deleted. Applying this selection to all constraints ensures that
only one constraint along the hierarchy is kept in bag B+. Owing to this, the number
of returned constraints is dramatically reduced.

MutualRelation constraints are based on the conjunction of two RelationConstraints
(see Section 3). They are managed within the block from line 18 to line 25: see Ta-
ble II to see how they are connected. If a MutualRelation constraint is known to
have a Support which is not lower than both of the involved RelationConstraints, the
RelationConstraints can be removed. Otherwise, no action is taken. From line 26 to
line 33, a selection between each NegativeRelation constraint and its negated is made:
the constraint having the least Support is removed.

3e.g., it is enough to say that ChainPrecedence(a, b) holds, rather than explicitly return as valid constraints
ChainPrecedence(a, b), AlternatePrecedence(a, b) and Precedence(a, b). In fact, the last two constraints are
directly implied by the first: see Figure 1.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:22 C. Di Ciccio and M. Mecella

Algorithm 5 The pseudo-code of the CLEANOUTPUT procedure
1: procedure CLEANOUTPUT(B+)
2: B+ := clone B+

3: for all hb, s
b

, c

b

, i

b

i 2 B+
do

4: if b v RelationConstraint then

5: if hasParent(B+
, b) then

6: p := b

7: repeat

8: hp, s
p

, c

p

, i

p

i := getParent(B+
, p)

9: until (s
p

= s

b

) ^ hasParent(B+
, p)

10: if s

p

> s

b

then

11: B+ B+ \ {hb, s
b

, c

b

, i

b

i}
12: else

13: hp, s
p

, c

p

, i

p

i := getParent(B+
, b)

14: B+ B+ \ {hp, s
p

, c

p

, i

p

i}
15: end if

16: end if

17: end if

18: if b v MutualRelation then

19: hf, s
f

, c

f

, i

f

i := getForward(B+
, b)

20: hr, s
r

, c

r

, i

r

i := getBackward(B+
, b)

21: if ¬(s
f

> s

b

_ s

r

> s

b

) then

22: B+ B+ \ {hf, s
f

, c

f

, i

f

i}
23: B+ B+ \ {hr, s

r

, c

r

, i

r

i}
24: end if

25: end if

26: if b v NegativeRelation then

27: hn, s
n

i := getNegated(B+
, b)

28: if s

n

6 s

b

then

29: B+ B+ \ {hn, s
n

, c

n

, i

n

i}
30: else

31: B+ B+ \ {hb, s
b

, c

b

, i

b

i}
32: end if

33: end if

34: end for

35: return B+

36: end procedure

The hasParent , getParent , getForward , getBackward and getNegated functions explore
the subsumptions and the associations between constraints as described in Section 3.
They all require as input (i) the B+ bag, and (ii) a constraint b. Their behavior is as
follows.

— hasParent and getParent traverse the subsumption hierarchy (see Figure 1): the first
returns the subsuming constraint, the second returns the subsumed constraint;

— getForward and getBackward return the tuples in B+ that are implied by the given
MutualRelation constraint (see Table II): with ChainSuccession(⇢,�), e.g., getForward
returns ChainResponse(⇢,�), whereas getBackward returns ChainPrecedence(⇢,�);

— getNegated returns the MutualRelation tuple (like CoExistence) that is negated by
the given NegativeRelation constraint (like NotCoExistence) (see Table III).

These functions do not depend on the interpretation of the MINERful interplay and
the MINERful ownplay, but only on the semantics of constraints. The behavior of

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:23

Constraint Symbol h
a
sP

a
re
n
t

ge
tP

a
re
n
t

ge
tN

eg
a
te
d

ge
tF
o
rw

a
rd

ge
tB

a
ck
w
a
rd

RespondedExistence(⇢,�) >
⇢,�

false - - - -
Response(⇢,�) >!

⇢,�

true >
⇢,�

- - -
AlternateResponse(⇢,�) >)

⇢,�

true >!
⇢,�

- - -
ChainResponse(⇢,�) >V

⇢,�

true >)
⇢,�

- - -
Precedence(⇢,�) >

⇢,�

true >
�,⇢

- - -
AlternatePrecedence(⇢,�) >(

⇢,�

true >
⇢,�

- - -
ChainPrecedence(⇢,�) >W

⇢,�

true >(
⇢,�

- - -
CoExistence(⇢,�) >⇢

�

false - - >
⇢,�

>
�,⇢

Succession(⇢,�) >$
⇢,�

true >⇢

�

- >!
⇢,�

>
�,⇢

AlternateSuccession(⇢,�) >,
⇢,�

true >$
⇢,�

- >)
⇢,�

>(
�,⇢

ChainSuccession(⇢,�) >WV
⇢,�

true >,
⇢,�

- >V
⇢,�

>W
�,⇢

NotChainSuccession(⇢,�) >WV/
⇢,�

false - >WV
⇢,�

- -
NotSuccession(⇢,�) >=

⇢,�

true >WV/
⇢,�

>$
⇢,�

- -
NotCoExistence(⇢,�) ?⇢

�

true >=
⇢,�

>⇢

�

- -

Table IX: The functions navigating the constraints’ hierarchy of subsumptions

hasParent , getParent , getForward , getBackward and getNegated functions is detailed in
Table IX.

Algorithm 6 The pseudo-code of the FILTEROUTPUTBYTHRESHOLD procedure
1: procedure FILTEROUTPUTBYTHRESHOLD(B+

, ⌧s , ⌧c , ⌧i)
2: for all hb, s

b

, c

b

, i

b

i 2 B+
do

3: if s

b

< ⌧s _ s

c

< ⌧c _ s

i

< ⌧i then

4: B+ B+ \ {hb, s
b

, c

b

, i

b

i}
5: end if

6: end for

7: return B+

8: end procedure

The FILTEROUTPUTBYTHRESHOLD procedure (Algorithm 6) finally filters out those
constraints whose Support, Confidence and Interest Factor are below the user-defined
thresholds (resp., ⌧s , ⌧c , ⌧i).

The procedure for discovering the processes’ constraints out of MINERful knowledge
base, along with their Support, Confidence Level and Interest Factor is (i) quadratic
in time w.r.t. the size of the alphabet, (ii) linear in time w.r.t the number of constraint

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:24 C. Di Ciccio and M. Mecella

templates, which is fixed and equal to 18 (thus, constant); therefore, the complexity is
O(|⌃|2). The formal proof is presented in the on-line appendix.

Finally, we note that the complexity of the MINERful algorithm is O(|T | · |t
max

|2 ·
|⌃

T

|2), being the algorithm (i) linear time w.r.t. the number of strings in log,
(ii) quadratic time w.r.t. the size of strings in the log, (iii) quadratic time w.r.t. the
size of the alphabet. The formal proof is provided in the on-line appendix.

5. EXPERIMENTS AND EVALUATION
In order to evaluate MINERful, we considered (i) its efficiency, in terms of computation
time, and (ii) its efficacy, in terms of conformance of the discovered processes to reality.

We first produced synthetic logs, stemming from predefined workflow models. Then,
we processed such logs. For every log, we measured the time it took to discover the
originating workflow model, and analyzed its performance with respect to the input
size. Thereafter, we compared the performance of MINERful to the performance of the
current state-of-the-art tools, w.r.t. the synthetic logs and benchmarks taken from the
BPI Challenge logs [van Dongen 2011; 2012].

In order to inspect the quality of results and validate the approach, we also ver-
ified the whole MAILOFMINE system on a real case study (Section 5.2). Data were
extracted from the mailbox of an authors’ colleague, known to be an expert in the area
of the process to discover. As usual for artful processes, the process behind the analyzed
email messages was not known a priori. Therefore, we could not apply an automated
comparison between the resulting workflow model and the originating process, since
no definition for the originating process was available at all. Thus, the expert was
requested to analyze and assess the discovered workflow model by categorizing the
mined constraints. We also assessed the level of the fitness of the discovered models
to the analyzed event logs. Fitness is a metric for assessing to what extent the be-
havior seen in the event log is reported in the discovered model. In order to do so, we
compared the fitness of the discovered control flow with respect to different levels of
Support, used as a threshold for filtering out constraints. Finally, we compared the
output models of MINERful to the Declare maps discovered by Declare Maps Miner
[Maggi et al. 2013] (see Section 2).

5.1. Performance of MINERful
Figure 2 shows the experimental results that we obtained through the running of MIN-
ERful on synthetic logs, changing their input w.r.t. the number of traces in the log, their
length, and the number of activities that the originating process comprised.

All the tests were conducted on a Sony VAIO VGN-FE11H (Intel Core Duo T2300
1.66 GHz, 2 MB L2 cache, with 2 GB of DDR2 RAM at 667 Mhz), having Ubuntu
Linux 10.04 as the operating system and Java JRE v1.6. The synthetic logs’ random
traces were created by integrating our tool with Xeger,4 a Java open-source library
which generates strings according to the given regular expressions. We set up two
different experiments. In Setup 1 (see Table X), synthetic logs were generated by sim-
ulating the execution of diversified versions of the example process, outlined in Sec-
tion 3. Such process was modified by altering the number of constraints involved in
the definition of the workflow. The constraints ranged from a minimum set of four
(Unique(n), Participation(n), End(n), Succession(p, n)) to the maximum set of seven (in-
cluding Response(r, p), RespondedExistence(c, p), AlternatePrecedence(r, c)). For each
altered process, different logs were created by varying: (i) alphabet size (i.e., activities
appearing in the log), (ii) number of traces, and (iii) range of the number of events
per trace (see Setup 1 in Table X). In order to consider the performances’ degradation

4http://code.google.com/p/xeger/

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:25

Setup Min. length Max. length Num. of traces Alphabet size Runs

1 [0, 8] [5, 20] [102, 106] [2, 5] 29 000

2 [0, 2] [10, 25] [103, 16 · 103] [10, 50] 13 536

Table X: Performance experiments setup

Source Activities Traces Events processed Total time Engine

Synth. log, Setup 1 5 100 000 1 676 447 (avg. 16.764) 00:00:04 MINERful

00:09:04 Dec. Miner

12:00:00 D. M. Miner

00:00:03 Unc. Miner

Synth. log, Setup 2 52 16 000 296 277 (avg. 18.517) 00:00:08 MINERful

03:59:47 Dec. Miner

00:09:27 D. M. Miner

00:00:11 Unc. Miner

Financial log 24 13 087 262 200 (avg. 20.035) 00:00:03 MINERful

[van Dongen 2012] 00:42:29 Dec. Miner

00:08:39 D. M. Miner

00:00:04 Unc. Miner

Hospital log 624 1 143 150 291 (avg. 131.488) 00:04:20 MINERful

[van Dongen 2011] 02:52:03 Dec. Miner

02:04:13 D. M. Miner

00:15:10 Unc. Miner

Table XI: Performances of MINERful over synthetic and real cases. For all tools, the
loading phase of logs is not included.

over increasing alphabets, we also executed a new experiment, according to Setup 2
(Table X).

Figure 2a shows the time taken by the algorithm to run, in comparison with the
number of traces in the logs. The fitting curve is linear. The time taken for the algo-
rithm to mine constraints, with respect to the average length of the traces is depicted in
Figure 2b. There, the alphabet size is fixed and equal to 5. The dependency is quadratic.
The same dependency holds between the computation time and the size of the alphabet
of activities, as drawn in Figure 2c. Figure 2d separates the analysis of the time taken
by the algorithm for its computation into its two main procedures: (i) the construction
of MINERfulKB (Section 4.3) and (ii) the discovery of constraints, obtained by queries
over MINERfulKB itself (Section 4.4). The graph gives an evidence of the fact that the
second phase is faster than the first one, since it does not depend on the size of the log
given in input (cf. Section 4.4 and Lemma B.2 in the online appendix). Figures 2a, 2b
and 2c show by experimental evidence that the trend of computation time comply to
the complexity analysis made on the algorithm (cf. Appendix B.3).

In order to test the efficiency of MINERful when dealing with real-life cases, we
tested it with on well known benchmarks, taken from Business Process Intelligence
Challenges (BPIC) (cf. “Dutch academic hospital log”, BPIC’11 [van Dongen 2011] and

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:26 C. Di Ciccio and M. Mecella

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

4000

8000

12000

16000

4000 8000 12000 16000
Number of traces

To
ta

l e
xe

cu
tio

n
tim

e
[m

se
c]

(a) Time needed for the execution, with respect to
the number of traces (from Setup 2: only the tests
where the size of the alphabet is greater than 25
are considered).

