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Abstract: A novel method for the simultaneous determination of enniatins A, A1, B and B1 

and beauvericin, both in human urine and plasma samples, was developed and validated. The 

method consisted of a simple and easy pretreatment, specific for each matrix, followed by solid 

phase extraction (SPE) and detection by high performance liquid chromatography-tandem 

mass spectrometry with an electrospray ion source. The optimized SPE method was 

performed on graphitized carbon black cartridges after suitable dilution of the extracts, which 

allowed high mycotoxin absolute recoveries (76%–103%) and the removal of the major 

interferences from the matrix. The method was extensively evaluated for plasma and urine 

samples separately, providing satisfactory results in terms of linearity (R2 of 0.991–0.999), 

process efficiency (>81%), trueness (recoveries between 85% and 120%), intra-day 

precision (relative standard deviation, RSD < 18%), inter-day precision (RSD < 21%) and 

method quantification limits (ranging between 20 ng·L−1 and 40 ng·L−1 in plasma and 

between 5 ng·L−1 and 20 ng·L−1 in urine). Finally, the highly sensitive validated method was 

applied to some urine and plasma samples from different donors. 
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1. Introduction 

Mycotoxins present a wide range of adverse effects for consumer health, including carcinogenic, 

mutagenic, estrogenic and immunosuppressive effects [1]. Among the genera capable of producing 

mycotoxins in several commodities [2], Fusarium species are probably the most prevalent toxin-producing 

fungi of the temperate regions of America, Europe and Asia [3]. 

Governmental authorities from different nations have general concerns regarding the harmful effects 

of mycotoxins on human and animal health. Therefore, maximum levels (MLs) have been set in different 

food products for mycotoxins with recognized adverse effects, such as trichothecenes A and B, aflatoxins, 

zearalenone, ochratoxin A, patulin and fumonisins [4]. Furthermore, tolerable daily intake (TDI) or 

provisional TDI values have been established by the Scientific Committee on Food and the Joint 

FAO/WHO Expert Committee on Food Additives [5]. In addition to the regulated mycotoxins, currently, 

attention to the risks posed to human and animal health has also been extended to other potential 

mycotoxin contaminants, such as the so-called “emerging” Fusarium mycotoxins, especially the 

structurally-related enniatins (ENs) and beauvericin (BEA) [2,6]. The importance of setting legislative 

measures for ENs and BEA is mainly due to their recently recognized toxicity, as proven by in vitro 

studies on several cell lines [7–9], including human cells. For the moment, no reports are available for 

the toxicity in humans, while in vivo preliminary studies on animals showed no observable adverse 

effects in the treated animals [10,11]. On the other hand, recent studies concerning ENs and BEA 

occurrence in a wide range of cereal grains (wheat, barley, rye and oat) and their products have been 

carried out [12–15]. Results from these studies showed a common mycotoxin co-occurrence, ranging 

from a few to several thousand mg·kg−1. The actions of these co-occurring mycotoxins within the body 

represent an interesting subject, because synergistic, antagonistic or additive effects could occur. 

Regarding mycotoxin interactions, Prosperini et al. [9] studied the viability of Caco-2 cells evidencing 

that interactions among different mixtures of ENA, ENA1, ENB and ENB1 could produce a general 

additive effect. 

Regulatory limits have not been established for these fusariotoxins, yet. In this regard, exposure 

assessment represents the main difficulty, as this cannot be done as long as available data are too limited 

and methods not accurate enough. Recently, the European Food Safety Authority (EFSA) carried out an 

assessment of the human risk related to the presence of BEA and ENs in food and feed [16]. For this 

evaluation, the combined exposure to enniatin A (ENA), enniatin A1 (ENA1), enniatin B (ENB) and 

enniatin B1 (ENB1) was taken into account. Unfortunately, after an exhaustive review of all of the 

available information, EFSA could not perform a reliable risk assessment. This is due to the limited data 

available regarding human and animal exposure, primarily regarding in vivo toxicity. Hence, it is 

important to establish tools for the accurate assessment of human and animal exposure to this group of 

mycotoxins by determining their levels in body fluids. The only available data indicate that BEA and 

ENs are absorbed and rapidly metabolized to a range of uncharacterized metabolites [16,17]. Currently, 
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only in vitro phase I metabolites of ENB have been established [18], while no information is available 

either for the other ENs and BEA or for phases II and III. For this reason, until the metabolites are 

characterized and standards become available, the determination of the parent compounds represents the 

only accomplishable means. 

For the determination and quantification of mycotoxins in complex matrices, analytical methods  

based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) have been extensively  

used [2,19,20]. A wide variety of sample preparations, such as liquid-liquid extraction, solid phase 

extraction (SPE), accelerated solvent extraction, matrix solid-phase dispersion and dilute-and-shoot 

approaches, have been reported [21]. 

To the best of the authors’ knowledge, until now, few analytical methodologies have been devoted to 

the determination and quantification of emerging fusariotoxins and their metabolites in biological fluids [2]. 

