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Abstract We present a control framework for achiev-
ing encirclement of a target moving in 3D using a
multi-robot system. Three variations of a basic control
strategy are proposed for di↵erent versions of the en-
circlement problem, and their e↵ectiveness is formally
established. An extension ensuring maintenance of a
safe inter-robot distance is also discussed. The proposed
framework is fully decentralized and only requires lo-
cal communication among robots; in particular, each
robot locally estimates all the relevant global quanti-
ties. We validate the proposed strategy through simu-
lations on kinematic point robots and quadrotor UAVs,
as well as experiments on di↵erential-drive wheeled mo-
bile robots.

Keywords Distributed Robot Systems, Motion Con-
trol, Multi-robot Decentralized Control, Encirclement,
Escorting, Entrapment.

1 Introduction

The general problem of steering a group of mobile ag-
ents/robots in a regular and cohesive formation is an
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important topic in robotics because of the large num-
ber of potential applications. As such, it has been often
considered in the research literature.

Early works on this topic focus on basic tasks such
as aggregation and obstacle avoidance. Leonard and
Fiorelli (2001) use virtual points to change the forma-
tion shape and to address collision avoidance. The per-
formance of a swarm that approaches a goal maintain-
ing cohesion is analyzed by Gazi and Passino (2002) de-
pending on the attractive and repulsive control profiles.
A study of the convergence depending on the topology
of the communication graph is considered by Moreau
(2005), while Lin et al. (2005) place the ↵�stability con-
cept at the basis of a fixed-topology algorithm, and Ren
(2007a) applies consensus results to formation control.

Gonçalves et al. (2011), Sabattini et al. (2010, 2013)
and Hsieh et al. (2008) present methods based on ar-
tificial potentials or fields to make a group of robots
circulate along a static curve defined by two implicit
functions. Turpin et al. (2012) show that it is possible to
solve an optimization problem online (i.e., at each con-
trol step) in order to drive a multi-UAV system along
a pre-planned reference trajectory.

Many authors have investigated formation con-
trollers for specific tasks. An important example in this
category is the encirclement of a point or target. De-
spite its relative simplicity, this task represents several
interesting missions, such as coverage (retrieve and fuse
data about an environmental point-of-interest from dif-
ferent viewpoints), patrolling (guard the perimeter of a
given area centered at the encircled point), escorting
(protect an important member of the group from un-
friendly agents) and entrapment (contain the motion of
a hostile object).

The problem of moving a group of unicycles in a
regular formation around a common point is consid-
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ered by Sepulchre et al. (2007). A related approach is
presented by Moshtagh et al. (2009) where a central-
ized vision system is used for the experimentation. En-
circlement with relative bearing sensors is investigated
by Ceccarelli et al. (2008). The convergence of a decen-
tralized controller is proven using Lyapunov arguments
in Sadowska et al. (2012), while other authors develop
controllers based on cyclic pursuit-evasion schemes
(Pavone and Frazzoli, 2007; Hara et al., 2008) and con-
sensus techniques (Jönsson and Kao, 2010). Lan and
Lin (2010) propose a decentralized hybrid controller for
encircling and tracking a moving target using multiple
unicycles, under the assumption that the velocity of the
target is known.

Some works rely on a centralized approach to the
problem. For example, in Antonelli et al. (2008) a global
vision system provides the configuration of each robot
to a centralized controller based on input-output lin-
earization. Similarly, Mas et al. (2009) propose a cen-
tralized system in which measurements are expressed
in a world frame and cluster space control is used. An
additive robot-level obstacle avoidance term introduces
some decentralization in the system.

In other works, additional challenges (e.g., higher di-
mensional problem, disturbances) have been introduced
w.r.t. the basic encirclement problem. Kawakami and
Namerikawa (2009) prove the stability of a decentral-
ized controller for a multi-robot system moving in a 3D
space. A di↵erent problem is considered by Mellish and
Paley (2010), who design a backstepping controller for
stabilizing a circular formation in a uniform flow field.
Shames et al. (2010) present a control law that steers
two-dimensional agents on a fixed regular-polygon for-
mation.

In this paper, we introduce a new type of decentral-
ized encirclement controller. In particular, three varia-
tions of a basic control strategy are proposed for di↵er-
ent versions of the encirclement problem, and their ef-
fectiveness is formally established. The most significant
contributions of the proposed approach with respect to
the literature are the following:

– the applicability to both 3D (spatial) and 2D (pla-
nar) encirclement without modifications;

– an integrated scheme for estimating in a decentral-
ized way all the global quantities needed by the con-
trol law;

– a provably e↵ective strategy for inter-robot collision
avoidance;

– an extensive numerical validation showing applica-
bility of the method to both holonomic point robots
and underactuated UAVs;

– an experimental implementation on nonholonomic
ground vehicles using only onboard sensors (i.e.,
without any external localization system).

In particular, the last point shows that our approach
is viable and robust in a realistic setting, in which each
robot must estimate all quantities needed by the encir-
clement controller using only information gathered by
its own sensory system. In particular, there is no need
for an external tracking system, such as a GPS or a
motion capture system.

While some of these properties were individually
achieved in previous works with di↵erent controllers, we
present here a self-contained and comprehensive work
that covers all the aspects of the encirclement problem:
theoretical analysis, control design, discussion, simula-
tions, and experimental validation with onboard-only
sensors. We believe that this feature represents a con-
tribution, per se, in addition to each single contribution.

The main novelties of this paper with respect to our
previous related work (Franchi et al., 2010b) are the fol-
lowing: (i) extension of the controller to the 3D case (ii)
integration of a decentralized mechanism for maintain-
ing a safe inter-robot distance (iii) decentralized esti-
mation of the global quantities (iv) new simulation and
experiments, including the case of 3D aerial vehicles.

The paper is organized as follows. Section 2 dis-
cusses the encirclement problem and formulates its
three versions considered in the paper. Section 3 in-
troduces the encirclement controllers, while Section 4
describes an extension that guarantees maintenance of
a safe inter-robot distance. Section 5 presents simula-
tion results with 3D point robots and quadrotor UAVs,
as well as experimental results with di↵erential-drive
ground robots. Section 6 concludes the manuscript and
hints at some future work.

2 Problem Formulation

For the convenience of the reader, we have collected in
Table 1 the main symbols to be used in the paper.

Consider a system of mobile robots and a target
moving in a 3D space. The target can be an inanimate
object, another robot, or even a living agent. The task
assigned to the multi-robot system is to encircle the tar-
get, i.e., move around it in a regular circular formation,
often referred to as splay state formation (Sepulchre
et al., 2008). The problem can be reformulated in 2D,
if needed, by assuming that robots and target always
move on the same plane and discarding the orthogonal
coordinate to that plane.

The robots are modeled as n kinematic 3D points
R1, . . . , Rn. Denoting the position of Ri in the inertial
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n number of robots

Ri i-th point robot

W inertial frame

pi 2 R3 cartesian position of Ri in W
ui 2 R3 cartesian velocity input for Ri

T representative point of the target

Ni the neighbor set of robot i

T target frame

pT 2 R3 cartesian position of T in W
RT 2 SO(3) rotation matrix from W to T

qi = (⇢i �i zi)T position of Ri in T in cylindrical
coordinates

⇢i 2 R+
0 radius of Ri in T

�i2[0, 2⇡) phase of Ri in T
zi 2 R height of Ri in T
vi = q̇i cylindrical velocity input for Ri

�̄i average between the phases

of the successor and the predeces-
sor of Ri

�i half-di↵erence between the phases

of the successor and the predeces-
sor of Ri

�i di↵erence between the phases of Ri

and its predecessor

⇢
⇤ desired encirclement radius

! encirclement angular speed

!
⇤ desired encirclement angular speed

s escape window

C2Rn⇥n circulant matrix with first row�
0 1

2
0 · · · 0 1

2

�

D2Rn⇥n circulant matrix with first row�
0 � 1

2
0 · · · 0 1

2

�

H2Rn⇥n circulant matrix with first row

(0 0 0 · · · 0 � 1)