50000

100000

150000

6 9 12 15
Average string length

To
ta

l e
xe

cu
tio

n
tim

e
[m

se
c]

(b) Time needed for the execution, with respect to
the trace length (from Setup 1: only the tests where
the size of the alphabet is equal to 5 are plotted)

1882

25111

5000

10000

15000

20000

25000

10 20 30 40 50
Alphabet size

Ex
ec

ut
io

n
tim

e
[m

se
c]

(c) Time needed for the execution, with respect to
the size of the alphabet (from Setup 2)

44

414
1835

24723

0

5000

10000

15000

20000

25000

10 20 30 40 50
Alphabet size

Ex
ec

ut
io

n
tim

e
[m

se
c]

Constraints computation time
KB computation time

(d) Time taken for the construction of MINER-
fulKB and the discovery of constraints by queries
over MINERfulKB, with respect to the size of the
alphabet (from Setup 2)

Fig. 2: Experimental results

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:27

“Dutch financial institute log”, BPIC’12 [van Dongen 2012]). Table XI summarizes the
execution of MINERful on both synthetic and benchmarking data. The same logs have
been used with other state-of-the-art algorithms, namely Declare Miner [Maggi et al.
2011], Declare Maps Miner [Maggi et al. 2012], Unconstrained Declare [?] – see Sec-
tion 2, in order to evaluate the efficiency of MINERful. We tuned each mining algo-
rithm in order to check for the same constraints that MINERful is able to discover,
establishing a threshold for the minimum Support at 85%. These tests were run on
a Lenovo ThinkPad T430 (Intel i5-3320M CPU @ 2.60GHz, 16 GB RAM, 4096 MB of
which was dedicated to the Java Virtual Machine). For Unconstrained Miner, we en-
abled the parallelization option, setting it up to 2 threads. In addition, we enabled
the Super-Scalar mode (see [Westergaard and Stahl 2013] for further information). All
timings refer to the mining phase only, regardless of the input reading. Therefore, the
time needed for unpacking, opening and loading the XES log files [Günther and Ver-
beek 2012] is not included. Experimental results confirm that MINERful is among the
fastest tools for discovering declarative processes.

5.2. A real case study
In order to evaluate MINERful in terms of its efficacy, we verified the quality of control
flows mined from real data. The input data pertained to the artful process of managing
European research projects. To this extent, we made use of the MAILOFMINE system
[Di Ciccio and Mecella 2013a] in order to extract a log out of 6 mailbox IMAP folders
containing email messages. The email messages concerned the management of 5 dif-
ferent European research projects. Such folders belonged to a domain expert. Together
with him, we analyzed the discovered process. More than 350 constraints were found
to hold true in the log, with a Support higher than 80% (i.e., over the threshold we set,
in agreement with the user). However, the simplification techniques adopted by MIN-
ERful (see Section 4.4) reduced the number of constraints shown to the user, finally
returning a set of ca. 200 constraints.

In order to assess the validity of the mined process, we checked every constraint with
the expert. As usual in the context of artful processes, the workflow was not known a
priori. However, the expert could classify as right or wrong a guessed constraint, on
the basis of his experience. As a matter of fact, such situation of partial knowledge
reproduces a real case, where the artful process had not ever been formalized before,
although the main actor is aware of the best practices adopted. For each constraint in
the list, we asked the expert whether it was either: (i) right, i.e., it made sense with
respect to his experience; (ii) noticeably right, i.e., it not only made sense but also sug-
gested some surprising mechanisms in the workflow; (iii) wrong, i.e., not necessarily
corresponding to reality; (iv) utterly wrong, i.e., not corresponding to reality, unreason-
able. The last level was assigned to very few constraints (7 out of 173), a half of how
many were considered noticeably right (14) – see Figure 3. For the rest of the analysis,
we categorize right and noticeably right constraints as good guesses, while wrong and
utterly wrong constraints are considered bad guesses. Being the classification based on
the judgment of an expert, we will name them resp. as perceived true positives (TPP)
and perceived false positives (FPP). As said, the original process was unknown. There-
fore, there was no viable way to identify those constraints that were known to hold
true, but are ignored by the discovery algorithm. For the same reason, it was not fea-
sible to identify those constraints that were known not to hold true and were not part
of the discovered process. Thereby, we have no notion of perceived false negatives or
perceived true negatives in this context.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:28 C. Di Ciccio and M. Mecella

69.725 %
 [173]

6.422 %
 [14]

20.642 %
 [45]

3.211 %
 [7]

25

50

75

0/100

Result evaluation
Noticeably right
Right
Utterly wrong
Wrong

Fig. 3: Evaluation of MINERful: appropriateness of the discovered results in the case
study

Building upon the definition of Precision in Information Retrieval,5 we consider the
perceived precision as a quality measure for the discovered process from the user’s
perspective. It specifies the fraction of constraints that are relevant in the discovered
process. It is formulated as follows:

PerceivedPrecision =

TPP

TPP
+ FPP

The algorithm was proved to obtain a PerceivedPrecision of 0.794 over the real case
study. In other words, about 80% of the inferred constraints were compliant to a re-
alistic model of the process. Figure 3 summarizes the results of this real case study
evaluation.

For the sake of readability, we will omit the adjective “perceived” in the remain-
der of this Section. Figure 4a shows the trend of true positives, false positives and
all constraints found, with respect to their Support. The quantities on the ordinates
are cumulative, i.e., they represent the sum of the values which are gained up to the
current value on the abscissae. The curves show how, as Support increases, the dis-
tance between the cumulated false positives and the true positives rises as Support
increases. On Figure 4b, a line puts in evidence where the relative percentage of con-
firmed constraints overtakes the wrong, i.e., a “break-point” after which the rate of
hits, in terms of accepted guesses, is higher than the rate of misses, in terms of wrong
guesses. Such break-point corresponds to a Support value of 0.85, i.e., 5% higher than
the threshold established a priori. However, the number of true positives below that

5“Precision” in the context of Process Model Discovery [Buijs et al. 2012] differs from the classical definition
of Information Retrieval [Manning et al. 2008]. In the first case, it “quantifies the fraction of the behavior
allowed by the model which is not seen in the event log”. In Information Retrieval, it “is the fraction of
retrieved documents that are relevant”. The notion of “perceived precision” provided here bases on the latter.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:29

0

50

100

150

200

0.80 0.85 0.90 0.95 1.00
Support

C
on

st
ra

in
ts

 D
is

co
ve

re
d

Total
False Positives
True positives

(a) The trend of the quality of the cumulative sum
of constraints discovered, w.r.t. the assigned Sup-
port

0.850

25

50

75

100

0.80 0.85 0.90 0.95 1.00
Support

C
on

st
ra

in
ts

 D
is

co
ve

re
d

[%
]

Total
False positives
True positives

(b) The trend of the quality of the cumulative
sum of constraints discovered, scaled by their total
amount, w.r.t. the assigned Support

Fig. 4: Evaluation of MINERful on a case study: trend of the quality of the process
w.r.t. Support of constraints

soil amounts to less than 10%. On the other hand, the same graph depicts that more
than 85% of errors are given a Support of 100%.

The trend of Precision is drawn on Figure 5, with respect to (i) Support (Figure 5a),
(ii) Confidence Level (Figure 5b) and (iii) Interest Factor (Figure 5c). Support (Fig-
ure 5a) is proven not to be a good measure for filtering misinterpretations away. The
Precision indeed tends to rapidly decrease near to the support level of 1.0. Perceived
precision’s curve tends to grow with Confidence (Figure 5b) and Interest Factor (Fig-
ure 5c). Hence, relevance metrics contribute to the improvement of quality of results,
from the user’s perspective.

Next Section will investigate the role of Support, Confidence Level and Interest Fac-
tor in enhancing the conformance of the discovered control flow with respect to the log.
The reader interested in further details on the case study, and in particular to the Fi-
nite State Automaton (FSA) describing the discovered process, can refer to [Di Ciccio
and Mecella 2013a].

5.3. Fitness-based Analysis of Discovered Models’ Conformance
A model with good fitness allows for most of the behavior seen in the event log. A model
has a perfect fitness if all traces can be replayed by the model from the beginning to the
end. Fitness is one of the four quality dimensions (Fitness, Precision,5 Generalization,
Simplicity [Buijs et al. 2012]) for checking the conformance of event logs with respect
to process models. [de Leoni et al. 2014] describes an analytical approach to measure
them for declarative process models. Its implementation is available as a ProM plug-in:
Declare Replayer6 [de Leoni et al. 2012]. In order to take advantage of the ProM plug-
in, we created a module for translating the output of MINERful into the ProM Declare
XML format. At the time of writing, though, Declare Replayer measures only the level

6Available at https://svn.win.tue.nl/repos/prom/Packages/DeclareChecker/Trunk. The authors want to
thank Fabrizio M. Maggi for his useful insight and advice.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:30 C. Di Ciccio and M. Mecella

0.80

0.85

0.90

0.95

1.00

0.80 0.85 0.90 0.95 1.00
Support

Pr
ec
is
io
n

(a) Precision, w.r.t. the assigned Support of discov-
ered constraints

0.6

0.7

0.8

0.9

1.0

0.2 0.4 0.6 0.8 1.0
Confidence

Pr
ec
is
io
n

(b) Precision, w.r.t. the assigned Confidence Level
of discovered constraints

0.7

0.8

0.9

1.0

0.25 0.50 0.75 1.00
Interest Factor

Pr
ec

is
io

n

(c) Precision, w.r.t. the assigned Interest Factor of
discovered constraints

Fig. 5: Evaluation of MINERful on a case study: trend of Precision w.r.t. Support, Con-
fidence Level and Interest Factor of discovered constraints

of Fitness for an input process. Due to this, the work presented in this Section considers
only that metric. Nevertheless, it sets out a preliminary study on the conformance of
mined declarative processes to the input logs, based on the systematic measurement
of established metrics.

Two sets of discovered processes were analyzed. The first set was mined from a real
event log extracted from email messages (see Section 5.2). The second one was mined
from a synthetic log, comprising 8 activities, 250 traces and 5205 events, compliant to

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:31

Support threshold

0.910 0.920 0.930 0.940 0.950 0.960 0.970 0.980 0.990 1.000

Email archives 0.822 0.904 0.965 0.965 0.967 0.991 0.995 0.995 1.000 1.000

Synth. log 0.926 0.947 0.964 0.979 0.988 0.991 0.996 0.999 0.999 1.000

Table XII: Fitness of the discovered processes, w.r.t. the threshold for Support

the example process described in Section 3. On the basis of the mined processes, we
conducted two analyses:

(A) the first aimed at evaluating the Fitness of discovered processes, with respect to
the threshold for Support;

(B) the second compared the control flows mined by MINERful with the ones of De-
clare Maps Miner [Maggi et al. 2013].

Declare Maps Miner is considered as the most suitable term of paragon, since it is
the only technique so far in the literature that prunes out irrelevant constraints (see
Section 2). Furthermore, MINERful and Declare Maps Miner share a common set of
metrics, i.e., Support for the reliability of constraints, and Confidence and Interest
Factor for their relevance. Although the concepts that such metrics are based upon are
the same, the ways to calculate their values differ (see Section 4.4). For instance, MIN-
ERful computes Support on a per-event basis, whereas Declare Maps Miner adopts
a per-trace measurement. Therefore, it was also considered of interest the different
behavior of the algorithms with respect to equatable tunings of thresholds.

For what analysis (A) is concerned, we have run MINERful on both logs ten times.
For each run, a different Support threshold was set, ranging from 0.91 to 1.00 with a
step of 0.01. As shown in Table XII, the level of Fitness grows monotonically: the lowest
level is obtained when the threshold is minimum, whereas Fitness amounts to 100%
when the threshold is set to 1.0. Such result confirms that (i) as expected, the Fitness
of the discovered model w.r.t. the analyzed event log tends to increase as the Support
threshold is raised, and (ii) a Support threshold of 1.0 guarantees that only those con-
straints that are proven to hold true for every trace of the event log are presented to
the user. Therefore, we have experimental evidence that MINERful returns discovered
control flows which comply with the input. The Support threshold plays a crucial role
in determining to what extent the mined process fits to the log. Therefore, lower levels
for Support thresholds allow for noise in logs, whereas the maximum level is eligible
when the log is deemed as unaffected by errors. A preliminary study on the effect that
noise in logs has on mined declarative processes can be found in [Di Ciccio and Mecella
2013b].

As previously stated, we conducted a comparative analysis (B) on MINERful and
the state-of-the-art algorithm, Declare Maps Miner. To this extent, we used the afore-
mentioned logs as input for both miners.7 We have sampled four levels for Support
thresholds ranging between 0.91 and 1.00, namely

(1) the lower end (0.91),
(2) the rounded-up value for the first third of the range (0.94),
(3) the rounded-up value for the second third of the range (0.97), and
(4) the upper end (1.00).

7Declare Maps Miner requires the user to specify which constraint templates it has to look for within the
log. Therefore, we set it up to search for the templates that MINERful is able to identify, on one hand. On
the other hand, we excluded the End constraints from the output of MINERful.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:32 C. Di Ciccio and M. Mecella

For each level, we set it as the Support threshold and let both tools run. In addition,
we have considered the relevance parameters that MINERful and Declare Maps Miner
have in common, i.e., Confidence and Interest Factor, in order to investigate their in-
fluence on results. To this extent, we have set four different thresholds for Confidence
and Interest Factor. Those values were chosen according to the same rationale adopted
for Support, namely:

(1) the lower end (x),
(2) the rounded-up value for the first third of the range (y),
(3) the rounded-up value for the second third of the range (yy), and
(4) the upper end (yyy).

