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ABSTRACT 

Wardman, M., Whelan, G.A. and Toner, J.P. (1994) Direct Demand Models of Air Travel: A 
Novel Approach to the Analysis of Stated Preference Data. ITS Working Paper 421, Institute for 
Transport Studies, University of Leeds, Leeds. 

This paper uses what has been termed the direct demand approach to ohtain elasticity esti~ilates 
from discrete choice Stated Preference data. The Stated Preference data relates to husiness 
travellers' choices between air and rail. The direct demand methodology is outlined and some 
potential advantages over the conventional disaggregate logit model are discussed. However, 
fuizher research regarding the relative merits of the two approaches is recomnlended. The direct 
demand model is developed to explain variations in the demand for air travel as a function of 
variations in air headway and cost and in train journey time, frequency, interchange and cost. 
Relatively little has previously been published about the interaction between rail and air and the 
elasticities and variation in them which have been estimated are generally plausible. In particular, 
the results show that large improvements in rail joumey times can have a vely substantial impact 
on the demand for air travel and that the rail journey time cross-elasticity depends on satisfying 
a three hour journey time threshold. 

KEY-WORDS: Demand modelling; mode choice, elasticities, stated preference 
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DIRECT DEMAND MODELS OF AIR TRAVEL: A NOVEL 
APPROACH TO THE ANALYSIS OF STATED PREFERENCE DATA 

1. INTRODUCTION AND 0B.lECTIVES 

The research reported here was undertaken as part of an ESRC funded project (R000233791) 
examining the impact of rail service quality and fare on the demand for air travel and long 
distance car travel. This paper is concerned with the interaction between air and rail in the 
business market. 

Whilst the research findings reported here are of interest in their own right, since relatively little 
research has been conducted on the interaction between rail and air in Great Britain, this paper 
is also concerned with methodological issues; namely the development of what we have termed 
direct demand models based on Stated Preference (SP) data. 

It is our understanding that models developed on SP data have invariably been of the disaggregate 
logit form, and in particular they have examined individuals' discrete choices amongst alternative 
modes of transport. We here present models which are calibrated on data collected from SP 
discrete choice experiments but which aim to explain the variation in collective behaviour rather 
than the variation in individuals' discrete choices. 

Section 2 outlines the broad distinctions we make between what we have termed the aggregate 
and disaggregate modelling approaches whilst section 3 discusses in more detail the modelling 
issues relating to the direct demand model. Section 4 advances what we believe to be the main 
advantages of using a direct demand approach to the analysis of SP data and section 5 presents 
the empirical findings. The concluding remarks are contained in section 6 .  

2. BACKGROUND: MODELLING APPROACHES 

Although distinctions can be made between alternative demand analysis methodologies on various 
dimensions, we here distinguish according to the unit of observation that enters the demand 
model. 

What are termed direct demand models are a form of aggregate model in that the dependent 
variable takes the form of the collective behaviour of travellers. They subsume the various stages 
of travel decision making into a single stage, represented by the quantum of individuals travelling 
between two points by a given mode. They are based on recorded ticket sales, as is collullon in 
the railway industry (Wardman, 1994), and on counts or surveys of travel behaviour. 

The model aims to explain the variation in the demand for a mode of travel as a function of 
variations in the characteristics of that mode of travel, of competing modes of travel and of other 
relevant socio-economic factors, although most direct demand models rarely include factors other 
than those relating to the mode in question. It is therefore the empirical equivalent of the 
conventional demand function of economic theory. Although some argue that such direct demand 
models do not have the same behavioural basis as disaggregate models derived fro111 utility 



maximising behaviour, we would argue that the axiom that there is a relationship between 
aggregate demand and modal characteristics cannot be described as anything other than 
behavioural whilst, quite fundamentally, we will argue that these models are potentially more 
behaviourally robust since the only assumption required with direct demand models is that there 
is a well behaved relationship between demand and modal characteristics. 

In contrast, disaggregate models take the discrete choices of an individual or some other decision 
making unit as the unit of observation. The choices are commonly the mode choices individuals 
are either observed or stated to make and, in contrast to this study, the context is often that of 
urhan travel. 