Devreese et al. [17] validated the first method for the determination of ENA, ENA1, ENB, ENB1 and 

BEA in pig plasma by LC-MS/MS with satisfactory results. Recently, Juan et al. [22] proposed a new 

method based on a conventional liquid extraction and determination by LC-MS/MS for the quantitative 

analysis of ENA in serum, urine and feces from Wistar rats. So far, no method on the determination of 

ENs, BEA and their metabolites in human biological fluids has been reported in the literature. Given the 

lipophilic nature of ENs and BEA, it could be easier to find the non-metabolized form of these 

mycotoxins in plasma than in urine samples. However, this occurrence cannot be excluded a priori.  

The determination of the targeted mycotoxins in urine could be a promising non-invasive alternative. 

Taking into account the lack of methodology for the extraction of ENs and BEA from human 

biological fluids, the main aim of this work was the development of a reliable and sensitive analytical 

method for the simultaneous determination of the main four ENs and BEA (see Figure 1) by LC-MS/MS 

applicable to human urine and plasma. To achieve this goal, an extraction method specific for the 

biological fluid, followed by a cleanup based on SPE, was optimized for urine and plasma samples. 

Finally, after validation, the applicability of the optimized method was demonstrated by the analysis of 

human samples of urine and plasma. 

 

Figure 1. Structures of the investigated mycotoxins, namely enniatin A (ENA), enniatin A1 

(ENA1), enniatin B (ENB), enniatin B1 (ENB1) and beauvericin (BEA); R1, R2, and R3 can 

be sec-butyl (s-Bu), isopropyl (i-Pr) or benzyl (Bn) groups. 
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2. Results and Discussion 

2.1. LC-MS/MS Optimization 

A preliminary study was performed to obtain the best instrumental conditions affording high 

resolution and short analysis time with a suitable analyte separation. Positive and negative ionization 

modes were tested for all compounds, but all of the mycotoxins gave a better response in positive 

ionization mode. Sodiated adducts [M+Na]+ exhibited higher signal intensities than protonated adducts 

[M+H]+ for all mycotoxins. Sodiated adducts were formed because ENs and BEA are ionophoric 

compounds capable of forming complexes with monovalent and divalent cations through interactions 

with carbonyl groups oriented within the molecule. A low amount of Na+ may result from the analytical 

procedure, mainly from the solvents. In general, during the process of fragmentation, the sodiated 

adducts provide low yields in charged fragments; therefore, they are usually not employed for 

quantitative purposes. Several authors have reported that sodiated adduct ions can be greatly reduced by 

adding to the mobile phase modifiers suitable to promote NH4
+ adduct formation [2,23–25]. In this sense, 

in the present work, the addition of ammonium formate and HCOOH to both mobile phases was 

evaluated. The results indicated that the addition of the above-mentioned modifiers resulted in an 

enhanced abundance of [M+NH4]+ and [M+H]+ ions. All mycotoxins gave the highest signal intensity 

employing an LC mobile phase with H2O (A) and methanol (MeOH) (B), both with 5 mmol·L−1 

ammonium formate and 0.1% (v/v) HCOOH. In these conditions, the [M+NH4]+ adduct prevailed on  

[M+H]+ formation, and thus, the MS/MS parameters were optimized for each compound in order to 

select the two most intense transitions of the [M+NH4]+ adducts. Table 1 shows the list of precursor and 

product ions of all analytes, as well as their retention time and the optimized S-lens and collision energy 

(CE). Mycotoxin quantification was performed summing the transitions. 

Table 1. Retention time, precursor ion, product ions and optimized mass spectrometric 

parameters for targeted mycotoxins. 

Mycotoxin 
(Abbreviation) 

Retention 
Time (min) 

Precursor Ion 
[M+NH4]+ (m/z) 

Product 
Ion (m/z) 

Collision 
Energy (V) 

S-Lens 
(V) 

Enniatin A (ENA) 8.48 699.4 
209.7 35 

148 
228.0 36 

Enniatin A1 (ENA1) 8.34 685.2 
210.0 33 

139 
228.0 33 

Enniatin B (ENB) 7.97 657.4 
196.0 32 

137 
214.0 33 

Enniatin B1 (ENB1) 8.16 671.3 
196.0 33 

148 
214.0 34 

Beauvericin (BEA) 8.17 801.3 
244.0 36 

172 
262.0 34 

Apart from the mobile phases used for the separation, other chromatographic parameters were 

optimized, such as injection volume and column temperature. Injection volume was set to 5 µL, because 

larger injection volumes increased the matrix effect (ME). Furthermore, analyte separation was improved 

by testing different column temperatures (25 °C, 30 °C and 40 °C). A thermostated column at 30 °C 



Toxins 2015, 7 3558 

 

resulted in a better mycotoxin separation, but ENB1 and BEA were not resolved. This fact does not 

represent an actual problem, as the two compounds have different molecular weights, and the expected 

concentrations should not cause ME between them. 

2.2. Optimization of the Extraction Method 

Although LC-MS/MS is a powerful technique and direct analysis or methods with a little sample 

pretreatment are possible in some cases, results could be affected by a heavy ME, which could lead to 

low sensitivity. In addition, the presence in biological samples of isobaric interferents giving the same 

transitions may sometime cause the inaccuracy of the final results. Moreover, dirty extracts can result in 

progressive column deterioration, as well as signal weakening. Starting from these points, the effect of 

different factors on the extraction method was examined to develop suitable sample preparation 

procedures for urine and plasma, according to the individual features of each biological fluid.  