The range was fixed on the basis of minimum and maximum possible values of Confi-
dence (resp. Interest Factor) that actively altered the resulting discovered control flow.8
Thereafter, we have launched MINERful and Declare Maps Miner for each combina-
tion consisting of (i) a Support threshold, and (ii) a Confidence (resp. Interest Factor)
threshold, within the list of levels described above. For the sake of readability, Ta-
bles XIII and XIV present the results referring only to Support thresholds 0.91 and
0.97. The comprehensive list is transcribed in the on-line appendix.

For both MINERful and Declare Maps Miner, we counted the number of constraints
in the discovered process and computed the average number of constraints per activity.
Table XIII shows that Declare Maps Miner tends to shrink by default the number of
returned constraints more than MINERful. However, MINERful is more sensitive to
the variation of Confidence and Interest Factor. This is probably due to the different
calculation that the techniques adopt for assessing the relevance metrics. Taking ad-
vantage of Declare Checker, we evaluated the Fitness of discovered control flows. The
mined processes achieve close values for both counterparts. Declare Maps Miner ac-
counts to slightly more fitting models, even without raising thresholds for Confidence
and Interest Factor. The same data show that not only Support but also Confidence and
Interest Factor lead MINERful-discovered processes to the maximum Fitness, when
their threshold is increased.

In order to assess the similarity of mined processes, we considered them as sets
of constraints, following the rationale of Section 4.4. Therefore, we could consider
well-established similarity measures to this end. In particular, we considered Jaccard,
Sørensen-Dice and Meet/min measures [Deza and Deza 2006]. Naming MINERful and
Declare Maps Miner’s discovered sets as, resp., B

M

and B
D

, we have that:

— Jaccard coefficient is defined as |BM\BD|
|BM[BD| ,

— Sørensen-Dice coefficient is defined as 2·|BM\BD|
|BM |+|BD| ,

— Meet/min coefficient is defined as |BM\BD|
min {|BM |,|BD|} .

According to Jaccard and Sørensen-Dice coefficients, the pairs of processes turn out
not to be matching. However, the Meet/min coefficient suggests that their difference
resides in the respective sizes, rather than in their content. Indeed, they are mostly
overlapping, as shown by the high values reached by the Meet/min coefficient. We

8In MINERful, the range is fixed from 0.0 to 1.0 for both Confidence and Interest Factor. For Declare Maps
Miner, Confidence can vary from 0 to 100, whilst Interest Factor possibly ranges from 0 to a maximum value
that changes according to the process, possibly exceeding 100. However, neither Confidence nor Interest Fac-
tor affect the result if their respective thresholds are lower than Support threshold in Declare Maps Miner.
Therefore, their ranges have been rescaled from the given Support threshold to the maximum allowed. See
the on-line appendix for further details.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:33

recall here that the upper bound for Meet/min, 100%, indicates that one set entirely
contains the other.

Table XIV shows similar characteristics. However, Declare Maps Miner returns ei-
ther one of two control flows, depending on the thresholds’ setup: one consists of 44 con-
straints, the other comprises 5 constraints. The Fitness of both is equal to 1.0 though.
MINERful, instead, varies the mined process (and their Fitness) according to the pa-
rameters tuning. This is probably due to the trace-based assessment of metrics of the
former, as opposed to the event-based calculation of the latter.

As a concluding remark, Declare Maps Miner turns out to return more fitting and
concise process models by default, i.e., just by setting a proper Support threshold.
MINERful is more sensitive to the parameter tuning in this regard. However, it out-
performs Declare Maps Miner in terms of time of computation. Therefore, Declare
Maps Miner seems more appropriate for an off-line execution, whilst MINERful is
more suited for interactive sessions, where different setups can be tried in order to
find the best combination. Such characteristic meets the requirement described in the
end of Section 1: logs extracted out of semi-structured texts can be severely affected
by noise. Therefore, the mining phase may need to be repeated several times with
different combinations of parameters, so as to find the highest-quality result.

MINERful Declare M. Miner Similarity

Su
pp

or
t%

C
on

fid
en

ce

In
te

re
st

Fa
ct

or

C
on

st
ra

in
ts

C
n’

s
pe

r
ac

ti
vi

ty

Fi
tn

es
s

C
on

st
ra

in
ts

C
n’

s
pe

r
ac

ti
vi

ty

Fi
tn

es
s

M
ee

t/m
in

%

Ja
cc

ar
d

%

Sø
re

ns
en

-D
ic

e
%

91 x x 83 10.375 0.926 24 3.000 0.992 95.833 27.381 42.991

91 x y 83 10.375 0.926 23 2.875 0.996 86.957 23.256 37.736

91 x yy 50 6.250 0.977 8 1.000 0.996 87.500 13.725 24.138

91 x yyy 7 0.875 1.000 8 1.000 0.996 42.857 25.000 40.000

91 y x 83 10.375 0.926 23 2.875 0.994 95.652 26.190 41.509

91 yy x 50 6.250 0.977 21 2.625 0.996 85.714 33.962 50.704

91 yyy x 7 0.875 1.000 19 2.375 0.996 85.714 30.000 46.154

97 x x 40 5.000 0.996 17 2.125 0.999 94.118 39.024 56.140

97 x y 40 5.000 0.996 6 0.750 0.999 83.333 12.195 21.739

97 x yy 32 4.000 0.996 6 0.750 0.999 83.333 15.152 26.316

97 x yyy 7 0.875 1.000 6 0.750 0.999 50.000 30.000 46.154

97 y x 40 5.000 0.996 15 1.875 0.999 100.000 37.500 54.545

97 yy x 32 4.000 0.996 15 1.875 0.999 86.667 38.235 55.319

97 yyy x 7 0.875 1.000 15 1.875 0.999 85.714 37.500 54.545

Table XIII: Discovered constraints and Fitness of processes mined out of a synthetic
log by resp. MINERful and Declare Maps Miner.

6. CONCLUSIONS
In this paper, we have presented a novel technique, named MINERful, for discovering
control-flow declarative constraints in artful processes. The peculiarities of the ap-
proach are: (i) modularity, i.e., it is based on two steps, where the first builds a knowl-

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:34 C. Di Ciccio and M. Mecella

MINERful Declare Maps Miner Similarity

Su
pp

or
t%

C
on

fid
en

ce

In
te

re
st

Fa
ct

or

C
on

st
ra

in
ts

C
n’

s
pe

r
ac

ti
vi

ty

Fi
tn

es
s

C
on

st
ra

in
ts

C
n’

s
pe

r
ac

ti
vi

ty

Fi
tn

es
s

M
ee

t/m
in

%

Ja
cc

ar
d

%

Sø
re

ns
en

-D
ic

e
%

91 x x 188 14.462 0.822 44 3.385 1.000 100.000 23.404 37.931

91 x y 113 8.692 0.923 5 0.385 1.000 40.000 1.724 3.390

91 x yy 41 3.154 0.967 5 0.385 1.000 40.000 4.545 8.696

91 x yyy 5 0.385 1.000 5 0.385 1.000 40.000 25.000 40.000

91 y x 116 8.923 0.859 44 3.385 1.000 68.182 23.077 37.500

91 yy x 97 7.462 0.928 44 3.385 1.000 59.091 22.609 36.879

91 yyy x 7 0.538 1.000 44 3.385 1.000 57.143 8.511 15.686

97 x x 163 12.538 0.995 44 3.385 1.000 100.000 26.994 42.512

97 x y 89 6.846 0.995 5 0.385 1.000 40.000 2.174 4.255

97 x yy 29 2.231 0.995 5 0.385 1.000 40.000 6.250 11.765

97 x yyy 5 0.385 1.000 5 0.385 1.000 40.000 25.000 40.000

97 y x 92 7.077 0.995 44 3.385 1.000 68.182 28.302 44.118

97 yy x 75 5.769 0.995 44 3.385 1.000 59.091 27.957 43.697

97 yyy x 7 0.538 1.000 44 3.385 1.000 57.143 8.511 15.686

Table XIV: Discovered constraints and Fitness of processes mined out of the email-
based log by resp. MINERful and Declare Maps Miner.

edge base for the second, verifying the constraints as the results of specific queries;
(ii) probabilistic approach to the inference of constraints; (iii) capability of eliminating
the redundancy of subsumed constraints. The technique is part of a comprehensive
approach, named MAILOFMINE [Di Ciccio et al. 2012; Di Ciccio and Mecella 2013a],
for mining artful processes out of email archives. It has been designed to be reasonably
fast. The main reason for keeping its computation time low also resides in its usage
inside MAILOFMINE. Since it is run over logs which are built on top of uncertain infor-
mation (the semi-structured text of email messages), the output strongly depends on
the reliability of the log. The log can indeed contain several outliers or misinterpreted
information. Thus, if users or experts considered the resulting process model as poorly
compliant to the reality, the mining phase might need to be repeated over refined logs,
so to improve the overall quality of the result. A slow algorithm may undermine such
an iterative approach, making it impractical.

In the paper, the MINERful technique has been entirely described and extensively
analyzed in its performances, both from a theoretical and an experimental perspective.
Moreover, a user-driven evaluation of the quality of the achievable results, conducted
on a real case study performed with the whole MAILOFMINE, has been reported. In
order to discuss the fitness of the workflow-models mined by MINERful, a study has
been performed, comparing our techniques with the state-of-the-art tool Declare Maps
Miner. To the best of our knowledge, this is one of the first studies on the conformance
of mined declarative processes to the input logs, based on the systematic measurement
of established metrics.

In future investigations, we aim at addressing the complementary challenging issue
of inferring the data flow in artful processes. Indeed, in order to comprehend (and

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:35

apply) an artful process, a knowledge worker needs to understand the data flow in
conjunction with the control flow. For instance, it is clearly beneficial to know that
activity “submit report” is followed by “review report”. However, the usefulness would
be greatly improved if the user could also understand what factors in a report can
cause an “approval” vis-a-vis a “rejection”. In this regard, a novel approach has been
recently proposed in [Bose et al. 2013]. In their work, Bose et al. focus not only on
the control-flow perspective, but also on attributes of events in the log. Specifically,
the possible correlations between attribute values are searched, in order to refine the
discovery of related activities that are involved in the constraints of a Declare model.
Our future work will address how the data flow can be mined and summarized along
with the process flow.

REFERENCES
Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. 1998. Mining process models from workflow

logs. In Advances in Database Technology – EDBT’98, Hans-Jrg Schek, Gustavo Alonso, Felix Saltor,
and Isidro Ramos (Eds.). Lecture Notes in Computer Science, Vol. 1377. Springer Berlin / Heidelberg,
467–483. http://dx.doi.org/10.1007/BFb0101003 10.1007/BFb0101003.

Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast Algorithms for Mining Association Rules in Large
Databases. In VLDB, Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo (Eds.). Morgan Kaufmann,
487–499. http://www.vldb.org/conf/1994/P487.PDF

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni. 2008.
Verifiable agent interaction in abductive logic programming: The SCIFF framework. ACM Trans. Com-
put. Log. 9, 4 (August 2008), 29:1–29:43. DOI:http://dx.doi.org/10.1145/1380572.1380578

Gustavo Alonso, Peter Dadam, and Michael Rosemann (Eds.). 2007. Business Process Management, 5th
International Conference, BPM 2007, Brisbane, Australia, September 24-28, 2007, Proceedings. Lecture
Notes in Computer Science, Vol. 4714. Springer.

Elena Bellodi, Fabrizio Riguzzi, and Evelina Lamma. 2010a. Probabilistic Declarative Process Mining.
In KSEM (Lecture Notes in Computer Science), Yaxin Bi and Mary-Anne Williams (Eds.), Vol. 6291.
Springer, 292–303. DOI:http://dx.doi.org/10.1007/978-3-642-15280-1 28

Elena Bellodi, Fabrizio Riguzzi, and Evelina Lamma. 2010b. Probabilistic Logic-Based Process Mining. In
CILC (CEUR Workshop Proceedings), Wolfgang Faber and Nicola Leone (Eds.), Vol. 598. CEUR-WS.org.
http://ceur-ws.org/Vol-598/paper17.pdf

R. P. Jagadeesh Chandra Bose, Fabrizio Maria Maggi, and Wil M. P. van der Aalst. 2013. En-
hancing Declare Maps Based on Event Correlations. In BPM (Lecture Notes in Computer Sci-
ence), Florian Daniel, Jianmin Wang, and Barbara Weber (Eds.), Vol. 8094. Springer, 97–112.
DOI:http://dx.doi.org/10.1007/978-3-642-40176-3 9

Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. 2012. On the Role of Fitness,
Precision, Generalization and Simplicity in Process Discovery. In CoopIS (Lecture Notes in Computer
Science), Robert Meersman, Hervè Panetto, Tharam S. Dillon, Stefanie Rinderle-Ma, Peter Dadam, Xi-
aofang Zhou, Siani Pearson, Alois Ferscha, Sonia Bergamaschi, and Isabel F. Cruz (Eds.), Vol. 7565.
Springer. On the Move to Meaningful Internet Systems (OTM 2012) Confederated International Con-
ferences: CoopIS, DOA-SVI, and ODBASE 2012.

