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Abstract: Non-motorized transportation modes, especially cycling and walking, offer numerous 

benefits, including improvements in the livability of cities, healthy physical activity, efficient 

urban transportation systems, less traffic congestion, less noise pollution, clean air, less 

impact on climate change and decreases in the incidence of diseases related to vehicular 

emissions. Considering the substantial number of short-distance trips, the time consumed in 

traffic jams, the higher costs for parking vehicles and restrictions in central business districts, 

many commuters have found that non-motorized modes of transportation serve as viable and 

economical transport alternatives. Thus, local governments should encourage and stimulate 

non-motorized modes of transportation. In return, governments must provide safe conditions 

for these forms of transportation, and motorized vehicle users must respect and coexist with 

pedestrians and cyclists, which are the most vulnerable users of the transportation system. 

Although current trends in sustainable transport aim to encourage and stimulate non-motorized 

modes of transportation that are socially more efficient than motorized transportation, few 

to no safety policies have been implemented regarding vulnerable road users (VRU), mainly 

in large urban centers. Due to the spatial nature of the data used in transport-related studies, 
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geospatial technologies provide a powerful analytical method for studying VRU safety 

frameworks through the use of spatial analysis. In this article, spatial analysis is used to 

determine the locations of regions that are characterized by a concentration of traffic 

accidents (black zones) involving VRU (injuries and casualties) in São Paulo, Brazil 

(developing country), and Rome, Italy (developed country). The black zones are investigated 

to obtain spatial patterns that can cause multiple accidents. A method based on kernel density 

estimation (KDE) is used to compare the two cities and show economic, social, cultural, 

demographic and geographic differences and/or similarities and how these factors are linked 

to the locations of VRU traffic accidents. Multivariate regression analyses (ordinary least 

squares (OLS) models and spatial regression models) are performed to investigate spatial 

correlations, to understand the dynamics of VRU road accidents in São Paulo and Rome and 

to detect factors (variables) that contribute to the occurrences of these events, such as the 

presence of trip generator hubs (TGH), the number of generated urban trips and demographic 

data. The adopted methodology presents satisfactory results for identifying and delimiting 

black spots and establishing a link between VRU traffic accident rates and TGH (hospitals, 

universities and retail shopping centers) and demographic and transport-related data. 

Keywords: spatial analysis; kernel density estimator; vulnerable road users; traffic accidents; 

trip generator hubs 

 

1. Introduction 

One key element of modern transportation systems is safety. The goal of safety is to minimize the number 

of accidents and to reduce the severity of injuries for all users, including motorists, passengers of 

particular vehicles, public transport commuters, cyclist and pedestrians [1,2]. 

Traffic accidents result in the second highest cost of transportation. These costs result from personal 

damage (injuries and wounds), fatalities, property damage (to vehicles and other public or private property), 

degradation of quality of life and decreases in available time for conducting activities and maintaining 

social relationships [3–5]. 

Non-motorized modes of transportation, especially cycling and walking, offer numerous benefits, 

including improvements in the livability of cities, healthy physical activity, an efficient urban transportation 

system, less traffic congestion, less noise pollution, clean air, less impact on climate change, decreased 

incidence of diseases related to vehicular emissions, decreased fossil fuel use and decreased 

transportation costs. Considering the substantial number of short-distance trips, the time consumed in 

traffic jams, higher vehicle parking costs and restrictions in central business districts, many commuters 

have found that non-motorized modes of transportation are viable and economical transportation 

alternatives [6]. 

Thus, non-motorized modes of transportation should be stimulated and encouraged by local governments. 

In return, governments must provide safe conditions for these users and the users of motorized transport 

that allow motorized transportation to exist in harmony with pedestrians and cyclists. Planners and 
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engineers must accommodate the needs of cyclists and pedestrians by designing transportation facilities 

for urban areas [7]. 

It is widely recognized that pedestrians and cyclists are the most vulnerable users of the transportation 

system. Although current trends in sustainable transport aim to encourage and stimulate non-motorized 

modes of transportation that are socially more efficient than motorized modes, few to no safety policies 

related to vulnerable road users (VRU) (traffic participants without outer protective cells) [8] have been 

implemented in large urban centers. Therefore, it is important to promote a conceptual road safety 

framework to reduce and control accident risks involving VRU. The risks (crash risk and injury severity) 

result from travel behavior (volume, modal split and distribution of traffic over time and space) and the 

characteristics of the transport infrastructure, such as the type of vehicle and road user [9]. 