All parameters were tested by recovery experiments in six replicates at the 50-ng·L−1 level for each 

mycotoxin. Recovery was considered acceptable in the range of 70%–120%. 

2.2.1. Urine 

A modification of the SPE procedure earlier described by Capriotti et al. [14] for the cleanup of a 

biscuit extract was initially evaluated for the extraction of ENs and BEA from urine. The rationale for 

the sample dilution and pH adjustment is explained in that reference and the references therein. Briefly, 

one of the main advantages of using graphitized carbon black (GCB) sorbents is the ability to retain 

organic analytes from large volumes of water or aqueous samples without breakthrough. However, 

owing to the relatively low loading capacity of GCB, the presence of other organic substances in the 

sample at relatively high concentrations can cause the displacement of some low-abundance compounds. 

Sample dilution and relatively low acidic pH values provide an attenuation of this phenomenon, 

increasing the recovery of some analytes in many cases. In the present work, the recovery of the selected 

analytes still increased about 10%–15% by increasing the urine sample dilution with water from  

250–500 mL. However, in this way, some interfering compounds that increased blank background and 

ME were retained and recovered, as well. Suitable modifications that could be tested to tackle this 

problem and to reduce the presence of interferences are the introduction of a washing step and the tuning 

of elution volumes. Therefore, we started with the introduction and optimization of a washing step.  

On the bases of previous experiences [26], MeOH was selected as the best washing solvent to  

remove interferences without eluting analytes of interest and was tested at three different volumes  

(2 mL, 4 mL and 5 mL), while the solvent volume for analyte elution was fixed at 10 mL. A washing 

volume of 2 mL significantly decreased the ME, while larger washing volumes resulted in a significant 

loss of all of the analytes (recoveries from 63%–82% for 4 mL washing). After optimization of the 

washing step, we moved on to the elution one. In fact, another critical point of SPE was the elution step, 

during which the retained analytes were eluted from the sorbent. ENs and BEA were eluted from GCB 

cartridges using CH2Cl2/MeOH (80/20, v/v) containing 0.2% HCOOH [14]. The solvent volume for 

elution was optimized by testing 5 mL, 10 mL and 15 mL. Recoveries of the analytes increased with 

increasing eluent volume. However, it was found that with a 15-mL elution volume, recoveries were in 

the range of 90%–99%, but the ME significantly increased. Therefore, a 10-mL eluent volume was chosen 
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as the best compromise. The entire sample preparation and extraction procedure took about 2 h, including 

cartridge activation and solvent evaporation, but up to six samples could simultaneously be processed. 

After method optimization, the recoveries were compared to those obtained by us employing a 

recently-published method for the extraction of other mycotoxins in pig urine, based on the technique of 

salting-out-assisted liquid/liquid extraction (SALLE) [27]. In both cases, the concentration in the 

samples was 50 ng·L−1, and the results are shown in Table 2. As can be seen, for all of the compounds, 

recoveries obtained by this method were significantly higher than the ones obtained by SALLE. 

Table 2. Comparison of the recovery (yield) of the proposed method to two published 

methods for urine and plasma pretreatment. Samples were spiked at 50 ng·L−1. 

Mycotoxin 

Recovery ± RSD a (%) 

Urine Plasma 

This method SALLE b [27] This method Deproteinization with ACN [17] 

ENA 92 ± 6 85 ± 7 99 ± 7 77 ± 15 
ENA1 80 ± 10 64 ± 4 90 ± 3 73 ± 14 
ENB 82 ± 1 60 ± 9 97 ± 8 92 ± 7 

ENB1 95 ± 4 75 ± 5 76 ± 3 88 ± 6 
BEA 87 ± 4 73 ± 11 103 ± 12 62 ± 13 

a Relative standard deviation, calculated on six replicates; b Salting-out-assisted liquid/liquid extraction;  

the extraction was not tested for the reported mycotoxins in the original work. 

2.2.2. Plasma 

In early experiments, we tried to prepare the plasma sample by the simplest available approach, 

according to Devreese et al. [17]. Plasma samples, spiked at 50 ng·L−1, were deproteinized with acetonitrile 

(ACN), employed in a 3:1 (v/v) ratio to plasma. Then, after centrifugation, the supernatant was 

withdrawn, diluted with 25 mL of water and cleaned up with the GCB cartridge, as already described 

for urine. However, recoveries obtained by us were not satisfactory for all of the analytes. In order to 

evaluate the effect of the precipitation step, we carried out a test by adding the analytes to the sample after 

protein precipitation, obtaining quantitative recoveries (data not shown). A possible explanation for this 

observation could be that ENs and BEA may be adsorbed by denatured proteins. Following this reasoning, 

another deproteinizing mixture, consisting of 25 mL of MeOH/H2O (40/60, v/v), was tested. The 

supernatant recovered after centrifugation was then cleaned up without further manipulations. As shown 

in Table 2, the 250-µL plasma treatment with 25 mL of MeOH/H2O followed by Carbograph cleanup 

gave better recoveries (76%–103%) than those obtained using the simple ACN/plasma 3:1 (v/v) protein 

precipitation (62%–92%). 