Federico Chesani, Evelina Lamma, Paola Mello, Marco Montali, Fabrizio Riguzzi, and Sergio Storari. 2009.
Exploiting Inductive Logic Programming Techniques for Declarative Process Mining. T. Petri Nets and
Other Models of Concurrency 2 (2009), 278–295. http://dx.doi.org/10.1007/978-3-642-00899-3 16

Edmund M. Clarke, Orna Grumberg, and Doron Peled. 2001. Model Checking. MIT Press. I–XIV, 1–314
pages.

Jonathan E. Cook and Alexander L. Wolf. 1998. Discovering models of software pro-
cesses from event-based data. ACM Trans. Softw. Eng. Methodol. 7, 3 (1998), 215–249.
DOI:http://dx.doi.org/10.1145/287000.287001

Jordi Cortadella, Michael Kishinevsky, Luciano Lavagno, and Alexandre Yakovlev. 1998. Deriving Petri
nets from finite transition systems. Computers, IEEE Transactions on 47, 8 (aug. 1998), 859 –882.
DOI:http://dx.doi.org/10.1109/12.707587

Thomas H. Davenport, Sirkka L. Jarvenpaa, and Michael C. Beers. 1996. Improving Knowledge Work Pro-
cesses. Sloan Management Review 37, 4 (1996), 53–65. http://sloanreview.mit.edu/the-magazine/articles/
1996/summer/3744/improving-knowledge-work-processes

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:36 C. Di Ciccio and M. Mecella

Giuseppe De Giacomo and Moshe Y. Vardi. 2013. Linear Temporal Logic and Linear Dynamic Logic on
Finite Traces. In IJCAI, Francesca Rossi (Ed.). IJCAI/AAAI. http://www.aaai.org/ocs/index.php/IJCAI/
IJCAI13/paper/view/6997

Massimiliano de Leoni, Fabrizio Maria Maggi, and Wil M.P. van der Aalst. 2014. An alignment-based frame-
work to check the conformance of declarative process models and to preprocess event-log data. Informa-
tion Systems (2014). DOI:http://dx.doi.org/10.1016/j.is.2013.12.005

Massimiliano de Leoni, Fabrizio Maria Maggi, and Wil M. P. van der Aalst. 2012. Aligning Event Logs
and Declarative Process Models for Conformance Checking. In BPM (Lecture Notes in Computer
Science), Alistair P. Barros, Avigdor Gal, and Ekkart Kindler (Eds.), Vol. 7481. Springer, 82–97.
DOI:http://dx.doi.org/10.1007/978-3-642-32885-5 6

Ana Karla A. de Medeiros, A. J. M. M. Weijters, and Wil M. P. van der Aalst. 2007. Genetic
process mining: an experimental evaluation. Data Min. Knowl. Discov. 14, 2 (2007), 245–304.
DOI:http://dx.doi.org/10.1007/s10618-006-0061-7

Jörg Desel and Wolfgang Reisig. 1996. The synthesis problem of Petri nets. Acta Informatica 33 (1996),
297–315. Issue 4. http://dx.doi.org/10.1007/s002360050046 10.1007/s002360050046.

Elena Deza and Michel Deza. 2006. Dictionary of Distances. North-Holland. I–XV, 1–391 pages.
Claudio Di Ciccio, Andrea Marrella, and Alessandro Russo. 2012. Knowledge-intensive Processes: An

Overview of Contemporary Approaches. In 1st International Workshop on Knowledge-intensive Busi-
ness Processes, KiBP 2012, Rome, Italy, June 15, 2012, Arthur H.M. ter Hofstede, Massimo Me-
cella, Sebastian Sardina, and Andrea Marrella (Eds.), Vol. 861. CEUR Workshop Proceedings, 33–47.
http://ceur-ws.org/Vol-861/KiBP2012 paper 2.pdf

Claudio Di Ciccio, Andrea Marrella, and Alessandro Russo. 2014. Knowledge-Intensive Processes: Charac-
teristics, Requirements and Analysis of Contemporary Approaches. Journal on Data Semantics (2014).
DOI:http://dx.doi.org/10.1007/s13740-014-0038-4

Claudio Di Ciccio and Massimo Mecella. 2012a. MINERful, a Mining Algorithm for Declarative Process
Constraints in MailOfMine. Technical Report. Dipartimento di Ingegneria Informatica, Automatica e
Gestionale “Antonio Ruberti” – SAPIENZA, Università di Roma. http://ojs.uniroma1.it/index.php/DIS
TechnicalReports/issue/view/416

Claudio Di Ciccio and Massimo Mecella. 2012b. Mining Constraints for Artful Processes. In 15th Interna-
tional Conference on Business Information Systems, BIS 2012, Vilnius, Lithuania, May 21-23, 2012 (Lec-
ture Notes in Business Information Processing), Witold Abramowicz, Dalia Kriksciuniene, and Virgilijus
Sakalauskas (Eds.), Vol. 117. Springer, 11–23. DOI:http://dx.doi.org/10.1007/978-3-642-30359-3 2

Claudio Di Ciccio and Massimo Mecella. 2013a. Mining Artful Processes from Knowledge Workers’ Emails.
IEEE Internet Computing 17, 5 (2013), 10–20. DOI:http://dx.doi.org/10.1109/MIC.2013.60

Claudio Di Ciccio and Massimo Mecella. 2013b. Studies on the Discovery of Declarative Control Flows
from Error-prone Data. In 3rd International Symposium on Data-Driven Process Discovery and Anal-
ysis, SIMPDA 2013, Riva del Garda, Italy, August 30, 2013 (CEUR Workshop Proceedings), Rafael Ac-
corsi, Paolo Ceravolo, and Philippe Cudre-Mauroux (Eds.), Vol. 1027. 31–45. http://ceur-ws.org/Vol-1027/
paper3.pdf

Claudio Di Ciccio and Massimo Mecella. 2013c. A Two-Step Fast Algorithm for the Automated Discovery of
Declarative Workflows. In 4th IEEE Symposium on Computational Intelligence and Data Mining, CIDM
2013, Singapore, April 16-19, 2013. IEEE, 135–142. DOI:http://dx.doi.org/10.1109/CIDM.2013.6597228

Claudio Di Ciccio, Massimo Mecella, Monica Scannapieco, Diego Zardetto, and Tiziana Catarci.
2012. MailOfMine – Analyzing Mail Messages for Mining Artful Collaborative Processes. In
Data-Driven Process Discovery and Analysis, Karl Aberer, Ernesto Damiani, and Tharam Dil-
lon (Eds.). Lecture Notes in Business Information Processing, Vol. 116. Springer, 55–81.
DOI:http://dx.doi.org/10.1007/978-3-642-34044-4 4

Volker Diekert and Paul Gastin. 2008. First-order Definable Languages. In Logic and Automata (Texts in
Logic and Games), Jörg Flum, Erich Grädel, and Thomas Wilke (Eds.), Vol. 2. Amsterdam University
Press, 261–306.

Marie-Christine Fauvet and Boudewijn F. van Dongen (Eds.). 2013. Proceedings of the BPM Demo sessions
2013, Beijing, China, August 26-30, 2013. CEUR Workshop Proceedings, Vol. 1021. CEUR-WS.org. http:
//ceur-ws.org/Vol-1021

Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. 1980. On the Temporal Analysis of Fairness.
In Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles of programming languages
(POPL ’80). ACM, New York, NY, USA, 163–173. DOI:http://dx.doi.org/10.1145/567446.567462

Norbert Gronau and Edzard Weber. 2004. Management of Knowledge Intensive Business Processes. In Busi-
ness Process Management (Lecture Notes in Computer Science), Jörg Desel, Barbara Pernici, and Math-
ias Weske (Eds.), Vol. 3080. Springer, 163–178. DOI:http://dx.doi.org/10.1007/978-3-540-25970-1 11

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes A:37

Christian W. Günther and Eric Verbeek. 2012. XES Standard Definition. (10 2012). http://www.xes-standard.
org/ media/xes/xesstandarddefinition-1.4.pdf

Charles Hill, Robert Yates, Carol Jones, and Sandra L. Kogan. 2006. Beyond predictable workflows: En-
hancing productivity in artful business processes. IBM Systems Journal 45, 4 (2006), 663–682. http:
//dx.doi.org/10.1147/sj.454.0663

Orna Kupferman and Moshe Y. Vardi. 2003. Vacuity detection in temporal model checking. STTT 4, 2 (2003),
224–233. DOI:http://dx.doi.org/10.1007/s100090100062

Evelina Lamma, Paola Mello, Marco Montali, Fabrizio Riguzzi, and Sergio Storari. 2007a. Induc-
ing Declarative Logic-Based Models from Labeled Traces, See Alonso et al. [2007], 344–359.
DOI:http://dx.doi.org/10.1007/978-3-540-75183-0 25

Evelina Lamma, Paola Mello, Fabrizio Riguzzi, and Sergio Storari. 2007b. Applying Inductive Logic
Programming to Process Mining. In ILP (Lecture Notes in Computer Science), Hendrik Block-
eel, Jan Ramon, Jude W. Shavlik, and Prasad Tadepalli (Eds.), Vol. 4894. Springer, 132–146.
DOI:http://dx.doi.org/10.1007/978-3-540-78469-2 16

Fabrizio Maria Maggi. 2013. Declarative Process Mining with the Declare Component of ProM, See Fauvet
and van Dongen [2013]. http://ceur-ws.org/Vol-1021/paper 8.pdf

Fabrizio Maria Maggi, R. P. Jagadeesh Chandra Bose, and Wil M. P. van der Aalst. 2012. Efficient Discovery
of Understandable Declarative Process Models from Event Logs. In CAiSE (Lecture Notes in Computer
Science), Jolita Ralyté, Xavier Franch, Sjaak Brinkkemper, and Stanislaw Wrycza (Eds.), Vol. 7328.
Springer, 270–285. http://dx.doi.org/10.1007/978-3-642-31095-9 18

Fabrizio Maria Maggi, R. P. Jagadeesh Chandra Bose, and Wil M. P. van der Aalst. 2013. A Knowledge-
Based Integrated Approach for Discovering and Repairing Declare Maps. In CAiSE (Lecture Notes in
Computer Science), Camille Salinesi, Moira C. Norrie, and Oscar Pastor (Eds.), Vol. 7908. Springer,
433–448. DOI:http://dx.doi.org/10.1007/978-3-642-38709-8 28

Fabrizio Maria Maggi, Arjan J. Mooij, and Wil M. P. van der Aalst. 2011. User-guided discovery of declarative
process models. In CIDM. IEEE, 192–199. http://dx.doi.org/10.1109/CIDM.2011.5949297

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to information
retrieval. Cambridge University Press. I–XXI, 1–482 pages.