Disaggregate models specify a relationship between the probability that an individual will choose 
an alternative and the utility of each alternative in the choice set. The utilities are related to 
relevant variables representing travel circumstances and personal characteristics, with unohserved 
factors being represented by an error term. It is the purpose of the calibration stage to estimate 
the weights attached to each variable in the utility expression. The form of model derived depends 
on the assumptions concerning the error term. Assuming that the errors associated with each 
alternative are independently and identically distributed and follow a type I extreme value 
distribution yields the commonly used multinomial logit model. The binomial logit model, in the 
special case of just two alternatives, does not need to assume independently and identically 
distributed errors, and is essentially the only model used to examine discrete choices amongst two 
alternatives. The hierarchical logit model is typically used when choices are expressed amongst 
more than two alternatives since it avoids the restrictive assumptions of the multinomial logit 
model in such instances. A more detailed discussion of disaggregate models is provided in 
Maddala (1983) and Ortuzar and Willumsen (1990). 

3. MODELLING ISSUES 

Although direct demand SP models are based on the data derived from discrete choice 
experiments, they differ from disaggregate models in that they operate on the volume (V) of 
demand rather than discrete choices. The discrete choices for a particular travel alternative are 
summed for each scenario of the SP experiment. Thus if 100 individuals respond to an SP 
experiment involving 12 pairwise comparisons of, say, rail and air, we have 12 estimates of the 
volume of rail demand and of air demand, as opposed to 1200 choice observations that would be 
available for input to a disaggregate model. Clearly a single SP design, which typically offers 
between 9 and 16 comparisons, would not provide a sufficient number of observations to develop 
a robust model. Thus there is a need to offer different designs to increase the number of 
observations available for modelling. If four designs each involving 12 comparisons were allocated 
amongst the 100 individuals, we would have 48 observations of the volume of both rail and air 
demand. 

Suppose the relationship between the volume of demand for mode m between i and j at any point 
in time can be specified as: 



V.. = f ( G  A GC.. ,GC..J 
gm i' j' vm g 

where GC denotes the generalised cost of mode m and of a competing mode n, G, represents the 
generating potential of origin i and A, represents the attracting potential of destination j. 

We are provided with an estimate of Vi,, by summing the SP responses as stated above. We 
cannot estimate the G, and Aj since our sample forms only a portion of the travellers between i 
and j and it is highly unlikely that we will know what proportion have been sampled. However, 
we are often interested in being able to explain changes in demand, rather than denland in 
absolute, and in estimating elasticities. If we specify the demand function as: 

V.. ym = ~ . G . P . A . G c ?  r 8 J J gm GC?. rJn 

then taking the ratio of the function for two SP scenarios (1 and 2) yields: 

v.. A GC..  GC;& 
gm2 = um2 

v.. A 
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The generating and attracting variables cancel out and the parameters of equation 2 are estilnated 
by multiple regression of: 

GC.. v~ '  - 11% log- - vlnz + =log- G C ~  
v.. m 1  GC.. 

vml GCii,~ 

There is a further reason for estimating the form of model specified in equation 4. Given that we 
have more than one SP design, in order to provide the direct demand model with a large enough 
number of observations, the different numbers of individuals replying to each design will distort 
the relationship between the absolute level of demand and the independent variables. For example, 
if a relatively large number have been interviewed for a design that relates to longer distance and 
hence more expensive journeys, direct regression of equation 2 could well obtain estimates which 
imply that volume increases as fare increases! We therefore need to standardise for the number 
of individuals completing each SP exercise and this is achieved by the use of equation 4. Thus 
if we have 12 SP scenarios, we can specify 11 observations of the form of equation 4. 

If the survey concentrates exclusively on the users of a particular mode of travel, it is only 
possible to estimate the demand function for points worse than the current situation. This is 
because the effect of improvements would, at best, only be represented by the exWa trips 
generated by existing users and we would fail to cover the much more important dinlensions of 
switching from other modes of travel and the attraction of new travellers to the market. This 
would clearly lead to biased estimates of the demand function's parameters. Indeed, the demand 
function would be kinked at the base situation. In such instances, the analysis should therefore he 
restricted to data points reflecting lower demand than the base situation. Subsequent forecasting 



applications assume that the behavioural response to, say, a fare increase from X to y can be used 
to forecast the effect of a fare reduction from y to X and that the demand function is well behaved 
in the sense that the relationship between demand and explanatory variahles obtained from model 
calibration is continued across points on the demand function beyond the range in which it was 
calibrated. These assumptions do not seem objectionable and indeed the former assumption is 
implicit in all demand forecasting models. 

