
1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2416727, IEEE Transactions on Knowledge and Data Engineering

1

Effective Classification using a small
Training Set based on

Discretization and Statistical Analysis
Renato Bruni and Gianpiero Bianchi

Abstract—This work deals with the problem of producing a fast and accurate data classification, learning it from a possibly small
set of records that are already classified. The proposed approach is based on the framework of the so-called Logical Analysis of
Data (LAD), but enriched with information obtained from statistical considerations on the data. A number of discrete optimization
problems are solved in the different steps of the procedure, but their computational demand can be controlled. The accuracy of
the proposed approach is compared to that of the standard LAD algorithm, of Support Vector Machines and of Label Propagation
algorithm on publicly available datasets of the UCI repository. Encouraging results are obtained and discussed.

Index Terms—Classification Algorithms, Data Mining, Machine Learning, Discrete Mathematics, Optimization.

F

1 INTRODUCTION

G IVEN a set of data grouped into classes, the
problem of predicting which class new data

should receive is called classification problem. Many
approaches to this problem have been proposed,
based on different considerations and data models.
Established ones include: Neural Networks, Support
Vector Machines, k-Nearest Neighbors, Bayesian ap-
proaches, Decision Trees, Logistic regression, Boolean
approaches (see for references [1], [2], [3], [4], [5], [6],
[7]). Each approach has several variants, and algo-
rithms can also be designed by mixing approaches.
Specific techniques may better fit to specific classi-
fication contexts, but one approach that is generally
considered quite effective for many practical appli-
cations is Support Vector Machines (SVM) [8]. SVM
are based on finding a separating hyperplane that
maximizes the margin between the extreme training
data of opposite classes, possibly after a mapping to
a higher dimensional space, see also [9], [10].

Roughly speaking, the larger is the training set,
the more information it contains, the more accurate
the learned classifier can be, even if clearly there
are several aspects involved. Unfortunately, in many
important applications, labeled data are difficult or
expensive to obtain, and a classification methodology
able to be accurate using small training sets would

• R. Bruni is with the Department of Computer, Control and Manage-
ment Engineering of the University of Rome “Sapienza”, Via Ariosto
25, Roma, 00185 Italy.
E-mail: bruni@dis.uniroma1.it

• G. Bianchi is with the Department of Censuses and Administrative
and Statistical Registers of the Italian National Institute of Statistics
“Istat”, Viale Oceano Pacifico 171, Roma, 00144 Italy.
E-mail: gianbia@istat.it

be very useful. On the contrary, unlabeled data may
be relatively easy to collect. Therefore, techniques
have been developed for improving a classification
by using also a large amount of unlabeled data,
that is called validation set. Those techniques can be
introduced into several of the approaches listed above,
obtaining semi-supervised classifiers (see [11], [12], [13]
and references therein). In the case of SVM they are
called Transductive Support Vector Machines (TSVM)
[10], and are based on the concepts described above
but also force the separating hyperplane to be far
away from the unlabeled data. Another major frame-
work in semi-supervised learning techniques is Label
Propagation (LP), initially proposed in [14], see also
[15]. This technique works by constructing a similarity
graph over all the records in the input dataset, and
by propagating the labels of the labeled records to
the unlabeled ones according to the intrinsic data
manifold structures collectively revealed by a large
number of data records.

However, no single algorithm is currently able to
provide the best performance on all datasets, and
this seems to be inevitable [16]. Predicting which
algorithm will perform best on a specific dataset has
become a learning task on its own, belonging to the
area called meta-learning [17]. Therefore, techniques
based on the aggregation of a set of different (and
hopefully complementary) classifiers have been in-
vestigated. They are called Ensemble Techniques, and
they include Boosting [18], [19] and Bagging [20].
Roughly speaking, those techniques generate many
weak learners and combine their outputs in order
to obtain a classification that is both accurate and
robust. Those weak learners may be based on several
classification approaches.

On the other hand, one interesting Boolean ap-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/54518928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2416727, IEEE Transactions on Knowledge and Data Engineering

2

proach to classification is the Logical Analysis of Data
(LAD) [21], [22], [23], [24], [25], that is inspired by the
mental processes that a human being applies when
learning from examples. In this approach, data should
be encoded into binary form by means of a discretiza-
tion process called binarization. This is done by using
the training set for computing specific values for each
field, called cut-points in the case of numerical fields,
that split each field into binary attributes. Discretization
is also adopted in other classification methodologies,
such as decision trees, and several ways for selecting
cut-points exists, such as entropy based ones (see e.g.
[6], [26]). The selected binary attributes constitute a
support set, and are combined for generating logical
rules called patterns. Patterns are used to classify each
unclassified record, on the basis of the sign of a
weighted sum of the patterns activated by that record.
LAD methodology is closely related to decision trees
and nearest neighbor methods, and constitutes an
extension of those two approaches, as shown in [24].

In this paper, we propose the following original
enhancements to the LAD methodology. First, the
idea of evaluating the quality of each cut-point for
numerical fields and of each binary attribute for cat-
egorical fields, and a criterion for doing so. Such
quality values are computed by using information
extracted from the training set, and are taken into
account for improving the selection of the support set.
The support set selection can therefore be modeled as
a weighted set covering problem, and also as a binary
knapsack problem (see e.g. [27], [28]). In a related work,
Boros et al. [29] consider the problem of finding essen-
tial attributes in binary data, which again reduces to
finding a small support set with a good separation
power. They give alternative formulations of such
problem and propose three types of heuristics for
solving them. An analysis of the smallest support set
selection problem within the framework of probably
approximately correct learning theory, and algorithms
for its solution, is also in [30].

Moreover, the classification of the test set is not
given here simply on the basis of the sign of the
weighted sum of activated patterns, but by comparing
that weighted sum to a suitable classification threshold.
Indeed, we propose to compute both the values of
pattern weights and the value of classification thresh-
old in order to minimize errors, by solving a mixed
integer linear programming problem. The objective
of minimizing errors is pursued by (i) minimizing
classification errors on records of the training set and
by (ii) reproducing in the test set the class distribution
of the training set. Pattern weights and classification
threshold are in fact parameters for the classification
procedure, and, in our opinion, this should allow
obtaining the best choice of these parameters for the
specific dataset, partially overcoming the parameter
tuning or guessing phase that always represents a
difficult and questionable step.

The known LAD procedure is recalled in Section
2. We refer here mainly to the “standard” procedure,
as described in [23], although other variants have
been investigated in literature (e.g. [31]). The orig-
inal contributions of this work begin with Section
3, which explains motivations and possible criteria
for evaluating the quality of cut-points. In particular,
we derive procedures for dealing with cut-points on
continuous fields having normal (Gaussian) distribu-
tion, on discrete fields having binomial (Bernoulli)
distribution, or on general numerical fields having un-
known distribution. This latter approach is used also
for qualitative, or categorical, fields. The support set
selection problem is then reformulated as weighted
set covering and as binary knapsack in Section 4.
After that, patterns are generated, and computation
of pattern weights and classification threshold by
using the proposed mixed integer model is described
in Section 5. Results of the proposed procedure on
publicly available datasets of the UCI repository [32]
are analyzed and compared to those of the standard
LAD methodology, and also to those of SVM (in its
implementation LIBSVM [33], currently deemed to
be among the most effective classifiers), TSVM (in
its implementation UniverSVM [34]), and LP (in its
implementation scikit-learn [35]) in Section 6. Main
notation is summarized in the Appendix.

2 CLASSIFYING WITH THE LAD
METHODOLOGY

The structure of records, called record scheme R, con-
sists of a set of fields fi, with i = 1 . . .m. A record
instance r, also simply called record, consists of a set of
values vi, one for each field. A record r is classified if it
is assigned to an element of a set of possible classes C.
In many cases, C has only two elements, and we speak
of binary classification. We will hereinafter consider this
case. Note, however, that the proposed procedure,
mutatis mutandis, could also be used for the case of
multiple classes. A positive record instance is denoted
by r+, a negative one by r−.

For classifying, a training set S of classified records
is given. Denote by S+ the set of its positive records
and by S− the set of its negative ones. Sets S+ and S−

constitute our source of information. A set of records
used for evaluating the performance of the learned
classifier is called test set T . The real classification of
each record t ∈ T should be known. We compare the
classification of T given by the learned classifier, also
called predicted classification, to the real classification
of T : the differences are the classification errors of our
classifier. A positive training record is denoted by s+,
a negative one by s−. A positive test record is denoted
by t+, a negative one by t−.

LAD methodology begins with encoding all fields
into binary form. This process, called binarization,
converts each (non-binary) field fi into a set of binary

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2416727, IEEE Transactions on Knowledge and Data Engineering

3

attributes aji , with j = 1 . . . ni. The total number of
binary attributes is n =

∑m
i=1 ni. Note that the term

“attribute” is not used here as a synonym for “field”.
A binarized record scheme Rb is therefore a set of
binary attributes aji , and a binarized record instance rb
is a set of binary values bji ∈ {0, 1} for those attributes.