Jan Mendling, Gustaf Neumann, and Wil M. P. van der Aalst. 2007a. Understanding the Occur-
rence of Errors in Process Models Based on Metrics. In OTM Conferences (1) (Lecture Notes
in Computer Science), Robert Meersman and Zahir Tari (Eds.), Vol. 4803. Springer, 113–130.
DOI:http://dx.doi.org/10.1007/978-3-540-76848-7 9

Jan Mendling, Hajo A. Reijers, and Jorge Cardoso. 2007b. What Makes Process Models Understandable?,
See Alonso et al. [2007], 48–63. DOI:http://dx.doi.org/10.1007/978-3-540-75183-0 4

Marco Montali. 2010. Specification and Verification of Declarative Open Interaction Models: a
Logic-Based Approach. Lecture Notes in Business Information Processing, Vol. 56. Springer.
DOI:http://dx.doi.org/10.1007/978-3-642-14538-4

Maja Pesic, Dragan Bosnacki, and Wil M. P. van der Aalst. 2010. Enacting Declarative Lan-
guages Using LTL: Avoiding Errors and Improving Performance. In SPIN (Lecture Notes in
Computer Science), Jaco van de Pol and Michael Weber (Eds.), Vol. 6349. Springer, 146–161.
DOI:http://dx.doi.org/10.1007/978-3-642-16164-3 11

Maja Pesic, Helen Schonenberg, and Wil M. P. van der Aalst. 2007. DECLARE: Full Support for Loosely-
Structured Processes. In EDOC. IEEE Computer Society, 287–300. http://doi.ieeecomputersociety.org/
10.1109/EDOC.2007.25

Maja Pesic and Wil M. P. van der Aalst. 2006. A Declarative Approach for Flexible Business Processes
Management. In Business Process Management Workshops (Lecture Notes in Computer Science), Johann
Eder and Schahram Dustdar (Eds.), Vol. 4103. Springer, 169–180. http://dx.doi.org/10.1007/11837862 18

Paul Pichler, Barbara Weber, Stefan Zugal, Jakob Pinggera, Jan Mendling, and Hajo A. Reijers.
2011. Imperative versus Declarative Process Modeling Languages: An Empirical Investigation.
In Business Process Management Workshops (1) (Lecture Notes in Business Information Process-
ing), Florian Daniel, Kamel Barkaoui, and Schahram Dustdar (Eds.), Vol. 99. Springer, 383–394.
DOI:http://dx.doi.org/10.1007/978-3-642-28108-2 37

Matthew Richardson and Pedro Domingos. 2006. Markov logic networks. Machine Learning 62, 1-2 (2006),
107–136. DOI:http://dx.doi.org/10.1007/s10994-006-5833-1

Dennis M. M. Schunselaar, Fabrizio Maria Maggi, and Natalia Sidorova. 2012. Patterns for a Log-Based
Strengthening of Declarative Compliance Models. In IFM (Lecture Notes in Computer Science), John
Derrick, Stefania Gnesi, Diego Latella, and Helen Treharne (Eds.), Vol. 7321. Springer, 327–342.
DOI:http://dx.doi.org/10.1007/978-3-642-30729-4 23

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

A:38 C. Di Ciccio and M. Mecella

Arthur H. M. ter Hofstede, Wil M. P. van der Aalst, Michael Adamns, and Nick Russell (Eds.). 2010. Modern
Business Process Automation: YAWL and its Support Environment. Springer. http://www.springer.com/
computer+science/database+management+\%26+information+retrieval/book/978-3-642-03120-5

Wil M. P. van der Aalst, , Vladimir Rubin, Eric Verbeek, Boudewijn F. van Dongen, Ekkart Kindler, and
Christian W. Günther. 2010. Process mining: a two-step approach to balance between underfitting
and overfitting. Software and Systems Modeling 9 (2010), 87–111. Issue 1. http://dx.doi.org/10.1007/
s10270-008-0106-z 10.1007/s10270-008-0106-z.

Wil M. P. van der Aalst. 2011. Process Mining: Discovery, Conformance and Enhancement of Business Pro-
cesses. Springer. I–XVI, 1–352 pages. DOI:http://dx.doi.org/10.1007/978-3-642-19345-3

Wil M. P. van der Aalst. 2012. Process Mining: Overview and Opportunities. ACM Trans. Manage. Inf. Syst.
3, 2, Article 7 (July 2012), 17 pages. DOI:http://dx.doi.org/10.1145/2229156.2229157

Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. 2009a. Declarative workflows:
Balancing between flexibility and support. Computer Science - R&D 23, 2 (2009), 99–113.
DOI:http://dx.doi.org/10.1007/s00450-009-0057-9

Wil M. P. van der Aalst, Boudewijn F. van Dongen, Christian W. Günther, Anne Rozinat, Eric Ver-
beek, and Ton Weijters. 2009b. ProM: The Process Mining Toolkit. In BPM (Demos) (CEUR Work-
shop Proceedings), Ana Karla A. de Medeiros and Barbara Weber (Eds.), Vol. 489. CEUR-WS.org.
http://ceur-ws.org/Vol-489/paper3.pdf

Wil M. P. van der Aalst, Ton Weijters, and Laura Maruster. 2004. Workflow Mining: Discovering Process
Models from Event Logs. IEEE Trans. Knowl. Data Eng. 16, 9 (2004), 1128–1142. http://csdl.computer.
org/comp/trans/tk/2004/09/k1143abs.htm

Boudewijn F. van Dongen. 2011. Real-life event logs – A hospital log. First
International Business Process Intelligence Challenge (BPIC’11). (2011).
DOI:http://dx.doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

Boudewijn F. van Dongen. 2012. Real-life event logs – A loan application process.
Second International Business Process Intelligence Challenge (BPIC’12). (2012).
DOI:http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

Paul Warren, Nick Kings, Ian Thurlow, John Davies, Tobias Buerger, Elena Simperl, Carlos Ruiz,
Jose Manuel Gomez-Perez, Vadim Ermolayev, Rayid Ghani, Marcel Tilly, Tom Bösser, and Ali Imtiaz.
2009. Improving Knowledge Worker Productivity - the Active integrated approach. BT Technology Jour-
nal 26, 2 (2009), 165–176.

A. J. M. M. Weijters and Wil M. P. van der Aalst. 2003. Rediscovering workflow models from event-based
data using little thumb. Integrated Computer-Aided Engineering 10, 2 (2003), 151–162. http://iospress.
metapress.com/content/8puq22eumrva7vyp/

Lijie Wen, Wil M. P. van der Aalst, Jianmin Wang, and Jiaguang Sun. 2007. Mining process models with
non-free-choice constructs. Data Min. Knowl. Discov. 15, 2 (2007), 145–180. http://dx.doi.org/10.1007/
s10618-007-0065-y

Michael Westergaard. 2011. Better Algorithms for Analyzing and Enacting Declarative Workflow Languages
Using LTL. In BPM (Lecture Notes in Computer Science), Stefanie Rinderle-Ma, Farouk Toumani, and
Karsten Wolf (Eds.), Vol. 6896. Springer, 83–98. http://dx.doi.org/10.1007/978-3-642-23059-2 10

Michael Westergaard and Christian Stahl. 2013. Leveraging Super-Scalarity and Parallelism to Provide Fast
Declare Mining without Restrictions, See Fauvet and van Dongen [2013]. http://ceur-ws.org/Vol-1021/
paper 10.pdf

Received 15/05/2013; revised 05/11/2013; accepted 24/04/2014

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

Online Appendix to:
On the Discovery of Declarative Control Flows for Artful Processes

Claudio DI CICCIO, Wirtschaftsuniversität Wien
Massimo MECELLA, Sapienza Università di Roma

A. TECHNICAL DETAILS ON THE SUPPORT FUNCTIONS
Support functions compute a value assessing the reliability of a constraint, i.e., they
estimate to what extent a constraint is likely to hold true in the discovered process. In
order to do so, they apply a heuristic-driven analysis of the statistical information kept
in MINERfulKB. In order to discuss the rationale behind them, we proceed as follows:
(i) we provide formal semantics for the Declare constraint templates that MINERful
discovers (see Section 3), in First Order Logic (FOL); (ii) we specify formal semantics
for the functions of MINERfulKB (see Section 4.1); (iii) we show that the queries eval-
uated by MINERful on MINERfulKB for discovering constraints express the ratio of
cases favorable to the constraint, to the number of all cases possible, w.r.t. the analyzed
event log.

A.1. Declare Constraint Templates as FOL Formulae
Semantics of Declare constraint templates have been specified as Linear Temporal
Logic (LTL [Clarke et al. 2001]) formulae, interpreted on finite traces (LTL

f

) [Pesic
et al. 2007; ter Hofstede et al. 2010]. LTL

f

is known to have the same expressive
power of First Order Logic over finite ordered traces [Gabbay et al. 1980; Diekert and
Gastin 2008]. Therefore, here we provide such semantics of Declare templates as FOL
formulae. This approach is inspired by the LTL

f

-to-FOL translation over finite linear
ordered sequences, discussed in [De Giacomo and Vardi 2013].

Specifically, we consider a first-order language that consists of:

(1) variables (e.g., i, j, k, ⇢, �, etc.);
(2) constants first and last ;
(3) binary predicates Succ, <, =;
(4) the ternary predicate InTrace.

The domain of interpretation is �

t

= h{1, . . . , |t|} [⌃i with |t| 2 N+ (where N+ is the
set of natural numbers, excluding 0) and ⌃ is an alphabet of characters. We denote the
uppermost value in the range of �t as |t|, in order to stress on the fact that it is meant
to be the length of a string t. Indeed, such a string is thought to be a representation of a
trace, where each character identifies an event. ⌃ is the alphabet consisting of events’
identifiers.

For the sake of comprehensibility, we specify here the interpretation function
⇣

�t
,t·
⌘

,
which we will adopt in the following. It interprets the aforementioned predicates and
constants as follows. Let t 2 ⌃

⇤ be a string, |t| the length of the string t and t[i] the
character occurring in t at position i. Then,

— �t
,tSucc

.
=

n

hi, ji : i 2 1, . . . , |t|� 1 and j = i+ 1

o

— �t
,t <

.
=

n

hi, ji : i 2 1, . . . , |t| and i < j
o

c� YYYY ACM 2158-656X/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

App–2 C. Di Ciccio and M. Mecella

— �t
,t

=

.
=

n

hi, ii : i 2 1, . . . , |t|
o

— �t
,tfirst

.
= 1 and �t

,tlast
.
= |t|

— �t
,tInTrace

.
=

n

hi, ⇢i : t[i] = ⇢
o

As an example, on a string t like aabac over the alphabet {a, b, c}, the interpretation
function would be such that �

aabac
= h{1, . . . , 5} [{a, b, c}i. The predicates would be

interpreted as follows:

— �aabac
,aabacSucc =

n

h1, 2i, h2, 3i, h3, 4i, h4, 5i
o

— �aabac
,aabac <

.
=

n

h1, 2i, h2, 3i, h3, 4i, h4, 5i, h1, 3i, h1, 4i, h1, 5i, h2, 4i, h2, 5i, h3, 5i
o

— �aabac
,aabac

=

.
=

n

h1, 1i, h2, 2i, h3, 3i, h4, 4i, h5, 5i
o

— �aabac
,aabacfirst

.
= 1 and �aabac

,aabaclast
.
= 5

— �aabac
,aabacInTrace

.
=

n

h1, ai, h2, ai, h3, bi, h4, ai, h5, ci
o

The specification of Declare constraint templates follows, in terms of predicates of
the First-Order language that we have described. In the following, together with the
quantifiers 9 and 8, we will make use of the usual abbreviation @ for ¬9 and 6= for ¬ =.
<, = and 6= will be used with an infix notation, for the sake of readability.

Init(⇢) ⌘ InTrace(first , ⇢) (1a)
End(⇢) ⌘ InTrace(last , ⇢) (1b)

Participation(⇢) ⌘ 9i. InTrace(i, ⇢) (1c)
AtMostOne(⇢) ⌘ 9i. InTrace(i, ⇢) ! @j. InTrace(j, ⇢) ^ j 6= i (1d)

RespondedExistence(⇢,�) ⌘ 8i. InTrace(i, ⇢) !9j. InTrace(j,�) ^ i 6= j (1e)
Response(⇢,�) ⌘ 8i. InTrace(i, ⇢) !9j. InTrace(j,�) ^ i < j (1f)

AlternateResponse(⇢,�) ⌘ 8i. InTrace(i, ⇢) !9j. InTrace(j,�) ^ i < j ^
@l. InTrace(l,�) ^ i < l < j !
@k. InTrace(k, ⇢) ^ i < k < j (1g)

ChainResponse(⇢,�) ⌘ 8i. InTrace(i, ⇢) !9j. InTrace(j,�) ^ Succ(i, j) (1h)
Precedence(⇢,�) ⌘ 8j. InTrace(j,�) !9i. InTrace(i, ⇢) ^ i < j (1i)

AlternatePrecedence(⇢,�) ⌘ 8j. InTrace(j,�) !9i. InTrace(i, ⇢) ^ i < j ^
@k. InTrace(k, ⇢) ^ i < k < j !
@l. InTrace(l,�) ^ i < l < j (1j)

ChainPrecedence(⇢,�) ⌘ 8j. InTrace(j,�) !9i. InTrace(i, ⇢) ^ Succ(i, j) (1k)

CoExistence(⇢,�) ⌘ RespondedExistence(⇢,�) ^ RespondedExistence(�, ⇢) (1l)
Succession(⇢,�) ⌘ Response(⇢,�) ^ Precedence(⇢,�) (1m)

AlternateSuccession(⇢,�) ⌘ AlternateResponse(⇢,�) ^ AlternatePrecedence(⇢,�) (1n)
ChainSuccession(⇢,�) ⌘ ChainResponse(⇢,�) ^ ChainPrecedence(⇢,�) (1o)

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes App–3

NotCoExistence(⇢,�) ⌘(8i. InTrace(i, ⇢) ! @j. InTrace(j,�) ^ i 6= j) ^
(8j. InTrace(j,�) !@i. InTrace(i, ⇢) ^ i 6= j) (1p)

NotSuccession(⇢,�) ⌘(8i. InTrace(i, ⇢) ! @j. InTrace(j,�) ^ i < j)

(8j. InTrace(j,�) !@i. InTrace(i, ⇢) ^ i < j) (1q)
NotChainSuccession(⇢,�) ⌘(8i. InTrace(i, ⇢) ! @j. InTrace(j,�) ^ Succ(i, j))

(8j. InTrace(j,�) !@i. InTrace(i, ⇢) ^ Succ(i, j)) (1r)

A.2. Formal specification of MINERfulKB
According to the description provided in Section 4.1, we can describe the semantics
of MINERful ownplay and MINERful interplay functions, according to the previously
defined language. A textual description of each function, along with examples, can be
found in Section 4.1. Let t 2 ⌃

⇤ be a string of a log T , ⇢ and � two characters in
the alphabet ⌃ and d an integer, ranging from �|t| to |t|, where |t| is the length of t.
Thereupon, we have the following formulae.

