
Mathematical Programming manuscript No.
(will be inserted by the editor)

A game-theoretic approach to
computation offloading in mobile cloud computing

Valeria Cardellini · Vittoria De Nitto Personé ·
Valerio Di Valerio · Francisco Facchinei ·
Vincenzo Grassi · Francesco Lo Presti ·
Veronica Piccialli

Received: date / Accepted: date

Abstract We consider a three-tier architecture for mobile and pervasive comput-
ing scenarios, consisting of a local tier of mobile nodes, a middle tier (cloudlets) of
nearby computing nodes, typically located at the mobile nodes access points but char-
acterized by a limited amount of resources, and a remote tier of distant cloud servers,
which have practically infinite resources. This architecture has been proposed to get
the benefits of computation offloading from mobile nodes to external servers while
limiting the use of distant servers whose higher latency could negatively impact the
user experience. For this architecture, we consider a usage scenario where no central
authority exists and multiple non-cooperative mobile users share the limited comput-
ing resources of a close-by cloudlet and can selfishly decide to send their compu-
tations to any of the three tiers. We define a model to capture the users interaction
and to investigate the effects of computation offloading on the users’ perceived per-
formance. We formulate the problem as a generalized Nash equilibrium problem and
show existence of an equilibrium. We present a distributed algorithm for the com-
putation of an equilibrium which is tailored to the problem structure and is based
on an in-depth analysis of the underlying equilibrium problem. Through numerical
examples, we illustrate its behavior and the characteristics of the achieved equilibria.

Keywords Mobile cloud computing · Generalized Nash equilibrium problem ·
Distributed algorithm

The work of Facchinei was supported by the MIUR project PLATINO (Grant Agreement n.
PON01 01007).

V. Cardellini, V. De Nitto Personé, V. Grassi, F. Lo Presti and V. Piccialli
Department of Civil Engineering and Computer Science Engineering, University of Roma “Tor Vergata”,
Italy. E-mail: {cardellini, denitto, vgrassi, lopresti, piccialli}@disp.uniroma2.it

V. Di Valerio,
Department of Computer Science, University of Rome La Sapienza, Via Salaria 113, 00198 Roma, Italy.
E-mail: divalerio@di.uniroma1.it

F. Facchinei
Department of Computer, Control, and Management Engineering, University of Rome La Sapienza, Via
Ariosto 25, 00185 Roma, Italy. E-mail: francisco.facchinei@uniroma1.it

This is the accepted version of the following article: "A game-theoretic approach to computation
offloading in mobile cloud computing", which has been published in final form at
https://doi.org/10.1007/s10107-015-0881-6

2 Valeria Cardellini et al.

Mathematics Subject Classification (2000) 90C33 · 90C30 · 68M20

1 Introduction

Mobile devices (e.g. smartphones and tablets) are more and more becoming the hub
around which much of the computing and communication demand of users is cen-
tered, thus posing new, heavy challenges. Indeed, in spite of the continuous techno-
logical improvements, the computation capabilities of mobile devices are still limited
with respect to their “fixed” counterparts (e.g. desktop computers and data center
servers). In addition, mobile nodes are battery powered; hence energy consumption
is a key issue to be accounted for. To overcome these potential limitations, it has been
suggested to offload code execution from the mobile node to external machines [38].
This strategy has many potential advantages: (i) reduced application execution time;
(ii) reduced battery consumption; and (iii) the possibility to execute applications
whose resource demand could exceed the capabilities of mobile nodes.

There are several proposals in the literature (see [2,41] for a comprehensive sur-
vey) which rely on cloud computing infrastructures for computation offloading in
mobile scenarios [4]. Cloud computing delivers the vision of computing as a utility
(such as water, electricity, gas, and telephony) and provides “a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released” [33]. However, the use of traditional cloud
infrastructures in a mobile environment can introduce significant network delays that
adversely affect the user experience and outweigh the potential benefits of this so-
lution [12,14,23]. To overcome this problem, it has been proposed to use close-by
servers (referred to as cloudlets), typically located at the wireless access points (APs)
where mobile nodes connect to, so that they are at just “one hop” distance from the
mobile node [39].

