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THE ADJOINT REPRESENTATION INSIDE THE EXTERIOR ALGEBRA

OF A SIMPLE LIE ALGEBRA

CORRADO DE CONCINI
PAOLO PAPI

CLAUDIO PROCESI

Abstract. For a simple complex Lie algebra g we study the space of invariants A =
(
∧

g∗ ⊗ g∗)g, which describes the isotypic component of type g in
∧

g∗, as a module over
the algebra of invariants (

∧
g∗)g. As main result we prove that A is a free module, of rank

twice the rank of g, over the exterior algebra generated by all primitive invariants in (
∧

g∗)g,
with the exception of the one of highest degree.

1. Introduction

Let g be a simple Lie algebra (over C) of dimension n and rank r. Fix a Cartan subalgebra
h in g. Let ∆ be the corresponding root system, W the Weyl group, ∆+ a positive system.
We use the Killing form (·, ·) to identify g and g∗ when convenient.

The exterior algebra
∧
g has been extensively studied as representation of g: see e.g. [11],

[12], [17], [1]. The invariant algebra Γ = (
∧

g∗)g is the cohomology of g and it is an exterior
algebra

∧
(P1, . . . , Pr) over primitive generators Pi of degree 2mi + 1, where the integers mi,

with m1 ≤ . . . ≤ mr are the exponents of ∆, [2].
Among the other isotypic components, of particular interest is the component of type g,

which is completely described as:

(1.1) A :=
(∧

g∗ ⊗ g∗
)g

= hom(
∧

g, g∗)g = hom(g,
∧

g∗)g.

So A is the space of multilinear alternating functions from g to g∗ which are g-equivariant.

By the work of Kostant [12], it is known that dim(A) = 2rr. Notice that the Z/2Z grading
of

∧
g∗ allows to define a Lie superalgebra structure on A.

The Poincaré polynomial GM(q) describing the dimension of A in each degree is given by
a formula conjectured by Joseph and proved by Bazlov [1]:

(1.2) GM(q) = (1 + q−1)
r−1∏

i=1

(1 + q2mi+1)
r∑

i=1

q2mi .

Clearly A is a (left or right) module over the exterior algebra
∧
(P1, . . . , Pr). Writing the right

hand side of (1.2) as
r−1∏
i=1

(1+q2mi+1)
r∑
i=1

[q2mi+q2mi−1] suggests that there might exist elements
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fi, ui ∈ A of degrees 2mi, 2mi − 1 which generate A as a free module over
∧
(P1, . . . , Pr−1).

This is indeed our main result.

1.1. Description of the results. The Killing form of g induces on A a graded symmetric
form which will be denoted e(a, b), with values in Γ (see (2.8)). With the elements fi, ui ∈ A
as in Definition 2.3 we have:

Theorem 1.1. A is a free module, with basis the elements fi, ui, i = 1, . . . , r, over the exterior
algebra

∧
(P1, . . . , Pr−1).

The main tool needed to prove this Theorem is a description of the form e(−,−) on the
proposed generators fi, ui, which is given by the following result. Recall that the primitive
invariants are uniquely defined up to a non zero constant if the exponents are distinct. The
latter condition is always verified unless g is of type D2n; in this case mn = mn+1 = 2n− 1.

Proposition 1.2. Assume that the exponents of g are distinct. Then the two submodules
spanned by the fi and by the uj are isotropic for the form e. For each pair i, j there exists a
non-zero rational constant ci,j such that

(1.3) e(fi, uj) = e(fj, ui) =

{
ci,jPk if mi +mj − 1 = mk is an exponent,

0 otherwise.

Proposition 1.3. If g is of type D2n, the statements of Proposition 1.2 hold true unless
mi +mj − 1 = 2n− 1 or {i, j} = {n, n+ 1}. In this case we can choose Pn and Pn+1 in such
a way that

(1.4) e(fi, uj) = e(fj , ui) =





ci,j(Pn + Pn+1) if i, j 6∈ {n, n+ 1},
ci,jPn if i = n and j = 1,

ci,jPn+1 if i = n+ 1 and j = 1.

and e(fn, un+1) = cn,n+1P2n, e(fn+1, un) = cn+1,nP2n while e(fn, un) = e(fn+1, un+1) = 0.

Finally, the full module structure of A under the algebra of invariants is completed by the
formulas for the multiplication of our basis by the last primitive element Pr.

Theorem 1.4. Set ci := ci,r−i+1. The multiplication by Pr is self adjoint for the form e. It
is given by the formulas

e(fi, ur−i+1) ∧ fi = −
r∑

j=1, j 6=i

cic
−1
j e(fi, ur−j+1)fj, i = 1, . . . , r,(1.5)

e(fi, ur−i+1) ∧ ui = −
r∑

j=1, j 6=i

cic
−1
j e(fi, ur−j+1)uj , i = 1, . . . , r.(1.6)

The constants ci,j depend on the choice of the primitive invariants. We will exhibit, in
the course of the paper, suitable choices of the Pi as to normalize as much as possible these
constants, which will be then explicitly computed.

Clearly our Theorem 1.1 implies formula (1.2), affording a proof very different from Bazlov’s
one.



THE ADJOINT REPRESENTATION INSIDE THE EXTERIOR ALGEBRA OF A SIMPLE LIE ALGEBRA 3

Theorem 1.1 has a Clifford counterpart due to Kostant [12]: A is free over the whole algebra
of invariants Γ, generated under Clifford multiplication by f1, . . . , fr. Kostant’s theorem is
based on two main ingredients: the simplicity of the Clifford algebra and the the machinery
of Chevalley’s transgression. In our situation we cannot use the former fact.

However Chevalley transgression allows us to reduce the computation of the bilinear form e
to that of another S(g)g-valued bilinear form on S(g)g, and in turn, via Chevalley’s restriction
Theorem, to a C[h]W -valued bilinear form on C[h]W .

This latter form can be introduced in the following general framework. Let G be a compact
Lie group and V an orthogonal representation. Given two invariants a, b of degrees h, k we
obtain a new invariant a ◦ b of degree h + k − 2 by the formula a ◦ b := (da, db) where da, db
are the differentials and (da, db) is computed via the given scalar product. In the case of the
adjoint representation, this pairing has been studied by Givental in [10] and Saito [18] (we
thank M. Rais and E. Vinberg for pointing out to us these references) and we are going to use
Givental’s results at least for the exceptional groups.

Let us denote by R the ring of G–invariant polynomial functions on V , and say that a
homogeneous invariant a is a generator if it does not belong to (R+)2, i.e. it is not a product
of invariants of positive degree. Notice furthermore that, by the Leibnitz rule, the pairing
a ◦ b induces a similar composition in the vector space M := R+/(R+)2. We will prove the
following theorem.

Theorem 1.5. Let V be the reflection representation of an irreducible Weyl group. If a, b
are homogeneous generators of the invariants of degrees i, j and in degree i+ j − 2 there is a
generator, then a ◦ b is a generator, except the special case of type D2n in degree 2n. In this
case the two generators a, b of degree 2n can be chosen in such a way that a ◦ a = b ◦ b = 0
modulo squares while a ◦ b = 0 is a generator.