�(T, ⇢,�, d) =
X

t2T

�

�

�

n

i : t[i] = ⇢ ^ 9i . t[j] = � ^ j = i+ d
o

�

�

�

(2a)

�(T, ⇢,�,+1) =

X

t2T

�

�

�

n

i : t[i] = ⇢ ^ @j . t[j] = � ^ i < j
o

�

�

�

�(T, ⇢,�,�1) =

X

t2T

�

�

�

n

i : t[i] = ⇢ ^ @j . t[j] = � ^ i < j
o

�

�

�

�(T, ⇢,�,±1) =

X

t2T

�

�

�

n

i : t[i] = ⇢ ^ @j . t[j] = � ^ j 6= i
o

�

�

�

�!(T, ⇢,�) =
X

t2T

�

�

�

n

k : t[i] = ⇢ ^ t[k] = ⇢ ^ t[j] = � ^

@l . t[l] = � ^ i < l < j
o

�

�

�

(2b)

� (T, ⇢,�) =
X

t2T

�

�

�

n

l : t[i] = ⇢ ^ t[l] = � ^ t[j] = � ^

@k . t[k] = ⇢ ^ i < k < j
o

�

�

�

(2c)

�(T, ⇢, n) =
�

�

�

n

t 2 T : 9i1, i2, . . . , in .
^

m2[1,n]

t[im] = ⇢ ^
^

m,p2[1,n]
m 6=p

t[im] 6= t[ip] ^

@in+1 . t[in+1
] = ⇢ ^

^

m2[1,n]

in+1 6= im
o

�

�

�

(2d)

↵(T, ⇢) =
�

�

�

n

t 2 T : t[1] = ⇢
o

�

�

�

(2e)

!(T, ⇢) =
�

�

�

n

t 2 T : t[|t|] = ⇢
o

�

�

�

(2f)

From �(T, ⇢, n) we also derive the total number of occurrences of ⇢ in the log:

�(T, ⇢) =
X

n> 0

�(T, ⇢, n) · n

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

App–4 C. Di Ciccio and M. Mecella

A.3. Support Functions for Computing the Probability of Constraints
Table VIII reports the functions computing the support for constraints in MINERful.
In the following, we discuss their validity as suitable estimates for assessing whether
constraints hold true in the process: we show that each function expresses the proba-
bility of a constraint to hold true, according to classical definition of Laplace:9 the ratio
of cases favorable to the constraint, to the number of all cases possible. The favorable
and total cases are taken from the analysis of a log. As required from the definition,
we assume that “none of the cases occurs more than any other”, i.e., we consider them
equally possible.

The cases favorable to the constraints derive from the semantics of constraints them-
selves, as described in Section A.1. Indeed, applying the interpretation function

⇣

�t
,t·
⌘

explained in Section A.1 to the FOL predicates of expressions 1a–r, we obtain the fol-
lowing formulae determining whether a trace (string) t complies to a constraint.

t |= �t
,tInit(⇢) i↵ t[1] = ⇢ (3a)

t |= �t
,tEnd(⇢) i↵ t[|t|] = ⇢ (3b)

t |= �t
,tParticipation(⇢) i↵ 9i. t[i] = ⇢ (3c)

t |= �t
,tAtMostOne(⇢) i↵ 9i. t[i] = ⇢ ! @j. j 6= i ^ t[j] = ⇢ (3d)

t |= �t
,tRespondedExistence(⇢,�) i↵ 8i. t[i] = ⇢ ! 9j. t[j] = � ^ i 6= j (3e)

t |= �t
,tResponse(⇢,�) i↵ 8i. t[i] = ⇢ ! 9j. t[j] = � ^ i < j (3f)

t |= �t
,tAlternateResponse(⇢,�) i↵ 8i. t[i] = ⇢ ! 9j. t[j] = � ^ i < j ^

@l. t[l] = � ^ i < l < j !
@k. t[k] = ⇢ ^ i < k < j (3g)

t |= �t
,tChainResponse(⇢,�) i↵ 8i. t[i] = ⇢ ! 9j. t[j] = � ^ j = i+ 1 (3h)

t |= �t
,tPrecedence(⇢,�) i↵ 8j. t[j] = � ! 9i. t[i] = ⇢ ^ i < j (3i)

t |= �t
,tAlternatePrecedence(⇢,�) i↵ 8j. t[j] = � ! 9i. t[i] = ⇢ ^ i < j ^

@k. t[k] = ⇢ ^ i < k < j !
@l. t[l] = � ^ i < l < j (3j)

t |= �t
,tChainPrecedence(⇢,�) i↵ 8j. t[j] = � ! 9i. t[i] = ⇢ ^ i = j + 1 (3k)

9cf. Pierre-Simon de Laplace: Théorie analytique des probabilités. Paris, 1812: the probability of an event
is the ratio of the number of cases favorable to it, to the number of all cases possible when nothing leads us
to expect that any one of these cases should occur more than any other, which renders them, for us, equally
possible.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes App–5

t |= �t
,tCoExistence(⇢,�) i↵

�t
,tRespondedExistence(⇢,�) ^

�t
,tRespondedExistence(�, ⇢) (3l)

t |= �t
,tSuccession(⇢,�) i↵

�t
,tResponse(⇢,�) ^

�t
,tPrecedence(⇢,�) (3m)

t |= �t
,tAlternateSuccession(⇢,�) i↵

�t
,tAlternateResponse(⇢,�) ^

�t
,tAlternatePrecedence(⇢,�) (3n)

t |= �t
,tChainSuccession(⇢,�) i↵

�t
,tChainResponse(⇢,�) ^

�t
,tChainPrecedence(⇢,�) (3o)

t |= �t
,tNotCoExistence(⇢,�) i↵ (8i. t[i] = ⇢ ! @j. t[j] = � ^ i 6= j) ^

(8i. t[j] = � ! @i. t[i] = ⇢ ^ i 6= j) (3p)

t |= �t
,tNotSuccession(⇢,�) i↵ (8i. t[i] = ⇢ ! @j. t[j] = � ^ i < j) ^

(8i. t[j] = � ! @i. t[i] = ⇢ ^ i < j) (3q)

t |= �t
,tNotChainSuccession(⇢,�) i↵ (8i. t[i] = ⇢ ! @j. t[j] = � ^ j = i+ 1) ^

(8j. t[j] = � ! @i. t[i] = ⇢ ^ j = i+ 1) (3r)

A.4. Init and End

↵(T, ⇢) (Formula 2e) and !(T, ⇢) (Formula 2f) count the number of strings t in log T
complying to, resp., Init(⇢) and End(⇢). It comes immediately from the comparison of
Formulae 3a (3b) and 2e (2f). Therefore, ↵(T, ⇢) and, resp., !(T, ⇢) count the number of
favorable cases to Init(⇢) and End(⇢). Given log T , the total number of cases is the size
of the log itself. This leads to the Support functions of Init(⇢) and End(⇢), i.e., resp.,

↵(T, ⇢)

|T | and
!(T, ⇢)

|T |
(cf. Table VIII).

A.5. Participation
We recall here that the probability of an event A, P (A), is equal to 1 � P (

¯A) where ¯A
is the complement of A. Therefore, we may want to consider the following:

t |= �t
,t¬Participation(⇢) i↵ @i. t[i] = ⇢

From the definition of �(T, ⇢, n) (Formula 2d), we have that

�(T, ⇢, 0) =
�

�

�

n

t 2 T : @i : t[i] = ⇢
o

�

�

�

Hence, �(T, ⇢, 0) counts the number of cases favorable to ¬Participation(⇢). Thus,

1� �(⇢, 0)

|T |
is a suitable Support function for Participation(⇢).

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

App–6 C. Di Ciccio and M. Mecella

A.6. AtMostOne

From the definition of �(T, ⇢, n) (Formula 2d), we have that

�(T, ⇢, 1) =
�

�

�

n

t 2 T : 9i1 : t[i1] = ⇢ ^ @i2 . t[i2] = ⇢ ^ i2 6= i1
o

�

�

�

Given two FOL formulae � and , (i) the logic implication � ! is derived by
disjunction and negation as ¬� _ , and (ii) � _ ⌘ � _ ^ ¬�, we can rewrite the
Formula 3d as follows:

t |= �t
,tAtMostOne(⇢) i↵ @i. t[i] = ⇢

| {z }

cf. �(T,⇢,0)

_ 9i. t[i] = ⇢ ^ @j. j 6= i ^ t[j] = ⇢
| {z }

cf. �(T,⇢,1)

As highlighted in the Formula, the first term of the disjunction is captured by
�(T, ⇢, 0), counting the favorable cases. �(T, ⇢, 1) counts the cases that are favorable
to the second term. The two terms represent mutually exclusive conditions. We recall
that if A and B are mutually exclusive events, P (A [B) = P (A) + P (B). Therefore,

�(T, ⇢, 0)

|T | +

�(T, ⇢, 1)

|T | =

�(T, ⇢, 0) + �(T, ⇢, 1)

|T |
properly computes Support of AtMostOne(⇢).

A.7. RespondedExistence, Response and Precedence

Following the procedure of Section A.5, we negate Formulae 3e, 3f and 3i as a first step.
Remembering that ¬8� ⌘ 9¬� and that ¬(� _) ⌘ ¬� ^ ¬ , we have the following:

t |= �t
,t¬RespondedExistence(⇢,�) i↵ 9i. t[i] = ⇢ ^ @j. t[j] = � ^ i 6= j

t |= �t
,t¬Response(⇢,�) i↵ 9i. t[i] = ⇢ ^ @j. t[j] = � ^ i < j

t |= �t
,t¬Precedence(⇢,�) i↵ 9j. t[j] = � ^@i. t[i] = ⇢ ^ i < j

Given the four Formulae 2a, we see that, resp., �(T, ⇢,�,±1)), �(T, ⇢,�,+1)) and
�(T,�, ⇢,�1)) count the favorable cases for RespondedExistence(⇢,�), Response(⇢,�)
and Precedence(⇢,�) in the log.

We highlight here that the indexes, where ⇢ (for RespondedExistence(⇢,�) and
Response(⇢,�)) and � (for Precedence(⇢,�)) appear in the string, are counted, instead
of the entire strings. This is a different approach with respect to the computation
of Support for Existence Constraints, seen in Sections A.4, A.5 and A.6. This is due
to the fact that we might have favorable and unfavorable cases within the same
string. For instance, a string like aabac has two favorable cases and an unfavor-
able one for Response(a, b). Therefore, as the total number of cases, we do not con-
sider the number of strings in the log, but rather the number of occurrences of ⇢ (for
RespondedExistence(⇢,�) and Response(⇢,�)) and � (for Precedence(⇢,�)) in the log – i.e.,
�(T, ⇢) and, resp., �(T,�).

Consequently,

1� �(T, ⇢,�,±1)

�(T, ⇢)
, 1� �(T, ⇢,�,+1)

�(T, ⇢)
and 1� �(T,�, ⇢,�1)

�(T,�)

are proper Support functions for, resp., RespondedExistence(⇢,�), Response(⇢,�) and
Precedence(⇢,�).

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes App–7

A.8. AlternateResponse and AlternatePrecedence

The negations of Formulae 3g and 3j can be reformulated and expanded as follows.
Considering that i < k < l < j |= i < j, we have:

t |= �t
,t¬AlternateResponse(⇢,�) i↵ 9i. t[i] = ⇢ ^ (@j. t[j] = � ^ i < j _

@l. t[l] = � ^ i < l < j ^
9k. t[k] = ⇢ ^ i < k < j)

t |= �t
,t¬AlternatePrecedence(⇢,�) i↵ 9j. t[j] = � ^ (@i. t[i] = ⇢ ^ i < j _

@k. t[k] = ⇢ ^ i < k < j ^
9l. t[l] = � ^ i < l < j)

Applying the property according to which � _ ⌘ � _ ^ ¬� and the distributivity
of the logical conjunction over logical disjunction, we have the equivalent following
Formulae:

t |= �t
,t¬AlternateResponse(⇢,�) i↵ 9i. (t[i] = ⇢ ^ @j. t[j] = � ^ i < j) _

(t[i] = ⇢ ^ 9j. t[j] = � ^ i < j ^
9l. t[l] = � ^ i < l < j ^
9k. t[k] = ⇢ ^ i < k < j)

t |= �t
,t¬AlternatePrecedence(⇢,�) i↵ 9j. (t[j] = � ^ @i. t[i] = ⇢ ^ i < j) _

(t[j] = � ^ 9i. t[i] = ⇢ ^ i < j ^
@k. t[k] = ⇢ ^ i < k < j ^
9l. t[l] = � ^ i < l < j)

The preceding Formulae are thus both divided into a disjunction between two mutually
exclusive conditions. The favorable cases for the first terms of the disjunctions are resp.
counted by �(T, ⇢,�,+1)) and �(T,�, ⇢,�1)) (see Formulae 2a and Section A.7). The
favorable cases for the second terms of the disjunctions are resp. counted by �!(T, ⇢,�)
and � (T, ⇢,�) – cf. Formulae 2b and 2c. Delving more into the detail, �!(T, ⇢,�) and
� (T, ⇢,�) do not count the number of times a ⇢ occurs before at least another ⇢ pre-
ceding the nearest � (resp., the number of times a � appears after at least another �
following the nearest ⇢). It counts the occurrences of ⇢’s (�’s) between the two charac-
ters, instead. However, the reader can easily verify that the two approaches lead to the
same result.