AP-located cloudlets cannot reasonably be expected to provide the “unlimited”
amount of resources typically provided by a distant cloud server. Indeed, economic
reasons and physical constraints limit the amount of resources that can be allocated
to each cloudlet [39]. Hence, while a cloud server guarantees a good isolation among
different users that offload their computations to it (i.e., users do not compete for the
cloud resources), this does not hold in a cloudlet. As the load increases, resources
contention and sharing can cause delays and performance degradation that might re-
sult in higher and higher response times, which in turn can offset the benefits of
offloading computation to the cloudlet. As a consequence, the analysis of whether
and to what extent it is convenient to offload computation in a cloudlet-based archi-
tecture requires to take into consideration the dynamics of the interactions among the
different users and the possible presence of regulatory policies for the access to the
shared cloudlet resources.

Most of the papers that investigate the effectiveness of computation offloading
consider single user scenarios (e.g., [1,11,14,22,29,31,45]), thus implicitly assum-
ing a perfect isolation in case of concurrent users. We are aware of only few papers

A game-theoretic approach to computation offloading in mobile cloud computing 3

where interactions among different mobile users on a resource-limited cloud are taken
into account [5,10,36,37,47], as discussed in the next section.

In this paper, we will consider the general case of an architecture intended to sup-
port computation offloading for mobile nodes, where both a middle tier consisting of
nearby resource-limited cloudlets and a remote tier consisting of resourceful distant
cloud servers are available, as depicted in Figure 1 (this architecture is referred to as
a hybrid mobile cloud architecture in [2]).

Fig. 1 Three-tier architecture for mobile cloud computing.

For such an architecture both a managed and an unmanaged usage scenario can
be envisioned. The former scenario typically corresponds to the case where a wireless
service provider (WSP) deploys its own cloudlet infrastructure at its own APs, to be
used by its mobile subscribers. Hence, the WSP can be expected to centrally regu-
late the access to the cloudlet, with the goal of offering a good service experience to
its subscribers and of fulfilling its own utility goals. The latter scenario corresponds
instead to the case where cloudlet-augmented WiFi hot spots are deployed by pub-
lic authorities or private entrepreneurs at facilities like airports, train stations, public
buildings, cafes, etc., for the benefit of their citizens or customers. This (future) sce-
nario is an extension of the current one where free-access WiFi hot spots are deployed
just as an additional service for citizens, or as a way for attracting more customers, on
a simple best effort basis and without any attempt of regulating their use. Analogously
to this current scenario, in the unmanaged scenario we envision cloudlet-augmented
WiFi hot spots are offered on a best effort basis, as their management is not likely to
be part of the core business of the authorities that deployed them, and mobile users
autonomously decide whether or not to take advantage of their presence, according
to their own goals.

The managed scenario gives rise to a hard optimization problem for the handling
of the cloudlet resources for which only centralized heuristics have been proposed,
see [36,37,47]. On the other hand, the unmanaged scenario is more challenging and
has not been addressed in the literature. In this paper we focus on the latter unman-
aged scenario, with the goal of investigating whether and under what conditions it
gives rise to a convenient offloading strategy. To this end, we analyze the interaction
among mobile users in a game-theoretic setting, assuming that the users indepen-
dently determine their offloading strategies according to a rational behavior. Within
this framework, the contributions of this work are as follows:

4 Valeria Cardellini et al.

– to the best of our knowledge, this is the first work where computation offloading
is analyzed for a general multi-user “three-tier” mobile cloud computing scenario,
with no central authority managing the access to the two external cloud tiers;

– by using queueing theory, we model such a scenario as a non-cooperative game
among selfish users, where the users interaction can be formulated as a General-
ized Nash Equilibrium Problem (GNEP) [16].

– we introduce a distributed algorithm for the computation of an equilibrium which
is tailored to the model architecture. This algorithm, on the one hand is based
on an in-depth analysis of the underlying equilibrium problem and, on the other
hand, exploits and adapts some very recent game-theoretic advancements. The
overall result is a model where each user can determine his/her own computation
offloading strategy automatically on the basis of easily collected information;

– we report computational experiments demonstrating the effectiveness of the pro-
posed algorithm and illustrating the characteristics of the achieved solution.