The entire sample preparation and extraction procedure took slightly more than two hours and allowed 

simultaneously processing up to six samples. 
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2.3. Method Performance 

2.3.1. Linearity, and Process Efficiency 

Linearity was tested by evaluation of determination coefficients (R2). The linear range was estimated 

for both standard and matrix-matched calibration curves over the range reported in the Experimental 

Section. Results are summarized in Table 3. Mycotoxin calibration regression lines prepared in solvent, 

blank urine and blank plasma samples showed excellent R2 in the ranges 0.991–0.999, 0.991–0.999 and  

0.993–0.999, respectively. 

Table 3. Linearity reported as the determination coefficient (R2) and process efficiency (%) 

for targeted mycotoxins in urine and plasma samples. The linear range was estimated for 

standard and matrix-matched calibration curves over the ranges 0.04–4.0 ng·mL−1  

(0.2–20 pg injected) and 40–4000 ng·L−1, respectively. 

Mycotoxin 
R2 Slope of Regression Line (RSD a, %) Process Efficiency (%) b

Solvent Urine Plasma Solvent Urine Plasma Urine Plasma 

ENA 0.998 0.999 0.993 112.4 (1.7) 112.5 (2.3) 116.3 (5.7) 100.0 103.5 

ENA1 0.995 0.991 0.994 25.6 (1.4) 26.7 (3.2) 27.9 (5.6) 108.2 109.0 

ENB 0.998 0.993 0.994 77.8 (2.0) 77.7 (2.1) 77.6 (4.8) 99.9 99.7 

ENB1 0.991 0.995 0.997 65.7 (1.7) 53.7 (2.1) 67.0 (3.8) 81.7 102.0 

BEA 0.999 0.998 0.999 118.2 (1.0) 100.0 (2.4) 129.4 (2.4) 84.6 109.5 
a Relative standard deviation obtained from the mean of six replicates; b Process efficiency (%): 

(slopematrix−matchedregressionline/slopemethanolregressionline) × 100; this is the product of signal enhancement/suppression (matrix effect) 

and recovery (yield). 

As determined by us, the ratio of the slope between matrix-matched and standard calibration lines 

includes the effects of recovery and the ME, while the relative standard deviation (RSD) represents the 

effect of individual to individual sample variability. 

Very often, when a suitable internal standard is not available, as in this case, the presence of ME is a 

major drawback for the method performance, because different constituents of biological fluids can lead 

to a significant suppression or enhancement on the analyte response. Moreover, within the same sample 

typology, ME variations can be observed from sample to sample. Considering the data shown in  

Tables 2 and 3, the products of the two effects, namely process efficiencies (PEs) [28], were within the 

acceptable range (±20%) both for urine and plasma samples, although the ME in one case was +28%. 

2.3.2. Detection and Quantification Limits 

When operating in selected reaction monitoring (SRM) mode with the last generation triple 

quadrupole mass spectrometers, it is quite common to obtain SRM signals without noise. Being so, the 

calculation of limits of detection (LODs) and limits of quantifications (LOQs) becomes quite challenging. 

They might be estimated from regression statistics using the standard errors on the intercept coefficient 

via the formulas: LOD = 3 σ/S, and LOQ =10 σ/S, as described in the Experimental Section. As this 

method presupposes the homoscedasticity of variance, the extrapolated concentrations have to be used 

to prepare spiked samples, which are then analyzed to verify the conformity to the extrapolated value. 
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Moreover, following the indication and the intendment of the 2002/657/EC [29], three conditions 

have to be satisfied: First, two SRM transitions have to be considered for identification; second, the 

relative intensity of the detected ion shall correspond to those of the calibration standard, under certain 

conditions set within set tolerances; third, it makes no scientific sense to quantify a compound that has 

not been confirmed. The second condition is rarely taken into account; though, in our experience, 

sometimes, it becomes the limiting factor. Another question arises from the fact that many authors 

differentiate between the quantifier (most intense) and qualifier (less intense) transitions. Once more, in 

our experience, especially at concentrations near the quantification limits, the RSD of the transition sum 

is lower than the RSD of the most intense one (unless the second transition is much less intense than the 

first one). This fact has a logical explanation and originates from the smoothing process necessary to 

obtain a measurable peak for very low concentrations. In addition, as the limiting factor could be the 

transitions’ intensity ratio, both transitions have to be studied also for detection limits. 

Therefore, for each analyte, the LODs and LOQs were extrapolated as reported in Section 3.5.3, 

considering the second most intense transition area and the sum of the transition areas, respectively. 