The above theorem will be proved in Proposition 2.9 if i + j ≥ h, h being the Coxeter
number of g. In fact this will suffice to deduce Theorem 1.1.

In the remaining cases the result will follow from a case by case analysis and will represent
a key step in the proof of Theorem 1.4.

Finally, Theorem 1.5 has another interesting application. If we allow the operation a ◦ b in
the construction of invariants, we shall see that in each case, besides the quadratic invariant
it is enough to add either one (cases An, Cn, G2) or two more generators. In this way we shall
compute, using a computer, the invariants in the case of E8.

Remark 1.6. When all degrees of generators are distinct, fixing generators ψ1, . . . , ψr we have
constants di,j such that ψi ◦ψj = di,jψk mod (R+)2 when ψk has the same degree as ψi ◦ ψj.
Using transgression, we associate to the ψi primitive invariants Pi, which in turn define the
constants cij via formula (1.3). We will show in (2.24) that indeed, for any i, j, we have

ci,j =
di,j

mi +mj

.

These constants will be computed explicitly for the classical groups in §2.7.1 and for the
exceptional groups in Tables 2,3,4.

Some ideas and techniques used in this paper have been developed in [7] and [8]: we refer
the reader to Section 4 for a brief outline of these results.



4 CORRADO DE CONCINI PAOLO PAPI CLAUDIO PROCESI

2. The main construction

2.1. Setup. Let V be an n-dimensional vector space. Recall that on the exterior algebra∧
V we have an action of elements x ∈ V ∗ as derivations, denoted by i(x), which extends the

duality action on V :

i(x)(v1 ∧ . . . ∧ vk) =
k∑

i=1

(−1)i+1x(vi) v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vk,

v1, . . . , vk ∈ V . This formula extends to a contraction action of
∧
V ∗ on

∧
V . Remark that,

given u ∈ ∧
V , the map x 7→ i(x)u can be thought of as the element

n∑
h=1

i(xh)u⊗xh ∈ ∧
V ⊗V,

where {xh}, {xj} are dual bases of V, V ∗.
Given an invariant p ∈ (

∧
g∗)g, the map x 7→ i(x)p, x ∈ g is g equivariant and therefore

defines an element of A, which is represented by the tensor
n∑
h=1

i(xh)p ⊗ xh (using dual bases

{xh}, {xh} for g, g∗).
Let θ(a), θ∗(a) denote the adjoint and coadjoint action of a ∈ g on g, g∗, respectively. These

actions extend to the exterior algebras as derivations of degree 0.
In

∧
g∗ we have the Koszul differential δ which makes it a differential graded algebra. In

degree 1, the differential δ : g∗ →
∧2

g∗ is dual to the bracket map. Explicitly

δ(u) =
1

2

n∑

i=1

xi ∧ θ∗(xi)u.

Remark 2.1. Recall that on
∧

g∗ ⊗ g∗ is defined the standard Koszul differential, which is the

sum of −δ ⊗ 1 and of ψ ⊗ a 7→
n∑
i=1

xi ∧ θ(xi)(ψ ⊗ a), where {xi}, {xj} are as above dual bases

of g, g∗ respectively. If ψ ⊗ a is invariant this second term vanishes and the total differential
is just −δ ⊗ 1.

Using the non degenerate Killing form one defines also the differential (in homology):

∂ := −δt.
The Killing form identifies

∧
g∗ with

∧
g, so we can apply, by duality, the two differentials δ

and ∂ to
∧

g. Under these identifications the contraction i is just the adjoint of the wedge
multiplication ε(x) :

∧
g → ∧

g, ε(x)(y) = x ∧ y, x, y ∈ ∧
g. We have (see [12, (89),(90)])

(2.1) δ =
1

2

n∑

h=1

ε(xh)θ(x
h), ∂ =

1

2

n∑

h=1

θ(xh)i(xh).

For the space Γ = (
∧

g∗)g = (
∧

g)g of invariant forms Kostant [12, Proposition 22] proves:

(2.2) Γ = ker δ ∩ ker ∂ = kerL,

where

(2.3) L = δ∂ + ∂δ =
1

2

n∑

i=1

θ(zi)
2
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is the Laplacian and {zi} is an orthonormal basis of g with respect to the Killing form. Recall
the useful formulas

(2.4) i(x) δ + δ i(x) = θ(x), x ∈ g.

(2.5) i(δx) = −(∂i(x) + i(x)∂), x ∈ g.

Formula (2.4) follows from [12, (92)]. To prove (2.5), take u, v ∈ ∧
g; then (i(δ(x))(u), v) =

(u, δ(x)∧v) = (u, δ(x∧v))+(u, x∧δ(v)) = −(∂(u), x∧v))+(i(x)(u), δ(v)) = −(i(x)(∂(u)), v)−
(∂(i(x)(u)), v).

Lemma 2.2. If p ∈ Γ, then

(1) δp = ∂p = 0.
(2) δi(x)p = 0.
(3) ∂i(x)p = −i(δx)p.
(4) δi(δx)p = −1

2 i(x)p.

Proof. Relation (1) follows at once from (2.2). To prove (2), compute using (1) and (2.4):

δi(x)p = (δi(x) + i(x)δ)(p) = θ(x)(p) = 0.

Part (3) follows directly from (1) and (2.5). Finally, to prove (4), use (1), (2.5) and (2.3):

δi(δx)p = −δ(∂i(x) + i(x)∂)(p) = −δ∂i(x)(p) = −(δ∂ + ∂δ)i(x)(p) = −1

2
i(x)(p).

�

2.2. The elements fi, ui. We now introduce a basic definition. Let m :
∧

g ⊗ g → ∧
g be

the multiplication map

(2.6) m(α⊗ b) := α ∧ b.

Choose primitive generators P1, . . . , Pr for Γ and dual bases {xh}, {xh} ∈ g with respect to
the Killing form.

Definition 2.3. Set, for i = 1, . . . , r

(2.7) fi :=
1

deg(Pi)

n∑

h=1

i(xh)Pi ⊗ xh, ui := 2(∂ ⊗ 1)fi =
2

deg(Pi)

n∑

h=1

∂i(xh)Pi ⊗ xh.

Lemma 2.4. We have m(fi) = Pi, (δ ⊗ 1)ui = fi, (δ ⊗ 1)fi = 0.

Proof. The first statement is a consequence of the chosen normalization:

m(fi) =
1

deg(Pi)

n∑

h=1

i(xh)Pi ∧ xh =
1

deg(Pi)

n∑

h=1

ε(xh)i(xh)Pi = Pi.

(Recall that Pi is homogeneous of odd degree. This allows us to swap the exterior multiplica-
tion by xh over to the left: the second to last equality follows).
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To prove the second statement, compute using Lemma 2.2:

(δ ⊗ 1)ui =
2

deg(Pi)

n∑

h=1

δ∂i(xh)Pi ⊗ xh = − 2

deg(Pi)

n∑

h=1

δi(δxh)Pi ⊗ xh

=
1

deg(Pi)

n∑

h=1

i(xh)Pi ⊗ xh = fi.