Rb = {a11, . . . , a
n1
1 , . . . , a1m, . . . , a

nm
m }

rb = {b11, . . . , b
n1
1 , . . . , b1m, . . . , b

nm
m }

For each qualitative fields fi, all values can simply
be encoded by means of a logarithmic number of
binary attributes aji , so that ni binary attributes can
binarize a quantitative field having up to 2ni dif-
ferent values. For each numerical field fi, on the
contrary, we introduce ni thresholds called cut-points
α1
i , . . . , α

ni
i ∈ IR, and the binarization of a value vi

is obtained by considering whether vi lies above or
below each αji . Cut-points αji should be set at values
representing some kind of watershed for the analyzed
phenomenon. Generally, αji are placed in the middle
of specific couples of data values v′i and v′′i :

αji = (v′i + v′′i)/2.

This can be done for each couple v′i and v′′i belonging
to records from opposite classes that are adjacent on
fi. Cut-points αji are then used for binarizing each
numerical field fi into the binary attributes aji (also
called level variables). The values bji of such aji are

bji =

{
1 if vi ≥ αji
0 if vi < αji

Example 1: We have records representing persons
having fields weight (in Kg.) and height (in cm.),
and a positive [respectively negative] classifications
meaning “is [resp. is not] a professional basketball
player”. Consider the following training set:

weight height pro.bask.player.?
90 195 yes

S+ 100 205 yes
75 180 yes
105 190 noS−
70 175 no

We now plot values belonging to positive [resp.
negative] records by using a framed + [resp.
−]. Cut-points obtainable from this set S are
α1
weight=72.5, α2

weight=102.5, α1
height=177.5,

α2
height=185, α3

height=192.5. Corresponding binary
attributes obtainable are a1weight, meaning: weight
≥ 72.5 Kg., a2weight, meaning: weight ≥ 102.5
Kg., a1height, meaning: height ≥ 177.5 cm., a2height,
meaning: height ≥ 185 cm., a3height, meaning:
height ≥ 192.5.

A set of binary attributes {aji} used for binarizing
a dataset S is called support set U . A support set is
exactly separating if no pair of positive and negative

weight
75 90 100 105

72.5 102.5

70

+- + -+

height
180 190 195 205

177.5 192.5

175

+- +- +

185

records of S have the same binary encoding. A single
data-set may have several possible exactly separating
support sets. Since the number of binary attributes
obtainable in practical problems is often very large,
and many of them may be not needed to explain the
analyzed phenomenon, we are interested in selecting
a small (or even the smallest) exactly separating sup-
port set. By using a binary variable xji for each aji ,
such that

xji =

{
1 if aji is retained in the support set

0 if aji is excluded from the support set

the integer programming problem (1) should be
solved. For every pair of positive and negative records
s+, s− we define I(s+b , s

−
b) to be the set of couples of

indices (i, j) where the binary representations of s+

and s− differ, except, under special conditions [23],
for the indices that involve monotone values. This
problem has a peculiar mathematical form called set
covering [27], [28]: the objective (sum of all the binary
variables) minimizes the cardinality of the support set;
the constraints (sums of binary variables ≥ 1) impose
retaining at least one binary attribute for each set of
them producing different binarizations for any pair of
positive and negative records.

min
x

m∑
i=1

ni∑
j=1

xji

s.t.
∑

(i,j)∈I(s+b ,s
−
b)

xji ≥ 1 ∀I(s+b , s
−
b), s+∈ S+, s−∈ S−

xji ∈ {0, 1}
(1)

Note that this selection does not aim to improve the
classification power, and actually “the smaller the
chosen support set, the less information we keep,
and, therefore, the less classification power we may
have” [23]. Instead, it is necessary for reducing the
computational burden of the remaining part of the
procedure, which may otherwise become impractica-
ble. Indeed, a non-optimal solution to (1) would not
necessarily worsen the classification power [23], [29].
Since different support sets correspond to different
alternative binarizations, hence to actually different
binarized record, the support set selection is a key point.

Example 2: Continuing Example 1, by solving to op-
timality the above set covering problem (1), we have
the alternative support sets U1 = {a2weight, a1height}
and U2 = {a1weight a2weight}. Moreover, an approximate

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2416727, IEEE Transactions on Knowledge and Data Engineering

4

solution is U3 = {a1weight, a2weight, a1height, }. The corre-
sponding alternative binarizations of S are:

U1 U2 U3

b2we. b1he. b1we. b2we. b1we. b2we. b1he.

0 1 1 0 1 0 1
S+ 0 1 1 0 1 0 1

0 1 1 0 1 0 1
1 1 1 1 1 1 1S−
0 0 0 0 0 0 0

The selected support set U is then used to create
patterns. A pattern P is a conjunction (∧) of literals,
which are binary attributes aji ∈ U or negated binary
attributes ¬aji . Given a binarized record rb, that is a set
of binary values {bji} for the above binary attributes,
each literal of P receives a value: bji ∈ {0, 1} for literal
aji ; (1 − bji) ∈ {0, 1} for literal ¬aji . We have that
P = 1 if all literals of P are 1, P = 0 otherwise.
We say that a pattern P covers a record r if the set
of values rb = {bji} makes P = 1. A positive pattern
P+ is a pattern covering at least one positive record
r+ but no negative ones. A negative pattern P− is
defined symmetrically. Patterns can be viewed as rules
governing the analyzed phenomenon. We denote as
P (r) the value of pattern P applied to record r :

P (r) =

{
1 if P covers r
0 if P does not cover r

Example 3: By continuing Example 2, a positive
pattern obtained using the support set U1 is P1 =
¬a2weight ∧ a1height. This means weight < 102.5 Kg.
and height ≥ 177.5 cm. Recall P1 is a pattern if
P1(s+) = 1 for at least some s+ ∈ S and P1(s−) =
0 for all s− ∈ S. Indeed, we have P1(s+) = 1
for all s+ ∈ S and P1(s−) = 0 for all s− ∈ S.
Another pattern, obtained using support set U3, is
P2 = a1weight ∧¬a2weight ∧ a1height. P2 appears to be even
more appropriate than P1, since it means “one is a
professional basketball player if has a medium weight
(weight ≥ 72.5 Kg. and weight < 102.5 Kg.) and
height above a certain value (height ≥ 177.5 cm.)”.
P2(s+) = 1 for all s+ ∈ S, P2(s−) = 0 for all s− ∈ S.

Positive patterns can be generated by means of two
types of approaches: top-down, i.e. by removing one
by one literals from the conjunction of literals covering
a single positive record until no negative records are
covered, or bottom-up, i.e. by conjoining one by one
single literals until obtaining a conjunction covering
only positive records. Negative patterns can be gen-
erated symmetrically. Also the number of generated
patterns may be too large, so a pattern selection step
can be performed. This is done in [23] by solving an-
other set covering problem, whose solution gives the
set of the indices H+ of selected positive patterns and
that of the indices H− of selected negative patterns,
with H = H+ ∪H−. Weights wh are now assigned to

all patterns in H , with wh ≥ 0 for h ∈ H+ and wh ≤ 0
for h ∈ H−, by using criteria described in [23]. We
skip detail here since we will discuss this again and
propose a new approach in Section 5. Finally, each
new record r is classified according to the positive or
negative value of the following weighted sum, called
discriminant and denoted by ∆(r).

∆(r) =
∑
h∈H+

whPh(r) +
∑
h∈H−

whPh(r) =
∑
h∈H

whPh(r)

3 EVALUATION OF BINARY ATTRIBUTES

We remarked that selecting a small support set is com-
putationally necessary, but that excluding attributes
means losing information. Therefore, we propose to
evaluate the quality (the separating power) of each
attribute and to perform such a selection taking into
account this evaluation. In the following Fig. 1, we
give three examples of numerical fields (a,b,c). In each
case, we draw (in the area above the horizontal line)
“qualitative” distributions densities of a large number
of values from positive and negative records, and
report (on the same line) a smaller sample of those
values. Very intuitively, cut-points obtainable in case
a) are the worst ones (they do not appear very useful
for separating the two classes), while the cut-point
of case c) is the best one (it has a good “separating
power”). Moreover, the different cut-points of case b)
do not have the same quality.

To estimate this, we analyze how αji divides the
two classes, even if the real classification step will
use patterns. Different estimators could of course be
designed, however results show that the proposed
technique is able to improve accuracy with respect
to the standard LAD procedure.

a)
-+ +

c)
++ -

b)
+

distribution of + distribution of -

distribution of +

distribution of +

distribution of -

distribution of -

1

a
α

3

a
α

5

a
α

4

a
α

6

a
α

2

a
α

1

b
α

2

b
α

3

b
α

1

c
α

4

b
α

5

b
α

+ - - +

++ --

+ --+-+

Fig. 1. Examples of cut-points in different conditions.

Given a single cut-point αji and a record r, denote
by + the fact that r is actually positive, and by − the
opposite situation. Moreover, denote by class+(αji) the
fact that r is classified as positive by αji , i.e. stays on
the positive side of cut-point αji , and by class − (αji)

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2416727, IEEE Transactions on Knowledge and Data Engineering

5

the fact that r is in the opposite situation. Given a
generic set of records N , let A+ be the set of the
records which are class + (αji), and A− be the set of
records which are class − (αji). Denote instead by N+

and N− the (possibly unknown) real positive and
negative sets. Errors occur when a negative record is
classified as positive, and vice versa. False positive
errors are N− ∩A+; false negative ones are N+ ∩A−.
The relative confusion matrix is given in Table 1 below.
Clearly, in the general case of k classes, each matrix
would be relative to the two classes separated by αji .