Then, standard solutions and samples fortified at the extrapolated level were prepared, processed and 

injected six times. Finally, the dataset was evaluated in terms of RSD of the areas and mean transitions 

ratio. An acceptable value of 20% of the RSD for quantification limits and 50% for the detection limits 

was arbitrarily set, whereas the acceptable differences established by 2002/657/EC [29] were considered 

for the ratio between the areas. When both conditions were respected, a more diluted sample was 

prepared, whereas a more concentrated sample was tested if not. To avoid repeating the operation too 

many times, concentration variations were 50%–100%. Results are shown in Table 4. Figures 2 and 3 

show, for all of the investigated analytes, the LC-SRM profile of each transition in plasma and urine 

samples, respectively, fortified at 20 ng·L−1. As can be seen, the experimental limits were of the same 

order of magnitude of the extrapolated ones. In addition, by adding to the matrix-matched calibration 

line for urine the concentration corresponding to experimental verified method detection limit (MDL), 

the R2 did not change significantly. These facts might be due to the restricted concentration range within 

which calibration lines were considered for expected concentration quantification (the range of linearity 

covers about three orders of magnitude). In some cases, MDLs and method quantification limits (MQLs) 

were very similar to each other or even the same: in these cases, for a concentration lower than that 

evaluated for MDL, they were not in compliance with the provision established by 2002/657/EC [29] 

regarding the mean value variation of the area ratio between the two transitions. Obviously, the areas of 

signals present in blanks were subtracted. This fact is important, because the distinction between 

quantifier and qualifier transition is no longer applicable. Looking at Figures 2 and 3, it should appear 

clear why, although urine samples were concentrated ten times, whereas plasma samples were not 

concentrated, MQLs and MDLs are not very different. As can be seen, background signals are more 

intense for urine. Note that, for some analytes, 20 ng·L−1 is near or even under the MDL. This evaluation 

of MDLs and MQLs should be considered approximate as, although some biological variation was 

considered, the population was fairly homogeneous in terms of diet. Nevertheless, the limits reported 

here are five-times lower than those reported for plasma [17] and 500-times lower than those reported 

for ENA in urine [21]. 
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Table 4. Instrumental limit of quantification (ILOQ) and instrumental limit of detection 

(ILOD), method detection limit (MDL) and method quantification limit (MQL) for urine and 

plasma, extrapolated (Ext) and experimental (Exp) values. 

Mycotoxin 

Instrumental Urine Plasma 

ILOQ (pg) ILOD (pg) MQL (ng·L−1) MDL (ng·L−1) MQL (ng·L−1) MDL (ng·L−1) 

Ext Exp Ext Exp Ext Exp Ext Exp Ext Exp Ext Exp 

ENA 0.1 0.2 0.03 0.2 25 10 8 10 65 40 20 40 

ENA1 0.5 0.1 0.20 0.05 35 10 10 5 65 20 20 10 

ENB 0.1 0.1 0.04 0.05 15 5 5 2.5 55 20 15 10 

ENB1 0.1 0.05 0.03 0.05 15 20 5 20 45 20 15 20 

BEA 0.3 0.2 0.10 0.05 30 10 8 5 30 40 10 20 

 

Figure 2. LC-selected reaction monitoring (SRM) chromatograms of the single transitions 

of a plasma sample extract fortified with the investigated analytes at 20 ng·L−1 (acquisition 

conditions are reported in the Experimental Section). For ENA and BEA, this concentration 

level is below their method detection limit (MQL), whereas for ENA1, ENB and ENB1,  

it corresponds to their experimental MQL. 
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Figure 3. LC-SRM chromatograms of the single transitions of a urine sample extract 

fortified with the investigated analytes at 20 ng·L−1 (acquisition conditions are reported  

in the Experimental Section). For ENB1, this concentration level corresponds to its method 

detection limit. 

2.3.3. Trueness and Precision 

According to the European Union Decision 2002/657/EC [29], trueness means “the closeness of 

agreement between the average value obtained from a large series of test results and an accepted 

reference value”. However, in the same Decision, it is reported that “When no such certified reference 

materials (CRMs) are available, it is acceptable that trueness of measurements is assessed through 

recovery of additions of known amounts of the analyte(s) to a blank matrix”. Because CRMs for ENs 

and BEA in urine and plasma samples do not exist, the trueness of the method was evaluated by 

measuring the peak area of the spiked samples and comparing this result to the matrix-matched 

calibration curve, reported as a percentage, at three concentration levels, i.e., MQL, 2.5 MQL and  

10 MQL, whereas the RSD of average recovery was employed to evaluate method precision (intra- and 

inter-day; n = 6). Blanks were subtracted only for samples spiked at the MQL level. Recovery and RSD 

values regarding urine and plasma samples are shown in Table 5. Following the criteria relying on the 
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2002/657/EC [29], when trueness and precision are assessed by analyte addition to the matrix, an average 

recovery ≥90% and a repeatability (RSD) <20% should be obtained. As can be seen, although few 

recoveries were <90%, none of them were significantly different from the required values. 

Table 5. Trueness and precision in urine and plasma samples. Trueness was assessed by 

measuring the peak area of the spiked samples and comparing this result with the  

matrix-matched calibration curve; the result was expresses as the percentage. 