The last identity (δ ⊗ 1)fi = 0 follows from δ2 = 0. �

Since we have that dimA = 2rr (see [12, Corollary 50]), Theorem 1.1 will follow from

Proposition 2.5. The elements fi, ui are linearly independent over
∧
(P1, . . . , Pr−1).

In fact, Proposition 2.5 can be reduced to

Lemma 2.6. The elements fi are linearly independent over
∧
(P1, . . . , Pr−1).

Taking this lemma for granted (the proof is at the end of this section), we can prove
Proposition 2.5.

Proof of Proposition 2.5. Suppose that we have a relation
r∑
i=1

λiui+
r∑
j=1

µjfj = 0. Then apply

δ ⊗ 1 and get
r∑
i=1

λifi = 0, so if we assume that the fi are linearly independent, we get λi = 0

for all i and in turn that also all the µj are 0. �

Notice that the only property we have used of the ui is the fact that (δ ⊗ 1)ui = fi.

2.3. The main form. The Killing form on g induces an invariant graded symmetric bilinear
form on

∧
g⊗ g with values in

∧
g, given by

(2.8) e(a⊗ x, b⊗ y) = (x, y)a ∧ b
for x, y ∈ g, a, b ∈ ∧

g. In particular, by invariance, this form induces a form on A with values
in Γ =

∧
(P1, . . . , Pr).

2.3.1. Some pairings. Recall the following properties of the exponents, (cf. [2]): m1 = 1 while
mr = h− 1, where h is the Coxeter number. Also, the mi come naturally into pairs adding to
h. We say that two indices i, j = 1, . . . , r are complementary if the corresponding exponents
sum to the Coxeter number. Since we have ordered the exponents increasingly, the indices
i, r− i+1 are complementary. The exponents are all distinct except in the case of D2n where
the exponent 2n− 1 has multiplicity two.

Consider the matrix of scalar products e(fi, uj); we will prove that, for complementary
indices i, r − i+ 1 we have

(2.9) e(fi, ur−i+1) = ciPr, 0 6= ci ∈ Q

if g is not of type D2n. In this case we have mn = mn+1 = 2n − 1, and we can choose the
primitive invariants in such a way that (2.9) holds and furthermore:

(2.10) e(fn, un) = e(fn+1, un+1) = 0.
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Formulas (2.9), (2.10) will be proved in § 2.7.2. Assuming these formulas we can finish the
proof of Lemma 2.6, hence that of Theorem 1.1.

Proof of Lemma 2.6. Remark that, if there is a non trivial relation
r∑
j=1

µjfj = 0, we may

assume that it is homogeneous, that is all terms have the same degree. Moreover, given an
index j, multiplying by a suitable element of

∧
(P1, . . . , Pr−1) we can reduce ourselves to the

case in which µj = P1 ∧ P2 ∧ . . . ∧ Pr−1.
Notice now that the coefficient µh of the terms µhfh for which mh < mj has degree higher

than the maximum allowed degree, hence it is zero. Thus, if we choose for j the maximum for
which µj 6= 0 and if the exponent mj has multiplicity 1, we are reduced to prove that

(2.11) P1 ∧ P2 ∧ . . . ∧ Pr−1fj 6= 0.

The previous condition is satisfied for all exponents unless we are in the case of D2n. In this
case the exponent 2n − 1 appears twice. The corresponding elements fn, fn+1 have the same
degree 4n−2, so that we have to show that P1∧P2∧ . . .∧Pr−1fn and P1∧P2∧ . . .∧Pr−1fn+1

are linearly independent.
Unless we are in the case D2n for the exponent of multiplicity two, we are reduced to prove

(2.11). By (2.9) we have

e(P1 ∧ P2 ∧ . . . ∧ Pr−1fj, ur−j+1) = cj P1 ∧ P2 ∧ . . . ∧ Pr−1 ∧ Pr 6= 0.

In the remaining case, linear independence of P1∧P2∧ . . .∧Pr−1fn and P1∧P2∧ . . .∧Pr−1fn+1

follows in the same way using also formula (2.10). �

2.4. Proof of Formulas (2.9) and (2.10). The proof of formulas (2.9) and (2.10) will be
based on a computation in the symmetric algebra, which in turn, by the Chevalley restriction
theorem, is deduced from the computations performed in §2.5.

2.5. Invariants of the Weyl group. The study of invariants both in the symmetric and
the exterior algebra of g∗ depends on special properties of the reflection representation of the
Weyl group, in particular of the action of a Coxeter element. We refer to [2] for the details.
Let c be a Coxeter element of W (i.e., a product of all simple reflections). Recall that its order

h is the Coxeter number. Set ζ = e
2πi
h . The eigenvalues of c in its reflection representation

h∗ are h-th roots of 1, ζmi , 1 ≤ mi < h and the mi are by definition the exponents. Since
the reflection representation is real, together with any eigenvalue η also appears its conjugate
η̄ = η−1.

Fix a basis {X1, . . . ,Xr} of h∗ made of eigenvectors relative to these eigenvalues. In par-
ticular, X1 is relative to the eigenvalue ζ. We pair conjugate eigenvalues, and the Killing
form on the space spanned by two conjugate eigenvectors Xi, Xr−i+1 is (after normalization)(
0 1
1 0

)
. In the case of the eigenvalue −1, which is conjugate of itself, we either have a single

eigenvector, which we may assume to be of norm 1, or two eigenvectors in type D2n. Then in
[2, 6.2, Proposition 2] it is shown that to each exponent mi we may associate a W–invariant
polynomial on h such that its leading term in the variable X1 is Xmi

1 Xr−i+1.
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2.6. Symmetric algebra. Let S = S(g∗) be the algebra of polynomial functions on g, and
R = Sg be the ring of invariants. We have that R is a polynomial algebra in generators
ψ1, . . . , ψr of degrees mi+1. We observe that these invariants are so that when we restrict ψi
to h the leading term in X1 is a nonzero multiple Xmi

1 Xr−i+1, as we have seen in §2.5.
Let d be the usual differential of functions so that, when f ∈ R, we have that df ∈ (S⊗g∗)g.

Definition 2.7. The Bezoutiante matrix, is the matrix (with entries in R+) of the scalar
products (dψi, dψj).

We first point out that the construction of the Bezoutiante is compatible with Chevalley
restriction.

Lemma 2.8. Given two invariants p, q ∈ R let p̄, q̄ be their restriction to h. Then

(dp, dq) = (dp̄, dq̄).

Proof. Use the decomposition g = h⊕(u+⊕u−), which is orthogonal with respect to the Killing
form. Write a polynomial on g in the corresponding coordinates associated to root vectors, if
F is such a polynomial we divide it as F = F̄ + f where F̄ collects only the monomials in the
coordinates of h while every monomial in f contains at least one coordinate xα associated to
a root. Now if F is invariant in particular each monomial must have weight 0 for h, hence if
some variables xα appear for a positive root, there must be other variables for negative roots.
This means that f vanishes of order at least 2 on h, hence also its differential vanishes and we
have the claim by the orthogonality relation. �

Proposition 2.9. The entries of the matrix (dψi, dψj) below the antidiagonal lie in (R+)2.
On the antidiagonal they are non zero multiples of ψr modulo squares.

Proof. The first statement follows by degree considerations. As for the second, by Lemma 2.8
we can compute the Bezoutiante matrix on the W -invariant functions ψ̄i on h.