1 2 Rn (1 · · · 1)T

0 2 Rn (0 · · · 0)T

b 2 Rn (�⇡ 0 · · · 0 ⇡)T

g 2 Rn (⇡ 0 · · · 0 ⇡)T

h 2 Rn (2⇡ 0 · · · 0 0)T

� 2 Rn vector of robot phases

�̄ 2 Rn vector of phase averages

� 2 Rn vector of phase half-di↵erences

� 2 Rn vector of consecutive phase
di↵erences

e� 2 Rn phase error vector

⇠i constant forcing term for Ri

⇠̄ average of the forcing terms

⌘̂i estimate of a generic global quantity
⌘

computed by Ri

�min(t) mini �i(t)

r safety radius of the robots

Dij inter-distance between Ri and Rj

Table 1: Main symbols used in the paper

world frame W by pi 2 R3, each robot is modeled as a
first-order dynamical system of the form

ṗi = ui, i = 1, . . . , n, (1)

where ui is the velocity control input. Note that the
number n is not known to the robots, and will not be
directly used in any of the control laws to be designed,

Using a fully actuated kinematic model for the
robots allows to focus on the design of decentralized
control laws for achieving the encirclement task rather
than on the specific dynamics of the robot. On the other
hand, our control method will still be applicable to a
large class of robots. In fact, the cartesian trajectories
generated by the ideal model (1) can be e↵ectively used
as reference for any mobile robot provided that at least
one point Pi of the robot can asymptotically track any
(smooth) trajectory. A su�cient condition for this is
that the position of Pi is (part of) a set of linearizing
outputs for the robot; in this case, in fact, there ex-
ists a feedback transformation such that the position
of Pi is produced by a chain of input-output integra-
tors (Isidori, 1995). Relevant examples include:

– the majority of wheeled mobile robots, and in par-
ticular di↵erential-drive and car-like vehicles, in
which feedback linearization of the position of suit-
able 2D points of the robot body can be obtained
via static or dynamic feedback (Oriolo et al., 2002);

– helicopter and quadrotor UAVs, where dynamic
feedback linearization of the 3D center of mass can
be achieved (Nieuwstadt and Murray, 1998; Mistler
et al., 2001);

– more in general, all di↵erentially flat systems (Fliess
et al., 1995) in which the flat outputs include the
cartesian position of a point.

The e↵ectiveness of this approach will be illustrated
in Sect. 5, where we will report simulations on quadro-
tor UAVs and experiments on di↵erential-drive mobile
robots.

In the following, we also assume that each robot i

can communicate with a subset of robots, denoted
by Ni (the neighbor set), which implicitly defines the
communication graph. The communication graph can
change arbitrarily over time with the only constraint
that connectivity is preserved. Since the communica-
tion graph is connected, each robot can in principle
exchange information with any other robot, e.g., using
a suitable routing strategy (Gui et al., 2009). Neverthe-
less, for the sake of scalability and decentralization, all-
to-all information exchange should be avoided as much
as possible in multi-robot algorithms. In particular, all
the controllers to be presented in the paper can be im-
plemented provided that each robot can communicate
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Fig. 1: Geometrical setting for the encirclement problem: perspective view (left) and side view (right). The target to be encircled
is represented as a balloon whereas the robots are helicopters. Note the cylindrical coordinates and the robot ordering defined
by the phase angles.

with two other members of the group, regardless of its
size. We will come back on this important aspect in
Section III-E.

Consider a representative point T of the target. The
encirclement task requires that R1, . . . , Rn to converge
to a regular circular formation centered at T and ly-
ing on a plane passing through T , called encirclement

plane, whose orientation is assigned. We consider then
a target frame T centered at T and such that the plane
XT -YT coincides with the encirclement plane. Since the
target may move, and a time-varying orientation may
be assigned to the encirclement plane, T is in general
a moving frame.

A natural formulation of the encirclement problem
is obtained by using cylindrical (rather than cartesian)
coordinates centered at T as robot configuration vari-
ables. In particular, with reference to Fig. 1, let

qi = (⇢i �i zi)
T
,

where ⇢i is the distance between T and the orthogo-
nal projection of Ri on the encirclement plane XT -YT ,
�i is the angle between XT and the line joining that
projection with T , and zi is the distance between Ri

and XT -YT . We will call the coordinates ⇢i, �i, and
zi respectively the radius, phase, and height of the i-th
robot.

The cylindrical coordinates qi can be easily com-
puted from the cartesian coordinates pi. To this end,
define the following scalar functions of a generic posi-
tion vector p = (px py pz)T

⇢ : R3 ! R+
0 , ⇢(p) =

q
p2x + p2y (2)

� : R3 ! [0, 2⇡), �(p) = atan2(py, px) (3)

z : R3 ! R, z(p) = pz (4)

and the vector function

q : R3 ! R3
, q(p) = (⇢(p) �(p) z(p))T . (5)

We can then write

⇢i = ⇢

⇣
R

T
T (pi � pT )

⌘
(6)

�i = �

⇣
R

T
T (pi � pT )

⌘
(7)

zi = z

⇣
R

T
T (pi � pT )

⌘
, (8)

where RT is the rotation matrix from W to T and pT
is the position of T in W. In a compact form, we have

qi = q

⇣
R

T
T (pi � pT )

⌘
. (9)

In the following, it is assumed that the robot in-
dex i refers to the cyclic counterclockwise ordering of
the robots defined by their increasing phase angles at
the initial time instant t0 (see Fig. 1). Note that the
labeling defined by the phase ordering at time t0 is
never changed: that is, from the viewpoint of the generic
robot i, the identity of robot i � 1 (i + 1) is the same
throughout the motion, even if at time t > t0 the actual
predecessor (successor) in the phase ordering may be a
di↵erent robot.

Define the average between the phases of the suc-
cessor and the predecessor of the i-th robot as

�̄1 =
�2 + �n � 2⇡

2
(10)

�̄i =
�i+1 + �i�1

2
i = 2, . . . , n� 1 (11)

�̄n =
�1 + 2⇡ + �n�1

2
. (12)

We have now all the elements to state our basic
problem.
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Problem 1 (Encirclement). The encirclement task is

encoded by the following asymptotic conditions

lim
t!1

⇢i(t) = ⇢
⇤ (13)

lim
t!1

�i(t) = �̄i(t) (14)

lim
t!1

�̇i(t) = !, (15)

lim
t!1

zi(t) = 0 (16)

for all i = 1 . . . n. Here, ⇢⇤ and ! are respectively the

encirclement radius and encirclement angular speed,
identical for all robots.

We will consider three di↵erent versions of the ba-
sic encirclement problem entailed by (13–16). In all of
them, the encirclement radius ⇢⇤ is assigned in advance.
The three versions di↵er in the way the encirclement
angular speed ! in (15) is generated.

Encirclement Problem, Version 1: A desired angular
speed ! = !

⇤ is specified in advance.

In this version, the value of !⇤ typically corresponds
to a preferred cruise speed derived, e.g., from energy-
related considerations.

Encirclement Problem, Version 2: An escape window s

is assigned, defined as the time interval between two
consecutive passings of robots through a generic point
of the circle at steady state.

The practical motivation behind Version 2 of the en-
circlement problem could be to guarantee the e↵ective-
ness of the entrapment/escorting task by limiting the
possibility that the entrapped target escapes or that
the escort is penetrated by a hostile agent. In fact, s
may be interpreted as the time in which the circular
formation may be violated.

Encirclement Problem, Version 3: The robots must au-
tonomously agree on a certain value of the encirclement
angular speed !.

Version 3 is interesting from both the theoretical
and practical viewpoint since it gives the opportunity
to the multi-robot system to autonomously regulate its
cruise speed without the need for an external command.

3 Encirclement Control

We first establish some notation which will be useful
for analyzing the proposed control laws.