Equation 4 is estimated by weighted least squares because the variance of the error term will not 
be constant. The derivation of the error variance is given in the Appendix. 

4. ADVANTAGES OF DIRECT DEMAND SP MODELS 

An advantage of disaggregate models over aggregate models which is often claimed is their ability 
to examine travel behaviour in more detail. It is often not possible to segment aggregate models 
by important factors such as journey purpose; for example, rail ticket sales data split by purpose 
is not available and class of travel is only a crude proxy. Moreover, the amount of variation 
between zones, such as access times to stations, may well be insufficient to allow reliable 
estimation by aggregate models even though there is considerable intra-zone variation. These 
problems are not faced by disaggregate models. However, it can easily be seen that a direct 
demand model based on SP data would not suffer these shortcomings since it can be split by 
purpose and we can ensure that variables whose effects on demand we wish to estimate exhibit 
sufficient variation. 

Clearly there is little point in developing direct demand SP models if they have no advantages 
over disaggregate SP choice models. We list below what we see to be the potential advantages 
of the direct demand approach to modelling SP data. Some of the claims we make are somewhat 
tentative. However, raising these issues is warranted since we view them as meliting further 
research. 

Design Implications 

Since the dependent variable of a direct demand model is a continuous variable, we would suspect 
that design issues are more straightforward than in the conventional context of discrete choice 
modelling. Further research is required to substantiate this claim but consider the following point. 
If a scenario contains more than a negligible change in one or more of the variables relative to 
some other scenario then it must contain information on the sensitivity of demand to changes in 
relevant variables. Thus the principle behind the design is simply to vary the travel variables so 
as to be able to observe what happens to demand. However, the design of SP exercises to he 
analysed by disaggregate logit models is difficult; it is possible to unwittingly design an SP 
exercise so that some scenarios have very little information content or indeed provide the same 
information as some other scenario. Recent research by Holden (1992) shows that SP design is 
by no means straightforward when the SP responses are to be modelled as discrete data. 

Model Assumptions 

The direct demand SP model requires that there is a well behaved relationship between demand 
and relevant travel variables. Regardless of how individuals arrive at their travel decisions, we 



expect that, for example, demand falls as fare increases and that any variation in the fare elasticity 
can be explained by reference to fare levels or variation in other factors. 

The assumptions underlying disaggregate models would seem to be more de~nanding and hence 
less likely to he satisfied. Such models generally assume that there is no taste variation across 
individuals and that all individuals have the same decision making process which is typically 
specified to be based on a compensatory utility function and utility maxinlising behaviour. 
Horowitz (1981) shows that the implications of taste variation on logit choice probabilities can 
he serious. He states that "probabilistic discrete choice models are sensitive to a larger group of 
specification and data errors than linear econometric models are". 

The attractions of the direct demand approach essentially stem from our feeling that it is easier 
to explain and predict the behaviour of groups of travellers than it is to explain the variation in 
discrete choices across different individuals' circumstances. If we want to predict changes in 
aggregate behaviour, it is not surprising that we would have a preference towards models which 
are calibrated to changes in group behaviour rather than towards cross-sectional comparisons of 
what different individuals do. 

Choice Based Samples 

In many circumstances SP exercises are conducted on users of only one of the alternatives which 
enters the SP; for example, there have been a number of studies of rail users which have used SP 
exercises involving the choice between rail and some alternative mode. This is done primarily for 
cost purposes, particularly since direct access to users of other public transport operators is not 
usually available and car users are expensive to contact during their journey. Other forms of 
contact, such as household interviews, are expensive, particularly when we are dealing with rare 
events such as long distance trip making. 

Whilst focussing exclusively on users of one mode is quite understandable, it does have 
implications for the use of disaggregate choice models for forecasting. There are two ways we 
could approach forecasting with this model. The first approach is to use a sample enuileratitin 
approach to forecast what the individuals upon whom the model is calibrated would do in various 
circumstances. The second approach is to use the model in an aggregate fashion to forecast what 
the market as a whole would do. 

The problem with the first approach is that the probability of using the mode actually used is one 
but the logit model cannot recover such a probability. Whilst it may forecast individual 
probabilities close to one, there is the risk that it forecasts probabilities somewhat different to one. 
Given that the sensitivity of demand to changes in travel variables (elasticities) in logit models 
depends on the choice probabilities, we would have concerns about using a model which did not 
closely replicate the base probabilities. Moreover, this approach is limited to the sample of 
individuals upon which the model was calibrated. 