The road safety framework for VRU is affected by land use and urban infrastructure (built 

environment). This framework is an abstraction or simplification of reality that can be used to help 

planners, policy makers and decision makers better understand real-world systems, facilitate 

communication and integrate knowledge across a variety of engineering and scientific disciplines, 

including transportation science, geography, urban planning, economics and physics [9,10]. 

Due to the spatial nature of the data involved in transport-related studies, geospatial technologies 

provide a powerful analytical method for studying VRU safety frameworks through the use of spatial 

analysis. The rapid development of geographic information science and its related technologies has 

resulted in the collection of ample transportation data to better understand road traffic accident patterns 

and the behaviors of transportation system users [10]. In addition, the availability of real-time traffic 

data obtained through geospatial technologies increased and proactively stimulated proactive safety 

management in transport networks [11]. In contrast with conventional approaches, geospatial methods 

are used to analyze the spatial patterns of accident locations within a network space and are not affected 

by the configuration of the street network or its distance [12]. During the last few years, the identification 

of hazardous locations, which are called black spot zones, in road networks has substantially progressed. 

The identification of black spot zones is facilitated by the application of geospatial technologies in 

transportation research, which has enabled precise localization of traffic accidents and the identification 

of spatial patterns involving regions with a high occurrence of traffic accidents [13]. 

The objective of this study is to determine the locations of the regions (that contain the critical road 

sections) that are characterized by a concentration of traffic accidents (black zones) involving VRU 

(injuries and casualties) in São Paulo, Brazil (emerging country), and Rome, Italy (developed country). 

The black zones are investigated to obtain spatial patterns that result in multiple accidents. A method 

based on kernel density estimation (KDE) is applied to analyze economic, social, cultural, demographic 

and geographic patterns of urban road accidents in São Paulo and Rome and to investigate how these 

factors are linked to the locations of VRU traffic accidents. Moreover, to understand the spatial 

interactions that occur between VRU traffic accidents and their locations, multivariate regression 

analyses (Ordinary Least Squares (OLS) models and spatial regression models) are performed. In 

addition, these analyses are performed to determine the most important attributes that contribute to the 

high rates of VRU traffic accidents in a given region. 
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2. Background 

This literature review mainly discusses three aspects related to the spatial characterization of hot spots 

involving VRU, traffic accident research, accidents involving VRU and the spatial analysis of  

these accidents. 

2.1. Traffic Accident Research 

One of the most troubling problems of transportation systems is related to accidents. Road traffic 

accidents result in serious societal problems with significant individual, property and society costs 

[2,14]. The World Health Organization (WHO) indicates that road traffic injuries comprise a major, but 

neglected global public health problem that requires action for effective and sustainable prevention [15]. 

According to the WHO, 1.24 million people were killed worldwide in 2010 due to traffic accidents. 

Middle-income countries, which are becoming motorized rapidly, are the hardest hit by traffic accidents, 

with approximately 70% of traffic-related deaths occurring in these countries [16,17]. This tragic 

scenario indicates that traffic accidents are a serious public health and welfare concern and can be 

considered as a global epidemic [12]. The cost of dealing with the consequences of these traffic accidents 

reaches billions of dollars [17], which is a large sum that could be used in the transportation system to 

prevent traffic accidents. Half of all road traffic deaths involve VRU [17]. In Brazil, 4% of the individuals 

that died from traffic accidents were cyclists and 23% were pedestrians in 2010 [18]. 

Land use environments influence the needs and behaviors of VRU. The choice of a transport mode 

(non-motorized or motorized) varies with the land use type. For example, the number of parked bicycles 

at transit stations, the percentages of land for commercial use, the distances between origins and 

destinations and the nearest bus stop with services serving the transit station affect transport mode 

decisions. These factors are influential when promoting non-motorized transport. Moreover, the most 

significant concern regarding non-motorized transportation is the risk of traffic accidents. The accident 

risk varies with the level and type of local traffic. Traffic accident risk is the most important concern for 

VRU in urban centers [19]. 

In recent years, an increasing number of research studies have been conducted regarding traffic 

accident patterns through spatial approaches. An approach (similar to that developed in this study) was 

conducted by [20] that identified and delimited road sections that were characterized by concentrations 

of traffic accidents (black zones) by applying and comparing two methods, local spatial autocorrelation 

indices (a decomposition of the Global Moran Index) and KDE, without any reference to the spatial 

patterns of the accidents. In the study presented by [21] was used a Geographic Information System 

(GIS) and log-linear model to investigate the spatial distribution of pedestrian/cyclist accidents involving 

school-aged children in Florida, USA, and examined the conditions under which these events were more 

likely to occur. In the research performed by [13] was developed a procedure for identifying and 

evaluating clusters (black spot zones) of traffic accidents by using the KDE in the Southern Moravia 