According to the given explanation,

1� �!(T, ⇢,�) + �(T, ⇢,�,+1)

�(T, ⇢)
and 1� � (T, ⇢,�) + �(T,�, ⇢,�1)

�(T, ⇢)

are proper Support functions for, resp., AlternateResponse(⇢,�) and
AlternatePrecedence(⇢,�).

A.9. ChainResponse and ChainPrecedence

Given the definition of �(T, ⇢,�, d) (Formula 2a), we have the following, resp. assigning
d the values 1 and �1:

�(T, ⇢,�, 1) =
X

t2T

�

�

�

n

i : t[i] = ⇢ ^ 9j . t[j] = � ^ j = i+ 1

o

�

�

�

�(T,�, ⇢,�1) =
X

t2T

�

�

�

n

i : t[i] = � ^ 9j . t[j] = ⇢ ^ j = i� 1

o

�

�

�

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

App–8 C. Di Ciccio and M. Mecella

Therefore, comparing the preceding Formulae with Formulae 3h and 3k, it follows that
they count the favorable cases for ChainResponse(⇢,�) and ChainPrecedence(⇢,�). The
total number of cases for ChainResponse(⇢,�) is given by �(T, ⇢), and the total number
of cases for ChainPrecedence(⇢,�) is given by �(T,�). Thus,

�(T, ⇢,�, 1)

�(T, ⇢)
and

�(T,�, ⇢,�1)
�(T,�)

are proper Support functions for, resp., ChainResponse(⇢,�) and ChainPrecedence(⇢,�).

A.10. CoExistence, Succession, AlternateSuccession and ChainSuccession

All the Mutual Relation constraints, such as CoExistence(⇢,�), are such that if either
⇢ or � occur in the string, then the constraint has an effect on the string. When ⇢ or
� appear in the string, indeed, CoExistence(⇢,�) imposes that resp. � or ⇢ appear at
least once in the string as well. RespondedExistence(⇢,�), instead, does not constrain a
string where no ⇢’s appear. This is the reason why the total number of cases for Mutual
Relation constraints has to include the occurrences of both ⇢ and �:

�(T, ⇢) + �(T,�)

Given this, we can consider the unfavorable cases of CoExistence(⇢,�) as the sum
of unfavorable cases for RespondedExistence(⇢,�) and RespondedExistence(�, ⇢) (see Sec-
tion A.7), since, as stated in Formulae 1l and 3l, CoExistence(⇢,�) is the conjunction of
the two:
�(T, ⇢,�,±1) + �(T,�, ⇢,±1)

Therefore,

1� �(T, ⇢,�,±1) + �(T,�, ⇢,±1)

�(T, ⇢) + �(T,�)

is a proper Support function for CoExistence(⇢,�).
As stated in Formulae 1m and 3m, the unfavorable cases for Succession(⇢,�) are

those which can be considered unfavorable to Response(⇢,�) and Precedence(⇢,�). Fol-
lowing the same rationale of the Support function for CoExistence(⇢,�) and referring
to Section A.7, we have that

1� �(T, ⇢,�,+1) + �(T,�, ⇢,�1)

�(T, ⇢) + �(T,�)

is a proper Support function for Succession(⇢,�).
For the same reason, though considering the unfavorable cases for

AlternateResponse(⇢,�) and AlternatePrecedence(⇢,�), we have that

1� �!(T, ⇢,�) + �(T, ⇢,�,+1) + � (T, ⇢,�) + �(T,�, ⇢,�1)

�(T, ⇢) + �(T,�)

is a proper Support function for AlternateSuccession(⇢,�) (cf. Formulae 1n, 3n and Sec-
tion A.8).

�(T, ⇢,�, 1) + �(T,�, ⇢,�1)
�(T, ⇢) + �(T,�)

is a proper Support function for ChainSuccession(⇢,�) since the numerator counts the
favorable cases for ChainResponse(⇢,�) and ChainPrecedence(⇢,�) (cf. Formulae 1o, 3o
and Section A.9), i.e., the constraints that ChainSuccession(⇢,�) is the conjunction of.
Therefore, there is no need to subtract the result to 1.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes App–9

A.11. NotCoExistence, NotSuccession and NotChainSuccession

Comparing Formula 3p to the specification of �(T, ⇢,�,±1) (Formula 2a) and For-
mula 3q to the specifications of �(T, ⇢,�,+1) and �(T, ⇢,�,�1) (Formula 2a), it imme-
diately comes to evidence that �(T, ⇢,�,±1)+ �(T,�, ⇢,±1) counts the favorable cases
for NotCoExistence(⇢,�), as well as �(T, ⇢,�,+1) + �(T,�, ⇢,�1) counts the favorable
cases for NotSuccession(⇢,�). In Section A.9, we derived the specification of �(T, ⇢,�, 1)
and �(T,�, ⇢,�1). Considering Formula 3r, we have that �(T, ⇢,�, 1) + �(T,�, ⇢,�1)
counts the unfavorable cases for NotChainSuccession(⇢,�), since:

t |= �t
,t¬NotChainSuccession(⇢,�) i↵ (9i. t[i] = ⇢ ! 9j. t[j] = � ^ j = i+ 1) _

(9j. t[j] = � ! 9i. t[i] = ⇢ ^ j = i+ 1)

Therefore,
�(T, ⇢,�,±1) + �(T,�, ⇢,±1)

�(T, ⇢) + �(T,�)
,

�(T, ⇢,�,+1) + �(T,�, ⇢,�1)

�(T, ⇢) + �(T,�)
and

1� �(T, ⇢,�, 1) + �(T,�, ⇢,�1)
�(T, ⇢) + �(T,�)

are proper Support functions for, resp., NotCoExistence(⇢,�), NotSuccession(⇢,�) and
NotChainSuccession(⇢,�).

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

App–10 C. Di Ciccio and M. Mecella

B. PROOF OF COMPLEXITY RESULTS
Here we present some formal proofs about the complexity of the proposed technique
(cf. Sections 4.3 and 4.4).

LEMMA B.1. The procedure for building the knowledge base of MINERful is (i) lin-
ear time w.r.t. the number of strings in the log, (ii) quadratic time w.r.t. the size of strings
in the log, (iii) quadratic time w.r.t. the size of the alphabet; therefore, the complexity is
O(|T | · |t

max

|2 · |⌃|2).
PROOF. The outermost cycle (line 4) is repeated exactly |T | times, the following

inner cycle (line 11) is executed |t| times for each t 2 T . In the worst case, i.e., assuming
that each string is as long as the longest one, it loops |t

max

| times, where |t
max

| =

max

t2T |t|. Actually, the pair of loops let the instructions be repeated exactly
P

t2T |t|
times, where T is likely to be the most significant part of the input, in terms of size.
At line 15, we have a cycle whose number of repetitions grows as new characters are
found in the analyzed string. The number of loops depends on the size of the string
|t| and on the size of the alphabet ⌃ at the same time. In fact, we might assume that
each character read was not found before in the string. Therefore, as soon as a new
character is read, one more loop is made. We might argue that the instructions in the
block are executed 1 + 2 + 3 + · · · + |t| times as the cursor in the string moves on. If it
were so, loops starting at line 11 and line 15 had run at most

|t|⇥ (|t|+ 1)

2

times, as in the formula for counting the sum of the first |t| natural numbers. However,
the maximum amount of “new” characters is bounded by the characters we can actually
have. Therefore, it runs at most 1+2+3+ · · ·+ |⌃| times assuming the worst case, i.e.,
all the characters of ⌃ in every string. Therefore, we have to subtract the number of
loops that are not executed due to the limitation of the alphabet size (if the alphabet
size is smaller than the size of the strings, which is likely). Let:

�|t|,|⌃| = |t|� |⌃|
Thus, the number of loops is equal to:

|t|⇥ (|t|+ 1)

2

� �|t|,|⌃| ⇥ (�|t|,|⌃| + 1)

2

·⇥(�|t|,|⌃| � 1)

where ⇥(x) is the Heaviside step function. The function returns either 1 or 0. Specifi-
cally, it returns 1 if �|t|,|⌃| > 1, i.e., if |t| > |⌃|+ 1. Otherwise, its value is 0. Therefore,
if |t| < |⌃| + 1, the second term of the above equation is removed. Thus, if |t| > |⌃| + 1

we can reduce the preceding equation to the following:

2|⌃||t|� |⌃|2 + |⌃|
2

=

2�|t|,|⌃||⌃|+ |⌃|
2

6 |⌃||t|

Depending on the condition at line 16, the algorithm enters one of the two innermost
loops, one starting at line 17, the other at line 26.

The first is executed exactly |⌃|� 1 times, regardless of the outer cycles. The second
loop cycles as many times as a character is repeated along the string. If we had strings
composed by concatenations of the same character (the worst case for the second cycle)
after a prefix comprising the whole alphabet (the worst case for the first cycle), this
would lead to |t| loops, asymptotically.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes App–11

The instructions in the bodies of the loops are readings and writings in memory.10

Therefore, they are deemed as irrelevant, for what the complexity of the algorithm is
concerned.

Summing up this computation analysis, we have that the worst-case complexity of
the algorithm is

O

0

B

@

|T |
|{z}

loop at 4

|t
max

||⌃|
| {z }

loops at 11 and 15

0

B

@

|⌃|
|{z}

loop at 17

+ |t
max

|
| {z }

loop at 26

1

C

A

1

C

A

LEMMA B.2. The procedure for discovering the constraints of processes out of MIN-
ERful knowledge base, along with their Support, Confidence Level and Interest Factor
is (i) quadratic in time w.r.t. the size of the alphabet, (ii) linear in time w.r.t the number
of constraint templates, which is fixed and equal to 18 (thus, constant); therefore, the
complexity is O(|⌃|2).

PROOF. Algorithm 4 executes two nested cycles: the outer from line 3 to line 28,
the inner, from line 11 to line 26. Inside them both, only mathematical operations are
performed. The number of such operations is fixed and amounts to the quantity of
constraint templates that MINERful discovers. In addition, calculi are performed on
top of a fixed number of entries in MINERfulKB, depending on the parameters for
functions in Table VIII. Both loops are executed for each character in the alphabet.
The complexity of CALCMETRICSFORCONSTRAINTS is O(|⌃|2), then. The number of
entries in bag B+ is O(|⌃|2) as well.

Algorithm 5 begins with the cloning of that bag (line 2). Therefore, it is a O(|⌃|2) pro-
cedure by itself. Afterwards, each element in the clone of B+ is subject to some checks
and modifications. The cycle from line 3 to line 34 iterates O(|⌃|2) times. Remember-
ing what stated in the explanation of the procedure, the functions invoked (hasParent ,
getParent , etc.) can be considered as invocations of an oracle, being based on the knowl-
edge about semantics of the constraint templates and not on MINERfulKB. The loop
from line 7 to line 9 is executed, at most, a limited number of times. Such limit does
not depend on the input, but on the hierarchy of subsumptions in the constraint tem-
plates. By visual inspection of Figure 1 or Table IX, it is evident that such limit is fixed
and less than or equal to 4. Thus, CLEANOUTPUT is O(|⌃|2) too.

Finally, Algorithm 6’s complexity is affected by the iteration on the elements of B+.
Hence, it is O(|⌃|2) like the other two procedures. Therefore, DISCOVERCONSTRAINTS
is a O(|⌃|2) algorithm.

THEOREM B.3. The MINERful algorithm is (i) linear time w.r.t. the number of
strings in log, (ii) quadratic time w.r.t. the size of strings in the log, (iii) quadratic time
w.r.t. the size of the alphabet; therefore, the complexity is O(|T | · |t

max

|2 · |⌃
T

|2).
PROOF. Directly follows from Lemmata B.1 and B.2.

10The computational effort for searching a datum in temporary data structures such as N can be disregarded.
This is because we can take advantage of hashing functions, which make the read and write operations 0(1).
The usage of hashing functions is doable as: (i) we can exploit the alphanumeric ordering function for sorting
the pairs of characters, and (ii) the alphabet of characters is known a priori.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

App–12 C. Di Ciccio and M. Mecella

C. TECHNICAL DETAILS ON THE ANALYSIS OF DISCOVERED PROCESSES
In this Section of the Appendix, we provide the full tables reporting the results of com-
parative tests conducted on MINERful and Declare Maps Miner [Maggi 2013]. The
input for experiments were a synthetic log and a real-life log extracted from email con-
versations [Di Ciccio and Mecella 2013a]. Results are listed in Table XVII and XVIII,
respectively. In order to ease the reading of those Tables, here we report a legend.