The remainder of the paper is organized as follows. Section 2 presents related
works and motivates the mobile computing scenario we consider. In Section 3, we
describe this scenario and state the problem we intend to tackle, while in Section 4
we propose the game-theoretic model that is used in the rest of the paper. In Section
5 we analyze the properties of the game, and show the existence of an equilibrium.
In Section 6 we provide a distributed algorithm for the achievement of an equilib-
rium, and discuss issues related to its implementation. Section 7 presents a set of
experiments illustrating the behavior of the solution method and assessing the char-
acteristics of the achieved equilibria. Finally, Section 8 outlines future work.

2 Related Work

Several architectural proposals aimed at supporting the implementation of computa-
tion offloading (or “cyber foraging” [38]) in mobile cloud computing (MCC) scenar-
ios have appeared in the recent past. Some comprehensive surveys have been recently
published [2,20,41,42], but other papers have appeared and continue to appear on this
subject [1,10,22,29,35,37,47]. The proposed architectures for MCC mainly differ
in: (1) the granularity of workload offloaded to external (cloud) nodes, spanning for
example entire virtual machines, application components or single application func-
tions; (2) the methodologies adopted to determine what parts of the application can
be potentially offloaded, including manual or automatic partitioning methodologies;
(3) and whether application partitioning is determined statically before the applica-
tion starts its execution, or dynamically at runtime, with the possibility of changing
the partitioning during the application execution.

The exploitation of external nodes “close” to mobile devices has been suggested
to alleviate the latency problem caused by the interaction with distant cloud servers
located in the Internet. Close nodes could be peer mobile nodes [25,30,44] or the
wireless access points (APs) where mobile devices connect to, suitably augmented
with some computational and storage capacity [23,39]. An implementation of this
kind of augmented AP has been recently launched by Nokia Solutions and Networks

A game-theoretic approach to computation offloading in mobile cloud computing 5

in partnership with IBM and Intel1. Other industrial solutions are being deployed
under the term of Fog computing [9].

Mostly related to the work presented in this paper are the methodologies aimed
at determining which offloadable tasks of a mobile application should be actually
shifted from the mobile device to external nodes with the goal of improving the ap-
plication performance and the user experience. We can broadly classify the existing
proposals according to a single user vs. a multiple users scenario. In the single user
scenario, a single mobile node is considered, without taking into account possible in-
terference with other mobile nodes. On the other hand, in the multiple users scenario
the offloading decisions take into account that multiple users compete for computa-
tional external resources that may be scarce.

Most of the offloading methodologies proposed up to now (e.g. [1,11,14,22,27,
45]) focus on the single user scenario and address the issue by representing the appli-
cation as a weighted graph/tree and applying a graph partitioning algorithm, whose
complexity depends on the granularity of the offloading. The optimal solution is de-
termined through an Integer Linear Programming (ILP) formulation while fulfilling
some given objectives (e.g. application delay, energy saving, communication cost).
However, since graph partitioning is an NP-complete problem, heuristics have been
proposed to find efficiently approximate solutions so as to be able to deal also with
large graphs. Solutions based on graph partitioning have been also investigated in
pre-cloud mobile scenarios, e.g. [34].

Only few works have addressed the multiple users scenario [5,10,36,37,43,46,
47]. Barbarossa et al. [5] propose a centralized scheduling algorithm to jointly op-
timize the allocation of radio and computation resources among multiple users with
latency constraints. However, they consider a batch processing of the computation
which is not realistic in the cloudlet environment. Yang et al. [47] study the parti-
tioning problem for mobile data stream applications and consider multiple users that
share the wireless network bandwidth as well as computational cloud resources with
the goal of maximizing the throughput of the data stream application. The problem is
addressed by means of a genetic algorithm that runs on the cloud side.

Two papers propose [10,46] game-theoretic approaches for a two-tier architec-
ture. Chen [10] focuses on decentralized computation offloading; differently from
our paper where the resource contention among the multiple users occurs on the ad-
ditional tier constituted by the cloudlet, the author considers the competition on the
wireless access, thus focusing more on the communication aspects of mobile cloud
computing. Wang et al. [46] devise a two-stage formulation. In the first stage, each
mobile device determines the portion of computation to offload to a remote cloud
with the goal to minimize its power consumption as well as the task response time. In
the second stage, the provider of the remote cloud data center performs resource allo-
cation for the offloaded tasks with the goal to maximize its own profit. In this paper,
we do not consider resource allocation issues on the remote cloud servers, that are
assumed to have an almost infinite capacity. Differently from us, all the above works
consider a two-tier architecture, composed only of mobile devices and a distant cloud.