If we use the model in an aggregate fashion to predict overall market shares and changes to them, 
we can hardly expect a model calibrated on one particular set of users to be appropriate to the 
whole market. Even if the parameters of the calibrated model were appropriate for the entire 
market, the mode specific constants would still need to be adjusted because the sample is choice 
based (Coslett, 1981) yet this adjustment cannot be made when one of the alternatives has a zero 
market share in the sample of travellers. 



S d e  Factor Problem 

The scale factor problem arises because the coefficients of disaggregate choice models, and hence 
the forecast choice probabilities and implied elasticities, are estimated in units of residual 
deviation (Wardman, 1991). The coefficients of a logit model contain a scale factor (R) of: 

where G, is the standard deviation of the error term. The unobserved (error) component of choice 
models represents the effect on choice of factors not included in the model. However, SP 
responses may include error which is unique to the SP exercise and which has no bearing on 
amal choices yet it will enter G,, and hence influence the coefficient estimates and forecasts via 
the scale factor (R), because the model cannot distinguish between such SP specific error and 
legitimate error. 

It is tempting to think that regression based models are free from such prohlems because the 
coefficients are not estimated in units of residual deviation. However, this is not the case. We will 
use a numerical example to illustrate the problem. Let us suppose that the true demand far, say, 
rail travel amongst 120 rail travellers is expressed as: 

where PR is the price of rail and P, is the price of coach and coach is the only other mode. 
However, in an SP exercise of these 120 rail users, 20% make the wrong choice. Table 1 lists the 
actual and reported volumes for 10 scenarios. 

Table 1: Actual and Reported Volumes 

P, 

5 

4 

3 

PR 

1 

1 

1 

1 

2 

3 

True Volume 

108.7 

90.9 

72.2 

Rail Share 

0.91 

0.76 

0.60 

Reported Volume 

89.2 

78.6 

67.3 

Error 

-19.5 

-12.4 

-4.9 



The first column in Table 1 is the true volume of rail demand given the rail and coach fare in the 
second and third columns and the demand function of equation 6. The fourth column gives the 
rail share, defined as the true rail volume as a proportion of the 120 travellers, whilst the fifth 
column lists the volumes of rail demand given that 20% of the reported choices are incorrect. The 
figures in this column are obtained as 80% of those who correctly state that they would use train 
and 20% of those who would use coach but who wrongly state that they would use rail. Thus in 
scenario 1 we would have 108.7 actual rail users and 11.3 actual coach users. 80% of the rail 
users correctly choose rail, giving 87.0, to which is added 2.2 actual coach users who state that 
they would prefer rail. We therefore have a reported rail volume of 89.2. The final colu~nn 
denotes the error defined as the difference between the reported and true rail volumes. 

Where the rail share is greater (less) than 0.5, the reported volume is less (greater) than the ach~al. 
The reported rail share will tend to 0.5 relative to the true rail share and hence the fanner can be 
taken to indicate the sign of the error in the reported volume and is therefore potentially usefill 
in measures to alleviate the scale factor problem. 

The error in the reported volumes is consistent with random error across individuals' SP 
responses. A respondent who would actually use rail and has an error in the SP response which 
adds to the relative attractiveness of rail would give a correct answer and hence the error would 
have no effect. However, the SP choice could be incorrect when the error in the SP response is 
of the reverse direction. We would expect random error to affect more choices in absolute for the 
mode which would have the largest actual share. Thus it will operate to understate (overstate) the 
reported volume of demand for the major (minor) mode. 

If we regress the reported volumes of Table 1 on fares, with the suitable logarithmic 
transformation, the elasticity estimates are around 50% of the true values when 20% of choices 
are incorrect. When the proportion of incorrect choices falls to 10%, the estimated elasticities are 
around 72% of the actual values whilst they are around 85% of the actual values when 5% of 
choices are wrong. The estimates are biased because, as can clearly be seen from Table 1, the 
errors are correlated with the dependent variable rather than being random and this systematic 
relationship between dependent variable and error has a systematic effect on the coefficients. This 
can be seen in Figure 1. The true demand function is represented by line A but the errors in the 
reported volumes would lead to the estimation of a line such as B which would quite clearly have 
different parameter estimates. 

The regression based direct demand approach therefore also experiences a scale factor problem 
and the question now is how does it compare with the scale factor problem that arises in the 
disaggregate logit approach? To compare the two approaches we need to find some way of 
converting from the error in one model to that in the other model. 