Support %. The threshold for the Support parameter of MINERful and Declare
Maps Miner, in percentage.
Confidence. The threshold for the Confidence parameter of MINERful and Declare
Maps Miner.
Interest Factor. The threshold for the Interest Factor parameter of MINERful and
Declare Maps Miner.
Constraints. The number of constraints in the mined process.
Cn’s per activity. The average number of constraints per activity, in the mined pro-
cess.
Fitness. The level of Fitness assessed for the discovered process, as computed by
Declare Replayer [Buijs et al. 2012; de Leoni et al. 2012].
Meet/min %. The Meet/min coefficient for the set of MINERful and Declare Maps
Miner’s discovered constraints, in percentage [Deza and Deza 2006].
Jaccard %. The Jaccard coefficient for the sets of MINERful and Declare Maps
Miner’s discovered constraints, in percentage [Deza and Deza 2006].
Sørensen-Dice %. The Sørensen-Dice coefficient for the sets of MINERful and De-
clare Maps Miner’s discovered constraints, in percentage [Deza and Deza 2006].

In particular, naming MINERful and Declare Maps Miner’s discovered sets as, resp.,
B

M

and B
D

, we have that:

— Jaccard coefficient is defined as |BM\BD|
|BM[BD| ,

— Sørensen-Dice coefficient is defined as 2·|BM\BD|
|BM |+|BD| ,

— Meet/min coefficient is defined as |BM\BD|
min {|BM |,|BD|} .

For Confidence and Interest Factor thresholds, four symbols denote their value,
namely:

x. The lower end of the range.
y. The rounded-up value for the first third of the range.
yy. The rounded-up value for the second third of the range.
yyy. The upper end of the range.

The range is fixed on the basis of minimum and maximum possible values of Confi-
dence (resp. Interest Factor) that actively altered the resulting discovered control flow.
The range changes according to (i) the tool (either MINERful or Declare Maps Miner),
(ii) the related Support threshold set, and (iii) whether it refers to Confidence or Inter-
est Factor. The range for both Confidence and Interest Factor is fixed in MINERful and
equal to [0.0, 1.0], regardless of Support threshold. For Declare Maps Miner instead,
Confidence can vary from 0 to 100, whereas Interest Factor possibly ranges from 0 to
a maximum value that changes according to the process. Furthermore, it may exceed
100. However, neither Confidence nor Interest Factor affect the result if their respec-
tive thresholds are lower than Support threshold. Thus, their range has been rescaled
from the given Support threshold to the maximum allowed. For instance, when Sup-
port threshold is assigned 94 for Declare Maps Miner, the minimum value for Confi-

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes App–13

dence and Interest Factor is considered 94, as 94 and every other lower value do not
affect the result. Therefore, we considered a range for Confidence equal to [94, 100] and
rescaled the rounded-up value for the first and second third of the range accordingly:
respectively, 96 and 98. The maximum Interest Factor for the email log was 201. Then,
we fixed the range to [94, 201] and assigned 130 and 166 to resp. the rounded-up first
and second third of the range. Because of this, when Support threshold is equal to 100,
Confidence can be only equal to 100, whereas Interest Factor ranges from 100 to 201. As
said, the rescaling is not necessary for MINERful. See Tables XV and XVI for further
details.

Decl.M.M. MINERful

Su
pp

or
t%

Le
ve

l

C
on

fid
en

ce
%

In
te

re
st

Fa
ct

or

C
on

fid
en

ce
%

In
te

re
st

Fa
ct

or
%

91 x 91 91 0 0

y 94 98 34 34

yy 97 105 37 37

yyy 100 111 100 100

94 x 94 94 0 0

y 96 100 34 34

yy 98 106 37 37

yyy 100 111 100 100

97 x 97 97 0 0

y 98 102 34 34

yy 99 107 37 37

yyy 100 111 100 100

100 x 100 100 0 0

y 100 104 34 34

yy 100 107 37 37

yyy 100 111 100 100

Table XV: Confidence and Interest
Factor values chosen for thresh-
olds in the experiments, when
mining the synthetic log.

Decl.M.M. MINERful

Su
pp

or
t%

Le
ve

l

C
on

fid
en

ce
%

In
te

re
st

Fa
ct

or

C
on

fid
en

ce
%

In
te

re
st

Fa
ct

or
%

91 x 91 91 0 0

y 94 128 34 34

yy 97 165 37 37

yyy 100 201 100 100

94 x 94 94 0 0

y 96 130 34 34

yy 98 166 37 37

yyy 100 201 100 100

97 x 97 97 0 0

y 98 132 34 34

yy 99 167 37 37

yyy 100 201 100 100

100 x 100 100 0 0

y 100 134 34 34

yy 100 168 37 37

yyy 100 201 100 100

Table XVI: Confidence and In-
terest Factor values chosen for
thresholds in the experiments,
when mining the email log.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

App–14 C. Di Ciccio and M. Mecella

MINERful Declare M. Miner Similarity

Su
pp

or
t%

C
on

fid
en

ce

In
te

re
st

Fa
ct

or

C
on

st
ra

in
ts

C
n’

s
pe

r
ac

ti
vi

ty

Fi
tn

es
s

C
on

st
ra

in
ts

C
n’

s
pe

r
ac

ti
vi

ty

Fi
tn

es
s

M
ee

t/m
in

%

Ja
cc

ar
d

%

Sø
re

ns
en

-D
ic

e
%

91 x x 83 10.375 0.926 24 3.000 0.992 95.833 27.381 42.991

91 x y 83 10.375 0.926 23 2.875 0.996 86.957 23.256 37.736

91 x yy 50 6.250 0.977 8 1.000 0.996 87.500 13.725 24.138

91 x yyy 7 0.875 1.000 8 1.000 0.996 42.857 25.000 40.000

91 y x 83 10.375 0.926 23 2.875 0.994 95.652 26.190 41.509

91 yy x 50 6.250 0.977 21 2.625 0.996 85.714 33.962 50.704

91 yyy x 7 0.875 1.000 19 2.375 0.996 85.714 30.000 46.154

94 x x 52 6.500 0.979 19 2.375 0.996 94.737 33.962 50.704

94 x y 52 6.500 0.979 17 2.125 0.999 88.235 27.778 43.478

94 x yy 37 4.625 0.987 6 0.750 0.999 83.333 13.158 23.256

94 x yyy 7 0.875 1.000 6 0.750 0.999 50.000 30.000 46.154

94 y x 52 6.500 0.979 17 2.125 0.999 94.118 30.189 46.377

94 yy x 37 4.625 0.987 15 1.875 0.999 86.667 33.333 50.000

94 yyy x 7 0.875 1.000 15 1.875 0.999 85.714 37.500 54.545

97 x x 40 5.000 0.996 17 2.125 0.999 94.118 39.024 56.140

97 x y 40 5.000 0.996 6 0.750 0.999 83.333 12.195 21.739

97 x yy 32 4.000 0.996 6 0.750 0.999 83.333 15.152 26.316

97 x yyy 7 0.875 1.000 6 0.750 0.999 50.000 30.000 46.154

97 y x 40 5.000 0.996 15 1.875 0.999 100.000 37.500 54.545

97 yy x 32 4.000 0.996 15 1.875 0.999 86.667 38.235 55.319

97 yyy x 7 0.875 1.000 15 1.875 0.999 85.714 37.500 54.545

100 x x 27 3.375 1.000 13 1.625 1.000 100.000 48.148 65.000

100 x y 27 3.375 1.000 4 0.500 1.000 75.000 10.714 19.355

100 x yy 21 2.625 1.000 4 0.500 1.000 75.000 13.636 24.000

100 x yyy 7 0.875 1.000 4 0.500 1.000 75.000 37.500 54.545

100 y x 27 3.375 1.000 13 1.625 1.000 100.000 48.148 65.000

100 yy x 21 2.625 1.000 13 1.625 1.000 84.615 47.826 64.706

100 yyy x 7 0.875 1.000 13 1.625 1.000 85.714 42.857 60.000

Table XVII: Discovered constraints and Fitness of processes mined out of a synthetic
log by resp. MINERful and Declare Maps Miner.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

On the Discovery of Declarative Control Flows for Artful Processes App–15

MINERful Declare Maps Miner Similarity

Su
pp

or
t%

C
on

fid
en

ce

In
te

re
st

Fa
ct

or

C
on

st
ra

in
ts

C
n’

s
pe

r
ac

ti
vi

ty

Fi
tn

es
s

C
on

st
ra

in
ts

C
n’

s
pe

r
ac

ti
vi

ty

Fi
tn

es
s

M
ee

t/m
in

%

Ja
cc

ar
d

%

Sø
re

ns
en

-D
ic

e
%

91 x x 188 14.462 0.822 44 3.385 1.000 100.000 23.404 37.931

91 x y 113 8.692 0.923 5 0.385 1.000 40.000 1.724 3.390

91 x yy 41 3.154 0.967 5 0.385 1.000 40.000 4.545 8.696

91 x yyy 5 0.385 1.000 5 0.385 1.000 40.000 25.000 40.000

91 y x 116 8.923 0.859 44 3.385 1.000 68.182 23.077 37.500

91 yy x 97 7.462 0.928 44 3.385 1.000 59.091 22.609 36.879

91 yyy x 7 0.538 1.000 44 3.385 1.000 57.143 8.511 15.686

94 x x 171 13.154 0.965 44 3.385 1.000 100.000 25.731 40.930

94 x y 96 7.385 0.977 5 0.385 1.000 40.000 2.020 3.960

94 x yy 32 2.462 0.992 5 0.385 1.000 40.000 5.714 10.811

94 x yyy 5 0.385 1.000 5 0.385 1.000 40.000 25.000 40.000

94 y x 99 7.615 0.977 44 3.385 1.000 68.182 26.549 41.958

94 yy x 82 6.308 0.977 44 3.385 1.000 59.091 26.000 41.270

94 yyy x 7 0.538 1.000 44 3.385 1.000 57.143 8.511 15.686

97 x x 163 12.538 0.995 44 3.385 1.000 100.000 26.994 42.512

97 x y 89 6.846 0.995 5 0.385 1.000 40.000 2.174 4.255

97 x yy 29 2.231 0.995 5 0.385 1.000 40.000 6.250 11.765

97 x yyy 5 0.385 1.000 5 0.385 1.000 40.000 25.000 40.000

97 y x 92 7.077 0.995 44 3.385 1.000 68.182 28.302 44.118

97 yy x 75 5.769 0.995 44 3.385 1.000 59.091 27.957 43.697

97 yyy x 7 0.538 1.000 44 3.385 1.000 57.143 8.511 15.686

100 x x 161 12.385 1.000 44 3.385 1.000 100.000 27.329 42.927

100 x y 87 6.692 1.000 5 0.385 1.000 40.000 2.222 4.348

100 x yy 27 2.077 1.000 5 0.385 1.000 40.000 6.667 12.500

100 x yyy 5 0.385 1.000 5 0.385 1.000 40.000 25.000 40.000

100 y x 90 6.923 1.000 44 3.385 1.000 68.182 28.846 44.776

100 yy x 73 5.615 1.000 44 3.385 1.000 59.091 28.571 44.444

100 yyy x 7 0.538 1.000 44 3.385 1.000 57.143 8.511 15.686

Table XVIII: Discovered constraints and Fitness of processes mined out of the email-
based log by resp. MINERful and Declare Maps Miner.

ACM Transactions on Management Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Pre-print copy of the accepted manuscript by ACM
(available at dl.acm.org)

identified by DOI: 10.1145/2629447

This document is a pre-print copy of the accepted manuscript
Di Ciccio and Mecella [2015]

published by ACM
(available at dl.acm.org).

The final version of the paper is identified by the following DOI:
10.1145/2629447

References

Claudio Di Ciccio and Massimo Mecella. On the discovery of declarative con-
trol flows for artful processes. ACM Trans. Manage. Inf. Syst., 5(4):24:1–
24:37, 2015.

BibTeX

@Article{ DiCiccio.Mecella/ACMTMIS2015:DiscoveryDeclarativeControl,

title = {On the Discovery of Declarative Control Flows for Artful

Processes},

author = {Di Ciccio, Claudio and Mecella, Massimo},

journal = {ACM Trans. Manage. Inf. Syst.},

year = {2015},

number = {4},

pages = {24:1--24:37},

volume = {5},

doi = {10.1145/2629447},

issn = {2158-656X},

keywords = {MailOfMine, process mining, artful processes, control-flow

discovery, declarative process model},

publisher = {ACM}

}

View publication statsView publication stats

http://dl.acm.org/
http://dx.doi.org/10.1145/2629447
https://www.researchgate.net/publication/276164466