The form in the basis X1, . . . ,Xr introduced above, equals
∑

(i,σ(i))XiXσ(i) (where σ is the

involution pairing complementary indices, the sum is over the orbits of σ which are made
by two or one element). It follows that the invariant (dψ̄i, dψ̄j) has leading term in X1

proportional to Xh
1 if i, j are complementary indices, arising from

∂Xmi

1 Xj

∂Xj

∂X
mj

1 Xi

∂Xi

= Xh
1 .

Hence, if i + j = r + 1, by the previous relation we have (dψ̄i, dψ̄j) = ciψ̄r mod (R+)2 for
some nonzero ci. �

2.7. Transgression. Consider the map δ : g∗ → ∧2
g∗. Since the elements in its image

commute with respect to exterior multiplication, δ admits a unique extension to an algebra
homomorphism

s : S(g∗) →
∧

eveng∗.

Observe that s takes as values coboundaries, in particular δs = 0. Using the multiplication
map m defined by (2.6) we set, for a ∈ S(g∗):

(2.12) t(a) := m((s⊗ 1)da).
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It follows from the explicit description of the transgression map, which is obtained in [5]
(and in formula (231) of [12, Theorem 64]), that on homogeneous invariants of positive degree
d our map t coincides up to the constant (d!)2/(2d+ 1)! with the classical transgression map.
See also [15, Remark 6.11] for a discussion on terminology. We prefer to eliminate this constant
since it is cumbersome in the formulas. The key result on the transgression map [4] can be
reformulated as follows.

Theorem 2.10. The map t vanishes on (R+)2 and induces an isomorphism of R+/(R+)2

with the space of primitive elements of Γ.
Thus, given generators ψi of degree mi+1 for R, one has that the elements Pi := t(ψi) are

primitive generators of Γ, of degrees 2mi + 1.

In particular, choose a set {ψ1, . . . , ψr} of homogeneous generators of the ring R of symmet-
ric invariants. We obtain a set of primitive generators Pi := t(ψi) of Γ and the corresponding
elements ui, fi defined by formula (2.3). To proceed further, we need some general formulas.

Lemma 2.11. For all homogeneous elements a, b ∈ S(g∗) we have

t(ab) = t(a) ∧ s(b) + s(a) ∧ t(b),(2.13)

δt(a) = deg(a)s(a).(2.14)

Proof.

t(ab) = m((s⊗ 1)d(ab)) = m((s⊗ 1)(bd(a) + ad(b)))

= m(s(b) ∧ (s⊗ 1)d(a)) +m(s(a) ∧ (s⊗ 1)(d(b))

= s(b) ∧m((s ⊗ 1)d(a)) + s(a) ∧m((s ⊗ 1)(d(b)) = t(a) ∧ s(b) + s(a) ∧ t(b).

This proves (2.13). To prove (2.14), let da =
n∑
h=1

iS(xh)a⊗xh (where iS(xh) is the directional

derivative w.r.t. xh), so that deg(a)a =
n∑
h=1

iS(xh)x
h and t(a) =

n∑
h=1

s(iS(xh)) ∧ xh. Then

δt(a) =

n∑

h=1

δs(iS(xh)) ∧ xh +
n∑

h=1

s(iS(xh)) ∧ δxh =

n∑

h=1

s(iS(xh)) ∧ δxh

=

n∑

h=1

s(iS(xh)) ∧ s(xh) = s(

n∑

h=1

iS(xh)x
h) = deg(a)s(a).

�

Definition 2.12. Define for any homogeneous element a ∈ S(g∗):
(2.15) f(a) := (s ⊗ 1)da, u(a) := (t⊗ 1)da.

Note that, since da =
n∑
h=1

iS(xh)a⊗ xh, we have deg(iS(xh)a) = deg(a)− 1, (2.14) implies

(2.16) (δ ⊗ 1)u(a) = (deg(a)− 1)f(a).

Lemma 2.13. For every i = 1, . . . , r, take fi as in formula (2.7). Then fi = f(ψi).
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Proof. Set for a ∈ R homogeneous:

fa :=
1

2 deg(a) + 1

n∑

h=1

i(xh)t(a)⊗ xh,

so that fi = fψi
by (2.7).

By [12], Theorem 73, one has that i(x)t(a) = cs(iS(x)a) for any x and a invariant, where
the constant c depends on the normalizations we choose for t. Thus, since (s ⊗ 1)(da) =
n∑
h=1

s(iS(xh)a)⊗ xh, we have:

f(a) = (s ⊗ 1)(da) =
n∑

h=1

s(iS(xh)a)⊗ xh =
n∑

h=1

c i(xh)t(a)⊗ xh,

so fi and f(ψi) are proportional. To determine the proportionality constant c it is enough to
apply the multiplication map m. fi has been normalized so thatm(fi) = Pi, whilem(f(ψi)) =
t(ψi) = Pi by definition. Thus c = 1/(2 deg(a) + 1) and everything follows. �

Proposition 2.14. Given two elements a, b ∈ S(g∗) we have

(2.17) e(f(a), f(b)) = s((da, db)), e(u(a), f(b)) + e(f(a), u(b)) = t((da, db)).

Proof. By construction f(a) = (s⊗ 1)d(a), f(b) = (s⊗ 1)d(b) hence

e(f(a), f(b)) = s((da, db)).

To prove the second relation, write da =
n∑
j=1

αj ⊗ zj, db =
n∑
j=1

βj ⊗ zj where {zj} is an

orthonormal basis. Then (da, db) =
n∑
j=1

αjβj , hence by (2.13) and (2.15) we have

t((da, db)) =

n∑

j=1

t(αj) ∧ s(βj) +
n∑

j=1

s(αj) ∧ t(βj)

= e((t⊗ 1)(da), (s ⊗ 1)(db)) + e((s ⊗ 1)(da), (t ⊗ 1)(db))

= e(u(a), f(b)) + e(f(a), u(b)),

which is the required relation. �

Lemma 2.15. For a, b ∈ ∧
g∗ ⊗ g∗, we have that

(2.18) ∂e(a, b) − e(∂ ⊗ 1(a), b) + (−1)deg(a)e(a, ∂ ⊗ 1(b))

is orthogonal (for the Killing form) to all invariant elements, hence zero if it is an invariant.

Proof. Write, in an orthonormal basis {zi}, a =
n∑
i=1

ai⊗zi, b =
n∑
i=1

bi⊗zi, e(a, b) =
n∑
i=1

ai∧bi. By

formula (4.7) of [13] we have that
n∑
i=1

(∂(ai∧bi)−∂(ai)∧bi+(−1)deg(ai)ai∧∂(bi)) is orthogonal

(for the scalar Killing form) to all invariant elements. Since ∂⊗ 1(a) =
n∑
i=1

∂ai⊗ zi, ∂⊗ 1(b) =

n∑
i=1

∂bi ⊗ zi, the claim follows. �
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We now set for a ∈ S(g∗) a homogeneous invariant

ū(a) := 2(∂ ⊗ 1)f(a)

Proposition 2.16. If a, b ∈ S(g∗) are homogeneous invariants, then

e(f(a), f(b)) = 0,(2.19)

e(ū(a), ū(b)) = 0,(2.20)

e(ū(a), f(b)) = e(f(a), ū(b)) =
t((da, db))

deg(a) + deg(b)− 2
.(2.21)

Proof. From (2.17) and the definition of s we have that e(f(a), f(b)) is the value of s on an
invariant. Now remark that elements in the image of s are coboundaries, and an invariant
which is also a coboundary is 0. This proves (2.19).