TABLE 1
Confusion matrix for αji .

Predicted by αj
i

+ −
+ N+ ∩A+ N+ ∩A−Real − N− ∩A+ N− ∩A−

Since the described support set selection problem is
a non-trivial decision problem, it seems reasonable to
model it as a binary linear programming problem. For
doing so, we need to use a criterion for evaluating the
quality of each binary attribute such that the overall
quality value of a set of binary attributes can be given
by the sum of their individual quality values. We
obtain this as follows. A basic measure of the accuracy
of the positive classification obtained from αji can be
the probability of producing a true positive divided
by the probability of producing a false positive.

o+(αji) =
Pr(+ ∩ class + (αji))

Pr(− ∩ class + (αji))

A similar measure can evaluate the accuracy of the
negative classification obtained from αji .

o−(αji) =
Pr(− ∩ class − (αji))

Pr(+ ∩ class − (αji))

Clearly, o+(αji) ∈ [0,+∞) and o−(αji) ∈ [0,+∞).
The higher the value, the better positive [resp. neg-
ative] classification αji provides. In order to have a
complete evaluation of αji , we consider the product
o+(αji)× o−(αji) ∈ [0,+∞). Moreover, rather than the
numerical value of such evaluation, we are interested
in the relative differences among the values obtained
for the different cut-points. Therefore, we can sum 1
to such product, obtaining a value in [1,+∞).

1 +
Pr(+ ∩ class + (αji))

Pr(− ∩ class + (αji))
· Pr(− ∩ class − (αji))

Pr(+ ∩ class − (αji))

Denote now by A the set of couples of indices (i, j)
of a generic set of cut-points: {αji : (i, j) ∈ A}.
The overall accuracy of a classification using the cut-
points in A is related to the product of the individual
evaluations:∏
(i,j)∈A

[
1+

Pr(+ ∩ class + (αji))

Pr(− ∩ class + (αji))
· Pr(− ∩ class − (αji))

Pr(+ ∩ class − (αji))

]

As noted above, more than the numerical values, we
are interested in producing, for each set of cut-points,
values that can be compared. Therefore, we can apply
a scale conversion and take the logarithm of the above
value. This allows to convert it in a sum, as requested
above, obtaining:

∑
(i,j)∈A

ln

[
1+

Pr(+ ∩ class + (αji))

Pr(− ∩ class + (αji))
· Pr(− ∩ class − (αji))

Pr(+ ∩ class − (αji))

]

In conclusion, the quality qji of a single cut-point αji
can be evaluated as follows (so that the quality of a
set of cut-points results in the sum of their individual
quality values).

qji = ln

[
1+

Pr(+ ∩ class + (αji))

Pr(− ∩ class + (αji))
· Pr(− ∩ class − (αji))

Pr(+ ∩ class − (αji))

]

Clearly, qji ∈ [0,+∞). Computing the above probabil-
ities by counting instances (and denoting by | · | the
cardinality of a set), we have:

qji = ln

1 +

|N+ ∩A+|
|N+|

|N− ∩A+|
|N−|

·

|N− ∩A−|
|N−|

|N+ ∩A−|
|N+|

 =

= ln

[
1 +
|N+ ∩A+|
|N− ∩A+|

· |N− ∩A−|
|N+ ∩A−|

]
In the general case of k classes, the above cardinalities
are those of the sets appearing in the confusion matrix
for αji .

However, this evaluation needs the correct classi-
fication {N+, N−} of the dataset N . We obviously
prefer an a priori quality evaluation, i.e. computable by
knowing only the correct classification of the training
set S. We can do this by using a non-parametric
method for fields having unknown distribution, and a
parametric one for fields having known distribution.

In the case of fields having unknown distribution,
qji is simply obtained by considering the training
set S instead of the generic N , while for each cut-
point αji sets A+ and A− are clearly known (they
respectively are the sets or records that are class +(αji)
and class− (αji)). Now, the quality of each attribute aji
over a numerical field fi is that of its corresponding
cut-point αji , that is the defined qji .

In the case of fields where the hypothesis of a
known distribution is satisfactory, their positive and
negative density functions can be computed using the
training set S, and the above quantities |N+ ∩ A+|,
etc. can be evaluated by using such density functions.
In other words, we just know data from the training
set S, but we may infer where other data will be,
and compute how useful αji would be for all of
them. In particular, for any continuous-valued field
fi, we make the hypothesis of a normal (Gaussian)
distribution. Such distribution can indeed model the

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2416727, IEEE Transactions on Knowledge and Data Engineering

6

majority of real-world values, as a consequence of
the central limit theorem [36]. Denote now by mi+

the mean value that positive records have for fi and
by σi+ their (population) standard deviation (defined

as
√∑

s∈S+ (vsi−mi+)2

|S+|), denote by mi− and σi− the
same quantities for the negative records, and suppose
w.l.o.g. that cut-point αji represents a transition from
− to +. By computing the above parameters from the
training set S, our evaluation of quality qji becomes:

qji = ln

1 +

+∞∫
αji

1√
2π(σi+)2

e
− (t−mi+)2

2(σi+)2 dt

+∞∫
αji

1√
2π(σi−)2

e
− (t−mi−)2

2(σi−)2 dt

·

·

αji∫
−∞

1√
2π(σi−)2

e
− (t−mi−)2

2(σi−)2 dt

αji∫
−∞

1√
2π(σi+)2

e
− (t−mi+)2

2(σi+)2 dt

In case of a discrete-valued field fi, on the contrary,
we make the hypothesis of binomial (Bernoulli) dis-
tribution. This should indeed describe many discrete
real-world quantities [36]. Denote now by mi+ and
Mi+ the minimum and the maximum values on field i
for positive records, and by mi− and Mi− the same
quantities for the negative records. Denote also by
ni+ = Mi+ − mi+ the number of possible positive
values for fi, and by p+ the characteristic positive
probability of success (also called Bernoulli probability
parameter, estimated as |S+|/ni+). Denote by ni− =
Mi−−mi− and by p− the same quantities for negative
records. Suppose, again, that αji is a transition from
− to +. By computing the above parameters from S,
our evaluation of quality qji becomes now:

qji = ln

1+

ni+∑
t=αji−mi+

(
ni+
t

)
(pi+)t(1− pi+)ni+−t

ni+∑
t=αji−mi+

(
ni−
t

)
(pi−)t(1− pi−)ni−−t

·

·

αji−mi−−1∑
t=0

(
ni−
t

)
(pi−)t(1− pi−)ni−−t

αji−mi−−1∑
t=0

(
ni+
t

)
(pi+)t(1− pi+)ni+−t

Moreover, we modify the above qji in order to

reduce possible overfitting and to avoid selecting at-
tributes in an unbalanced manner (e.g. all from the
same fields). We penalize each attribute aji corre-
sponding to a cut-point αji originated by a few iso-
lated points of one class laying near many points
of the opposite class. More precisely, we set two
thresholds ν1 and ν2 and put qji := qji /2 for each
aji such that: i) a number of training records ≤ ν1

lie on one side of αji , and ii) a number of training
records ≥ ν2 (of the opposite class) lie on the other
side of αji . We use ν1 = 5 and ν2 = 50. We also penal-
ize the binary attributes over a field fi from which
other binary attributes have already been selected.
Clearly, this can be applied only during a sequential
solution (see Section 4) of the support set selection
problem. More precisely, each time an attribute from
fi is selected, we put qji := qji /2 for every still
unselected attributes of fi. Finally, for fields having
a considerable overlapping between the two classes,
cut-points cannot be generated when inverting the
class, because almost every region of the field contains
both classes. On the contrary, they are generated when
inverting the class predominance, i.e., when passing
from a region with positive predominance to one with
negative predominance and vice versa. By using the
fraction of negative records in the training |S−|

|S| , a
region has positive predominance when its percentage
of negative records is ≤ g |S

−|
|S| %. Value g was set at 70.

4 REFORMULATIONS OF THE SUPPORT SET
SELECTION PROBLEM

When the quality value of each attribute have been
computed, the exactly separating support set selec-
tion problem can be modeled as follows. We would
like to minimize a weighted sum (and not only the
number) of selected attributes, where the weights are
the reciprocal 1/qji of the quality qji , while selecting
at least an attribute for each of the above defined sets
I(r+b , r

−
b). Note that 1/qji can be viewed as a measure

of the uselessness of aji . By using the binary variables
xji already introduced in Sect. 2, the following weighted
set covering problem should be solved, using the non-
negative weights 1/qji .

min
x

m∑
i=1

ni∑
j=1

1

qji
xji

s.t.
∑

(i,j)∈I(r+b ,r
−
b)

xji ≥ 1 ∀I(s+b , s
−
b), s+∈ S+, s−∈ S−

xji ∈ {0, 1}
(2)

This formulation takes now into account the indi-
vidual qualities of the attributes. One may observe
that this would discard attributes that have a poor
isolated effect but may have important effect when
combined with other attributes during the pattern
generation step. However, a selection is necessary for
the computational viability of the entire procedure,
and the proposed approach aims at discarding the
attributes that appear more suitable to be discarded.