Region of the Czech Republic. A spatial and temporal analysis of VRU traffic accidents in Santiago, 

Chile, was conducted by [22], in order to identify the most critical areas (black spot zones) in a GIS 

environment (using the KDE and Moran Index), and also to detect the attributes and the contributing 

factors (for example, time of day, straight road sections and intersections and roads without traffic signs 
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within the critical areas) associated with VRU traffic accidents. The relationships between three years 

of pedestrian crash counts across census tracts in Austin, Texas (United States), and several land use 

networks and demographic attributes, such as land use balance, residents’ access to commercial land 

uses, sidewalk density, lane-mile densities (by roadway class) and population and employment densities 

(by type) were examined by [23]. A study was presented by [24], which integrated a spatial density 

analysis (KDE) and the local Moran Index to detect black spot zones of traffic accidents and to formally 

evaluate the extensiveness of locations with high densities to provide tools and information for planners 

and decision makers to effectively allocate resources for accident prevention and safety improvement. 

A spatial-temporal analysis of road accidents in New Brunswick, Canada, to study the impacts of climate 

change on hazardous weather-related traffic accidents was provided by [25]. In addition, a spatial analysis 

(KDE and wavelet analysis) to identify black spot regions of traffic accidents and to verify patterns that 

contributed to accidents that occurred in the black spot zones in Paraná State, Brazil, was applied  

by [26]. A spatiotemporal analysis of intra-urban traffic accidents in metropolitan Shiraz, Iran, was 

presented by [27], whose objective was to identify accident-prone zones and sensitive hours using  

GIS-based spatio-temporal visualization techniques. This analysis is aimed at identifying high-rate 

accident locations and safety deficient areas by using the KED method. A spatial Bayesian modeling 

approach was proposed by [28] to predict VRU accident risks for a road network and to identify how 

road infrastructures influence VRU safety in Brussels, Belgium. An approach was introduced by [29] 

for the identification of hazardous accident zones that compares spatial and non-spatial methods. Overall, 

the study concludes that spatial analysis methods outperform non-spatial approaches, because they do 

not require the segmentation of highways. The only information that is required when using the spatial 

analysis method to identify black spot zones is the location of each accident. 

2.2. VRU Traffic Accidents 

In developing countries, accidents involving VRU constitute a much larger fraction of all traffic-related 

fatalities and injuries than those in developed countries. Studies and observations have indicated that a 

large fraction of VRU injuries and fatalities occur at urban intersections (approximately one-third) and 

in collisions with automobiles (about two-thirds). Most VRU accidents are caused by a combination of 

behavioral, technological and environmental factors, which indicates that the safety of VRU should be 

improved. In developing countries, safety can be improved by adopting safety principles that have 

reduced the number of injuries and casualties in VRU traffic accidents in developed countries, such as 

adequate road design and traffic management [30,31]. 

The characteristics of mixed traffic, the inadequate driving abilities of vehicle drivers, the behavior 

of users of the transportation system (the drivers of motorized and non-motorized vehicles, passengers 

and pedestrians), vehicle factors (such as insufficient maintenance), poor design and layout of roads and 

other transport infrastructure and weather conditions frequently render traffic in a country unsafe and 

can influence the occurrence of accidents. While these factors are frequent in low-/middle-income 

countries, because high-quality automotive engineering, road design and vehicles are continuously being 

optimized in developed countries in terms of safety, human causes are considered as the main causes of 

VRU traffic accidents. Thus, the number and incidence of traffic accidents involving VRU have different 
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economic consequences in developing countries (low- and middle-income countries) and developed 

countries (high-income countries) [8]. 

Public policies (government budget and engagement for transport safety and the level of enforcement 

of road traffic rules), personal characteristics (health and physical condition, income, education, age and 

gender), socio-economic conditions (economic growth) and demographic and geographic circumstances 

(average distance traveled, the amount of time traveled and the population density) are factors that 

influence the rates of VRU traffic accidents [16]. Consequently, understanding these various factors and 

identifying their separate and/or combined effects on accident frequency and severity is important [11]. 

2.3. Spatial Analysis of VRU Accidents 

To identify hotspots of road accidents (black spot zones) is important for determining effective 

strategies for reducing areas with a high density of accidents and for appropriately allocating resources 

for improving safety [32]. The characteristics of spatial analysis (GIS environment) for managing and 

processing locational and related information provide a robust understanding of the indicators of casual 

effects. Among several techniques, the KDE technique is one of the most frequently-used spatial tools 

for studying traffic accident phenomena, as demonstrated by [2,13,24,27,32–40]. 