Throughout the paper, we denote with I the
n ⇥ n identity matrix, and with C,D,H the n ⇥ n

circulant matrices (Gray, 2006) with first rows
(0 1/2 0 · · · 0 1/2), (0 � 1/2 0 · · · 0 1/2), and
(0 0 0 · · · 0 � 1), respectively. Moreover, 1, 0, b, g,

and h are constant vectors whose definition is given
in Table 1. Finally, we aggregate the robot phases in
� = (�1 · · · �n)

T .
We can now define in a compact way three useful

vectors: �̄, �, and �. The first collects the phase aver-
ages �̄i, i = 1, . . . , n, already defined in (10–12):

�̄ =
�
�̄1 · · · �̄n

�T
= C�+ b.

The i-th component of the second vector � is the half-
di↵erence between the phases of the successor and the
predecessor of robot i (compare with (10–12)):

�1 =
�2 � �n + 2⇡

2
(17)

�i =
�i+1 � �i�1

2
i = 2, . . . , n� 1 (18)

�n =
�1 + 2⇡ � �n�1

2
. (19)

and the vector itself can be written as

� = (�1 · · · �n)
T = D�+ g.

Finally, define the consecutive phase di↵erences

�1 = �1 � �n + 2⇡ (20)

�i = �i � �i�1 i = 2, . . . , n (21)

and the third vector is defined as

� = (�1 · · · �n)
T = (H + I)�+ h.

We are now ready to address the design of encir-
clement control laws. The dynamics of the generic robot
in cylindrical coordinates is obtained from (9) and (1)
as:

q̇i = J i

⇣
Ṙ

T
T (pi � pT ) +R

T
T (ui � ṗT )

⌘
,

where J i = @q/@p|p=pi
is the Jacobian of the map

defined by (5), computed at pi. Therefore, by letting1

ui = ṗT +RT

⇣
J

�1
i vi � Ṙ

T
T (pi � pT )

⌘
(22)

the dynamics of the robot in cylindrical coordinates be-
come linear and decoupled

q̇i = vi. (23)

in the new control input vi = (⇢̇i �̇i żi)T .
We have the following straightforward result.

1 Note that matrix Ji is invertible whenever �i is defined,
i.e., unless the i-th robot is exactly above the target. This
zero-measure case represents a purely theoretical problem,
especially considering the presence of noise in the measure-
ments.
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Lemma 1 Letting

⇢̇i = k⇢(⇢
⇤ � ⇢i), (24)

żi = �kzzi, (25)

with k⇢, kz positive gains, ⇢i and zi exponentially con-

verge to ⇢
⇤
and 0, respectively, for any initial condition.

In other words, all robots will converge to the de-
sired circular trajectory centered at the target and lying
on the encirclement plane. Note that the evolution of
coordinates ⇢i and zi is not influenced by the motion of
the other robots. In Section 4, we shall modify eq. (24)
to guarantee that a safe inter-robot distance is main-
tained.

The choice of the second component of the control
input vi (i.e., �̇i) depends on which version of the encir-
clement problem is considered. The three versions are
analyzed in detail in the rest of this section.

3.1 Encirclement Control, Version 1

In Version 1 of the encirclement problem, a desired en-
circlement angular speed !

⇤ is assigned. Let the second
component of the control input vi be defined as

�̇i = !
⇤ + k�(�̄i � �i), (26)

where k� is a positive gain. We have the following result.

Proposition 1 (Controller 1, Desired Angular Speed).
The control law expressed by (22) and (24), (25), (26)

guarantees global exponential convergence of ⇢i to ⇢
⇤
,

�i to �̄i, �̇i to !
⇤
, and zi to 0, for any choice of ⇢

⇤
and

!
⇤
.

Proof. In Lemma 1 we have already established that ⇢i
and zi exponentially converge to ⇢

⇤ and 0, respectively.
In order to prove the rest of the thesis, it is su�cient
to show that the phase error vector

e� = �̄� � = (C � I)�+ b (27)

converges to 0. Rewrite (26) for the multi-robot system
as

�̇ = !
⇤
1+ k� e�, (28)

so that the error dynamics is obtained as

ė� = (C � I)�̇ = !
⇤(C � I)1+ k�(C � I)e�.

Since �(C � I) can be interpreted as the Laplacian
matrix of the undirected ring with weights 1/2, we
conclude the proof by following closely the theory of
consensus protocol (see, e.g. Olfati-Saber and Murray
(2004)). In particular, note the following facts:

– 1
T (C � I) = (C � I)1 = 0;

– ker(C � I) = span{1};
– C � I has a single zero eigenvalue and n� 1 nega-

tive real eigenvalues (hence, it is is negative semidef-
inite).

The error dynamics becomes then

ė� = k�(C � I)e�.

Writing the free evolution of this linear system in spec-
tral form and using the aforementioned properties of
C � I it is easy to conclude that

lim
t!1

e� = (1T
e�(0))1 =

�
1
T (C � I)�(0) + 1

T
b
�
1 = 0,

and that convergence is exponential. In view of (26),
this also implies that �̇i tends exponentially to !

⇤, and
the proof is complete.

Note that, independently on the value of n, robot i
only needs to communicate with robot i � 1 and i + 1
(whose identity has been defined at t0) to implement
Controller 1.

3.2 Encirclement Control, Version 2

In Version 2 of the encirclement problem the robots are
assigned a steady-state escape window s, which would
require an asymptotic angular speed ! = 2⇡/n s. How-
ever, since n is unknown, the robots must compute a
decentralized estimate of this number, denoted by n̂.

In particular, each robot computes its own current
estimate as n̂i = 2⇡/�i, and correspondingly a desired
angular speed !i = 2⇡/n̂i s = �i/s, with �i given
by (17–19). This is used as a feedforward term in (26)
in place of !⇤, leading to the following control law for
the robot phase:

�̇i = �i/s+ k�(�̄i � �i). (29)

Proposition 2 (Controller 2, Desired Escape Win-
dow). The control law expressed by (22) and (24), (25),

(29) guarantees global exponential convergence of ⇢i to

⇢
⇤
, �i to �̄i, �̇i to 2⇡/n s, and zi to 0, for any choice

of ⇢
⇤
and s.

Proof. Let f = 1/s and write (29) for the multi-robot
system as

�̇ = f�+ k�(�̄� �).

The error dynamics is

ė� = (C � I)�̇ = f(C � I)(D�+ g) + k�(C � I)e�.
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Using the fact that C � I and D commute, and rear-
ranging terms, we get

ė� = (k�(C � I) + fD)e� + f((C � I)g �Db),

and since (C � I)g �Db = 0 we conclude that

ė� = (k�(C � I) + fD)e�.

It is easy to verify that matrix k�(C � I) + fD has
exactly the same properties2 ofC�I which were used in
the proof of Proposition 1. Therefore, we can once again
conclude that e� converges to 0, and this automatically
implies that �̂i converges to 2⇡/n and �̇i to 2⇡/ns. Note
that all variables converge exponentially.

The communication requirements of Controller 1 are
the same as Controller 2.

3.3 Encirclement Control, Version 3

In Version 3 of the encirclement problem the robots
must autonomously agree on a common value of the
angular speed !. To this end, we propose the following
dynamic control law for controlling the phase of the i-th
robot:

!̇i = k!(�̄i � �i), !i(t0) = 0 (30)

�̇i = !i + k�(�̄i � �i) + ⇠i, (31)

where k!, k� are positive gains and ⇠i is a nonnegative
constant forcing term. Denote by ⇠̄ =

Pn
i=1 ⇠/n the av-

erage of the forcing terms over the multi-robot system.
To prove that (30)–(31) achieve the desired control

objective we need a preliminary result.

Lemma 2 Consider a 2n⇥ 2n matrix of the form

A =

✓
0 k1I

B k2B

◆

where 0 is the n⇥n null matrix, I is the n⇥n identity

matrix, B is a n⇥n matrix, and k1, k2 are nonzero real

numbers. For any eigenvalue µ of B with eigenvector

u, the roots �1,2 of �
2 � k2µ�� k1µ, are eigenvalues of

A with eigenvectors
�
k1u

T
�1,2u

T
�T

.