Moreover, such weighted set covering formulation
(2) has strong computational advantages on a non-
weighted one (1). Although still NP-hard [27], solu-
tion algorithms become considerably faster when the
model variables receive different weight coefficients

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2416727, IEEE Transactions on Knowledge and Data Engineering

7

in the objective function. Depending on the size of
the model and on available computational time, such
weighted set covering problem may be either solved
to optimality or by searching for an approximate
solution. In the former case, it is guaranteed that the
pattern generation step is performed by using a set of
attributes U which is a minimal set for which no posi-
tive and negative records have the same binary encod-
ing. In the latter case, if the approximate solution is
feasible but non-optimal, it is not guaranteed that U is
minimal, i.e. it may exist also a proper subset U ′ ⊂ U
such that no positive and negative records have the
same binary encoding. This could have the effect of
increasing the computational burden of the pattern
generation step, but not of worsening the classification
accuracy. If, on the contrary, the approximate solution
is (slightly) infeasible, U is such that (few) positive
and negative records have the same binary encoding.
This could have the effect of accelerating the pattern
generation step, but of decreasing the classification
accuracy.

In the cases when the above model still remains
computationally demanding, e.g. for large datasets, or
when there are very tight time requirements, e.g. real
time applications, the support set selection problem
can be modeled differently. We could evaluate the
computational burden added to the whole classifi-
cation procedure by retaining each single attribute
aji , and call it its size sji . When no specific evalua-
tions can be done, those sizes could be set all at 1.
Moreover, we can establish a maximum affordable
computational burden b, for instance on the basis of
the time available for performing the classification,
or of the available computing hardware, etc. Note
that such requirement may be independent from the
minimum size of an exactly separating support set:
the available resources are limited, and, if they allow
obtaining an exactly separating support set, the better,
but this cannot be imposed. By using the same binary
variables xji , the support set selection problem can
now be modeled as binary knapsack problem:

max
x

m∑
i=1

ni∑
j=1

qji x
j
i

s.t.

m∑
i=1

ni∑
j=1

sji x
j
i ≤ b

xji ∈ {0, 1}

(3)

Solving the above model is again NP-hard [27], so
it may in general be as hard as (2). However, in the
case when all sizes sji are 1, it becomes polynomially
solvable by just sorting the qji values and by taking the
best b of them. Note that, in this case, attributes can
be selected sequentially, and the weights be modified
after each single attribute selection, in order to incor-
porate penalty techniques such as the one described in
the end of previous Section. The above selections are

performed independently on positive and negative
attribute, so as to find the set U+ of selected positive
attributes and the set U− of selected negative ones.
In the general case of k classes, k selections problems
are to be solved.

5 PATTERN GENERATION AND USE

A pattern P is a logic function of attributes aji ,
typically a conjunction of literals, which are binary
attributes aji ∈ U or negated binary attributes ¬aji .
Given a binarized record rb, that is a set of binary
values {bji}, each literal of a generic pattern P receives
a value, and so P itself receives a value, denoted by
P (r) ∈ {0, 1} (see also Section 2). We say that a pattern
P covers a record r if P (r) = 1, and that pattern P
is activated by r. In the standard LAD procedure, a
positive pattern P+ has to cover at least one positive
record r+ but no negative ones, and a negative pattern
P− is defined symmetrically. This, however, can lead
to improper pattern generation in the case of noisy or
otherwise difficult datasets. In our procedure, patterns
are built in a bottom-up fashion, as described below.
For obtaining a positive pattern, we generate every
possible logic conjunction grouping up to p literals,
using one after another all literals obtainable from U+.
When a conjunction P̄ verifies the following coverage
conditions
• P̄ covers at least ηc positive records of S
• P̄ covers at most ηe negative records of S

we save P̄ as a pattern and never repeat P̄ as part
of other conjunctions. A negative pattern is generated
symmetrically. This simple generalization of the orig-
inal covering condition can generate patterns being
more robust, since patterns not covering any element
of the opposite class may be rare in the mentioned
cases. In the general case of k classes, patterns for each
class are needed, and the second coverage condition
counts the records belonging to all the other classes.
Thresholds ηc and ηe may be tuned on the specific
dataset, with ηc proportional to data density and
ηe proportional to the noise contained in the data.
However, reasonable values for ηc are 1 or 2, and,
in general, 2ηe ≤ ηc.

In order to produce a complete classifier, each test
record should be covered by at least one pattern.
However, generating bottom-up patterns could leave
uncovered some regions of the data space. Therefore,
an additional pattern generation step is required, in a
top-down fashion: patterns describing single training
records covering the still uncovered regions of the
data space are taken, and then simplified, by iter-
atively removing literals from them in all possible
ways, until they satisfy other two coverage thresholds
ηca and ηea. Their meaning is respectively analogous to
ηc and ηe, but the requirements should in general be
more relaxed.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2416727, IEEE Transactions on Knowledge and Data Engineering

8

Now, unclassified records can be classified by exam-
ining which patterns cover them. Clearly, a record ac-
tivating only positive patterns should be classified as
positive, and vice versa. A positive pattern is indeed
a (partial) compact description of positive records.
However, in most of the cases, unclassified records ac-
tivate both positive and negative patterns. Some kind
of “voting” criterion is needed. LAD methodology
uses a weighted sum of the activated patterns, also
called discriminant ∆. The weight given to pattern
Ph in this sum is denoted by wh, with h ∈ H .
The discriminant must be compared to a classification
threshold δ for classifying record r:∑

h∈H

whPh(r) = ∆(r) > δ ⇔ r ∈ R+

∑
h∈H

whPh(s) = ∆(r) ≤ δ ⇔ r ∈ R−

Using patterns can also be seen as Boosting [18], [19]:
learning weak classifiers (the patterns) and combining
them by means of weights in order to obtain a strong
classifier. Evaluating the mentioned weights, i.e. the
“power” of each pattern in the classification process,
can be done using different criteria. A first criterion
can be based on the coverage values of each pattern,
as in the original LAD [23]. For instance (squared
pattern coverage): if uh is the number of positive
records covered by a positive pattern Ph, its weight is
set to wh = u2h, and symmetrically for a negative one.
However, in the case of patterns covering overlapping
sets of records, criteria based on coverage could be
misleading.

A more ambitious criterion is assigning weights and
classification threshold in order to minimize classifica-
tion errors. Since the only classification errors that can
be detected at this stage are those on the training set,
we try to minimize them. We assume, in absence of
further information, that this would produce a similar
effect on the test set, being such data of the same
nature of the training set. For doing so, denote by
c(r) the value 1 if r is a positive record, 0 otherwise
(the real classification). Clearly, c(s) is known for each
training record s ∈ S. On the other hand, applying
the learned classifier on the training set S produces a
predicted classification for each s ∈ S. By comparing
real and predicted classification of a training record
s ∈ S, we obtain es ∈ {0, 1}, that we call classification
error for the training record s.

es =

{
1 if ∆(s+) ≤ δ or ∆(s−) > δ
0 otherwise

Values es clearly depend on all elements of the proce-
dure: cut-point selection, pattern generation, pattern
weights, classification threshold, so they are not easily
expressible. However, when knowing whether each
pattern Ph, with h ∈ H , covers or not each record
s ∈ S, the above es are simple functions of pattern
weights {wh} and classification threshold δ. Therefore,

given the set of generated pattern {Ph}, we compute
the coverages Ph(s) ∈ {0, 1} for any h in the set H of
all patterns and s ∈ S, obtaining a |H| × |S| matrix
PS having binary elements dhs:

PS = [dhs] with dhs = Ph(s)

The same can be done for each pattern Ph, with h ∈ H
and each test record t ∈ T , obtaining a |H|×|T |matrix
PT having binary elements dht:

PT = [dht] with dht = Ph(t)

On the other hand, for each test record t ∈ T , we only
know (at this stage) the classification ct given by the
learned classifier, again a function of {wh} and δ.

ct =

{
1 if

∑
h∈H whPh(t) > δ

0 if
∑
h∈H whPh(t) ≤ δ

Moreover, we want to learn from the training set the
class distribution, that is the fraction of positive |S

+|
|S|

(or of negative |S
−|
|S|) records contained in the training

set (clearly, given one of the two, the other is also
fixed). We therefore introduce a value, called tolerance
and denoted by γ, measuring the “difference” from
the class distribution of the training set and that of
the test set. Hence, in our optimization model, we
have a bi-objective: minimizing the number of errors
on the training set and minimizing the tolerance γ.
By introducing a scalarization parameter G > 0, our
objective becomes:

min
e,c,w,δ,γ

∑
s∈S

es +Gγ

A reasonable choice for G is |S|/10, so that the second
term of the objective cannot override the first one
(whose theoretical maximum is |S|, but with typical
values between 0.01|S| and 0.4|S|). We now describe
the constraints. We need to impose that the classifica-
tion error es is 1 for each record s ∈ S such that the
classification that s would receive using {wh} and δ
does not match its real class c(s).∑

h∈H

whdhs − δ ≤M(c(s) + es) ∀s ∈ S (4)∑
h∈H

whdhs − δ > −M(1− c(s) + es) ∀s ∈ S (5)