The KDE technique is used to calculate the probability density function of a distribution from which 

a sample has been observed by centering a probability density function on each of the observed  

events [41]. The kernel estimator is a non-parametric algorithm that uses a density estimation method. 

This technique allows one to evaluate the local probability accident occurrence and, consequently, the 

probable dangerousness of a spatial unit [20]. KDE is the most widely-used nonparametric method in 

recent decades [42]. The KDE describes the distribution of the location of an event and ignores its 

association with values. This distribution is characterized by the density of events that occur around 

a centroid and represents the behavioral patterns of points or lines. In this study, the events are the 

locations (geocoded) of the accidents (represented by points), and the KDE is used to calculate the 

probability density function of each accident location. 

Kernel density analysis is performed by passing a moving window over the data, usually on a regular 

grid. The densities of the observations within a set radius are calculated for each event located on the 

grid, and the contributions of each observation are weighted by its proximity to the center of the moving 

window. Thus, the result of applying KDE is a density map (raster format). The values of each pixel 

represent the relationships between the concentrations of the events per unit area. In addition, KDE can 

be used to calculate the density of punctual events (i.e., the density of traffic accidents in a region) or 

linear events (i.e., the density of a road network in a zone). It is important to highlight the simplicity, 

satisfactory properties and good results of the KDE method [43,44]. 

The areas where events are concentrated are identified by KDE analysis and have the highest accident 

rates involving VRU. These areas are called black spots (zones that reveal concentrations of accidents). 

The existence of black spot zones results from the awareness of the spatial interactions between 

contiguous traffic accident locations. The most straightforward use of GIS for accident analysis is the 

examination of spatial characteristics and attributes of traffic accident locations. In fact, the use of GIS 

has several advantages of the use of non-spatial methods for accident analysis [45]. 
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To determine the most significant variables in urban systems (sociodemographic and transport-related 

factors) that are involved in the occurrence of road accidents, several researchers have used multivariate 

regression analyses, including [46–56]. 

In this study, the quantity of VRU traffic accidents was regressed against the number of explanatory 

variables by using two models, the ordinary least squares (OLS) model and the spatial autoregressive 

lag (SAR) model. 

The traditional OLS multiple regression model is relatively quick, simple and suitable for analyzing 

punctual events, such as road accidents. As a global regression method, an important assumption of the 

OLS model is that all variables are stationary across the study area. In addition, the OLS method can 

involve potential issues related to spatial and temporal autocorrelations, and the endogeneity between 

the dependent variable (amount of road accidents) and independent variables (such as, population, area, 

income, trips generated, etc.) is possible [57–59]. In turn, SAR is a strong modeling approach that can 

be adopted when a spatial autocorrelation is highly likely. In the SAR method, the interactions are 

modeled as a weighted average of the neighboring observations. The endogenous variables that comprise 

the interactions are called spatially-lagged dependent variables, and the weights, which are grouped into 

a neighborhood matrix (by contiguity or k nearest neighbors), form the distinctive core of the class of 

spatial process models. These two methods (OLS and SAR) provide comparisons across different 

specifications, tests for robustness and allow one to capture the importance of spatial interactions and 

interdependencies among the involved attributes [60,61]. 

3. Study Areas 

One study area is São Paulo City (Figure 1), which is the capital of São Paulo State and is located in 

Southeastern Brazil. São Paulo is an excellent example of a rapidly-growing city, with more than 11.3 million 

people (2013) in an area of 1521.101 km2, a demographic density of 7398.26 inhabitants/km2,  

an urbanization rate of 99.10% (2010) and a geometric growth rate of 0.59% (during the period 2010–2013). 

According to the United Nations Organization (UNO), São Paulo is one of the 27 megacities in the world 

(source: IBGE—Instituto Brasileiro de Geografia e Estatística). 

 

Figure 1. Study area: São Paulo. Source: [2]. 

The second study area, Rome (Figure 2), is a city and special commune (named “Roma Capitale”)  

in Italy. Rome is the capital of Italy, the Province of Rome and the region of Lazio. Rome is Italy’s 
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largest and most populated commune and the fourth most populous city in the European Union.  

Its population (2013) is 2,913,349 inhabitants, with an area of 1285.31 km2 and a demographic density 

of 2266.7 inhabitants/km2 (source: Roma Capitale, Annuario Statistico 2013, Unità Operative (U.O.) 

Statistica, Sistema Statistico Nazionale). 

 

Figure 2. Study area: Rome. Source: Adapted from [62]. 

4. Description of Data and Methods 

This study used a set of spatial and non-spatial data from São Paulo and Rome, which is described below. 