Proof. In view of the structure of A, vector
�
v1

T
v2

T
�T

is an eigenvector of A associated to � if

k1v2 = �v1 (32)

Bv1 + k2Bv2 = �v2. (33)

2 It is a di↵erently weighted Laplacian of the undirected
ring.

Eq. (32) means that eigenvectors associated to � must

have the structure
�
k1v

T
�v

T
�T

. Setting v = u in this
structure, and substituting into (33) we obtain k1µu+
k2µ�u = �

2
u. The thesis follows.

The convergence result can now be established.

Proposition 3 (Controller 3, Angular Speed Consen-
sus). The control law expressed by (22) and (24), (25),

(30–31) guarantees global exponential convergence of ⇢i

to ⇢
⇤
, �i to �̄i, �̇i to ⇠̄, and zi to 0, for any choice of

⇢
⇤
.

Proof. Let ! = (!1 · · · !n)
T , ⇠ = (⇠1 · · · ⇠n)T and

define the angular frequency error (the reason for the
name will be clear at the end of the proof) as

e! = ! + ⇠ � ⇠̄1.

Writing (30), (31) for the multi-robot system we ob-
tain

!̇ = k!(�̄� �), !(t0) = 0

�̇ = ! + k�(�̄� �) + ⇠.

Now compute the dynamics of the error e = (eT� e
T
! )

T

ė =

✓
k!e�

(C � I)(! + u) + k�(C � I)e�

◆
=

=

✓
0 k!I

C � I k�(C � I)

◆✓
e!

e�

◆
= Ãe,

where we have used ⇠̄ = 1
T
⇠/n and (C � I)1 = 0. In

view of Lemma 2, the eigenvalues of Ã are computed
by solving �

2 � k�µ� � k!µ = 0, with µ eigenvalue of
C � I. We obtain thus

�1,2(µ) =
1

2

⇣
k�µ±

q
k2�µ

2 + 4k!µ
⌘
.

We recall (see the proof of Proposition 1) that C � I

has a single zero eigenvalue and n � 1 negative real
eigenvalues. In correspondence to µ = 0 we immediately
get �1,2(0) = 0, whereas a simple reasoning shows that
for any other eigenvalue µ < 0 we get �1,2(µ) < 0.

To conclude the proof, we show that the error e is
always orthogonal to the eigenspace of Ã associated to
the double eigenvalue in 0. This is a consequence of
three facts. First, it may be readily verified that such
eigenspace is A0 = span{(1T

0
T )T , (0T

1
T )T }. Second,

the orthogonal complement A?
0 of A0 is an invariant set

for the error dynamics, because for any w? 2 A
?
0 we

have
✓
1
T
0
T

0
T
1
T

◆
Ãw? =

✓
0
T
k!1

T

0
T

0
T

◆
w? =

✓
0
0

◆
,
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where we exploited twice the fact that 1T (C � I) = 0.
Finally, e(t0) belongs to A?

0 by construction, being both
1
T
e!(t0) = 0 and 1

T
e�(t0) = 0.

Wrapping up, the error e = (eT� e
T
! )

T converges to
zero. The convergence of e� to zero implies the con-
vergence of � to �̄, whereas the convergence of e! to
zero implies that !+⇠ converges to ⇠̄1, i.e., that �̇i con-
verges to ⇠̄ (see (31)). Once again, all variables converge
exponentially.

As the previous control laws, also Controller 3 can
be implemented on robot i provided that the phases of
robot i� 1 and i+ 1 are available via communication.

An interesting scenario for Controller 3 is considered
in the following

Corollary 1 Assume that all forcing terms ⇠i in (31)

are zero, with a single exception ⇠k 6= 0. Then, the k-th

robot acts as a leader by imposing ⇠k/n as encirclement

angular speed to the whole multi-robot system.

3.4 Decentralized Estimation of the Global Quantities

All the three proposed controllers hinge upon the feed-
back transformation (22) to linearize and decouple the
robot dynamics in cylindrical coordinates. To compute
such transformation, each robot should know the quan-
tities (pT , ṗT ) and (RT , ṘT ). While the first two (re-
spectively, position and velocity of the target point) can
in principle be measured or reconstructed by on-board
sensors, the last two are related to the desired orienta-
tion of the encirclement plane and, as such, are specified
by the task. Note that the robots are not required to
express the estimated global quantities in an absolute
frame of reference, being su�cient the agreement of all
robots on those quantities in a relative frame. Once
again, absolute measurements are not required, as also
proven in the experimental section.

We consider here the most challenging case, in which
only one of the robots is informed (i.e., knows the above
quantities), either by direct measurement or as part of
the task description. In order to propagate the neces-
sary information to the remaining n � 1 robots of the
group, we adopt a decentralized estimator based on the
consensus tracking algorithm proposed in Ren (2007b).

Denote with l the index of the informed robot that
knows pT , ṗT , RT , ṘT , and with ⌘ the generic scalar
component of these vector/matrix quantities. The i-th
robot computes an estimate ⌘̂i of ⌘ by using the follow-
ing algorithm:

˙̂⌘i =

(
⌘̇ + k⌘ (⌘ � ⌘̂i) i = l

avej2Ni( ˙̂⌘j) + k⌘avej2Ni(⌘̂j), i 6= l
(34)

where k⌘ is a positive constant, and avej2Ni(·) returns
the average of the estimates of the neighbors of robot i.
The following result holds.

Proposition 4. If the communication graph remains

connected, the multi-robot system can achieve decentral-

ized estimation of any time-varying quantity ⌘ known

by one robot using the algorithm (34); i.e., ⌘̂i globally

converges to ⌘, for i = 1 . . . n.

Proof. The adjacency graph underlying the problem
topology contains always a directed spanning tree with
robot 1 as unique root. Then, the convergence directly
follows from the proof of the consensus tracking algo-
rithm presented in Ren (2007b).

To apply (34), each robot should in principle know
the time derivatives of the estimates of its neighbors.
These quantities are needed to compute the feedfor-
ward term for tracking the time-varying signal ⌘. In
a practical (necessarily discrete-time) implementation,
the derivatives can be numerically computed using the
previous values of the estimates.

We emphasize that, as for any decentralized control
strategy that relies on recursive estimation of global
quantities, successful performance relies on the exis-
tence of a su�cient time-scale separation between the
dynamics of the consensus (i.e., of the estimation error)
and that of the controller. This assumption is generally
satisfied for ground vehicles, but may be more critical
for other kinds of robots (e.g., UAVs) that need fast
control response.

3.5 Communication and Scalability

It has been shown above that the proposed estimation-
control scheme works provided that the communication
graph remains connected over time. Indeed, the commu-
nication graph may even reduce to a tree, i.e., it may
contain as little as n� 1 edges.

In particular, the three proposed encirclement con-
trollers require that the i-th robot knows the phases of
the (i+1)-th and (i�1)-th robots. Since the communi-
cation graph is connected, this can always be guaran-
teed using multi-hop communication (Gui et al., 2009).
Therefore:

– the number of messages sent/received by each robot
per unit of time is constant, regardless of the number
n of robots;

– the total number of messages exchanged by the
whole multi-robot system per unit of time is linear
in the number n of robots.
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As for the estimation part, the number of robots
that need to know the global quantities (pT , ṗT ) and
(RT , ṘT ), either by direct measurement or as part of
the task description, is also O(1). In particular, in the
proposed approach it is su�cient that a single robot is
informed.

Altogether, the above remarks indicate that the pro-
posed approach for encirclement scales well with the
cardinality n of the multi-robot system, which — we
emphasize — is unknown to the robots.

4 Maintaining a Safe Distance

The objective of this section is to show how the pre-
viously described control approach can be extended to
guarantee that the moving robots never get closer to
each other than a specified distance. This can be used
for avoiding collisions among robots during the encir-
clement task.

In particular, we shall refer in the following to Con-
troller 1. We preliminary prove a phase preservation

property which will be instrumental in deriving the
main result.