In order to prove (2.20), we compute (2.18) for ū(a), f(b). Using Lemma 2.15 we get

0 =∂e(ū(a), f(b)) − e((∂ ⊗ 1)(ū(a)), f(b)) + (−1)deg(ū(a))e(ū(a), (∂ ⊗ 1)(f(b)))

=(−1)deg(ū(a)) 12e(ū(a), ū(b)),

since both ∂e(ū(a), f(b)), e((∂ ⊗ 1)(ū(a)), f(b)) are clearly 0.
We pass now to the last identity. We have for any homogeneous element w ∈ A,

0 = δ(e(w, ū(b))) = e((δ ⊗ 1)(w), ū(b)) + (−1)deg(w)e(w, (δ ⊗ 1)(ū(b)))

= e((δ ⊗ 1)(w), ū(b)) + (−1)deg(w)e(w, f(b)).

It follows that

e(w, f(b)) = −(−1)deg(w)e((δ ⊗ 1)(w), ū(b)).

Since f(a) = 1/(deg(a)− 1)δ ⊗ 1u(a) = δ ⊗ 1ū(a), we deduce

e(u(a), f(b)) = (deg(a)− 1)e(ū(a), f(b)).

We have δe(ū(a), ū(b)) = 0. Computing and using the fact that ū(a) has odd degree, we get

0 = δe(ū(a), ū(b)) = e((δ⊗1)(ū(a)), ū(b))−e(ū(a), (δ⊗1)(ū(b))) = e(f(a), ū(b))−e(ū(a), f(b)),

that is e(f(a), ū(b)) = e(ū(a), f(b)). Formula (2.21) then follows immediately from (2.17). �

Corollary 2.17.

e(fi, fj) = 0,(2.22)

e(ui, uj) = 0,(2.23)

e(ui, fj) = e(fi, uj) =
t((dψi, dψj))

deg(ψi) + deg(ψj)− 2
.(2.24)
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2.7.1. Examples in the classical cases. For elements of R we introduce the following notation:
A ∼= B if the two invariants are congruent modulo (R+)2. By abuse of notation we denote by
the same symbol the invariant on g or its restriction to h.

Type An. Consider as generating invariants the normalized Newton polynomials

(2.25) qk :=
1

k

n+1∑

i=1

xki , k = 2, . . . , n+ 1

(so that, in our general notation, ψk = qk+1, k = 1, . . . , n). We have

(2.26) (dqk, dqg) =

n+1∑

i=1

xk+g−2
i = (k + g − 2)qk+g−2.

We associate, via transgression, to these symmetric invariants the primitive invariants Pi :=
t(ψi) = m((s ⊗ 1)dψi). We have the corresponding fi, ui and, plugging (2.26) into (2.21), we
obtain:

(2.27) e(fi, uj) =
t((i+ j)qi+j)

i+ j
=

{
Pi+j−1 if i+ j ≤ n+ 1,

0 otherwise.
.

Type Cn. Here we can choose as generators the normalized Newton functions ψi = q2i, i =
1, . . . , n. The formulas are the same as before:

e(fi, uj) = t(q2i+2j−2) =

{
Pi+j−1 if 2i+ 2j − 2 ≤ 2n,

0 otherwise.
.

which is indeed (2.27).

Type D2n+1, . Here we can choose as generators the normalized Newton functions ψi =

q2i, i = 1, . . . , n, the function ψn+1 = P :=
√
−2n

∏2n+1
i=1 xi and the functions ψi = q2i−2 for

i = n + 2, . . . , 2n + 1. The formulas are the same as before for the Newton functions. As for
those involving P, we have

(dP, dq2) = (2n+ 1)P,(2.28)

(dP, dq2k) = 2(k − 1)q2k−2 · P ∈ (R+)2, ∀k > 1,(2.29)

(dP, dP) ∼= 4n q4n.(2.30)

Proof of (2.28), (2.29), (2.30). Formulas (2.28), (2.29) are straightforward. As for (2.30) we
have
(2.31)

dP =
√
−2n

2n+1∑

i=1

(
∏

j 6=i

xj)dxi =⇒ (dP, dP) = −2n

2n+1∑

i=1

∏

j 6=i

x2j = −2n s2n(x
2
1, . . . , x

2
2n+1)

where by si we denote the ith elementary symmetric function. From the formulas expressing
elementary symmetric function in terms of power sum we see that, for each i ≤ 2n + 1, we
have si(x1, . . . , x2n+1) ∼= (−1)i+1qi modulo squares, hence

(2.32) − 2n s2n(x
2
1, . . . , x

2
2n+1)

∼= 2n q2n(x
2
1, . . . , x

2
2n+1) = 4n q4n(x1, . . . , x2n+1).
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Combining (2.31) and (2.32) we get (2.30). �

Now we can compute the scalar products e(fi, uj); if fi, uj are constructed from Newton
functions we still have formulas (2.27). As for fn+1, un+1, the elements associated to P, we
have, by formulas (2.28), (2.29) and (2.30)

(2.33) e(fn+1, uj) = 0, ∀j 6= n+ 1, e(fn+1, un+1) =
t(4n q4n)

4n
= P2n+1.

Type D2n, . Here we can choose as generators the normalized Newton functions ψi = q2i, i =
1, . . . , n − 1, the functions

ψn = q2n +
√
−1P, ψn+1 = q2n −

√
−1P,

with P :=
√
2n− 1

∏2n
i=1 xi and the functions ψi = q2i−2 for 1 = n+ 2, . . . , 2n.

Notice that ψi has degree 2i for i = 1, . . . n−1, has degree 2n for i = n, n+1 and has degree
2i − 2 for i = n + 2, . . . , 2n. The formulas are the same as before for the Newton functions.
As for those involving P, we have the formulas

(dP, dq2) = 2nP,(2.34)

(dP, dq2k) = 2(k − 1)q2k−2 · P ∈ (R+)2, ∀k > 1,(2.35)

(dP, dP) ∼= (4n− 2) q4n−2.(2.36)

whose proof is identical to that of formulas (2.28), (2.29), (2.30).
Reasoning as before it immediate to verify that, up to the case in which both i and j do

not belong to {n, n + 1}, we have

(2.37) e(fi, uj) =





Ph if mi +mj − 1 = mh, h 6= n, n+ 1,
1
2(Pn + Pn+1) if mi +mj − 1 = 2n − 1,

0 otherwise.