4.1. São Paulo 

The Municipality of São Paulo delivered the spatial unit adopted in the analysis (districts; Figure 3a) 

and the vectorial data (geocoded) that provided the locations of hospitals, universities and colleges, parks 

and recreational areas and retail shopping centers. The CET-SP (Companhia de Engenharia de Tráfego 

de São Paulo: the operative body of the municipality of São Paulo for traffic management of the city) 

provided the locations of traffic accidents involving VRUs in 2012 and in São Paulo’s road network. 

Finally, the Metrô-SP (Companhia do Metropolitano do Estado de São Paulo: the public company 

responsible for operating the subway train system) performed the Origin and Destination Survey (2007 

and 2012) that provided socioeconomic information and trip patterns. 

4.2. Rome 

The Research Center for Transport and Logistics (CLT) at the University of Rome delivered data 

regarding traffic accidents involving VRUs in 2012 with Rome’s road network, socioeconomic 

information and vectorial data (geocoded), which provide the locations of hospitals, universities and 

colleges, parks and recreational areas and retail shopping centers. The spatial units adopted in this study 

are municipi, quartieri, rioni, suburbi and Zone Agro Romano (Figure 3b). 
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(a) (b) 

Figure 3. Spatial units: (a) São Paulo; and (b) Rome. 

4.3. Methodology 

The first step was to standardize the spatial data in terms of the coordinates systems, spatial units and 

spatial adjustment. Next, an analysis of VRU traffic accidents (total amount of accidents and the amount 

of fatal accidents, São Paulo and Rome; see Figure 4a,b) was performed in the GIS environment by using 

density analysis (KDE). 

(a) 

Figure 4. Cont. 
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(b) 

Figure 4. (a) Vulnerable road user (VRU) traffic accidents in São Paulo; (b) VRU traffic 

accidents in Rome. 

The objectives of KDE analysis were to identify: (1) the spatial locations of black spots; (2) the 

attributes of each accident inside the black spot zones (address, road type, accident type, vehicle(s) 

involved and date/time); (3) the attributes of the region delimited by the black spots (area, population, 

demographic density and road network density); and (4) the number and spatial locations of the entities 

considered in this study as trip generator hubs (TGH) (hospitals, universities and colleges and retail 

shopping centers) inside the black spot zones. 

An ecological study was conduct using data aggregated by spatial units (in São Paulo, districts; in 

Rome, quartieri, rioni, suburbi and Zone Agro-Romano; see Figure 3) to investigate the spatial clusters 

(black spot zones) and possible associations between the occurrences of urban road accidents and  

socio-economic and transport-related factors. 

In the statistical analysis (spatial regression models), the following variables (in each spatial unit) 

were considered: the number of total and fatal VRU accidents; area; population; demographic density; 

the number of total/fatal accidents divided by area (VRU traffic accidents/km2); the number of total/fatal 

accidents divided by the population (VRU traffic accident accidents/inhabitants); the number of 

generated trips; the number of generated trips divided by area (trips/km2); the number of generated trips 

divided by population (trips/inhabitant); average income; per capita income; the number of retail shopping 

centers, hospital and universities and colleges; and a variable named TGH (trip generator hubs), which 

is calculated as the sum of the number of retail shopping centers, hospitals and universities and colleges. 

The first step was to calculate the correlation matrix (Spearman correlations) to identify collinear 

variables and to remove them from the regression model (correlation greater than 60%). 

A regression analysis (OLS method) of the amount of total/fatal accidents divided by area (dependent 

variables) with the selected independent variables was performed. The variables incorporated in the model 

were selected by assessing the significance level (p-value). Possible explanatory variables were defined 

as those that presented p-values of ≤0.20 [63]. A global spatial analysis was also performed to verify the 

spatial dependence and variability around the predicted value (i.e., the spatial distribution and 

heterogeneity in model residuals) [64]. The importance of normal distributions is undeniable when 
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applying regression models, because interpretation and inferences may not be reliable or valid when the 

normality assumption is violated [65]. Next, the Kolmogorov–Smirnov test for normality was 

performed, as described by [66]. 

Global Moran’s Index is the most commonly-used test for global spatial autocorrelation [67], was 

determined for regression residuals (for more details, see [68]) to investigate the impacts of neighborhood 

matrix type and was used as a queen type of regular contiguity matrix (for more details, see [69]. When 

the Global Moran’s Index does not present a significant positive spatial autocorrelation, the OLS model is 

considered appropriate. Otherwise, a two-step Lagrange Multiplier Test (LMT) is applied to reveal spatial 

dependence and spatial heterogeneity. In this study, when the Moran’s Index indicates that the residuals 

present spatial dependence, the SAR model (for more details, see [70]) was used. 