4.1 Phase Preservation Property

Proposition 1 implies that under Controller 1 the robot
phases at steady state are in the same order as the ini-
tial phases (actually, the same is true under Controllers
2 and 3, as implied by Propositions 2 and 3, respec-
tively). The next result states that along the trajecto-
ries of (26) the initial ordering is actually maintained
at all instants of time.

Proposition 5. Consider the phase dynamics (26) and

initial conditions �i(t0) > 0, i = 1, . . . , n. Then:

1. �i(t) > 0, i = 1, . . . , n, for all t � t0;

2. the lower-bounding signal

�min(t) = min
i

�i(t) (35)

has the following properties:

(a) �min(t)  2⇡/n, for all t � t0;

(b) �min(t) is non-decreasing;

(c) �min(t) ! 2⇡/n as t ! 1.

Proof. Using (27) in (28), the phase dynamics for the
multi-robot system becomes

�̇ = k�(C � I)�+ !1+ k�b. (36)

In terms of consecutive phase di↵erences, we have

�̇ = (H + I)�̇

= k�(H + I)(C � I)�+ !(H + I)1+ k�(H + I)b

= k�(C�I)((H+I)�+h))+k�((H+I)b�(C�I)h)) =

= k�(C � I)�, (37)

where we exploited the fact that H + I and C � I

commute, that (H+I)1 = 0, and that (H+I)b�(C�
I)h = 0. Since k�(C � I) is a Metzler matrix (i.e., all
its o↵-diagonal terms are positive), eq. (37) represents a
positive system, and therefore the elements of � remain
positive during its evolution (see, e.g., Gurvits et al.
(2007)).

Concerning the properties of �min, note first that
a) is a consequence of

Pn
i=1 �i(t) = 2⇡ (by defini-

tion) together with �i(t) > 0, i = 1, . . . , n. Now de-
fine (t) = argmini �i(t), i.e., the index such that
�(t)(t) = �min(t). By definition �(t)±1(t) � �(t)(t)
and thus (37) implies

�̇min = k�

✓
1

2
(�(t)�1 + �(t)+1)� �(t)

◆
� 0,

which proves property b). Finally, the convergence to
2⇡/n, property c), descends directly from Proposi-
tion 1.

4.2 Su�cient Conditions for Safety

Denote by r > 0 the safety radius of the robots, which
represents the minimum acceptable clearance around
the robot representative point R. The safety radius may
be the actual radius of the robot (defined as the max-
imum distance between R and any other point of the
robot) or, typically, it may be further increased to pro-
vide a margin, e.g., for accepting trajectory tracking
errors (either during the transient or at steady-state
due to bounded disturbances). For simplicity, in the
following we call collision the situation in which the
inter-distance between the representative points of two
robots is less or equal to 2 r.

Below, we give conditions for statical safety, i.e.,
avoidance of collisions between stationary robots. These
will be used for designing a dynamically safe encir-
clement controller in Set. 4.3. Throughout the rest of
this section, refer to Fig. 2 for illustration.

The necessary and su�cient condition for avoiding
a collision (including simple contact) between robots
i and j is that their inter-distance is larger than the
above threshold, i.e.,

Dij = kpi � pjk > 2r,
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encirclement
plane

0

1

σ+
2r

σ

σ+
2r
+
ε

λ
(ρ
 , σ
)

Fig. 2: Illustration of the geometry for collision avoidance. Left: definition of relevant distances. Right: radial separation (Ri

and Rj) vs. phase separation (Ri and Rk).

which may be rewritten in cylindrical coordinates as
follows:

Dij =
q
⇢i

2 + ⇢j
2 � 2⇢i⇢j cos(�j � �i) + (zj � zi)2 � 2r.

(38)

Now denote by p̃i and p̃j the projections of pi and pj ,
respectively, on the encirclement plane and let

dij = kp̃i � p̃jk =
q
⇢i

2 + ⇢j
2 � 2⇢i⇢j cos(�j � �i).

We have

Dij � dij �
q
⇢i

2 + ⇢j
2 � 2⇢i⇢j = |⇢i � ⇢j |. (39)

On the other hand, letting ⇢
m
ij = min(⇢i, ⇢j) we may

also write

Dij � dij �
q
(⇢mij )

2 + (⇢mij )
2 � 2⇢mij⇢

m
ij cos(�j � �i) =

= ⇢
m
ij

q
2(1� cos(�j � �i)) =

= 2⇢mij

���sin
⇣

�j��i

2

⌘��� = d̃ij . (40)

We shall say that robots i and j are (see Fig. 2):

– radially separated if |⇢i � ⇢j | > 2r;
– phase separated if d̃ij > 2r, or equivalently

⇢
m
ij >

r

| sin ((�j � �i)/2) |
.

Proposition 6. If two robots are either radially or

phase separated, they are not in collision.

Proof. It is a direct consequence of using the two sepa-
ration definitions in (39) and (40), respectively.

Note that radial or phase separation are only suf-
ficient conditions for avoiding collision between two
robots; i.e., two robots that are neither radially nor
phase separated are not necessarily in collision. The
following proposition provides a su�cient condition for
safety of robot i, i.e., avoidance of collision with any
other robot.

Proposition 7. Define �(t) = r/| sin(�min(t)/2)|, with
�min given by (35). If the following condition holds

⇢i(t) � �(t) + 2r (41)

at a time instant t, then robot i is not in collision with

any other robot at t.

Proof. Assume that (41) holds (drop time dependence
for compactness), and consider any other robot j, j 6= i.
If ⇢j > ⇢i�2r then ⇢j > �, which implies ⇢mij > �. Since

� =
r

| sin(�min/2)|
� r

| sin((�j � �i)/2)|
we may conclude that ⇢

m
ij > r/| sin((�j � �i)/2)|; i.e.,

robot i and robot j are phase separated. On the other
hand, if ⇢j  ⇢i� 2r then ⇢i� ⇢j � 2r; i.e., robot i and
robot j are radially separated.

4.3 Safe Encirclement Control

Define the function �(⇢i,�) : R2 ! R as follows:

�(⇢i,�) =

8
<

:

0 if ⇢i < � + 2r
1 if ⇢i > � + 2r + "r

(⇢i � � � 2r)/"r otherwise,
(42)

where "r is any (small) positive constant. The profile
of � is shown in Fig. 2, right. The following proposi-
tion presents a collision-free extension of the controller
presented in Sect. 3.1.
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Proposition 8 (Controller 1⇤, Desired Angular Speed
with Collision Avoidance). Replace (24) in Controller 1

with

⇢̇i = �(⇢i,�) k⇢(⇢
⇤ � ⇢i), (43)

with � defined in Proposition 7 and � in (42). Then,
the control law expressed by (22) and (43), (25), (26):

1. ensures that no collision occurs among robots;

2. guarantees global exponential convergence of �i to

�̄i, �̇i to !
⇤
, and zi to 0, for any choice of !

⇤
; and

exponential convergence of ⇢i to ⇢
⇤
, provided that

a) ⇢
⇤
>

r
| sin(⇡/n)| + 2r;

b) ⇢i(t0) >
r

| sin(⇡/n)| + 2r;

c) |⇢i(t0)� ⇢j(t0)| � 2r, 8j = 1, . . . , n, j 6= i.

Proof. We shall prove the thesis in two parts.
Collision Avoidance: We first prove that the generic

i-th robot cannot collide with the j-th robot, 8j 6=
i. From Proposition 5 we know that �min is a non-
decreasing signal that converges to 2⇡/n, which im-
plies that � + 2r is a non-increasing signal that con-
verges to r/| sin(⇡/n)| + 2r from above. Since ⇢i(t0) >
r/| sin(⇡/n)| + 2r by hypothesis, and being ⇢̇i = 0 as
long as ⇢i < � + 2r, the first time instant ti such that
⇢i(ti) = �(ti) + 2r, is certainly finite, 8i = 1, . . . , n. At
ti, ⇢i is ‘reached’ from above by the signal � + 2r, and
for any t > ti it will be ⇢i(t) � �(t) + 2r. For t � ti,
therefore, condition (41) of Proposition 7 holds, and the
i-th robot cannot collide with any other robot.