On the other hand we have

(2.38) e(fn, uj) =





Pn j = 1

Pn+j 2 ≤ j ≤ n− 1

0 j = n

2P2n j = n+ 1

0 j > n+ 1

e(fn+1, uj) =





Pn+1 j = 1

Pn+j 2 ≤ j ≤ n− 1

2P2n j = n

0 j > n

2.7.2. Conclusion of the proof.

Proof of Theorem 1.1. Recall that we have reduced the proof of the theorem to the proof of
formulas (2.9), (2.10). The former follows from Proposition 2.9 and formula (2.24). The latter,
which is relative to D2n, is obtained using also (2.33). �

Proof of Theorem 1.5. Given an element a ∈ R+ set ã equal to its image in M := R+/(R+)2.
Take the usual set of homogeneous generating invariants ψ1, . . . ψr ∈ R+ of degrees di = mi+1.

We have already seen that ψ̃i ◦ ψ̃j := ψ̃i ◦ ψj is well defined. Assume g not of type D2n. Then

our claim will follow if we show that ψ̃i ◦ ψ̃j 6= 0 if and only if mi +mj − 1 is an exponent.
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The fact that ψ̃i ◦ ψ̃j = 0 if mi+mj−1 is not an exponent is clear since M does not contain

elements of degree mi +mj = deg(ψ̃i ◦ ψ̃j).
When mi + mj − 1 is an exponent, the explicit analysis of the classical cases performed

above shows that ψ̃i ◦ ψ̃j is actually non zero, hence a multiple of the corresponding generator
of degree mi + mj. The statement of Theorem 1.5 in type D2n follows by using formulas
(2.34)-(2.36).

As for the exceptional cases, remark that the cases of G2 and F4 are an immediate conse-
quence of Proposition 2.9.

It remains to discuss the case of algebras of type E. Let us now consider in each of the
types E6, E7, E8, the equation p(w, x, y) of the corresponding simple surface singularities (see
[19]). For convenience of the reader let us recall that they are

w2 + x3 + y4 for type E6,

w2 + x(x2 + y3) for type E7,

w2 + x3 + y5 for type E8.

Take the algebra Q = C[x, y]/(px, py).
Let us first point out a few simple facts about Q which are readily verified. Q is a local

algebra with maximal ideal m = (x, y). By suitably choosing the degrees of the variables
w, x, y, p becomes in each case, a homogeneous polynomial of degree equal to the Coxeter
number h. It follows that Q is graded. An easy computation shows that Q has Poincaré
polynomial given by

∑r
i=1 t

mi−1.
Consider now the operator S on Q which, for any homogeneous element q ∈ Q, is given by

Sq =
deg q + 2

h
q.

By Corollary 2 in [10] there is an isomorphism Ψ :M → Q such that

(1) If ã ∈M is homogeneous then

deg(Ψ(ã)) = deg(ã)− 2.

(2) For any ã, b̃ ∈M ,

Ψ(ã ◦ b̃) = S(Ψ(ã)Ψ(b̃)).

From this our claim follows by a straightforward case by case analysis.
�

Proof of Propositions 1.2, 1.3. Formulas (2.22) and (2.23) show that the u’s and the f ’s gen-
erate isotropic subspaces.

Let us now pass to the determination of e(fi, uj). Combining Theorem 2.10 and formula
(2.22) we obtain that everything follows from Theorem 1.5. �

2.8. Classical groups. If G is a classical group one can take a different approach. Let V
be the defining representation of G, so that g = Lie(G) is a subalgebra of End(V ), which
decomposes as End(V ) = g ⊕ p where in case An the space p is the 1–dimensional trivial
representation, while in the other cases it is the space of symmetric matrices for the corre-
sponding involution, in all cases an irreducible representation. It is convenient to study the
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associative invariant algebra, i.e. the algebra of G–equivariant maps

(2.39) AG = (
∧
End(V )∗ ⊗End(V ))G.

Then one can analyze inside AG the super Lie subalgebra (
∧

g∗⊗g)G. This among other topics
is discussed in [3].

In the natural basis {eij} of matrices with coordinates xij consider the element X ∈ AGL(N)

(cf. (2.39)), which is the generic Grassmann matrix X =
∑

h,k xhkehk. Its power X
a = X∧a

equals the standard polynomial Sa computed in End(V ), hence in this language the Amitsur–
Levitzki Theorem, see [16], is the single identity X2n = 0. In [3] the authors prove, among
other results, the following

Theorem 2.18. The algebra AGL(n) is generated by X and the elements tr(X2i−1), i =
1, . . . , n. All these elements anticommute.
AGL(n) is a free module with basis Xi, i = 0, . . . , 2n− 1 over the Grassmann algebra in the

elements tr(X2i−1), i = 1, . . . , n− 1 and we have the two defining identities

(2.40) X2n = 0, tr(X2n−1) = −
n−1∑

i=1

X2i ∧ tr(X2(n−i)−1) + nX2n−1.

As for the connection with (
∧

g∗ ⊗ g∗)g ∼= (
∧

g∗ ⊗ g)g where g = sl(n) we see immediately
that

AGL(n) = (
∧

g∗ ⊗ g)g ⊕ Γ.

Write X = Y + tr(X)
n

where tr(Y ) = 0 and see that for a > 1 we have X2a = Y 2a. Hence

X2a = Y 2a is in (
∧

g∗⊗g)g while in the odd case we have that X2a+1−X2atr(X)
n

is in (
∧

g∗⊗g)g.
These are up no normalizations the elements fi, ui defined in §2.2 in the present case. Clearly
the defining identities (2.40) which describe the associative algebra also allow us to compute
all the relations for the Lie algebra case.

The other classical groups can be treated in a similar way: an investigation in this direction
has been started in [8] (cf. Section 4).

3. Proof of Theorem 1.4

3.1. The relations. In order to complete the description of A as module over Γ we only need
to express the elements Pr ∧ ui and Pr ∧ fi in our given basis.

Consider the relation for ui; we have

(3.1) Pr ∧ ui =
r∑

j=1

Hj ∧ uj +
r∑

j=1

Kj ∧ fj,

where Hj,Kj ∈
∧
(P1, . . . , Pr−1). Applying the differential δ ⊗ 1 we get

(3.2) Pr ∧ fi =
r∑

j=1

Hj ∧ fj.

Thus the relation for fi involves only fj’s. Also we have that the relation is homogeneous.
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For each j, taking the scalar product with ur−j+1, we have

Pr ∧ e(fi, ur−j+1) = Hj ∧ e(fj , ur−j+1) +
∑

h 6=j

Hh ∧ e(fh, ur−j+1)

= Hj ∧ cjPr +
∑

h 6=j

Hh ∧ e(fh, ur−j+1).

Since the terms
∑

h 6=j Hh ∧ e(fh, ur−j+1) do not involve Pr, we must have

∑

h 6=j

Hh ∧ e(fh, ur−j+1) = 0,

− e(fi, ur−j+1) ∧ Pr = Hj ∧ cjPr(3.3)

If i 6= j, we have that e(fi, ur−j+1) is not a multiple of Pr and we deduce that

e(fi, ur−j+1) = −cjHj.

If i = j, we deduce Hj = 0, so finally (3.2) becomes

(3.4) Pr ∧ fi +
∑

i 6=j

c−1
j e(fi, ur−j+1) ∧ fj = 0.

Since e(fi, ur−i+1) = ciPi, formula (3.4) is indeed formula (1.5), as required. We go back to
formula (3.1), which we now write:

(3.5) Pr ∧ ui = −
r∑

j=1

c−1
j e(fi, ur−j+1) ∧ uj +

r∑

j=1

Kj ∧ fj.