Wardman (1991) provides a table showing how logit choice probabilities are affected by increases 
in the residual variation. We have taken the choice probability distributions from that table which 
most closely approximate the choice probability distributions obtained from the approach 
underlying the figures in Table 1 for 5%, 10% and 20% incorrect choices. These are given in 
Table 2. 



Figure 1: Actual and Estimated Demand Functions 

Table 2: Corresponding Market Shares 

X 

A 

Volume 



The first column in Table 2 lists market shares between 0.95 and 0.05 which are taken as the tme 
shares. The second column indicates what the market shares would be if 5% of choices were 
incorrect. The third column is taken from Wardman (1991) and is the logit choice probability 
distribution which most closely approximates the probabilities in column 2. This is for a residual 
deviation (G) 20% higher than that which would give the true shares in column 1. Thus 5%) 
incorrect choices is equivalent to a residual deviation in a logit model which is 20%) too high. The 
remaining columns in Table 2 show that 10% incorrect choices corresponds with a residual 
deviation which is 33% too high and the probability distribution for 20% incorrect choices is 
equivalent to a residual deviation which is 75% too high. We are now in a position to ca~npare 
the effect of the scale factor problem on the elasticities obtained from each modelling approach. 

The figures in Table 3 present the ratio of the estimated elasticity to the actual elasticity for a 
range of actual market shares and the three levels of additional residual variation identified to best 
approximate the 5%, 10% and 20% of incorrect choices of the direct demand approach. The logit 
model elasticities (qJ are calculated as: 

where cx is a coefficient estimate and P is a choice probability or market share. Both of these are 
affected by the scale factor problem. Thus for a residual variation which is 20% too high, an 
actual share of 0.95 would become 0.921 and cx would be 16.67% too small. For probabilities in 
excess of 0.5, the effects of the scale factor on the a and (1 - P) terms are offsetting. However, 
they compound for probabilities less than 0.5. 

Table 3: Ratios of Estimated and Actual Logit Point Elasticities 



For shares less than 0.5, and a residual variation which is too large, the elasticities of an SP logit 
model would he too low. For shares greater than 0.5, the forecast elasticities can be too large or 
too small. Given that we found the error in the direct demand model's elasticities, expressed as 
ratios of estimated and actual elasticities, to be around 0.85, 0.72 and 0.50 for S%,, 10% and 20%) 
of incorrect choices, comparison with Table 3 shows that the logit model would he preferred since 
the two approaches have a similar level of accuracy for shares less than 0.5 but that, with the 
exception of very large probahilities, the logit model would produce more accurate elasticity 
estimates for shares in excess of 0.5. 

However, this is not the whole story; there are two further issues which we can take into account. 
Firstly, the error in the direct demand model discussed so far is entirely of a systen~atic nature in 
the sense that there is a very high correlation between the error term and the level of the 
dependent variable and this is the source of the biased coefficient estimates. Let us suppose that 
in addition to this systematic error there is also some random error surrounding the dependent 
variahle. This would not have any effect on the coefficient estimates of the direct demand   no del 
but it would affect the coefficient estimates of the disaggregate logit model since additional error 
will inflate its residual variation. 

A second, and more important issue, is that it may be possible to reduce the impact of the scale 
factor problem on the direct demand model's parameters by suitable transformation of the model 
prior to estimation. In Table 1 we can see that some of the errors are positive and some are 
negative. The problem we have encountered hove is that the errors are correlated with the 
dependent variable and hence the coefficients are biased. However, transformation of the model 
could make the errors of a more random nature. We therefore specified the model to be estimated 
as: 

The subscripts 1 and 2 denote two different scenarios and the functional form is the same as that 
in equation 7. This additive form is used to allow the errors to offset and the parameters are 
estimated by non-linear least squares. Specifying a logarithmic form of model in order to allow 
ordinary least squares estimation did not have the desired effect since the correlation between the 
dependent variable and the error term was not broken. 

We selected from Table 1 the comparisons of scenarios 2 and 7, 1 and 9, 2 and X, 5 and 6, 2 and 
10, and 3 and 5 so that the error term using equation 8 could be both positive and negative. The 
data was copied to itself to form a data set of 60 observations to allow estimation of equation 8 
by non-linear least squares. The estimates of a, P and h were 33.59, -0.70 and 0.69 respectively. 
These are certainly much nearer the values of 30, -0.8 and 0.8 which generated the data than was 
previously the case. 