1 http://nsn.com/portfolio/liquid-net/intelligent-broadband-management/liquid-applications

6 Valeria Cardellini et al.

Similarly to our envisaged scenario, Rahimi et al. [36,37] consider a three-tier
architecture for MCC with multiple users, where local cloud resources are limited;
in [37] they also take into consideration user mobility information. They formulate
the tiered cloud resource allocation as an optimization problem and solve it through
a greedy heuristic based on a simulated annealing approach. Their heuristic runs on
a centralized entity that has to be contacted by the mobile nodes. Finally, Song et
al. [43] propose an online task scheduling algorithm that aims to minimize the en-
ergy consumption of mobile devices with network traffic constraint. To this end, the
authors envision a collaborative approach among mobile devices which can share
computation results of similar tasks with each other; tasks can be thus allocated ei-
ther on the originating device, on other collaborative device, or on a remote cloud.

Differently from these works that either consider a centralized decision-maker or
cooperative mobile devices in a three-tier architecture, we consider a scenario where,
as motivated in the introduction, multiple users decide selfishly whether and where to
offload their computations, and we analyze their non-cooperative behavior in a game
theoretic setting.

3 System Model

We consider a mobile computing scenario as depicted in Figure 1, where a set of
mobile nodes share a wireless access point (AP) to connect to the Internet. Mobile
nodes can use this connection to possibly offload (part of) their computational load
to a nearby cloudlet or to a conventional remote cloud center. Different applications
are executed on the mobile nodes, each consisting of one or more tasks.

In the following, without lack of generality, we will refer to a task as the unit
of computation. At the coarsest level, a task can correspond to an entire application,
while at the finest level it can correspond to a function, e.g., an image compression,
or even a simpler operation. It is worth observing that, in general, not all application
components can be offloaded, as some component always need to be executed locally,
e.g., a task associated to an application user interface. The nearby cloudlet and the
distant cloud are characterized by the same execution environment. In other words, it
is functionally equivalent to offload a task to the cloudlet or to the cloud. Apart from
this, a cloudlet differs substantially from a conventional cloud in that it is character-
ized by a limited amount of resources, while the conventional cloud is assumed to
have a seemingly unlimited capacity.

As motivated in the introduction, we focus on an “unmanaged” scenario, where
users autonomously decide whether or not to take advantage of nearby cloudlets,
rather than some remote cloud. Each time an offloadable task is to be executed, a
decision is selfishly taken by each user on whether it is more convenient to exe-
cute the task locally, on the one-hop cloudlet, or on the more resourceful and distant
cloud server. If the mobile node decides to offload the task, the code and/or data are
transferred for remote execution. Upon completion, a message with the computation
results is returned to the mobile device.

We model our system as a queueing network, see Figure 2. Queueing theory has
been widely used in the analysis of resource contention in computing and commu-

A game-theoretic approach to computation offloading in mobile cloud computing 7

nication systems [28], and is a natural candidate to capture the main features of our
system.

Fig. 2 System model

The mobile device and the cloudlet are represented as queueing nodes to capture
the resources contention on these two systems. The cloudlet is modeled as a set of
n servers since we expect a cloudlet to be a “data center in a box” and therefore to
comprise possibly multiple servers machines, with multiple processors/cores [39],
with a front-end dispatcher that uniformly splits the arrival stream among the servers
(this latter architecture has been proved to be an effective and popular solution for
load sharing in multiserver systems and is largely used by commercial products, e.g.
see [3]). The cloud, on the other hand, given its virtually infinite capacity can be
regarded as an infinite server, with no contention among different users. Finally, we
model both the wireless access network and the Internet as simple delay centers to
capture the average network delay experienced by the user when a task is remotely
executed.