Take the scalar product of both sides of (3.5) with ur−j+1. We get

Pr ∧ e(ui, ur−j+1) = −
r∑

j=1

c−1
j e(fi, ur−j+1) ∧ e(uj , ur−j+1) +

r∑

j=1

Kj ∧ e(fj , ur−j+1).

Since e(uh, uk) = 0, we deduce that

Kj ∧ e(fj, ur−j+1) +
∑

i, i 6=j

Ki ∧ e(fi, ur−j+1) = 0

which in turn, by (2.9), becomes

cjKj ∧ Pr +
∑

i, i 6=j

Ki ∧ e(fi, ur−j+1) = 0.

We claim that all Kj are zero. In fact, the only product containing Pr is cjKj ∧ Pr. On the
other hand, it is clear that each element of Γ can be written in a unique way in the form
a + b ∧ Pr with a, b ∈ ∧

(P1, . . . , Pr−1). We deduce that Kj = 0 for each j, and the proof of
Theorem 1.4 is completed.
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4. Final Remarks

In view of Theorem 1.1, it is natural to ask whether, for some other irreducible representa-
tion L of g, the space of covariants of type L

AL := homg(L,
∧

g∗)

is free over
∧
(p1, . . . , pr−1) of predictable rank. In [7] it is shown that the techniques and the

outline of proof of Theorem 1.1 can be enhanced to prove that AL is free over
∧
(p1, . . . , pr−1)

of rank 2 dimL0 (L0 being the 0-weight space of L), in the following two cases:

• L is the little adjoint representation of g (i.e., the irreducible representation with
highest weight the highest short root);

• g is of type An−1 and L = Sn(V ) is the n-th symmetric power of the defining repre-
sentation V or L = Sn(V )∗.

Another related question is the study of covariants of (indecomposable) infinitesimal sym-
metric spaces g = k ⊕ p, more precisely of the spaces (g ⊗∧

p∗)k, under the assumption that
(
∧

p∗)k is an exterior algebra (say on r generators). This can be successfully pursued in the
classical cases using the associative superalgebra structure of (2.39) as in Subsection 2.8. The
final outcome, proved by Dolce in [8] when g is simple, is that (g ⊗∧

p∗)k is free of rank 4r
over the exterior algebra generated by the r − 1 invariants of degree less then the maximal
one. Notice that our Theorem 1.1 fits into this picture by considering as g two copies of a
simple Lie algebra switched by the flip involution.

5. Appendix

Formulas for invariants of exceptional groups can be found in several places, except case
E8 for which there are computer programs but no clear references. A possible method of
computation that we partly followed appears in a paper of Lee [14]. We assume we are in a
case in which the exponents are all distinct. Let h and W be as usual. For a ∈ h∗ and m ∈ N
define

pm(a) :=
∑

w∈W

w(am) =
∑

w∈W

w(a)m.

Lemma 5.1. Given an exponent mi the set of a for which pmi+1(a) is a generator is a non–
empty open Zariski set.

Proof. The elements am generate linearly the symmetric power Sm(h∗) and the operator x 7→
1/|W |∑w∈W w(x) is the projection on the invariants therefore it is not possible that for all
a ∈ h∗ the element pm(a) =

∑
w∈W w(am) is not a generator. �

Let now mi be an exponent and Im1+1, Īm1+1 be the space of invariants of degree mi + 1
and the subspace of decomposable ones, respectively. Thus dim(Imi+1/ Īmi+1) = 1. Let
π : Im1+1 → Im1+1/ Īm1+1 be the projection. We thus have a map a 7→ π(pmi+1(a)) which,
trivializing the quotient, we think of as an invariant Qi(a).

Theorem 5.2. An element a ∈ h∗ is such that the set {pmi+1(a) | 1 ≤ i ≤ r} is a system of
generators if and only if Qi(a) 6= 0 for every i.
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Proof. The condition is tautological but it has an interesting interpretation. The fact that
these elements are generators is equivalent to ask that the determinant of the associated
Jacobian matrix J(a) is non–zero. This determinant, as function of a is non–zero by the
previous lemma. By degree and symmetry considerations we deduce that it is a multiple,
dependent on a, of the Weyl denominator

∏
α∈∆+ α. This multiple, as a function of a, is

r∏
i=1

Qi(a) (up to a constant). Hence

J(a) =

r∏

i=1

Qi(a)
∏

α∈∆+

α.

�

In practice the previous Theorem is hard to use, so we will proceed in a different way. We
compute only the first three invariants, choosing a in the simplest possible way and using
the previous formula. Then compute the remaining ones by applying the construction u ◦ v
which, by Theorem 1.5, will provide all the remaining generators (recall that the algebra Q is
generated by the two homogeneous elements x, y in all cases).

In order to check that the three invariants we have found are indeed generators, it is
enough to show that they are not decomposable. This can be verified by choosing a suitable
monomial which never appears in the decomposable invariants of that degree and showing
that the invariant we found has non–zero coefficient for that monomial. This is quite easy and
we verified it for our choices.

5.1. Exceptional groups. Recall the exponents of exceptional groups.

Type Exponents h

E6 1, 4, 5, 7, 8, 11 12

E7 1, 5, 7, 9, 11, 13, 17 18

E8 1, 7, 11, 13, 17, 19, 23, 29 30

F4 1, 5, 7 ,11 12

G2 1, 5 6

Table 1: exponents for the exceptional types.

In G2, F4 there are no particular normalizations involved. For F4 it is enough to define the
invariant of degree 12 from the scalar product of those of degree 6, 8.

In this section we usually will write Ai for an invariant of the root system of degree i and
implicitly for the corresponding invariant in S(g∗). The invariant of degree 2 will always be
taken to correspond to the Killing form. Then, by the definition of the composition a ◦ b =
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(da, db) between invariants, we have that

A2 ◦ Ai = 2iAi,∀i.
When we pass to the corresponding elements Pi = t(Ai), the element t(A2) is denoted by P1

and has degree 3; formula (2.21) implies e(u1, fi) =
t(A2◦Ai)

i
= 2Pi. If we wish to have value

1 for the constants c1,i it is enough to let A2 correspond to half the Killing form.

5.2. A sketch of the computations. In cases E6, E7 we are computing, on a space of
dimension n = 6, 7 and coordinates x1, . . . , xn, the scalar product of invariants written as

polynomials in the power sums pi =
n∑
j=1

xij . Therefore the scalar product of two such in-

variants a, b is
∑

i,j

∂a

∂pi

∂b

∂pj
(dpi, dpj), so it is necessary to compute a priori (dpi, dpj) =

∑
h,k

∂pi
∂xh

∂pj
∂xk

(dxh, dxk). In each case the quadratic function expressing the scalar product

is of the form ap2 + bp21. This means that the matrix of the scalar products (
∂

∂xi
,
∂

∂xj
) is

a1n + bMn where Mn is the n× n matrix with all entries equal to 1, hence M2
n = nMn. The

matrix of the scalar products (dxi, dxj) is

(a1n + bMn)
−1 = a−1(1n −

b

a
(1 +

bn

a
)−1Mn)

(a1n + bMn)
−1 = a−1(1n − b(a+ bn)−1Mn).