We conclude that the suitable transformation of the direct demand model offers the potential to 
obtain more accurate elasticity estimates relative to the conventional disaggregate approach in the 
light of the scale factor problem. However, further research is required to be able to draw finner 
conclusions on this issue. 



5. EMPIRICAL RESULTS 

At the outset we must state that we had not originally envisaged using the direct demand 
modelling approach and this, coupled with limited access to air travellers at airports (Wardman, 
Whelan and Toner, 1994), means that we do not have many observations upon which to base the 
analysis. 

SP experiments offering choices between train and plane were conducted on air users on the 
routes listed in Table 4. The number of observations that enter the direct demand SP model and 
the number of indivduals across which the demand estimates are obtained are also given for each 
flow. Three routes offered 9 comparisons of train and plane and hence have 8 observations for 
modelling purposes, whilst two routes offered 12 comparisons and thus have 11 observations 
available for modelling. All available scenarios were used since the SP experiments concentrated 
on offering improvements to rail and deteriorations to air and hence all scenarios represent 
positions on the air demand function which are worse than the current situation. 

The SP exercise represented air by cost and frequency, with journey time fixed at the current 
level whilst train was characterised by cost, frequency, journey time and, on the Edinburgh to 
Manchester route, interchange. In particular, we offered rail journey times which were 
improvements on current performance and which at their best were consistent with very high 
speed train operation. For example, we offered journey times of 2 hours 40 minutes between 
Edinburgh and London and 3 hours between Edinburgh and Birmingham compared with current 
best times of around 4 hours and around 4% respectively. More details about the design of the SP 
exercises and the data collection stage are given in Wardman, Whelan and Toner (1994). 

Table 4: Sampling of Air Users 

We therefore have 46 observations for modelling purposes. Table 5 reports the air direct demand 
model which takes the conventional constant elasticitv form of eauation 4 with the exceotion of 

Flow 

Edinburgh-London 

Edinburgh-Birmingham 

Edinburgh-Manchester 

Newcastle-London 

Manchester-London 

interchange which is specified in difference form since it can onG take the value of 1 oi 0. The 
exponential of the interchange coefficient therefore indicates the proportionate change in air - - 

demand resulting from the introduction of a train interchange when none was othe~wise~resent. 

Observations 

8 

8 

11 

11 

8 

Individuals 

72 

17 

14 

18 

19 



Table 5: Air Direct Demand Model - Constant Elasticities 

The estimated model has a number of satisfactory features, particularly bearing in mind the limited 
number of observations upon which it is calibrated. 

The goodness of fit statistic is not particularly high but in our experience is comparable with that 
achieved by this type of modelling approach when used to explain changes in the recorded volim~e 
of actual rail demand. The highest correlations of estimated coefficients are 0.52 between air 
headway and air cost and -0.53 between rail headway and rail journey time. 

It is encouraging that the constant term is very small since, in an SP experiment, there is no 
reason for demand to vary except as a result of variation in the explanatory variables in the model. 
The headway elasticities are of the correct sign and seem plausible. The rail headway elasticity 
implies that the volume of air demand would increase by 11 % if train headway deteriorated from 
every hour to every two hours. Although the air headway coefficient is not statistically significant, 
we must bear in mind the small sample size with which we are working. 

The rail journey time coefficient relates to variations in train in-vehicle time and, given its 
importance in the SP design, it is hardly surprising that it is the most precisely estimated 
coefficient. The coefficient estimate represents the cross-elasticity of air demand with respect to 
the level of train joumey time. At first sight it appears somewhat large. However, it is plausible 
when we bear in mind the impact of high speed trains such as TGV on air demand and that the 
SP exercise in many instances offered very substantial rail journey time savings. The evidence 
from TGV Sud-Est introduction between Paris and Lyon shows that there was a very large 
proportionate reduction in air demand as a result of a halving of rail journey times which implies 
very high cross-elasticities as we have here obtained. 

Although the interchange coefficient is not statistically significant, this could be because 
interchange was only a relevant variable on the Edinburgh to Manchester route and only varies 
in 6 out of the 46 cases. This merely compounds the problems of limited sample size. However, 
it quite plausibly indicates that air demand would increase by 18% after the introduction of a rail 
interchange when none otherwise existed. 