Now consider a generic t < ti, and note that we have
⇢i(t) = ⇢i(t0). Partition the other robot indices in two
sets A(t) = {j | t � tj} and B(t) = {j | t < tj}. For j 2
A(t) it is t � tj and thus condition (41) of Proposition 7
holds with j in place of i; hence, the j-th robot cannot
collide with any other robot (in particular, with the i-th
robot). For j 2 B(t) it is t < tj and then ⇢j(t) = ⇢j(t0);
therefore, the j-th robot and the i-th robot are radially
separated by hypothesis and collisions are prevented
also in this case.

Convergence: We now prove that the regulation er-
rors converge to zero. Convergence of �i, �̇i and zi is
shown exactly as in Proposition 1. To prove convergence
of ⇢i to ⇢

⇤, we essentially exploit the fact that signal
⇢̃(t) + 2r (which determines the time-varying gain �

in (42)) converges to r/| sin(⇡/n)|+2r, and thus ⇢i cer-
tainly converges to ⇢

⇤, since both ⇢
⇤ and ⇢i(t0) are, by

hypothesis, larger than r/| sin(⇡/n)|+ 2r.
More in detail, the assumption ⇢

⇤
> r/| sin(⇡/n)|+

2r implies that ⇢⇤ = r/| sin(⇡/n)|+2r+"
⇤ for a certain

"
⇤
> 0. Now define the following quantity

⇢m,i = min{⇢⇤ � "⇤

2 , ⇢i(t0)},

which is larger than r/| sin(⇡/n)| + 2r by defini-
tion. Since ⇢̃(t) + 2r converges monotonically to
r/| sin(⇡/n)| + 2r from above, there certainly exists a
time instant t⇤i > t0 such that

⇢̃(t⇤i ) + 2r = ⇢m,i and ˙̃⇢(t⇤i ) < 0

so that ⇢̃(t) + 2r < ⇢m,i 8t > t
⇤
i .

For any t � t
⇤
i it is clearly ⇢i(t) � ⇢̃(t)+2r; i.e., ⇢i(t)

lies in the right half-line with origin at ⇢̃(t)+ 2r, which
contains also ⇢

⇤ by construction. The only two possible
equilibria of ⇢i after t⇤i (obtained imposing ⇢̇i = 0) are
therefore (1) ⇢i = ⇢̃(t) + 2r (which implies � = 0) and
(2) ⇢i = ⇢

⇤. The first equilibrium is unstable, since for
any ⇢i 2 (⇢̃(t) + 2r, ⇢⇤] it is d

dt (⇢� ⇢̃+ 2r) = ⇢̇� ˙̃⇢ > 0.
On the other hand, ⇢⇤ is asymptotically stable and its
region of attraction is the whole open interval (⇢̃(t) +
2r,+1).

To conclude the proof, let us look at the value of ⇢i
at t

⇤
i . If ⇢(t

⇤
i ) > ⇢̃(t⇤i ) + 2r, then ⇢i is already in the

region of attraction of ⇢⇤ and will then converge to it.
If instead ⇢(t⇤i ) = ⇢̃(t⇤i ) + 2r, then d

dt

��
t⇤i
(⇢� ⇢̃+ 2r) =

0 � ˙̃⇢(t⇤i ) > 0, which implies that ⇢̃ after t
⇤
i will leave

the unstable equilibrium ⇢� ⇢̃+ 2r to enter the region
of attraction of ⇢⇤.

A comparison of Proposition 8 with Proposition 1
shows that the price to pay for adding guaranteed col-
lision avoidance to Controller 1 is threefold. First, the
encirclement radius ⇢

⇤ cannot be too small (condition
a): its minimum admissible value depends on the num-
ber of robots and their radius r, and in particular the
higher n (or r), the higher ⇢

⇤. Second, the initial dis-
tance of each robot from the target cannot be too small
(condition b, and note that the threshold is the same of
condition a). Finally, all robots must be radially sepa-
rated at the start (condition c). Taken together, these
three requirements represent only a su�cient condition;
collision-free encirclement may be obtained even if one
(or more) of them is violated.

Note also that function (42) is only the simplest
choice for producing a gain � that varies continuously
between 0 and 1. Di↵erent choices (see Section 5.1)
can be considered if a smoother control law is desired;
Proposition 8 will still hold.

4.4 Decentralized Estimation of �(t)

The safe encirclement control law (43) requires the
knowledge of the globally defined quantity �(t). In or-
der to preserve decentralization and scalability of the
proposed approach, we show below how the generic i-
th robot can compute a decentralized estimate �̂i that
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can be used in place of � in the control law (43) while
preserving the validity of Proposition 8.

From the proof of Proposition 8, it is clear that if

lim
t!1

�̂i(t) = �(t) 8i, (44)

then the associated convergence properties still hold.
The proof additionally shows that if the estimates sat-
isfy

�(⇢, �̂i(t))  �(⇢,�(t)) 8i, 8t > t0, (45)

then the collision avoidance property is also preserved.
In view of the definition of � in (42), condition (45) can
be rewritten as

�̂i � �. (46)

Therefore, we shall synthesize �̂i so as to satisfy
both (44) and (46).

The proposed decentralized estimator for � has a
discrete-time structure. In particular, denoting by Tc

the control sampling time, consider the following basic
iteration:

�i[0]=⇢i(0)

�i[k + 1]=

(
⇢i(kTc) if k is a multiple of m

maxj2Ni {�i[k], �j [k]} otherwise,

where k is incremented every Tc seconds and m is any
integer larger than n � 1 (an upper bound on n for
the considered scenario is needed here). This scheme
achieves a finite-time agreement everymTc seconds, i.e.,

�i[m(k ÷m)] = max
j=1...n

⇢j((k �m)Tc),

where k÷m is the quotient of the division of k and m.
Each robot then updates its estimate �̂i of � as follows:

�̂i(kTc) =

(
1 if k < m

�i[m(k ÷m)] otherwise.
(47)

Note that in this case the estimation algorithm is
proposed in discrete time to account for multiple com-
munications steps during a single control step. As be-
fore, this decentralized estimation method can be im-
plemented under any connected communication topol-
ogy.

We have the following result.

Proposition 9. Assume that the estimates �̂i produced

by algorithm (47) are used in place of � to implement a

decentralized version of control law (43). Then the the-

sis of Proposition 8 is still valid; in particular, collision-

free encirclement with a desired speed is achieved.

Proof. We know from Proposition 5 that �min is
non-decreasing and converges to 2⇡/n. Thus, � is
non increasing and converges to the constant value
r/| sin(⇡/n)|. Exploiting this fact, it is straightforward
to prove that the estimates produced by the proposed
protocol satisfy both (44) (i.e., decentralized estimation
of �) and (46) .

5 Simulations and Experiments

This section describes the simulations and experiments
that have been performed in order to validate the pro-
posed encirclement controllers. See the multimedia ma-
terial attached to the paper for illustrative video clips.

5.1 Simulations with Kinematic 3D Point Robots

The first set of simulations involves systems of point
robots moving in 3D space. The objective is to test
the proposed encirclement controllers for di↵erent mo-
tions of the target and of the encirclement plane. The
global quantities (pT , ṗT ) and (RT , ṘT ) are always es-
timated via the algorithm (34), assuming that only one
robot in the whole group is informed about the global
quantities and that Ni = {i + 1, i � 1}. This is clearly
the worst-case scenario, since the presence of additional
communication links in the robot network would have
the e↵ect of accelerating the convergence of the esti-
mates to the correct values, and hence of the multi-
robot system to the encirclement steady state. f Fig-
ure 3 shows the result of a simulation where Controller 1
(Desired Angular Speed) is used with 10 point robots.
The desired encirclement values are set to ⇢

⇤ = 2 m and
!
⇤ = 0.8 rad/s. The target moves at constant velocity

ṗT = (0, 0.2, 0.2) m/s. The encirclement plane XT -YT
is oriented orthogonally to ṗT ; it translates because the
target moves but it does not rotate. The control gains
are k⇢ = 1, kz = 1.5 and k� = 2. As expected, the four
variables that encode the encirclement task according
to (13–16) converge exponentially to their desired value.