In the two cases we have
2
3 (1− 1

9M6),
1
2(1− 1

9M7),

respectively, so that

pi ◦ pj =





2ij
3 (pi+j−2 − 1

9pi−1pj−1) in type E6,

ij
2 (pi+j−2 − 1

9pi−1pj−1) in type E7.

In case E8 we have that the scalar product is p2 =
8∑
i=1

x2i . The invariants are polynomials

in the power sums p2i, i = 1, . . . , 7 and the Pfaffian: P =
∏8
i=1 xi, hence (cf. (2.31)):

pi ◦ pj = ij pi+j−2, pi ◦ P = i pi−1P,

P ◦ P = s7(x
2
1, . . . , x

2
8) =

1
5040p

7
2 − 1

240p
5
2p4 +

1
48p

3
2p

2
4 − 1

48p2p
3
4 +

1
72p

4
2p6 − 1

12p
2
2p4p6

+ 1
24p

2
4p6 +

1
18p2p

2
6 − 1

24p
3
2p8 +

1
8p2p4p8 − 1

12p6p8 +
1
10p

2
2p10 − 1

10p4p10 − 1
6p2p12 +

1
7p14.

With these formulas and the expressions of the basic invariants given below all computations
can be easily reproduced.

Formulas for E6. In this case the Weyl group contains the symmetric group S6 as Weyl
group of a root subsystem of type A5, and the restriction of the reflection representation to S6
can be identified to the 6–dimensional permutation representation. Therefore we can express



20 CORRADO DE CONCINI PAOLO PAPI CLAUDIO PROCESI

the E6 invariants as polynomials in symmetric functions; we will use the power sums pi. In
[9] the invariants are expressed through elementary symmetric functions. Changing variables
we obtain for the invariants of degrees 2,5,6 the following polynomials

A2 =
p2
1

2 + 3p2
2

A5 =
11
20p

5
1 − 6p31p2 +

27
4 p1p

2
2 +

27
2 p

2
1p3 − 27

2 p2p3 − 27
2 p1p4 +

81
5 p5

A6 =
25
8 p

6
1 − 99

8 p
4
1p2 − 297

8 p
2
1p

2
2 +

243
8 p

3
2 + 270p1p2p3 − 135p23 +

135
2 p

2
1p4 − 405

2 p2p4

− 324p1p5 + 324p6

Recall that write A ∼= B when two invariants are congruent modulo (R+)2. Computing the
scalar products of these basic invariants we define

A8 := A5 ◦ A5, A9 := A5 ◦A6, A12 := A5 ◦ A9

and we have

8A5 ◦ A9
∼= 9A6 ◦ A8

The corresponding constants di,j are given in in the following table.

5 6 8 9

5 1 1 0 1

6 1 0 8
9 0

8 0 8
9 0 0

9 1 0 0 0

Table 2: coefficients dij for E6.

Formulas for E7. In this case the Weyl group contains the symmetric group S7 as Weyl group
of a root subsystem of type A6, and the restriction of the reflection representation to S7 can
be identified to the 7–dimensional permutation representation. Therefore we can express the
E6 invariants as polynomials in symmetric functions; we will use the power sums pi. In [9] the
invariants are expressed through elementary symmetric functions. We perform the change of
variables obtaining for the invariants of degrees 2,6,8. One can normalize the two invariants
of degrees 6,8 so that:

A2 =p
2
1 + 2p2

A6 =
10
3 (p

6
1 − 12p41p2 + 36p21p

2
2 − 6p32 + 40p31p3 − 120p1p2p3 + 40p23 − 60p21p4 + 60p2p4+

144p1p5 − 96p6)

A8 =
10
7 (p

8
1 + 224p61p2 − 1680p41p

2
2 + 840p21p

3
2 + 420p42 − 1568p51p3 + 12320p31p2p3−

12320p21p
2
3 − 4480p2p

2
3 + 5040p41p4 − 18480p21p2p4 − 3360p22p4 + 20160p1p3p4−

1680p24 − 18816p31p5 + 12096p1p2p5 + 2688p3p5 + 33600p21p6 + 6720p2p6 − 34560p1p7)
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We have normalized the invariants A2, A6, A8 so that, computing the scalar products of these
basic invariants, we get

A10 := A6 ◦ A6, A12 := A6 ◦ A8, A14 := A6 ◦A10
∼= A8 ◦ A8, A18 := A6 ◦A14

and we verify that

6A18
∼= 7A8 ◦ A12, 5A18

∼= 7A10 ◦A10

The constants di,j are given in in the following table.

6 8 10 12 14

6 1 1 1 0 1

8 1 1 0 6
7 0

10 1 0 5
7 0 0

12 0 6
7 0 0 0

14 1 0 0 0 0

Table 3: coefficients dij for E7.

Formulas for E8 : The extended diagram of E8 contains a subdiagram of type D8, so we
can write the invariants of E8 as polynomials in the invariants of D8, which are generated by
p2i, i = 1, . . . , 7 and by the Pfaffian P.

We have computed the invariants A8, A12 of degree 8 and 12 by the method of Lee [14]
and the others by taking the scalar products (da, db) starting from these two invariants. The
resulting invariants are generators by a simple inspection of their leading terms.

A2 =p2

A8 =− 10080P − 105p22p4 + 105p24 + 168p2p6 − 180p8

A12 =− 103950Pp22 + 10395
64 p62 + 41580Pp4 − 51975

32 p42p4 +
51975
16 p22p

2
4 − 5775

8 p34

+ 3465p32p6 − 6930p2p4p6 + 2772p26 − 25245
4 p22p8 +

10395
2 p4p8 + 8316p2p10 − 7560p12

We have the following relations:

A8 ◦ (A8 ◦ A12) ∼= 9
7(A8 ◦ A8) ◦ A12

(A8 ◦A8)◦ (A8 ◦A12) ∼= 3
4A8 ◦ ((A8 ◦A8)◦A12), A12 ◦ (A8 ◦ (A8 ◦A8)) ∼= 5

6A8 ◦ ((A8 ◦A8)◦A12),

that is the invariant of order 24 computed in two different ways gives two different values
(modulo squares) as well as the invariant of order 30 computed in three different ways.
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Set

A14 := A8 ◦ A8,

A18 := A8 ◦ A12,

A20 := A8 ◦ (A8 ◦ A8) = A8 ◦A14,

A24 := (A8 ◦A8) ◦ A12
∼= A12 ◦ A14,

A30 := A8 ◦ ((A8 ◦ A8) ◦ A12)

so that

A14 ◦A18
∼= 3

4A30, A20 ◦ A12
∼= 5

6A30.

We deduce the matrix of the constants di,j, which is displayed in the following table.

8 12 14 18 20 24

8 1 1 1 9
7 0 1

12 1 0 1 0 5
6 0

14 1 1 0 3
4 0 0

18 9
7 0 3

4 0 0 0

20 0 5
6 0 0 0 0

24 1 0 0 0 0 0

Table 4: coefficients dij for E8.

A full list of the invariants and the code to compute them is available in [6].
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