5. Results 

5.1. Kernel Density Estimator 

The first analysis was the KDE, which was used in a GIS environment to identify black spot zones of 

traffic accidents (the total number of accidents and fatal accidents) involving pedestrians and cyclists. 

Due to the high number of road accidents in São Paulo (as shown in Figure 4a), the KDE generated four 

representative density classes for total accidents, low-, medium-, high- and very high-density accident 

areas (Figure 5). In addition, three density classes were generated for fatal accidents (Figure 6). In Rome, 

the quantity of road accidents was much lower than in São Paulo (Figure 4b). Thus, the KDE generated 

three density classes for total and fatal accidents, low-, medium- and high-density accident areas  

(Figures 7 and 8). 

 

Figure 5. Black spot zones. Traffic accidents involving VRU in São Paulo in 2012. 
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Figure 6. Black spot zones. Fatal traffic accidents involving VRU in São Paulo in 2012. 

 

Figure 7. Black spot zones. Traffic accidents involving VRU in Rome in 2012. 

 

Figure 8. Black spot zones. Fatal traffic accidents involving VRU in Rome in 2012. 
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5.2. Statistical Analysis 

The black spot zones were linked to the presence of TGH ((1) hospitals; (2) universities and colleges; 

and (3) retail shopping centers). Figures 9–11 show the presence of TGH inside the density zones in São 

Paulo, and Figures 12–14 show those of Rome. 

 

Figure 9. Hospitals/black spot: São Paulo. 

 

Figure 10. Universities /black spots: São Paulo. 
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Figure 11. Retail shopping centers/black spots: São Paulo. 

 

Figure 12. Hospitals/black spot: Rome. 

 

Figure 13. Universities and colleges/black spots: Rome. 
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Figure 14. Retail shopping centers/black spots: Rome. 

A visual analysis alone is not sufficient for affirming the existence of direct influences of TGH over 

black spot zones. Thus, we investigated whether the concentrations of these entities (TGH) are related 

by using high rates of traffic accidents in both cities and determined the variables that could be associated 

with the occurrences of these events. 

5.2.1. São Paulo: Total VRU Traffic Accidents 

In São Paulo, the explanatory variables that best explained the concentrations of total VRU traffic 

accidents (represented in the model by the rate number of total traffic accidents divided by area) included 

the number of generated trips divided by population (trips/inhabitant) and THG (retail shopping centers 

+ hospitals + universities/colleges). The Kolmogorov-Smirnov test was used to assess the normality, and 

the fourth root of the total VRU traffic accidents was used to improve the normal distribution 

approximation. The results are presented below in Table 1 and show that the OLS model is appropriate. 

Table 1. OLS regression model: São Paulo, total VRU traffic accidents. 

Explanatory Variable Regression Coefficient Standard Error t-Value p-Value 

Intercept 1.3852 0.0618 22.434 0.0000 
Trips/inhabitants 0.0352 0.0098 3.575 0.0006 

TGH (Trip Generator Hub) 0.0140 0.0045 3.084 0.0027 

Residual standard error: 0.3611  
Multiple R-squared: 0.2906  
Adjusted R-squared: 0.2754  

F-statistic: 19.05  
p-value: 0.0000 

Residual analysis:  
Observed Moran’s Index: −0.0221  

p = 0.8609 (Moran test)  
Expectation: −0.0106  

Variance: 0.0043  
Kolmogorov–Smirnov test: p = 0.1651 
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5.2.2. São Paulo: Fatal VRU Traffic Accidents 

In São Paulo, the explanatory variable that best explained the concentration of fatal VRU traffic 

accidents (represented in the model by the rate number of fatal traffic accidents divided by area) was 

calculated as the generated trips divided by the population (trips/inhabitant). The Kolmogorov-Smirnov 

test was used to assess normality, and the square root of fatal VRU traffic accidents was used to improve 

the approximation of the normal distribution. The results are presented below in Table 2 and show that 

the OLS model is appropriate. 

Table 2. OLS regression model: São Paulo, fatal VRU traffic accidents. 

Explanatory Variable Regression Coefficient Standard Error t-Value p-Value

Intercept 0.4134 0.0513 8.051 0.0000 
Trips/inhabitants 0.0426 0.0076 5.601 0.0000 

Residual standard error: 0.3078  
Multiple R-squared: 0.2502  
Adjusted R-squared: 0.2423  

F-statistic: 31.37  
p-value: 0.0000 

Residual analysis:  
Observed Moran’s Index: 0.1051  

p = 0.0664 (Moran test)  
Expectation: −0.0138  

Variance: 0.0042  
Kolmogorov-Smirnov test: p = 0.6124 

5.2.3. Rome: Total VRU Traffic Accidents 

In Rome, the explanatory variable that best explains the concentration of total VRU traffic accidents 

is demographic density (inhabitants/km2). The Kolmogorov-Smirnov test was used to assess the 

normality, and the square root of the total VRU traffic accidents was used to improve the approximation 

of the normal distribution. The results are presented below in the Table 3 and show that the OLS model 

is not appropriate. Then, the next step was the application of the SAR model. 