The rail cost elasticity is statistically insignificant. Although the small sample size lnay be a 
contributory factor, we are inclined to feel that it may well be that there is little scope for rail to 
attract business travellers from air by reducing its fares. On the other hand, the nlodel suggests 
that air fare increases do have a substantial impact on air demand. We find it plausible that 
reductions in what are relatively low rail fares do not affect air demand gwatly but that increases 
in relatively high air fares have a somewhat greater effect. It is plausible to advance a form of 
elimination by aspects decision rule as underlying business travel mode choice. This would take 
the form of choosing the fastest mode provided that other variables, such as cost, are acceptable. 
Thus improving rail fares would not influence mode choice since rail is already acceptable in this 
respect hut increasing air fares would have an effect on demand if the higher air fare was deemed 
unacceptable and therefore rules out air travel. However, we do feel that there is also an element 
of protest against air fare increases and we regard the air fare elasticity to be too high, although 
this is not a serious problem since air fare is not a policy relevant variable as far as this study is 
concerned. 

The model in Table 5 is satisfactory in several respects but it should only form a starting point 
to a more detailed consideration of the appropriate relationship between air demand and the 
characteristics of air and of competing rail services. It specified the constant elasticity form but 
a more general functional fonn is represented by: 

which is estimated as: 

The implied point elasticity (v,) is: 

A value of h close to zero implies a constant elasticity whereas a value of h close to 1 implies 
that the elasticity is proportional to the level of the variable. The attraction of this elasticity 
function is that it allows a departure from the potentially restrictive constant elasticity position yet 
it does not require that the elasticity variation is as large as being proportional to the level of the 
variable. 

Whilst P and h can be simultaneously estimated using non linear least squares, which is available 
in the SAS statistical package used in this study, we did not consider this level of sophistication 
to be worthwhile on such a small data set. Instead we estimated the p's of equation 10 for various 
values of h and identified the combination of PS and h's across the variables in the model which 
provided the best fit. 

We would not expect the journey time elasticity to be constant. The main factor in business 
travellers' mode choices is the relative journey times of air and rail. If rail does not allow a round 



trip to be done in a day, it will be a very unattractive option to those business travellers making 
a day trip. We take this threshold to be around three hours. For journey times below three hours, 
rail not only becomes a feasible option for those making day trips but it will tend to have quicker 
door-to-door journey times and hence tend to dominate. It is noticeable that trains are provided 
every half hour between Newcastle and London where the journey time is a little less than 3 hours 
yet there are only around 6 air services per day to London Heathrow and, at similar departure 
times, 5 per day to London Gatwick. For journeys such as Leeds to London, where the rail 
journey time is between 2 and 2% hours, rail has a far bigger share of the business market than 
air. 

We have therefore experimented with the function set out in equation 10 and also with the 
specification of three journey time variables according to whether: 

i) The journey time threshold of 3 hours was not satisfied in both the before and after 
(1 and 2) scenarios (TIME1). 

ii) The journey time threshold was crossed, that is, the threshold was satisfied in just 
one of the two scenarios (TIME2). 

iii) The journey time threshold was satisfied in both scenarios (TIME3). 

We could not test an additional threshold of 2 hours since this was only satisfied on the London 
to Manchester flow and there were only four cases where this threshold was crossed and only two 
cases of journey time changes where this threshold was satisfied in both scenarios. 

The coefficient associated with Timel was insignificant (t=0.51). This confirms our hypothesis 
that rail journey time variations do not affect air demand when the three hour threshold is not 
satisfied. The removal of the insignificant Timel variable resulted in coefficients of 1 .l5 and 1.02 
for Time2 and Time3, with respective 95% confidence intervals of ?51% and &76% and a 
goodness of fit of 0.649. We therefore proceeded to examine elasticity variation of the fonn 
specified by equation 11 for journey time provided that the three hour threshold was satisfied in 
at least one of the two scenarios. This variable is termed Time4 When it was specified in constant 
elasticity form, along with all the other variables, the goodness of fit was 0.657. 

The preferred direct demand model is listed in Table 6. It contains each variable in the fonn 
which provided the best fit overall. The final column of Table 6 indicates whether the constant 
elasticity is retained for a variable, which is denoted by LOG, or whether the functional form 
expressed in equation 10 provides a better fit whereupon the value of h which yields the best fit 
is given. Since the interchange variable can only take the value of one or zero, it is specified in 
the same form as for Table 5. 