Figure 4 considers the same system of robots under
the action of Controller 2 (Desired Escape Window).
The desired encirclement values are set to ⇢

⇤ = 2 m
and s

⇤ = 0.78 s. The target is fixed but the encirclement
plane, which is initially horizontal, now rotates with an-
gular velocity !T = (0, 0.15, 0) rad/s. The control gains
are the same of the first simulation. Again, the encir-
clement task is achieved with exponential speed; note
in particular the convergence of the escape window s to
its desired value. At steady state, the robots move in a
regular formation along a great circle of the sphere of
radius ⇢⇤ centered in the target; this great circle rotates
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Fig. 3: 3D point robots, first simulation: Controller 1 (Desired Angular Speed) with 10 robots. (a),(b),(c),(d): Encirclement
error signals. (e),(f),(g): Projection of the robot trajectories on the coordinate planes (dashed: for t 2 [0, 10] s; solid: for
t 2 [10, 20] s). Robot positions at t = 0 s, t = 10 s, and t = 20 s are shown as red squares, green circles, and blue diamonds,
respectively.
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Fig. 4: 3D point robots, second simulation: Controller 2 (Desired Escape Window) with 10 robots. (a),(b),(c),(d): Encirclement
error signals. (e),(f),(g): Projection of the robot trajectories on the coordinate planes (dashed: for t 2 [0, 10] s; solid: for
t 2 [10, 20] s). Robot positions at t = 0 s, t = 10 s, and t = 20 s are shown as red squares, green circles, and blue diamonds,
respectively.

on the sphere over time due to the rotational motion of
the encirclement plane.

The third simulation (Fig. 5) refers to the same
robot system now subject to Controller 3 (Angular
Speed Consensus). The value of the encirclement radius
is again ⇢

⇤ = 2 m, while vector ⇠ of the forcing terms
is chosen randomly, resulting in ⇠̄ = 0.8 rad/s. The
target moves at constant velocity ṗT = (0.5, 0, 0) m/s;
at the same time, the encirclement plane, which is ini-
tially horizontal, rotates with angular velocity !T =
(0, 0.3, 0) rad/s. The control gains k⇢, kz, k� are the
same as before, whereas k! = 3. As before, the en-
circlement signal errors decay exponentially to zero; in
particular, the encirclement angular speed converges to

⇠̄. Since the motion of the encirclement plane is now
a full roto-translation, the robot trajectories tend to
become composite helical-spherical curves.

The final simulation is aimed at validating Con-
troller 1⇤ (Desired Angular Speed with Collision Avoid-
ance). To this end, we have considered a system of 5
circular robots of radius r = 0.25 m. Both the target
and the encirclement plane are now fixed. For simplic-
ity, it is assumed that all the robots start already on
the encirclement plane (zi = 0, 8i), so that their motion
is actually planar. As shown in Fig. 6, when the basic
Controller 1 is applied (in particular, when ⇢ is con-
trolled using (24)), two pairwise collisions occur during
the robots’ approach to the steady-state circular trajec-
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Fig. 5: 3D point robots, second simulation: Controller 3 (Angular Speed Consensus) with 10 robots. (a),(b),(c),(d): Encirclement
error signals. (e),(f),(g): Projection of the robot trajectories on the coordinate planes (dashed: for t 2 [0, 10] s; solid: for
t 2 [10, 20] s). Robot positions at t = 0 s, t = 10 s, and t = 20 s are shown as red squares, green circles, and blue diamonds,
respectively.
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Fig. 6: 3D point robots, fourth simulation: Encirclement control with 5 robots, with and without collision avoidance. (a),(c):
Robot trajectories and inter-robot distances with Controller 1; note the double collision. (b),(d): Robot trajectories and inter-
robot distances with Controller 1⇤ (Desired Angular Speed with Collision Avoidance).

tory: this is confirmed by the plot of the inter-distances
Dij , two of which go below the required threshold
of 2 r = 0.5 m. The application of Controller 1⇤, in
which (43) is used in place of (24), is instead successful;
in particular, the figure clearly shows how the controller
prevents radial motion towards the target until a su�-
cient phase separation is achieved. The global quantity
� is estimated as explained in Section 4.4.

To obtain a smoother behavior, a sinusoidal transi-
tion from 0 to 1 was used for � in place of the linear
transition entailed by (42).

5.2 Simulations with Quadrotor UAVs

To further validate our approach in a more realistic
scenario, a second simulation study was performed on
quadrotor UAVs. In particular, quadrotors are simu-
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Fig. 7: Quadrotor UAVs, first simulation: Some representative snapshots. a) The starting formation with the six quadrotors
hovering above the ground. b-d) Five quadrotors encircle the stationary quadrotor, which acts as target. e–h) The encirclement
continues with the target now moving on a line left to right. i–l) Final encirclement with the target stationary again but the
encirclement plane rotating. The arrows represent the reference velocity vector pi. The target plane is shown in red.

lated as rigid bodies with a mass of approximately
0.75 kg subject to four generalized forces (one thrust
and three torques) which are related to the rota-
tional speeds of the four rotors. To this end, Swarm-
SimX (Lächele et al., 2012) was used together with the
TeleKyb (Grabe et al., 2013) framework.

Clearly, a quadrotor cannot be modeled as a simple
integrator. However, its center of mass can track any
smooth trajectory because its position is (part of) a dif-
ferentially flat output. Therefore, we use the proposed
encirclement schemes to produce a reference trajectory
pi(t) for the center of mass of the i-th quadrotor, and
rely on the built-in tracking controller for generating
actual motion commands. In particular, each quadrotor
has a built-in trajectory tracking controller with a stan-
dard two-stage structure (see, e.g., Lee et al. (2013) for
details). The first stage (Cartesian controller) takes as
reference the trajectory pi(t) with its time derivatives3

ṗi(t) and p̈i(t), and generates the desired acceleration
of the center of mass via a simple PD + feedforward
controller:

acom,i = p̈i + kp(pi � pcom,i) + kd(ṗi � ṗcom,i), (48)

where pcom,i is the position of the center of mass of the
i-th quadrotor. In the second stage, acom,i is first con-
verted via the quadrotor model to the desired values of

3 Note that the first-order derivative ṗi = ui is directly
given by the general expression (22), whereas the second-
order derivative p̈i(t) is numerically computed.

roll, pitch and thrust that would generate such acceler-
ation given the current yaw; then, the desired values for
the roll and pitch angles are used as reference signals for
a PID attitude controller, which generates the torque
to be applied to the quadrotor through the propeller
rotational speeds. This simple cascaded approach for
trajectory tracking relies on the fact that the attitude
controller is much faster than the Cartesian controller.
However, since the former relies on approximate lin-
earization around zero roll and pitch angles, it is only
accurate for near-hovering trajectories. In such condi-
tions, this approach has been successfully employed in
practice (see, e.g., Franchi et al. (2012)).

In the simulations, five quadrotors are in charge of
the encirclement task while a sixth quadrotor (actually,
its center of mass) acts as target. Figure 7 summarizes
the results of a typical simulation, in which both the
target and the encirclement plane are first stationary;
then, the target moves at constant velocity; and finally
the encirclement plane rotates. Controller 1 (Desired
Angular Speed) is used for controlling the phase of the
quadrotors, with k⇢ = 0.5, kz = 0.5 and k� = 0.5. The
desired encirclement values are set to ⇢

⇤ = 2 m and
!
⇤ = 0.8 rad/s. Finally, the control gains in (48) are

set to kp = 9 and kd = 7.5. The quadrotors are able to
track the reference trajectory very closely, and therefore
the encirclement task is successfully executed.