Since Moran’s Index is a significant value, the residuals present spatial dependence, and the OLS is 

not appropriate for modeling Rome’s total VRU traffic accidents. Thus, the Lagrange Multiplier Test 

(LMT) was performed to select the best model. The results are shown in Table 4. When analyzing the 

LMT results, the Robust Lagrange Multiplier Spatially-Lagged (RLMlag) model was adopted. 

The spatial autocorrelation lag model (RLMlag) results are presented in Table 5 and show that the 

SAR model is appropriate, because no residual spatial dependence occurs. The Akaike Information 

Criterion (AIC) (details in [71–73]) of the SAR model is lower than the AIC of the linear regression 

(OLS), which demonstrates that the SAR model is better than the OLS model for total VRU traffic 

accidents in Rome. 
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Table 3. OLS regression model: Rome, total VRU traffic accidents. 

Explanatory Variable Regression Coefficient Standard Error t-Value p-Value 

Intercept 0.6570 0.1627 4.038 0.0000 
Demographic Density 0.0002 0.000002 10.589 0.0000 

Residual standard error: 1.317  
Multiple R-squared: 0.4959  
Adjusted R-squared: 0.4915  

F-statistic: 112.1  
p-value: 0.0000 

Residual analysis:  
Observed Moran’s Index: 0.3758  

p = 0.0000 (Moran test)  
Expectation: −0.0113  

Variance: 0.0022  
Kolmogorov-Smirnov test: p = 0.7016 

Table 4. Lagrange Multiplier Test (LMT): Rome, total VRU traffic accidents. 

Test Statistic Value p-Value 

Lagrange Multiplier Error—LMerr 0.1058 0.0000 
Lagrange Multiplier Spatially-Lagged—LMlag 3.1272 0.0000 

Robust Lagrange Multiplier Error—RLMerr 5.9186 0.2344 
Robust Lagrange Multiplier Spatially-Lagged—RLMlag 8.9401 0.0000 

Spatial Autoregressive Moving Average—SARMA  9.0458 0.0109 

Table 5. Spatial autocorrelation (SAR) lag model: Rome, total VRU traffic accidents. 

Explanatory Variable Regression Coefficient Standard Error z-Value p-Value

Intercept −0.1444 0.1501 0.9616 0.3363 
Demographic Density 0.0001 0.0000 7.9150 0.0000 

Rho: 0.63342  
Likelihood Ratio Test - LR test value: 68.206  

p-value: 0.0000  
Asymptotic standard error: 0.068453  

z-value: 9.2533  
Wald statistic: 85.624  

Log likelihood: −161.426 for lag model  
ML residual variance (sigma squared): 0.88966 (sigma: 0.94322)  

AIC: 330.85 (AIC for linear regression: 397.06)  
LM test for residual autocorrelation  

test value: 7.5693  
p-value: 0.005937 
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Table 5. Cont. 

Residual analysis:  
Observed Moran’s Index: −0.1040  

p = 0.9794 (Moran test)  
Expectation: −0.0087  

Variance: 0.0022  
Moran I statistic standard deviation = −2.0413  

p-value: 0.9794 

5.2.4. Rome: Fatal VRU Traffic Accidents 

Due to the low occurrence of fatal traffic accidents involving VRU in Rome (only 34 events), it was 

not possible to perform a statistical analysis by using standard spatial regression models. In this case, it 

is necessary to adopt a zero-inflated model (a situation of excess zeros relative to what the standard 

models allow), because a large number of observations are equal to zero, as described in [74]. According 

to [75], zero-inflated count data refer to data for which a generalized linear model has a lack of fit due 

to too many zeros. Such data are common in many applications (in this study, the research involving 

urban road accidents), especially when many subjects have zero observations. However, many 

applications have much larger observations, so that the overall mean is not near zero. Thus, the VRU 

traffic fatal accidents in Rome were not statistically analyzed. 

6. Conclusions 

The use of spatial analysis (KDE method in a GIS environment) presented satisfactory results to 

identify and delimit zones with high concentrations of VRU traffic accidents. Using the black spots zones, it 

was possible to classify subzones with different degrees of density (very high/high/medium/low density). 