Mycotoxin 

Urine Plasma 

Trueness % (RSD a) Trueness % (RSD a) 

1× MQL 2.5× MQL 10× MQL 1× MQL 2.5× MQL 10× MQL 

Intra-day Inter-day Intra-day Inter-day Intra-day Inter-day Intra-day Inter-day Intra-day Inter-day Intra-day Inter-day

ENA 92 ± 12 88 ± 15 109 ± 8 90 ± 9 102 ± 1 96 ± 14 99 ± 17 101 ± 15 120 ± 6 112 ± 11 95 ± 4 99 ± 11 

ENA1 85 ± 10 98 ± 8 96 ± 7 96 ± 11 91 ± 6 94 ± 8 90 ± 13 92 ± 16 114 ± 10 118 ± 14 94 ± 6 93 ± 10 

ENB 87 ± 7 110 ± 17 89 ± 13 90 ± 9 98 ± 1 102 ± 10 97 ± 18 95 ± 21 109 ± 12 117 ± 14 110 ± 8 105 ± 9 

ENB1 101 ± 14 102 ± 11 89 ± 6 95 ± 8 103 ± 4 90 ± 12 106 ± 13 87 ± 14 112 ± 9 115 ± 9 95 ± 9 98 ± 9 

BEA 93 ± 12 97 ± 14 105 ± 10 98 ± 10 101 ± 3 87 ± 12 103 ± 12 91 ± 12 106 ± 10 114 ± 12 96 ± 10 92 ± 11 

a RSD, relative standard deviation, obtained from the mean of six replicates. 

2.4. Application to Samples 

The suitability of the method was finally tested by analyzing ten samples of human urine and ten 

samples of human plasma according to the optimized methods. ENs and BEA were not detected in  

nine analyzed samples of both plasma and urine, while a trace amount, between MDL and MQL,  

for ENB1 was detected in a sample of both biological fluids of the same subject. 

Until now, mycotoxin occurrence in biological fluids of different animals has been evaluated only in 

two studies, which were conducted on animals previously treated with a known, relatively large amount 

of target mycotoxins [17,22]. Therefore, it is obvious that results from the present study related to human 

fluids were not comparable to those obtained in the above-mentioned studies. On the other hand,  

the in vitro metabolism of emerging Fusarium mycotoxins has been rarely studied. At the moment,  

only phase I metabolism of ENB has been characterized [18]: Ivanova et al. identified a total of  

12 biotransformation compounds, the oxidation and N-demethylation of ENB being the major metabolic 

pathways. According to [17], there is a vast difference in oral absorption, as well as in the metabolization 

routes between the various ENs and BEA, although they are structurally similar compounds. 

Interestingly, ENB1 resulted in being the most absorbed after oral administration to a pig [17]. 

3. Experimental Section 

3.1. Chemicals and Reagents 

ACN, MeOH, CH2Cl2, ammonium formate (99%), HCOOH (>98%), HCl and MgSO4 were supplied 

by Sigma-Aldrich (Milan, Italy). All reagents were analytical reagent grade; solvents were LC-MS 

grade. Ultrapure water (resistivity 18.2 MΩ·cm−1) was obtained using an Arium water purification 

system (Sartorious, Florence, Italy). In-house Carbograph cartridges were prepared with 500 mg of 

Carbograph-4 (surface area of 130 m2·g−1 and particle size of 120–400 mesh) supplied by LARA  
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(Rome, Italy), while polypropylene tubes and polyethylene frits were supplied by Supelco (Bellefonte, 

PA, USA). Carbograph cartridges are similar to Carboprep 200 (Restek, Bellefonte, PA, USA) and  

ENVI-carb X (Supelco). 

Standards of ENA, ENA1, ENB, ENB1 and BEA were purchased as powder (premium quality level 

and/or assay ≥98%) from Sigma-Aldrich (St. Louis, MO, USA). Standard solutions of ENA, ENA1, ENB, 

ENB1 and BEA were prepared dissolving 10 mg of each compound in 10 mL of MeOH, obtaining stock 

solutions with a 1-mg·mL−1 concentration. Stock solutions were then diluted with pure MeOH in order 

to obtain the appropriate working solutions. A composite standard working solution was prepared by 

combining aliquots of each individual working solution and diluting with MeOH to obtain the final 

concentration of 0.02 mg·L−1 for ENA, ENA1, ENB, ENB1 and BEA. All solutions were stored at  

−20 °C in amber glass vials and darkness before use. 

3.2. Sampling 

The applicability of the method was assessed in ten human urine samples and ten human plasma 

samples. Samples from volunteer donors were collected in the early morning. Healthy donors were 

composed of a group of four men and six women, between 25 and 70 years old. All donors signed an 

informed consent form before the study. The study was conducted in accordance with the World Medical 

Association’s “Ethical Principles for Medical Research involving human subjects” [30]. 

Five-milliliter blood and 50-mL urine samples were collected per volunteer. Plasma samples  

(~2.5 mL) were obtained from whole blood by centrifuging at 1000× g for 5 min to pellet blood cells. The 

supernatant plasma was removed, split into 250-µL aliquots and stored at −80 °C until further use. Urine 

samples were centrifuged at 2000× g for 6 min at room temperature to separate the sediment. Then,  

sub-samples of 5 mL per volunteer were aliquoted and stored in a dark and dry place at −20 °C until 

analysis. For analysis, all aliquots were thawed at 4 °C and then allowed to warm at room temperature. 

The samples with undetectable levels of mycotoxins were used for spiking and recovery studies in the 

method development. For “undetectable amount”, we did not intend the absence of signal, as the very 

sensitive detection capability of the instrumentation evidenced some small peaks at retention times very 

close to those of the analytes, but signals that were not in compliance with the provision established by 

2002/657/EC [29] regarding the mean value variation of the area ratio between the two transitions 

(<MDL). For preliminary experiments and detection/quantification limit evaluation, pools of fresh urine 

and plasma were used. 