M is a positive constant greater than any possible
value of the first member (see also [37]). The mathe-
matical behavior of those constraints is the following.
When

∑
h∈H whdhs − δ > 0, record s is predicted

positive. In this case, the second member of (4) must
be ≥ than a positive number, so it must be positive,
while the second member of (5) must be < than the
same positive number, so it can be either 0 or negative:
if c(s) = 0 (= the prediction is an error), es is forced to
be 1 by the (4), while it is free for the (5); if c(s) = 1
(= the prediction is not an error), es is free for both
constraints.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2416727, IEEE Transactions on Knowledge and Data Engineering

9

On the other hand, when
∑
h∈H whdhs − δ ≤ 0,

record s is predicted negative. In this case, the second
member of (4) must be ≥ than a number ≤ 0, so it
can be either 0 or positive, while the second member
of (5) must be < than the same number, so it must
be negative: if c(s) = 1 (= the prediction is an error),
es is forced to be 1 by the (5), while it is free for the
(4); if c(s) = 0 (= the prediction is not an error), es is
free for both constraints. Note that, when es is free for
both constraints, the minimization of the objective will
make it 0. In order to have a closed feasible region,
(5) is converted into ≥ by introducing a small ε > 0.∑
h∈H

whdhs − δ ≥ −M(1− c(s) + es) + ε ∀s ∈ S

In order to evaluate the class distribution that {wh}
and δ would produce in T , we need to compute the
predicted classification of its records. We therefore
need constraints connecting values {wh} and δ to the
class ct that would be predicted for each record t ∈ T .
The machinery is similar to that of the above analyzed
constraints, but note that we do not use at all the real
class of the test records, that must obviously remain
unknown during classification process.∑

h∈H

whdht − δ ≤Mct ∀t ∈ T (6)∑
h∈H

whdht − δ > −M(1− ct) ∀t ∈ T (7)

Constraint (7) is converted into ≥ by using a small
ε > 0.∑

h∈H

whdht − δ ≥ −M(1− ct) + ε ∀t ∈ T

Finally, we need constraints imposing that {wh} and
δ reproduce in T the class distribution of S, so |T+|

should be as similar as possible to |S+| · |T |
|S|

, and

connecting the difference to the introduced γ.∑
t∈T

ct ≤
∑
s∈S

c(s) · |T |
|S|

+ |T |γ + ρ (8)

∑
t∈T

ct ≥
∑
s∈S

c(s) · |T |
|S|
− |T |γ − ρ (9)

Note that, when we need to classify just one or a
few records, obtaining the same class distribution of
S could be impossible. For example, if we need to
classify two records, and the fraction of positive |S

+|
|S|

is 0.2, targeting at that class distribution is clearly
useless. Hence, (8-9) should have no effect when T
is very small. This is obtained by using value ρ, that,
when set for instance at 3, relaxes constraints (8-9)
of 3 units. For large |T | this relaxation is negligible
(so we do not consider it in the tests of Section 6),
while for small |T | the problem gradually reduces to
minimizing only the classification error on S.

The overall mixed integer linear model for finding
optimal pattern weights wh and classification thresh-
old δ is now the following.

min
e,c,w,δ,γ

∑
s∈S

es +Gγ

∑
h∈H

whdhs − δ ≤M(c(s) + es) ∀s ∈ S∑
h∈H

whdhs − δ ≥ −M(1− c(s) + es) + ε ∀s ∈ S∑
h∈H

whdht − δ ≤Mct ∀t ∈ T∑
h∈H

whdht − δ ≥ −M(1− ct) + ε ∀t ∈ T∑
t∈T

ct ≤
∑
s∈S

c(s) · |T |
|S|

+ |T |γ + ρ∑
t∈T

ct ≥
∑
s∈S

c(s) · |T |
|S|
− |T |γ − ρ

−W ≤ wh ≤W ∀h ∈ H

es ∈ {0, 1} ∀s ∈ S
ct ∈ {0, 1} ∀t ∈ T
wh ∈ IR ∀h ∈ H
δ ∈ IR
γ ∈ IR+

(10)
Weights are bounded by a value W , in order to avoid
giving excessive importance to any single pattern,
since that could cause overfitting. We briefly remark
that, in the case of k classes, there is a set Hc of
patterns for each c-th class; they still need weights
wh and threshold δ such that r can be assigned to
class c when

∑
h∈Hc whPh(r) > δ, and this could still

be obtained with an extension of model (10). Clearly,
the final class assigned to r would in that case be the
one having the largest value of the above sum.

6 IMPLEMENTATION AND COMPUTATIONAL
RESULTS

Tests are carried out on an Intel Pentium 4 PC with
3GHz processor and 3.24 Gb RAM. The proposed pro-
cedure has been implemented in C++ using MS Visual
Studio 2008. The quality values qji are numerically
approximated by using C functions described in [38].
The support set selection problem, when modeled as
knapsack (3) with all sji = 1, is solved by simply
ordering by quality values the binary attributes. When
modeled differently, as in (1) or (2), is solved by means
of IBM Cplex [39], a state-of-the-art implementation
of branch-and-cut (e.g. [27], [28]). The same solver is
used to solve problem (10), possibly relaxing numer-
ical precision. Data sets used in the experiments are
“Ionosphere”, “Spambase”, “Pima Indians Diabetes”,
“Statlog Heart”, “Mushroom”, “Adult”, “Madelon”
and “MiniBooNE”, publicly available from the UCI
Repository of machine learning problems [32]. They

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2416727, IEEE Transactions on Knowledge and Data Engineering

10

were chosen in order to have a test bed containing
different types of data-sets (with many or few records,
many or few fields, easy or difficult, etc.), so as to
analyze the classifiers in different conditions.

Ionosphere has 351 instances, each with 34 fields:
32 are real-valued and 2 are binary. Real-valued fields
were considered with normal distribution, one binary
field was considered binomial, the other is always 0.
They are data collected by a radar system in Goose
Bay, Labrador. The targets were free electrons in the
ionosphere. Good radar returns are those showing
evidence of some type of structure in the ionosphere.

Spambase has 4,601 instances, each with 57 fields:
55 are real-valued and 2 are integer; however they
are the frequencies of particular words or characters
in an email, so all 57 were considered having normal
distribution. Records of this dataset correspond to
received emails, and the class denotes whether the
e-mail was considered spam or not.

Pima Indians Diabetes has 768 instances, each with
8 fields: 2 are real-valued and 6 are integer. However,
since 3 integer fields have a number of possible values
high enough, 5 were considered normal and 3 were
considered binomial. Fields are medical informations
about females patients of Pima Indian heritage living
near Phoenix, Arizona, the class is whether the patient
shows signs of diabetes.

Statlog Heart has 270 instances, each with 13 fields:
7 are real-valued and 6 are categorical or binary.
The first 7 were considered having normal distri-
bution. The last 6 could not be considered having
binomial distribution, so they were treated as those
with normal distribution but generating cut-points
when inverting the class predominance due to the few
number of possible values (see Section 3). Fields are
several medical informations about patients, the class
is whether the patient has or not a heart disease.

Mushroom has 8,124 instances, each with 22 fields,
all categorical with very few possible values (no more
than 12, some just 2), so they were treated as those
with binomial distribution but generating cut-points
when inverting the class predominance (see Section
3). The records describe mushrooms in terms of phys-
ical characteristics, from the Audobon Society Field
Guide, and the classification is poisonous or edible.

Adult has 48,842 instances, each with 14 fields: 6 are
real-valued and were considered having normal dis-
tribution, the other 8 are categorical and were treated
as fields with unknown distribution. They are a set
of reasonably clean person records extracted from the
1994 US Census database. The class is whether that
person earns more than 50,000 USD per year or not.

Madelon has 4,400 instances, each with 500 fields,
and is a difficult artificial dataset. All fields are numer-
ical and were considered with normal distribution.
It contains data points grouped in 32 clusters placed
on the vertices of a five dimensional hypercube and
randomly labeled 0 or 1. 15 linear combinations of

those fields were added to form a set of 20 (re-
dundant) informative fields. Moreover, 480 distractor
fields were added, having no predictive power, and
the order of fields and records was randomized.

MiniBooNE is a very large dataset with 130,065
instances, each with 50 fields. All fields are numerical
and were considered with normal distribution. The
data are obtained from the MiniBooNE experiment
to distinguish electron neutrinos (signal) from muon
neutrinos (background). These data-sets have been
classified using the following procedures:
• The proposed one, called SLAD (Statistical and

Logical Analysis of Data), that determines the bi-
narization by solving the knapsack version (3) of
the Support set selection problem, then generates
patterns, determines pattern weights and classifi-
cation threshold by solving (10), and classifies by
comparing discriminant and threshold.

• The standard LAD (Logical Analysis of Data)
procedure, obtained from the former by not as-
signing values to binary attributes and solving an
unweighted set covering problem (1) for the Sup-
port set selection, and using pattern weights wh
based on squared pattern coverage (see Section
5) and classification threshold δ = 0.