User u generates tasks at rate λu, u = 1, . . . ,N. We denote by 1
µu,m

, 1
µu,clet

and

1
µu,cloud

the expected execution time of user u tasks on the mobile device, the cloudlet

and the cloud, respectively. We denote by 1
µu,wl

and 1
µu,wn

the expected time to trans-

fer data/code for remote execution over the wireless access network and the Internet,
respectively. We assume the latter two quantities include the time for the return mes-
sage to be delivered to the mobile node (in other words, they represent the round trip
times).

Similarly to [10,32,43], our application model does not consider possible depen-
dencies among tasks belonging to the same application. The papers [1,11,14,22,27,
45] model these dependencies as a graph and analyze how to partition the application
tasks on the mobile and cloud resources. Our higher level model allows us to capture
the tasks contention on the shared resources, which is our focus, and to overcome
at the same time the difficulties caused by the combinatorial aspects in the above
mentioned papers.

8 Valeria Cardellini et al.

4 Generalized Nash Equilibrium Formulation

In this section we formulate the mobile computation offloading problem as a General-
ized Nash Equilibrium Problem [16,18]. The goal of each user (actually of the mobile
node) is to determine whether and where to offload a task based on the impact this
has on his/her usage experience, expressed through suitable Quality of Service (QoS)
measures. We call this decision the user strategy and model it by associating to each
user u a triple xu = {xu,m,xu,clet ,xu,cloud}, ∑i∈I xu,i = 1, where I = {m,clet,cloud},
which represents the percentage of user tasks that is executed locally (xu,m), offloaded
to the cloudlet (xu,clet), or to the cloud (xu,cloud).

Given that power consumption and application performance are the most impor-
tant quality factors in a mobile scenario, see e.g. [14,1,22,11], we consider them as
the QoS measures driving each user strategy. In particular, we assume that the user
wants to optimize the observed performance while limiting the power consumption.
Without lack of generality, we consider as the user performance measure the expected
number of user tasks in the system, i.e. the expected number of tasks launched but not
yet completed. From the mobile user point of view, this corresponds to the average
execution time of the number of tasks launched in a time unit. We observe that this is
a quite general approach, which accounts for different levels of detail/granularity. As
an example, consider the case of an application which is executed once per second
and whose execution requires ten modules to be run. We can consider as a task either
the application or the invoked modules and with the proposed performance measure
we obtain exactly the same expression.

Let us denote by Ru,m, Ru,clet and Ru,cloud the mean response time when a task
is executed locally, offloaded to the cloudlet or to the cloud, respectively. In order
to use robust - yet simple - analytical expressions for these measures, we model the
response time of the mobile device and of each of cloudlet server as the response time
of a M/G/1/PS, which amounts to assimilate the task arrival process to a Poisson

process. The response time of a M/G/1/PS queue [28] is R = 1/µ
1−ρ where λ is the

queue arrival rate, 1/µ the average service time and ρ = λ/µ the queue utilization.
By considering our system model assumptions, we readily have:

Ru,m =

1

µu,m

1−
xu,mλu

µu,m

, Ru,clet =
1

µu,wl
+

1

µu,clet

1−
1

n
∑v

xv,clet λv

µv,clet

(1)

Ru,cloud =
1

µu,wl
+

1

µu,wn
+

1

µu,cloud
. (2)

Ru,m directly follows from the fact that the number of tasks per unit of time which
need to be executed by the mobile node is xu,mλu. Ru,clet comprises two terms: the
first term is the local wireless delay; the second term is the cloudlet response time.
The latter is affected by the cloudlet servers load which is the aggregate cloudlet load
divided by the number of servers n, that is, 1

n ∑v xv,clet λv. Finally, Ru,cloud is the sum of
the wireless access network delay, the wide area network delay and the cloud delay.

A game-theoretic approach to computation offloading in mobile cloud computing 9

Few words on the use of the Poisson assumption are in order. For the mobile de-
vices, we note that when the adopted granularity level makes a task coincide with
an entire application, then a Poisson process well captures the arrival of independent
applications. For finer granularity levels, possible dependencies among tasks belong-
ing to the same application could actually make the arrival process diverge from the
Poisson one. Nevertheless, the Poisson approximation allows us to use an analytic
formulation for the response time that captures the effect of resource contention;
indeed, the Poisson assumption is an approximation that has been adopted in the lit-
erature on mobile cloud computing [8,21,32,46] to model a user task arrival. Finally,
for the cloudlet, the use of Poisson arrivals is justified because the overall arrival pro-
cess is the superposition of relatively sparse arrival processes from (possible many)
independent users and is also a common assumption in the Web context, see e.g. [3].