When analyzing the obtained results from São Paulo, the areas with the highest VRU traffic accident 

rates corresponded with the areas with the highest concentrations of TGH, including hospitals, 

universities and colleges and retail shopping centers. Figure 9 shows that the area around the hospitals 

presents the highest risk of VRU traffic accidents. Similarly, Figure 10 illustrates that “very  

high-density”, “high-density” and “medium-density” black spot zones were mainly where universities 

and colleges are concentrated. The same result can be noticed regarding retail shopping centers (Figure 11). 

The statistical analysis of São Paulo revealed an association between the dependent variable (number 

of VRU total/fatal traffic accidents divided by area) and the independent variables (the ratio 

trips/inhabitants and the presence of TGH). In turn, the regression model demonstrated that the presence 

of TGH does not decisively influence the occurrence of fatal VRU traffic accidents, as observed for total 

accidents (sum of non-fatal and fatal accidents). In terms of fatal VRU accidents, the explanatory variable 

that presented the highest association was the number of generated trips (trips/inhabitants). In both cases 

(total and fatal accidents), the OLS model is appropriate for describing the dynamics of VRU traffic 

accidents and the characteristics of the city (area, population, income, generated trips, TGH, etc.). 

According to the visual analysis in Rome, it is not possible to affirm that black spot zones are 

connected with the preferred destinations of the population (TGH). The statistical analysis showed that 

the variable “demographic density” is sufficient for explaining the dynamics of total VRU road accidents. 
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Because Rome is one of the most visited cities in the world and has a large number and variety of 

historical and touristic attractions that are located in its central area, one possible cause of the high VRU 

traffic accident rates in these zones could be the high concentration of visitors rather than the presence 

of traditional trip generator hubs. However, no pattern was observed regarding the TGH. Thus, it is not 

possible to establish a direct correlation between the presence of trip generator hubs and VRU traffic 

accident rates in Rome. 

7. Final Considerations 

According to [76,77], motorized transport modes account for most road accidents in many urban 

areas. Thus, the development of alternative transport methods, such as mass transit, bicycles and 

walking, has often been recommended. However, policies directed at such implementations have barely 

taken off in Rome and São Paulo or for the development of proper safety guidelines for VRU. 

Road traffic injuries in Rome are the principal cause of death among young people (14–30 years of 

age). Managing traffic speed remains crucial for creating a safe road system and for achieving the 

European Union (EU)-imposed target of reducing road fatalities by 50% in 2011–2020 [78,79]. 

Similarly, traffic accidents are the main cause of injury and fatalities among children (above one year 

old) and teenagers (up to 19 years old) in São Paulo [80]. According to [81,82], the number of traffic 

accidents is related to fast and uncontrolled urban growth in São Paulo. The proportion of fatal crashes 

involving VRU partly results from cultural and sociodemographic factors. Many fatal traffic accidents 

or accidents with severe injuries are caused by poor traffic safety conditions, which are often accentuated 

by physical, political, technical and enforcement environments. 

Speed enforcement systems should be adopted to reduce urban road accidents, and the geometric 

characteristics of the road network should be re-evaluated and modified [83]. One method for reaching 

these goals is to introduce cost-effective practices, such as traffic calming strategies that benefit the 

mobility of VRU by reducing the speed of motorized traffic, re-designing transport infrastructure and 

introducing cycling and walking facilities [84]. 

Traffic calming refers to a combination of physical changes in road design and speed management 

that is aimed at improving road safety conditions, especially for users of non-motorized modes (VRU) [85]. 

Traffic calming measures influence road safety by reducing vehicle speed and/or the volumes of traffic 

on urban road systems, reducing and/or eliminating conflicting movements, improving visibility, 

reducing exposure and sharpening drivers’ alertness [86]. Traffic calming measures include chicanes, 

central islands, traffic control devices (e.g., variable message signs or speed cameras), surface treatments 

(e.g., speed humps or transverse rumble strips) and roadside features (e.g., gateways or landscaping). 

The high socio-economic costs of traffic accidents clearly indicate the need for governments and 

policymakers to strengthen traffic accident preventive measures [87]. According to [78,88], one of the 

most important intervention methods is educational action, which should be directed at the entire 

population and especially at adolescents and young adults, which are at higher risk for involvement in 

traffic accidents. The behaviors of users (drivers and passengers of motorized and non-motorized 

vehicles and pedestrians) can interfere with the number and severity of traffic accidents, particularly 

speeding, poor driving skills and education, lack of familiarity with non-motorized transportation modes, 

lacking the use of safety equipment (seat belt, motorcycle helmet, etc.) and alcohol consumption. 
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