• A simplified version of SLAD, called RLAD (Re-
duced Logical Analysis of Data), solving the
knapsack version (3) of the Support set selection
problem and simply using the binary attributes
to perform the classification. In other words,
each pattern is made of only one literal, and
it determines pattern weights and classification
threshold by solving (10).

• The publicly available LIBSVM 3.17 (Library for
Support Vector Machines [33]), a very good C++
implementation of the Support Vector Machines
methodology [5], [9], developed by Chih-Chung
Chang and Chih-Jen Lin, possibly working on
dataset previously scaled to a restricted range
by means of svm-scale [33] (a preprocessing for
improving accuracy).

• The publicly available UniverSVM 1.22 (Support
Vector Machines with large scale transduction
[34], [40]), an updated C++ implementation of
Transductive Support Vector Machines [10], de-
veloped by Fabian Sinz and Matteo Roffilli.

• The publicly available Label Propagation proce-
dure [14], [15] implemented in Python within the
very good Machine Learning package scikit-learn
[35], developed by Fabian Pedregosa et al., cur-
rently included in Scientific Python distributions.

A small number of records (5% and 10% of each
data-set, except for MiniBooNE, that is so large that
we used 2% and 5%) were randomly extracted from
each data-set, and used as training set. After this,
the rest of the data-set was randomly split in two
equal parts, which constituted validation set and test

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2416727, IEEE Transactions on Knowledge and Data Engineering

11

set. For each dataset and training percentage, the
training set extractions were performed 10 times, so
that the same number of validation and test sets
were obtained. Tests are conducted on a best-against-
best basis: we selected, for each dataset and training
percentage, the parameters of each classifier that give
the best classification accuracy on the validation sets
using cross validation. In particular, the choice for
SVM methods (LIBSVM and UniverSVM) used the
grid search described in [41], and the choice for LP
was done in a similar exhaustive fashion. For SLAD
and RLAD, some of the parameters are obtained by
solving model (10). For the rest, patterns are generated
by grouping up to p literals, with p ∈ {2, 3, 4, 5}.
Literals are obtained from a support set of at most
b elements, using ηc = 2, ηe = 1, ηca = 1, and ηea = 0.
Parameter b controls the computational burden of the
procedure: initially set at one tenth of the number of
all possible binary attributes, it is then progressively
decreased if the computational requirements of the
procedure were excessive. Parametr W is just a very
large value to avoid that the weight of a pattern
could approach infinity. Parameters not indicated in
the tables were fixed at the values mentioned when
they have been introduced.

In Tables 2-9 we report the accuracy (Accur.) on
the test sets, computed as the percentage of correct
predictions w.r.t. the total number of predictions. All
results are averaged on the 10 trials. We also report
the Normalized Mutual Information (NMI), that is
an information-based measure that has been recently
proposed for evaluating the correlation between the
prediction of a classifier and the real classification [42].
Note that, while the maximum value for NMI is 1, this
measure decreases very rapidly when classification
errors are present: for example, a classifier producing
80 true positive, 10 true negative and 10 false negative
has 90% accuracy but only 0.57 NMI. We then report
computational times in seconds required by the whole
classification procedure running with the parameters
used to obtain those best results, and the values of
such parameters (with ‘std’ meaning standard values).

As a general outcome, our experiments show that
the effort invested in evaluating the quality of the
different binary attributes returns a superior classifi-
cation accuracy with respect to the standard LAD pro-
cedure. In the totality of the analyzed cases, indeed,
SLAD is more accurate than LAD. That additional
effort clearly required an additional computational
time, but that was almost negligible, and moreover,
in the solution of the support set selection problem,
weighted set covering problems can generally be
solved in times which are much shorter than those
needed for the corresponding non-weighted ones, so
the balance is in favor of performing the above quality
evaluation. Furthermore, the solution of the support
set selection problem as binary knapsack (3) using the
above quality evaluation and all sji = 1 is even faster

TABLE 2
Ionosphere (351 records, 34 fields)

Algorithm Training 5% (18/351)
Accur. NMI Time Parameters

LAD 76.58% 0.21 0.60 std, ηc = 1, ηe = 0
RLAD 85.10% 0.40 0.04 b = 35
SLAD 85.14% 0.40 0.04 b = 10, p = 3

G = 1.8,W = 104

LIBSVM 82.66% 0.36 0.58 -s 0 -t 2 -g 0.25
-c 1.6818 -e 0.001

UniverSVM 80.90% 0.35 0.70 -s 0 -t 2 -g 0.25
-c 1.6818 -e 0.001

LabelProp 79.80% 0.27 0.92 gamma 1.5 m iter 30

Algo. Training 10% (36/351)
Accur. NMI Time Parameters

LAD 71.13 % 0.12 0.75 std, ηc = 1, ηe = 0
RLAD 89.10 % 0.50 0.10 b = 46
SLAD 89.49 % 0.52 0.18 b = 11, p = 3

G = 3.6,W = 104

LIBSVM 88.48 % 0.52 0.63 -s 0 -t 2 -g 0.1486
-c 1 -e 0.001

UniverSVM 87.91% 0.51 0.76 -s 0 -t 2 -g 0.1486
-c 1 -e 0.001

LabelProp 84.20% 0.36 1.04 gamma 0.8 m iter 10

TABLE 3
Spambase (4601 records, 57 fields)

Algorithm Training 5% (230/4601)
Accur. NMI Time Parameters

LAD 83.10% 0.39 2.14 std, ηc = 1, ηe = 0
RLAD 61.90% 0.08 0.18 b = 240
SLAD 90.76% 0.54 0.92 b = 100, p = 3

G = 23,W = 104

LIBSVM 81.83% 0.32 1.05 -s 0 -t 2 -g 0.5
-c 8.0 -e 0.001

UniverSVM 87.06% 0.42 6.90 -s 0 -t 2 -g 0.5
-c 8.0 -e 0.001

LabelProp 70.78% 0.09 1.64 gamma 0.01 m iter 10

Algorithm Training 10% (460/4601)
Accur. NMI Time Parameters

LAD 84.32 % 0.39 2.21 std, ηc = 1, ηe = 0
RLAD 62.12 % 0.09 0.50 b = 370
SLAD 91.15 % 0.56 1.61 b = 200, p = 3

G = 46,W = 104

LIBSVM 85.80 % 0.41 1.36 -s 0 -t 2 -g 0.5
-c 8.0 -e 0.001

UniverSVM 88.20% 0.47 7.38 -s 0 -t 2 -g 0.5
-c 8.0 -e 0.001

LabelProp 73.10% 0.12 2.09 gamma 0.05 m iter 10

and produces a very good classification accuracy.
The computational demand of SLAD is controlled
by parameters b and p, so the scalability appears
satisfactory, as shown by the times required for the
large datasets. Comparison with LIBSVM, which is
currently deemed to be among the best classifiers,
show the effectiveness of the proposed approach.
Indeed, SLAD obtains a classification accuracy that
is always comparable and sometimes better than that
of LIBSVM. Comparison with UniverSVM shows that
learning the parameters by means of model (10) can
be a competitive option. Indeed, in the cases when
TSVM demonstrate an advantage over classical SVM,

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2416727, IEEE Transactions on Knowledge and Data Engineering

12

TABLE 4
Pima Indians Diabetes (768 rec., 8 fields)

Algorithm Training 5% (38/768)
Accur. NMI Time Parameters

LAD 68.48% 0.06 0.88 std, ηc = 1, ηe = 0
RLAD 66.10% 0.06 0.03 b = 60
SLAD 72.87% 0.12 0.40 b = 60, p = 3

G = 3.8,W = 104

LIBSVM 70.41% 0.09 0.80 -s 0 -t 2 -g 0.000173
-c 4096 -e 0.001

UniverSVM 70.39% 0.10 0.85 -s 0 -t 2 -g 0.000173
-c 4096 -e 0.001

LabelProp 65.20% 0.01 1.00 gamma 8.5, m iter 5

Algorithm Training 10% (76/768)
Accur. NMI Time Parameters

LAD 72.80 % 0.10 1.15 std, ηc = 1, ηe = 0
RLAD 65.90 % 0.05 0.06 b = 64
SLAD 75.54 % 0.15 0.62 b = 64, p = 3

G = 7.6,W = 104

LIBSVM 72.74 % 0.15 2.84 -s 0 -t 2 -g 0.25
-c 11.31 -e 0.001

UniverSVM 72.40% 0.13 1.90 -s 0 -t 2 -g 0.25
-c 11.31 -e 0.001

LabelProp 67.25% 0.06 1.28 gamma 0.25, m iter 10

TABLE 5
Statlog Heart (270 records, 13 fields)

Algorithm Training 5% (14/270)
Accur. NMI Time Parameters

LAD 63.40% 0.06 0.78 std, ηc = 1, ηe = 0
RLAD 64.25% 0.08 0.02 b = 54
SLAD 78.21% 0.25 0.02 b = 14, p = 4

G = 1.4,W = 104

LIBSVM 77.58% 0.25 0.20 -s 0 -t 2 -g 0.00035
-c 512 -e 0.001

UniverSVM 77.43% 0.25 0.28 -s 0 -t 2 -g 0.00035
-c 512 -e 0.001

LabelProp 60.53% 0.04 1.07 gamma 0.15, m iter 100

Algorithm Training 10% (27/270)
Accur. NMI Time Parameters

LAD 67.80 % 0.11 0.78 std, ηc = 1, ηe = 0
RLAD 73.31 % 0.18 0.04 b = 64
SLAD 81.11 % 0.31 0.04 b = 22, p = 4

G = 2.7,W = 104

LIBSVM 77.52% 0.25 0.34 -s 0 -t 2 -g 0.125
-c 512 -e 0.001

UniverSVM 77.13% 0.24 0.41 -s 0 -t 2 -g 0.125
-c 512 -e 0.001

LabelProp 60.88% 0.04 1.32 gamma 0.15, m iter 100

the accuracy of SLAD is comparable to that of TSVM,
while computational times of SLAD scale better on the
large datasets. Comparison with LabelProp, finally,
gives a similar result: when LP exhibits the advan-
tages of a semi-supervised approach, the accuracy of
SLAD is always comparable. Moreover, the simple
classifier RLAD is considerable faster and scales better
than the others, because no time consuming problems
must be solved in the different steps of this proce-
dure. Its accuracy is clearly inferior, but is sometimes
comparable. Hence, it can be used when a timely (or
even a real-time) classification is needed, or when
very large datasets should be treated.