To further show the robustness of the proposed
encirclement controllers to unmodeled dynamics, we
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Fig. 8: Quadrotor UAVs, second set of simulations under unmodeled perturbations. Each column (left, center, right) refers to
a di↵erent simulation. For each simulation, the two top plots above show the velocity of the target and the angular velocity of
the encirclement plane, whereas the four bottom plots show the evolution of the encirclement errors.

present a set of simulations in which the proportional
term of the quadrotor Cartesian controller is suppressed
by setting kp = 0 in (48). In addition, the encirclement
control law ui is computed at the actual position pcom,i

of the quadrotor rather than at the nominal position
pi. These modifications, aimed at emphasizing the non-
ideal behavior of the quadrotor with respect to the in-
tegrator dynamics, lead to the following Cartesian con-
troller:

acom,i = u̇i + kd(ui � ṗcom,i),

with u̇ computed numerically from ui. The values of
all the other controller gains are the same as in the
previous case, as well as the values of ⇢⇤ and !

⇤.

The results shown in Fig. 8 refer to three specific
cases:

1. pT and !T are both identically zero (first column);
2. pT is a rectangular impulse along the XW direction

and !T is identically zero (second column);
3. pT is identically zero and !T is a rectangular im-

pulse around the YW axis (third column).

In particular, note that the rotation of the encirclement
plane violates the near-hovering assumption implicit
in the design of the built-in trajectory controller. Al-
together, the plots of the encirclement errors confirm
that the proposed scheme is rather robust in practice,
as transient converge quickly and steady-state errors,
when present, are very small.
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5.3 Experiments with Di↵erential-Drive Robots

The proposed control framework for encirclement in 3D
space can be directly applied to the 2D case by as-
suming that the encirclement plane coincides with the
motion plane (this simply leads to zeroing the z coor-
dinate in all formulas). Accordingly, an experimental
validation of the proposed approach has been carried
out using a team of Khepera III wheeled mobile robots
Each of these small-size di↵erential-drive vehicles has
been equipped with a Hukuyo URG-04LX laser range
finder, that has an angular field-of-view of 240� and
thus leaves a blind zone of 120� behind the robot. Si-
multaneous calibration of odometric and sensor param-
eters was performed using the algorithm in Censi et al.
(2013). The built-in wi-fi card allows each robot to com-
municate with the others.

Experiments involve a total of five robots, one of
which acts as target (either stationary or moving) while
the others must achieve encirclement. Each robot in-
spects its own laser scan with a feature extraction algo-
rithm that looks for the typical indentations caused by
robots located inside the field of view, whose relative
positions with respect to the sensor is returned. These
instantaneous, anonymous measurements (the identity
of the detected robots is unknown) are then broadcast
to the other robots together with odometric data. Using
this information, each robot performs mutual localiza-
tion using the method of Franchi et al. (2010a, 2013),
thus obtaining an estimate of the relative position of
all the robots whose data it has received, now labeled
with their identity. This localization step is essential
for enabling each robot to localize other agents moving
in its blind zone, a situation which occurs invariably
during encirclement (e.g., at steady-state). Moreover,
thanks to the reconstruction of the robot identities, the
target can be readily identified. Altogether, our relative
localization module provides all the information needed
for implementing the encirclement controllers without
requiring an external tracking system.

Coming to the implementation of the controller, we
exploit the fact that — like quadrotors — di↵erential-
drive robots are di↵erentially flat systems, the flat out-
put being the midpoint between the two wheels. This
point can therefore track any smooth trajectory. As
before, we use the proposed encirclement schemes to
produce a reference trajectory pi(t) for the midpoint
of the i-th robot, and then use the trajectory track-
ing controller of Oriolo et al. (2002) to track it. The
whole framework has been implemented in MIP, a in-
house developed software platform specifically aimed at
multi-robot systems.

Fig. 9: Di↵erential-drive robots, first experiment: Some rep-
resentative snapshots. The target robot (shown enclosed in
a red circle) is stationary. a) The initial configuration of the
multi-robot system. b) When the three robots have achieved
the encirclement task, a fourth robot (4) is released. c) The
robots rearrange themselves in a rotating square formation.
d-e) Robot 4 is kidnapped and released at a di↵erent location.
f) The rotating square formation is recovered. g) Robot 4 is
removed. h) A triangular encirclement formation is achieved
again. i) Robot 2 is also removed. j) The two remaining robots
assume a dipolar encirclement formation.

In the first experiment, the target is stationary. Con-
troller 1⇤ (Desired Angular Speed with Collision Avoid-
ance) is used for achieving collision-free encirclement.
The desired values for the encirclement radius and an-
gular speed are ⇢

⇤ = 0.5 m and !
⇤ = 0.06 rad/s, re-

spectively, while the control gains are k⇢ = 0.1 and
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Fig. 10: Di↵erential-drive robots, first experiment: Encir-
clement accuracy in the various stages of the experiment, with
the desired rotating formation in each stage shown above the
plots. Top: for each robot, di↵erence between the current ra-
dius and the desired encirclement radius. Center: for each
robot, di↵erence between the current phase and the phase
of robot 1. Bottom: for each robot, di↵erence between the
current angular speed and the desired encirclement speed.

k� = 0.06. At the beginning of the experiment, sum-
marized in Fig. 9, the multi-robot system consists of
three robots that quickly achieve encirclement in a reg-
ular triangular formation. Another robot is then made
available, and the group automatically arranges itself
in a rotating square formation, which is momentarily
lost but promptly recovered when one of the robots is
kidnapped and released at a di↵erent location. Two of
the robots are then removed in sequence, causing the
encirclement formation to become first a triangle and
then a dipole.

A more quantitative evaluation of the first experi-
ment is given in Fig. 10. In particular, the performance
of the encirclement scheme is evaluated through the be-
havior of the radius, angular speed and phase of each
robot during the various stages of the experiment. Prac-
tical convergence of the first two quantities to the de-
sired values is confirmed, while the phase plots show
that the appropriate splay state formation is achieved
in each stage of the experiment. Note the quickly de-
caying transients at the start of the experiment and
whenever there is a discontinuity in the localization es-
timates: i.e., at the birth of a new estimate associated to
a robot being added to the group (time t1), at a jump
in the estimate of a robot kidnapped and released in

Fig. 11: Di↵erential-drive robots, second experiment: Some
representative snapshots. The target robot (shown enclosed
in a red circle) moves along a rectilinear path. Nevertheless,
encirclement is e↵ectively achieved.

a di↵erent location (time t2) or at the death of an es-
timate associated to a robot being removed from the
group (times t3 and t4).

This experiment proves the robustness of the pro-
posed encirclement controller, and in particular shows
the seamless operation of the overall framework in the
presence of a variable number of robots.

In the second experiment, the target robot moves
along a straight line with a constant velocity, with three
robots in charge of the encirclement task. As before,
this is achieved in a collision-free fashion by using Con-
troller 1⇤, with the same reference values and gains
of the previous experiment. The snapshots shown in
Fig. 11 confirm that the robots are e↵ectively able to
encircle the moving target while arranging themselves
in a rotating regular formation. As a result, each robot
moves along a generalized trochoid.

As for the previous simulations, video clips of these
two experiments are contained in the multimedia ma-
terial attached to the paper.

6 Conclusions

In this paper, we have formulated and solved the prob-
lem of encircling a target moving in 3D space using a
multi-robot system. In particular, three decentralized
controllers have been proposed for di↵erent versions of
the problem, and their e↵ectiveness has been formally
proven. An extension ensuring collision-free motion in
the case of finite-size robots has also been proposed.
Decentralized schemes for the estimation of the relevant
global quantities have also been designed to guarantee
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that each robot can implement its controller using local
information. The proposed strategy has been success-
fully validated through simulations on kinematic point
robots and quadrotor UAVs, as well as experiments on
di↵erential-drive wheeled mobile robots.

Future work will include:

– for the application to robots with complex dynam-
ics, the analysis of a reference trajectory generation
scheme based on continuous replanning;

– the formulation and solution of a 3D encirclement
problem on multiple planes, in which the robots
should tend to arrange themselves along the vertices
of a polyhedron;

– experimental validation on a team of quadrotors.
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