Finally, we denote by Pu,m and Pu,t the power consumed by the mobile device
when the task is executed locally and the power required to transmit code/data for
remote execution, respectively.

The user objective is to minimize λuRu(xu,x−u) (which by Little’s first law repre-
sents the number of tasks in the system) within a given energy budget. Here Ru(xu,x−u)
denotes user u mean task response time and x−u denotes the strategies of all users ex-
cept user u. User u mean task response time is defined as follows:

Ru(xu,x−u) = xu,mRu,m + xu,cletRu,clet + xu,cloudRu,cloud. (3)

Note that the user mean response time depends not only on the user u strategy xu,
but also on the strategies of the other users. This dependency is due to the users indi-
rectly affecting each other when they offload tasks to the cloudlet, since the cloudlet

mean response time is function of the cloudlet load ∑v

xv,clet λv

µv,clet
to which each user

contributes.
Each user u, in order to compute the optimal strategy, needs to solve the following

optimization problem:
min λuRu(xu,x−u) (4)

subject to:
1

n
∑
v

xv,clet λv

µv,clet
≤Umax (5)

xu,mλu

µu,m
Pu,m +

(xu,clet + xu,cloud)λu

µu,wl
Pu,t ≤ Pu,max (6)

xu,clet + xu,cloud ≤ χ (7)

∑
i∈I

xu,i = 1 (8)

xu.m,xu,clet ,xu,cloud ≥ 0. (9)
Constraint (5) models the cloudlet utilization which we assume should not exceed

a given threshold Umax (in practice, this corresponds to giving an upper bound to the
cloudlet response time). Observe that this constraint involves the decision variables
of all the users. Constraint (6) ensures that the user energy consumption is lower than
a threshold Pu,max. Constraint (7) takes into account that, in general, only a fraction χ ,
0 < χ ≤ 1, of the tasks can be offloaded. Finally, the simple and natural constraints

10 Valeria Cardellini et al.

(8) and (9) ensure that the considered fractions are greater than or equal to zero and
that their sum is one.

In this setting, the users decisions are mutually dependent and the proposed model
is a GNEP. GNEPs differ from classical Nash Equilibrium Problems (NEP) in that,
while in a NEP only the players’ objective functions depend on the other players
strategies, in a GNEP both the objective functions and the strategy sets depend on
the other players strategies. In our problem, the dependence of each player strategy
set on the other players strategies is represented by the constraint (5), which includes
all the users decision variables xu,clet . More specifically, since the players all share a
common (linear) constraint, this game is known as jointly convex game [15].

5 Properties of the GNEP Formulation

In this section we show that the game (4)-(9) can actually be solved by finding a
solution to a suitable Variational Inequality (to be defined later on), for which we
can then derive a distributed algorithm. First, in Section 5.1, crucial to our approach,
we establish that the function associated to the Variational Inequality is, under ap-
propriate, reasonable conditions, monotone. Then, in Section 5.2 we transform the
original GNEP in an equivalent extended game, the equilibrium point of which can
be computed in a distributed way [40], as detailed in Section 6.

5.1 Existence and Monotonicity Properties of the GNEP

We recall that each user u= 1, . . . ,N controls three variables: xu =(xu,m,xu,clet ,xu,cloud).
For sake of simplicity, we set:

αu =
λu

µu,m
, βu =

λu

µu,wl
, δu =

λu

µu,clet
, γu = λu

(

1

µu,wl
+

1

µu,wn
+

1

µu,cloud

)

.

Using this notation we can rewrite problem (4)-(9) as

min λuRu(xu,x−u) (10)

subject to
1

n ∑
v

δvxv,clet ≤ Umax (11)

αuPu,mxu,m +βuPu,t(xu,clet + xu,cloud) ≤ Pu,max (12)

xu,clet + xu,cloud ≤ χ (13)

xu,m + xu,clet + xu,cloud = 1 (14)

xu.m,xu,clet ,xu,cloud ≥ 0, (15)

where

λuRu(xu,x−u) =
αuxu,m

1−αuxu,m
+βuxu,clet + γuxu,cloud +

δuxu,clet

1− 1
n ∑v δvxv,clet

.