TABLE 6
Mushroom (8124 records, 22 fields)

Algorithm Training 5% (406/8124)
Accur. NMI Time Parameters

LAD 95.77% 0.79 2.67 std, ηc = 1, ηe = 0
RLAD 87.63% 0.48 0.32 b = 176
SLAD 97.79% 0.83 0.83 b = 20, p = 4

G = 40,W = 104

LIBSVM 92.71% 0.57 1.12 -s 0 -t 2 -g 0.03125
-c 8.0 -e 0.001

UniverSVM 97.90% 0.86 5.62 -s 0 -t 2 -g 0.03125
-c 8.0 -e 0.001

LabelProp 98.60% 0.88 2.15 gamma 0.5, m iter 5

Algorithm Training 10% (812/8124)
Accur. NMI Time Parameters

LAD 96.11 % 0.79 3.85 std, ηc = 1, ηe = 0
RLAD 85.08 % 0.39 0.45 b = 200
SLAD 99.72 % 0.98 0.83 b = 25, p = 4

G = 81,W = 104

LIBSVM 99.60% 0.96 1.25 -s 0 -t 2 -g 0.03125
-c 8.0 -e 0.001

UniverSVM 99.66% 0.97 7.43 -s 0 -t 2 -g 0.03125
-c 8.0 -e 0.001

LabelProp 98.85% 0.92 3.24 gamma 0.5, m iter 5

TABLE 7
Adult (48842 records, 14 fields)

Algorithm Training 5% (2442/48842)
Accur. NMI Time Parameters

LAD 76.32% 0.03 35.10 std, ηc = 1, ηe = 0
RLAD 77.40% 0.04 0.78 b = 150
SLAD 82.07% 0.17 7.10 b = 80, p=3

G=244,W = 105

LIBSVM 83.56% 0.20 10.02 -s 0 -t 2 -g 0.125
-c 8.0 -e 0.001

UniverSVM 82.90% 0.20 610.80 -s 0 -t 2 -g 0.125
-c 8.0 -e 0.001

LabelProp 76.14% 0.01 24.50 gamma 9.0, m iter 10

Algorithm Training 10% (4884/48842)
Accur. NMI Time Parameters

LAD 75.72 % 0.03 75.30 std, ηc = 1, ηe = 0
RLAD 74.84 % 0.02 0.95 b = 200
SLAD 83.68 % 0.19 8.64 b=100, p=3

G=488,W =105

LIBSVM 84.28% 0.22 12.58 -s 0 -t 2 -g 0.125
-c 8.0 -e 0.001

UniverSVM 83.90% 0.22 895.50 -s 0 -t 2 -g 0.125
-c 8.0 -e 0.001

LabelProp 76.12% 0.01 26.02 gamma 9.0, m iter 10

7 CONCLUSION

To classify in short times with a good degree of
accuracy on the basis of small training sets is required
in a variety of practical applications. Unfortunately,
obtaining these three desirable features together can
be very difficult. We consider here the framework
of the Logical Analysis of Data (LAD), and propose
several enhancements to this methodology based on
statistical considerations on the data. In particular, we
use more information extracted from the training set
to guide the support set selection step, and propose
two reformulations of such a problem having several
advantages. Moreover, we consider the problem of

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2416727, IEEE Transactions on Knowledge and Data Engineering

13

TABLE 8
Madelon (4400 records, 500 fields)

Algorithm Training 5% (220/4400)
Accur. NMI Time Parameters

LAD 56.05% 0.02 2.36 std, ηc = 1, ηe = 0
RLAD 60.36% 0.03 1.13 b = 24
SLAD 60.96% 0.04 1.28 b = 24, p=5

G=22,W = 104

LIBSVM 57.72% 0.02 1.64 -s 0 -t 2 -g 0.10511
-c 1.0 -e 0.001

UniverSVM 57.11% 0.03 24.33 -s 0 -t 2 -g 0.10511
-c 1.0 -e 0.001

LabelProp 54.14% 0.01 1.38 gamma 0.5, m iter 10

Algorithm Training 10% (440/4400)
Accur. NMI Time Parameters

LAD 57.55 % 0.02 5.97 std, ηc = 1, ηe = 0
RLAD 62.02 % 0.04 1.34 b = 36
SLAD 62.20 % 0.04 1.98 b=36, p=5

G=44,W =104

LIBSVM 58.55% 0.03 2.44 -s 0 -t 2 -g 0.10511
-c 1.0 -e 0.001

UniverSVM 60.04% 0.04 26.60 -s 0 -t 2 -g 0.10511
-c 1.0 -e 0.001

LabelProp 54.90% 0.01 2.32 gamma 0.5, m iter 10

TABLE 9
MiniBooNE (130065 records, 50 fields)

Algorithm Training 2% (2601/130065)
Accur. NMI Time Parameters

LAD 76.84% 0.16 175.5 std, ηc = 1, ηe = 0
RLAD 72.07% 0.10 28.2 b = 890
SLAD 83.75% 0.28 120.0 b = 210, p=3

G=260,W = 104

LIBSVM 82.19% 0.22 118.0 -s 0 -t 2 -g 0.125
-c 1.0 -e 0.001

UniverSVM 82.88% 0.23 6760.0 -s 0 -t 2 -g 0.125
-c 1.0 -e 0.001

LabelProp - - - out of memory

Algorithm Training 5% (6503/130065)
Accur. NMI Time Parameters

LAD 76.17 % 0.15 212.0 std, ηc = 1, ηe = 0
RLAD 76.65 % 0.14 55.8 b = 4200
SLAD 82.24 % 0.24 194.5 b=420, p=3

G=650,W =104

LIBSVM 83.55% 0.28 162.0 -s 0 -t 2 -g 0.125
-c 1.0 -e 0.001

UniverSVM 83.40% 0.28 8900.0 -s 0 -t 2 -g 0.125
-c 1.0 -e 0.001

LabelProp - - - out of memory

selecting the best parameters for the procedure (pat-
tern weights and classification threshold), and for-
mulate it as an optimization problem. The proposed
methodology, called Statistical and Logical Analysis
of Data (SLAD), is tested on a test bed of publicly
available datasets from the UCI repository, and com-
pared to: standard LAD methodology; Support Vector
Machines (also in the form of Transductive SVM); La-
bel Propagation technique. Experiments show that the
presented enhancements are able to sensibly increase
the classification accuracy and reduce computation
times with respect to standard LAD methodology.
The comparison with the other classifiers proves that

SLAD has very good accuracy and timing results
using very small training sets, and that it scales well
on the large datasets. Moreover, a simplified version
of SLAD, called Reduced Logical Analysis of Data
(RLAD), is proposed. All steps of this latter procedure
can be solved in very short times, allowing a sensible
speed-up of the whole classification procedure.

APPENDIX A
MAIN NOTATION
R record scheme
r record instance, or simply record
r+, r− positive or negative record
Rb binarized record scheme
rb binarized record instance, or simply binar. record
fi fields of the record scheme R, with i = 1, . . . ,m
vi values of the record instance r, with i = 1, . . . ,m
aji binary attributes of the binarized record scheme
Rb, with i = 1, . . . ,m and j = 1, . . . , ni
bji binary values of the binarized record rb, with i =
1, . . . ,m and j = 1, . . . , ni
αji cut-point over field fi, i = 1, . . . ,m, j = 1, . . . , ni
class+(αji), class−(αji) classified as positive or negative
by αji : stays on the positive (or negative) side of αji
qji quality of cut-point αji , i = 1, . . . ,m, j = 1, . . . , ni
n =

∑
i ni total number of cut-points

U support set
U+, U− positive or negative part of the support set
S training set
S+, S− set of positive or negative records of S
s+, s− positive or negative training record
C set of predefined classes
c(s) real class of record s ∈ S
cs predicted class of record s ∈ S
T test set
T+, T− set of positive or negative records of T
t+, t− positive or negative test record
Ph pattern, with h ∈ H
H set of pattern indices
wh weight of pattern Ph
P+, P− positive or negative pattern
H+, H− set of positive or negative patterns
Ph(r) value of pattern Ph on record r
ηc minimum correct coverage for patterns
ηe maximum erroneous coverage for patterns
∆(r) discriminant

∑
h∈H whPh(r) for record r

δ classification threshold
dhs = Ph(s) value of pattern Ph on record s ∈ S
PS matrix [dhs] with h ∈ H and s ∈ S
dht = Ph(t) value of pattern Ph on record t ∈ T
PT matrix [dht] with h ∈ H and t ∈ T
γ class distribution tolerance

ACKNOWLEDGMENTS
The authors are grateful to Prof. G. Koch for use-
ful discussions on probabilistic issues, and to Dr. V.
Minetti for her important contribution to the imple-
mentation work.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2416727, IEEE Transactions on Knowledge and Data Engineering

14

REFERENCES

[1] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauf-
mann, San Mateo, CA, 1993.