The model reported in Table 6 obtains an improvement in fit from 0.657 to 0.683 in relation to 
the constant elasticity equivalent. This is quite an appreciable improvement in fit in our experience 
and stems from some noticeable departures from the constant elasticity position. 



Table 6: Preferred Air Direct Demand Model 

The air headway elasticity is found to vary strongly with the level of headway whereas the rail 
headway elasticity is constant. However, the rail headway varies much less than air headway. Rail 
headway has maximum and minimum values of every two hours and every half hour yet the 
corresponding values for air are every five hours (3 flights per day) and evely hour. Table 7 
indicates the implied point elasticities for air headway for a range of frequency levels. It also 
presents a range of journey time and air cost elasticities. 

Table 7: Elasticity Variation 

It is to be expected that the the benefits of improving air frequency will he greater where there 
is a poor service than where the service frequency is good. At hourly service intervals, as exist 
on routes such as between London and Glasgow, Edinburgh and Manchester, the model indicates 
that there would he little to be gained from improved air service frequency. 

The journey time elasticity variation is quite plausible. The point elasticity is only defined wheir: 
the 3 hour threshold is satisfied but the arc-elasticity would be large for a journey time reduction 



which meant that the threshold was crossed. Thus we have also given the point elasticity for 240 
minutes. It is to be expected that the rail journey time cross-elasticity falls as rail journey time 
falls and an increasingly large proportion of air business travellers have switched to rail. 

Although we have expressed some reservations about the validity of the absolute air cost elasticity 
we have obtained, the elasticity variation across a range of full air fares is quite plausible. 

The elasticity variation that we have estimated may not be the complete amount. Whilst the air 
fare elasticity variation is plausible, there may additionally be an effect according to, for example, 
the competitive position of air and rail. However, we only have a limited sample size and it was 
not considered worthwhile to examine additional forms elasticity variation. Nonetheless, we did 
further examine the threshold issue. We can hypothesise that not only does the rail tilne cross- 
elasticity depend on satisfying the three hour threshold but also that the effect of rail frequency 
and rail cost on the demand for air travel will be strongly influeced by whether the threshold is 
satisfied. However, when we allowed the rail frequency and rail cost elasticities to depend on 
whether the three hour journey time threshold was satisfied, we could not obtain any convincing 
evidence that such a relationship exists, although a larger data set would be required to draw more 
definite conclusions. 

6. CONCLUSIONS 

The research reported here serves two purposes. Firstly, it has dealt with methodological issues 
surrounding the analysis of SP data using the direct demand method. Secondly, it provides results 
regarding the degree of interaction between air and rail travel. 

It is our understanding that models developed on SP discrete choice data have heen of the 
disaggregate logit form and that there has been little attempt at developing what we have termed 
direct demand models whose explicit purpose is to explain changes in collective behaviour as a 
function of changes in relevant travel variables. 

We have cited the potential advantages of the direct demand approach to modelling SP data. Some 
of the claims require further attention to determine whether the direct demand approach does 
indeed have significant attractions, at least in some circumstances, in relation to the conventional 
disaggregate logit model. Whilst we have examined the scale factor problem in some detail, 
further research is also warranted in this important area. 

As far as the empirical results are concerned, relatively little has previously heen published 
regarding the interaction between rail and air. The calibrated models are very satisfactory given 
that they are only based on 46 observations. We have been able to obtain plausible own and cross- 
elasticity estimates and the analysis of elasticity variation, although by no means exhaustive, has 
obtained some interesting results. The calibrated models would allow us to forecast the impact on 
the demand for air travel of a range of improvements to long distance rail services. In particular, 
we note that large reductions in rail journey times can have a substantial impact on the volu~ne 
of demand for air travel and that the rail journey time cross-elasticity is strongly dependent on 
the satisfaction of a three hour rail journey time threshold. 
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APPENDIX 

WEIGHTED LEAST SQUARES FOR RATIO MODEL 

The tlue model is: 

f \ 

The estimated model is: 

Thus: 

Expanding 

In - around (m, ,  m,) (2) 
in a Taylor series, and ignoring terms of second order and above (and suppressing subscripts i ) ,  

Now 



and 
/ \ 

Thus: 

Alternatively, using expectation notation: 

VAR(ui) = E(u:) - [E(ui)IZ 

- - E(fi ,2) + E(&') 2E("lfi2) - 
m,' nil= milm, 

Thus 



AI and b2 are used as estimates of the unknown m, and m,. 
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