In order to analyze the game we make the following basic assumption:

A game-theoretic approach to computation offloading in mobile cloud computing 11

Assumption A Umax as well as all αu and δu, u = 1, . . . ,N, are positive and smaller
than 1.

We note that assuming αu < 1 actually corresponds to assuming that all the com-
putational load generated by a user can in principle be sustained by his/her mobile
device. The assumption for δu follows from this one, as a cloudlet has a higher com-
putational capacity than a mobile device, while the assumption for Umax is standard.
Under these assumptions, it is easy to check that each user’s problem is convex for
given values of the other users’ variables. By the results in [15], we know that we
can recover a solution of this jointly convex game (known as variational solution or
normalized solution) by solving a suitable Variational Inequality: VI (K,F)2 [17]. In
order to define this VI which permits to compute a solution of our GNEP we there-
fore have to specify the set K and the function F . We do this next, following [15]. To
define K we first define the sets

K̃u := {xu ∈ R3
+ : ∑i∈I xu,i = 1,xu,clet + xu,cloud ≤ χ ,

αuPu,mxu,m +βuPu,t(xu,clet + xu,cloud)≤ Pu,max},

which are nothing else but the feasible set of user u with the joint constraint neglected.
The “contribution” of the joint constraint is taken into account by the set

Ω := {x ∈ R
3N :

1

n ∑
u

δuxu,clet ≤Umax}.

The set K in the definition of our VI is then given by K :=
(

Π N
u=1K̃u

)

∩Ω . It remains
now to define the function F . This is just the vector obtained by “stacking” the partial
gradients of each user, where the gradients are taken only with respect to the users’
own variables:

∇xu λuRu =

















αu

(1−αuxu,m)
2

βu + δu

1− 1
n ∑v&=u δvxv,clet

(1− 1
n ∑v δvxv,clet)2

γu

















, F =















































α1

(1−α1x1,m)
2

β1 + δ1

1− 1
n ∑v&=1 δvxv,clet

(1− 1
n ∑v δvxv,clet)2

γ1

...
αN

(1−αNxN,m)
2

βN + δN

1− 1
n ∑v&=N δvxv,clet

(1− 1
n ∑v δvxv,clet)2

γN















































.

Existence of a solution to a general GNEP is usually not easy to show. However, in
our case we are dealing with a jointly convex GNEP with compact feasible set and it
is well-known [15], but can also easily be seen directly, that a solution to the GNEP
(10)-(15) exists.

2 The VI (K,F), where K ⊆ Rn is a closed convex set and F : K→ Rn is a continuous function, is the
problem of finding a point x̄ ∈ K, such that F(x̄)T (x− x̄)≥ 0, for all x ∈ K.

12 Valeria Cardellini et al.

Proposition 1 Supposing that Assumption A holds, the GNEP (10)-(15) has at least

one solution.

Proof. As already observed, under Assumption A any solution of the VI (K,F) is a
solution of the GNEP (10)-(15), see [15]. But F is continuous on K and K is obvi-
ously compact. Therefore by [17, Corollary 2.2.5] VI (K,F) has a solution and, as a
consequence, also the original GNEP (10)-(15) has a solution. !

Note that in general the GNEP (10)-(15) could have infinite solutions; our aim is
to compute a variational solution by a distributed algorithm (see comments later on
the significance of this particular solution). To this end a key role is played by the
monotonicity of F3. The easiest way to check the monotonicity of a differentiable F
is to check that the Jacobian of F , JF , is positive semidefinite on K [17].

The Jacobian of F has the following structure:

JF(x) =























A1 0 0 0 0 0 . . . 0 0 0
0 B1 0 0 B12 0 . . . 0 B1N 0
0 0 0 0 0 0 . . . 0 0 0

...
...