[2] T.M. Mitchell, Machine Learning, McGraw-Hill, Singapore, 1997.
[3] V. Vapnik, Statistical Learning Theory, John Wiley and Sons, New

York, 1998.
[4] D.J. Hand, H. Mannila, P. Smyth, Principles of Data Mining, MIT

Press, London, 2001.
[5] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical

Learning, Springer-Verlag, New York, Berlin, Heidelberg, 2002.
[6] W. Klosgen, J.M. Zytkow (eds), Handbook of Data Mining and

Knowledge Discovery, Oxford University Press, 2002.
[7] G.P. Zhang, “Neural Networks for Classification: a Survey”,

IEEE Transactions on Systems, Man, and Cybernetics, vol. 30,
no. 4, pp. 451-462, 2000.

[8] C. Cortes and V. Vapnik, “Support-Vector Networks”, Machine
Learning, vol. 20, no. 3, pp. 273-297, 1995.

[9] C.-C. Chang and C.-J. Lin, “Training ν-support vector classi-
fiers: Theory and algorithms”, Neural Computation, vol. 13,
no. 9, pp. 2119-2147, 2001.

[10] V. Vapnik, The Nature of Statistical Learning Theory. Springer,
second edition, 1995.

[11] X. Zhu, “Semi-Supervised Learning Literature Survey”, Com-
puter Sciences TR 1530 of the University of Wisconsin - Madi-
son, 2008.

[12] F. Nie, D. Xu, I.W.H. Tsang, C. Zhang, “Flexible manifold em-
bedding: A framework for semi-supervised and unsupervised
dimension reduction”, IEEE Transactions on Image Processing
vol. 19, no. 7, pp. 1921-1932, 2010.

[13] S. Xiang, F. Nie, C. Zhang, “Semi-supervised classification via
local spline regression”, IEEE Transactions on Pattern Analysis
and Machine Intelligence vol. 32, no. 11, pp. 2039-2053, 2010.

[14] X. Zhu, Z. Ghahramani, J. Lafferty, “Semisupervised learning
using gaussian fields and harmonic functions”, Proc. 20th Int.
Conf. on Machine Learning (ICML 2003), pp. 912-919, 2003.

[15] Y. Bengio, O. Delalleau, N. Le Roux, “Label propagation and
quadratic criterion”, In O. Chapelle, B. Schlkopf, A. Zien (eds),
SemiSupervised Learning, pp. 193-216, MIT Press, 2006.

[16] D.H. Wolpert, “The Lack of A Priori Distinctions Between
Learning Algorithms”, Neural Computation vol. 8, pp. 1341-
1390, 1996.

[17] N. Jankowski, W. Duch, K Grabczewski (Eds.) Meta-Learning
in Computational Intelligence, Springer-Verlag, Berlin, 2011.

[18] R.E. Schapire, “The Strength of Weak Learnability”, Machine
Learning, vol. 5, no. 2, pp. 197-227, 1990.

[19] Y. Freund, “Boosting a Weak Learning Algorithm by Major-
ity”, Information and Computation, vol. 121, no. 2, pp. 256-285,
1995.

[20] L. Breiman, “Bagging predictors”, Machine Learning, vol. 24,
no. 2, pp. 123-140, 1996.

[21] Y. Crama, P.L. Hammer, and T. Ibaraki, “Cause-effect Rela-
tionships and Partially Defined Boolean Functions”, Annals of
Operations Research, vol. 16, pp. 299-326, 1988.

[22] E. Boros, P.L. Hammer, T. Ibaraki, A. Kogan, “Logical Analysis
of Numerical Data”, Mathematical Programming, 79, 163-190,
1997.

[23] E. Boros, P.L. Hammer, T. Ibaraki, A. Kogan, E. Mayoraz, I.
Muchnik, “An Implementation of Logical Analysis of Data”,
IEEE Transactions on Knowledge and Data Engineering, vol.
12, no. 2, pp. 292-306, 2000.

[24] E. Boros, Y. Crama, P.L. Hammer, T. Ibaraki, A. Kogan, and
K. Makino, “Logical Analysis of Data: Classification with Jus-
tification”, Annals of Operations Research, vol. 188, pp. 33-61,
2011.

[25] Y. Crama and P.L. Hammer, Boolean Functions: Theory, Algo-
rithms, and Applications, Cambridge University Press, New York,
2011. ISBN: 9780521847513.

[26] U.M. Fayyad and K.B. Irani, “Multi-interval discretization of
continuous-valued attributes for classification learning”, Artifi-
cial Intelligence, vol.13, pp. 1022-1027, 1993.

[27] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial
Optimization. J. Wiley, New York, 1988.

[28] A. Schrijver, Theory of Linear and Integer Programming, Wiley,
New York, 1986.

[29] E. Boros, T. Horiyama, T. Ibaraki, K. Makino, and M. Yagiura,
“Finding Essential Attributes from Binary Data”, Annals of
Mathematics and Artificial Intelligence, vol. 39 no. 3, pp. 223-
257, 2003.

[30] H. Almuallim and T.G. Dietterich, “Learning Boolean Con-
cepts in the Presence of many Irrelevant Features”, Artificial
Intelligence, vol. 69, no. 1, pp. 279-306, 1994.

[31] P.L. Hammer, A. Kogan, B. Simeone, and S. Szedmak, “Pareto-
Optimal Patterns in Logical Analysis of Data”, Discrete Applied
Mathematics, vol. 144, no. 1-2, pp. 79-102, 2004.

[32] A. Frank, A. Asuncion, UCI Machine Learning Repository [on-
line at http://archive.ics.uci.edu/ml], Irvine, CA: University of
California, School of Information and Computer Science, 2010.

[33] C.-C. Chang and C.-J. Lin, “LIBSVM : a library for support
vector machines”, ACM Transactions on Intelligent Systems
and Technology, vol. 2, no. 3:27, 2011.

[34] R. Collobert, Fabian Sinz, J. Weston, and L. Bottou, “Large
Scale Transductive SVMs”, Journal of Machine Learning Re-
search vol. 7, pp. 1687-1712, 2006.

[35] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python”,
Journal of Machine Learning Research vol. 12, pp. 2825-2830,
2011.

[36] C. Forbes, M. Evans, N. Hastings, and B. Peacock, Statistical
Distributions (4th edition). Wiley series in Probability and Statis-
tics, New York, 2010.

[37] H.P. Williams, Model Building in Mathematical Programming,
J.Wiley, Chichester, 1993.

[38] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing, 2nd
edition. Cambridge University Press, 1992.

[39] IBM: Ilog Cplex 12.1 Reference Manual, International Business
Machines Corporation, 2009.

[40] F. Sinz and M. Roffilli, UniverSVM, In Machine Learning
Open Source Software (MLOSS) repository, project 19, 2012.
http://mloss.org/software/view/19/

[41] C.-W. Hsu, C.-C. Chang, C.-J. Lin, “A Practical Guide to Sup-
port Vector Classification”, Tech. Rep. of the Dep. of Computer
Science, National Taiwan University, 2010.

[42] B.-G. Hu and Y. Wang, “Evaluation Criteria Based on Mutual
Information for Classifications Including Rejected Class”, Acta
Automatica Sinica vol. 34, no. 11, pp. 1396-1403, 2008.

Renato Bruni received his PhD degree in
Operations Research in 2001 and his MS
degree in Computer Engineering in 1996,
both from the University of Rome “Sapienza”.
He was a researcher at the University of Pe-
rugia, and he is currently assistant professor
in the Combinatorial Optimization Group of
the the University of Rome “Sapienza”. He
authored more than 50 research papers and
one patent. His research interests are in dis-
crete optimization, data analysis, information

reconstruction and knowledge discovery, also in collaboration with
the Italian National Institute of Statistics “Istat”.

Gianpiero Bianchi received his PhD degree
in Operations Research in 2013 and his MS
degree in Computer Engineering in 2001,
both from the University of Rome “Sapienza”.
He has been working since 2002 on the
technical issues related to Census data treat-
ment for the Department of Censuses and
Administrative and Statistical Registers of the
Italian National Institute of Statistics “Istat”.
His research interests are in data mining,
database systems management, computer

systems design, data editing and imputation.