3.3. Sample Preparation 

Sample preparation consisted of an easy sample pretreatment, specific for each body fluid, and a 

similar cleanup step. 

3.3.1. Sample Pretreatments 

A 5-mL aliquot of urine was diluted with 500 mL of ultrapure water, and the pH was adjusted to  

ca. 4 (using a pH-meter) with HCl 1 mol·L−1 and HCl 0.1 mol·L−1. The treated samples were cleaned up 

using Carbograph-4 cartridges according to the protocol described in the Section 3.3.2. 
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A 250-µL aliquot of human plasma was treated with 25 mL of MeOH/H2O (40/60, v/v) to achieve 

plasma deproteinization. Sample was vortexed for 3 min, centrifuged at 3000× g for 10 min, and the 

supernatant was cleaned up using Carbograph-4 cartridges according to the process described in the  

Section 3.3.2. 

3.3.2. Extraction Method 

The extraction and cleanup were performed in a single step, and the procedure, valid for both fluids, 

was performed by SPE using a pre-conditioned Carbograph-4 cartridge. The SPE cartridges were 

attached onto a vacuum manifold apparatus (Supelco, Bellefonte, PA, USA). First, the cartridges were 

washed sequentially with 5 mL of CH2Cl2/MeOH (80/20, v/v) containing 0.2% of HCOOH, 3 mL of 

MeOH, 10 mL of 10 mmol·L−1 HCl solution and 5 mL of ultrapure H2O (at flow rate about 2 mL·min−1). 

Then, the pretreated sample was loaded at a flow rate of 20–25 mL·min−1 for urine samples and  

2–3 mL·min−1 for plasma samples, respectively. The bottle containing the pretreated urine or plasma 

sample was washed with 100 mL or 10 mL of ultrapure water, respectively, and the washing was passed 

through the cartridge. Then, 2 mL of MeOH were slowly passed (flow rate of 1 mL·min−1) through the 

cartridge to remove possible interferences without eluting the targeted analytes. Finally, the mycotoxin 

elution step was performed by passing through the cartridge 10 mL of CH2Cl2/MeOH (80/20, v/v) containing 

0.2% of HCOOH. The vacuum was adjusted to provide a flow rate of 2–3 mL·min−1. The eluate was 

collected into a 1.4-cm i.d. round-bottom glass vial and evaporated to dryness by a gentle nitrogen stream 

at 37 °C. The residue was reconstituted either with 500 µL or 250 µL of an ACN/H2O (80/20, v/v) 

mixture, for urine and plasma samples, respectively; samples were filtered through a 13- mm/0.20-µm nylon 

membrane syringe filter (Pall Corp., MI, USA) prior to injection into the LC-MS/MS instrumentation. 

3.4. LC-MS/MS Analysis 

For LC-MS/MS analysis, an Ultimate 3000 LC system (Thermo Fisher Scientific, Bremen, Germany) 

and a TSQ Vantage™ triple-stage quadrupole mass spectrometer (Thermo Fisher Scientific) connected via 

an electrospray (ESI) source operating in positive ionization mode were used for the determination of 

the analytes. The LC-MS/MS system was managed by the Xcalibur software (v.2.1, Thermo Fisher 

Scientific, Bremen, Germany). 

The LC system consisted of a binary pump connected to a degasser, a thermostated microwell plate 

autosampler set at 14 °C and a thermostated column oven maintained at 30 °C. The injection volume 

was 5 µL. The separation was achieved by a Hypersil Gold analytical column (150 mm × 2.1 mm i.d.,  

3 µm particle size) preceded by a SecurityGuard Hypersil Gold pre-column (4 mm × 2.1 mm i.d., 5 µm 

particle size), both supplied by Thermo Fisher Scientific. The mobile phase consisted of H2O (A) and 

MeOH (B), both containing 5 mmol·L−1 ammonium formate and 0.1% (v/v) HCOOH. Gradient elution 

was started isocratically with 50% B for 1 min. Then, B was linearly increased to 99.5% within 6.5 min 

and kept constant for 3 min. Finally, B was decreased linearly to 50% in 0.5 min and equilibrated for  

5 min. The flow rate was set at 300 µL·min−1. 

Mass calibrations and resolution adjustments on the resolving lens and quadrupoles were automatically 

performed using the manufacturer solution introduced by infusion pump at a 5-µL·min−1 flow-rate.  

In order to optimize the acquisition parameters for each mycotoxin, 1 ng·µL−1 of individual standard 
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solutions prepared in starting mobile phase was infused into the instrument. The [M+NH4]+ ions were 

selected by the first quadrupole and fragmented in the collision cell with the appropriate CE. According 

to the European Union criteria established for contaminants in food [29], from the MS/MS full-scan 

spectra, two suitable transitions were selected for acquisition in SRM mode. The selected precursor ion, 

the two most intense product ions and the optimized SRM parameters (CE and S-lens) of each analyte 

are presented in Table 1. 

Regarding the optimization of general mass spectrometric parameters, the source settings were  

as follows: 3.2 kV for spray voltages, 280 °C for vaporizer temperature, 220 °C for capillary  

temperature, 50, 1 and 25 (arbitrary units) for sheath gas pressure, ion sweep gas pressure and auxiliary 

gas pressure, respectively. 

3.5. Method Performance 

Performance characteristics of the method included the evaluation of linearity, recovery (yield),  

process efficiency (PE), trueness, precision (intra- and inter-day precision), MDLs and MQLs. 

3.5.1. Linearity 

Linearity was evaluated by preparing three sets of calibration curves (standard calibration curve, urine 

and plasma matrix-matched calibration curves) at six concentration levels. Solutions for the standard 

calibration curve were prepared by diluting composite standard working solution into the solvent over 

the range 0.04–4.0 ng·mL−1 (0.2–20 pg injected). Plasma and urine matrix-matched calibration curves 

were prepared by spiking the individual blank samples with the composite standard working solution in 

the range of 40–4000 ng·L−1. These samples were treated according to the extraction procedure described 

in Section 3.3. Each calibration curve was constructed in triplicate during three consecutive days, and 

results were averaged. 

For each analyte, the combined ion current profile for the selected transitions was extracted from the 

LC-SRM dataset; the resulting traces were smoothed by applying the automatic processing smoothing 

method (Xcalibur) using Gaussian type (7 points). Calibration curves were constructed by plotting the 

peak area sum of the two transitions versus the mycotoxin concentration. Unweighted regression lines 

for standard and matrix-matched calibration curves were calculated. The latter calibration curves were 

used for quantification. 

3.5.2. Recovery and Process Efficiency 

Recovery was assessed by comparing the area of peaks obtained for the analytes added to the sample 

before and after the extraction procedure. The combined effects of signal suppression/enhancement, i.e., 

ME, recovery and PE, were determined by comparing the slopes of the standard calibration line (astandard) 

with that of the matrix-matched calibration line (amatrix) [28]. The calculation of the PE was performed 

according to the formula: PE (%) = (amatrix/astandard) × 100. 
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3.5.3. Detection and Quantification Limits 

Instrumental limits of detection (ILODs) and instrumental limits of quantification (ILOQs), as well 

as MDLs and MQLs for each matrix were calculated to evaluate the optimized LC-MS/MS method. For 

the calculation of detection limits, the standard deviation of the response (σ) was divided by the slope of 

the calibration curve (S), via the formula: detection limit = 3 σ/S. In the same way, quantification limits 

were estimated according to the formula: quantification limit = 10 σ/S. ILOQs, ILODs, MDLs and MQLs 

were calculated employing data generated from regression statistic performed using standard calibration 

and matrix-matched calibration, respectively. These values were verified by adding to the samples the 

concentration obtained by the reported procedure and adjusted by direct sample injection. The sum of 

the ion currents of the SRM transitions was considered to determine ILOQs, while the less intense 

transition was considered to evaluate ILODs. Both transitions were considered for the estimation of 

MQLs and MDLs (see Section 2.3.2). 

3.5.4. Trueness and Precision 

Trueness and precision were evaluated for each matrix at three concentration levels: MQL, 2.5 times 

MQL and 10 times MQL. To achieve this goal, blank samples of urine and plasma were fortified  

with an appropriate volume of the composite working standard solution to obtain the above-mentioned 

concentration levels. Trueness was assessed by measuring the peak area of the spiked samples and 

comparing this result with that obtained from the matrix-matched calibration curve; the result was 

expressed as the percentage. The precision of the method was determined as within laboratory precision 

using the average trueness. Six replicates for each concentration level were analyzed in one day to 

evaluate intra-day precision. Another three replicates for each concentration level were prepared and 

analyzed on five additional days to estimate the inter-day precision. The method precision was expressed 

as the RSD of replicate measurements. 

Statistical comparisons were performed by ANOVA (p = 0.05). 

4. Conclusions 

In this study, rapid and sensitive methods for the determination of ENs and BEA in human biological 

fluids were developed and fully validated. The two methods differ only for the pretreatment step, which 

is sample-type specific. Regarding the plasma matrix, the MDLs of the present method were 5–10-times 

lower than those reported in a previous work for the determination of ENs and BEA in pig plasma [17]. 

The analysis of 10 subjects, who followed their normal diet, basically a Mediterranean diet, rich in 

cereals, with no particular indications, did not show any parent mycotoxin either in plasma or urine.  

This fact does not mean that ENs and BEA cannot pose a problem for human exposure, but only that 

this problem is of minor impact in countries where mycotoxin level controls are extensive. 

In any case, the proposed extraction coupled to the LC-MS/MS method offered a reliable quantitative 

analysis of target mycotoxins. This method may be used also for in vivo studies where samples could be 

collected, stored and processed even immediately, as the activated GCB cartridges are stable for weeks. 

Blood samples are less easily processed than urine samples, as plasma must be separated from cells and 

deproteinized. However, the subsequent extraction procedure does not change with respect to stored samples. 
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This is the first report on the presence (absence) of emerging Fusarium mycotoxins in urine and 

plasma of humans. Owing to the fact that target mycotoxins were not detected in any sample, it would 

be of great interest to characterize the routes of metabolization of each emerging Fusarium mycotoxin 

in humans for a better screening of human exposure in future biomonitoring studies, which would 

therefore also include metabolite determination. 
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