0 0 0 0 0 0 . . . AN 0 0
0 BN1 0 0 BN2 0 . . . 0 BN 0
0 0 0 0 0 0 . . . 0 0 0























(16)

where

Au =
2α2

u

(1−αuxu,m)
3
, Bu =

2

n
δ 2

u

1− 1
n ∑v&=u δvxv,clet

(

1− 1
n ∑t δt xt,clet

)3
,

Buv =
1
n δvδu

1− 1
n ∑t δt xt,clet +

2
n δuxu,clet

(

1− 1
n ∑t δt xt,clet

)3
.

(17)

Theorem 1 Assume that

δmax ≤
n

Nχ
(1−Umax), (18)

where δmax = maxu=1,...,N δu, then F is monotone.

Proof. Reordering the variables, JF(x) can be rewritten in the following form:

JF(x) =





A 0 0
0 B 0
0 0 0



 , A = diag(Au)
N
u=1 , B =











B1 B12 . . . B1N

B21 B2 . . . B2N

...
...

BN1 BN2 . . . BN











.

Since A is positive definite by Assumption A, checking the monotonicity reduces to
checking that the matrix B is positive semidefinite. In order to check the semidefi-
niteness of B we check the semidefiniteness of its symmetric part Bs := 1

2 (B
T +B).

Set

D := 1−
1

n ∑
t

δt xt,clet ,

3 We recall that F is monotone on K if (F(y)−F(x))T (y− x) ≥ 0, ∀y,x ∈ K.

A game-theoretic approach to computation offloading in mobile cloud computing 13

the diagonal elements Bs
u can be rewritten as

Bs
u =

δ 2
u

nD2

(

2+ 2
δuxu,clet

nD

)

while the off-diagonal elements are

Bs
uv = Bs

vu =
δvδu

nD2

(

1+
δvxv,clet + δuxu,clet

nD

)

.

Let δ denote the vector δ :=
(

δ1 . . . δN

)T
. It is easily seen that the matrix Bs can be

rewritten as

1

nD2









δδ T ◦









I+E +
2

nD









δ1x1,clet
δ1x1,clet+δ2x2,clet

2 . . .
δ1x1,clet+δN xN,clet

2
. . .

δN xN,clet+δ1x1,clet

2

δN xN,clet+δ2x2,clet

2 . . . δNxN,clet

























(19)
where the symbol ◦ denotes the Hadamard product of two matrices, i.e. the matrix
having as elements (A◦B)i j = Ai jBi j, and E is the matrix with all entries equal to 1.

Set xδ
clet :=

(

δ1x1,clet . . . δNxN,clet

)T
, and let e ∈ RN be the vector of all ones,

then, noting that









δ1x1,clet
δ1x1,clet+δ2x2,clet

2 . . .
δ1x1,clet+δN xN,clet

2
. . .

δN xN,clet+δ1x1,clet

2

δN xN,clet+δ2x2,clet

2 . . . δNxN,clet









=
1

2

(

xδ
clet e

T + e(xδ
clet)

T
)

,

the matrix Bs is given by

Bs =
1

nD2

(

δδ T ◦
(

I+E +
1

nD
(xδ

clet e
T + e(xδ

clet)
T)

))

. (20)

The Schur product theorem (see [24, Theorem 7.5.3]) states that the Hadamard prod-
uct of two positive semidefinite matrices is positive semidefinite. Therefore, since the
matrix δδ T is obviously positive semidefinite, in order to show the positive semidef-
initeness of Bs it is enough to show that the matrix

(

I+E +
1

nD
(xδ

clet e
T + e(xδ

clet)
T)

)

be positive semidefinite. Neglecting the contribution of the positive semidefinite ma-
trix E , this reduces to proving that the minimum eigenvalue of the matrix 1

nD(x
δ
clet e

T +

e(xδ
clet)

T) is greater or equal to −1. It is known, see [6, Fact 4.9.16], that the matrix

xδ
clet e

T + e(xδ
clet)

T has a characteristic polynomial given by

ηN−2
(

η2− 2(eT xδ
clet)η +(eT xδ

clet)
2−N‖xδ

clet‖
2
)

. (21)

14 Valeria Cardellini et al.

From this we see that the matrix xδ
clet e

T +e(xδ
clet)

T has (N−2) zero eigenvalue, a non
negative eigenvalue and a non positive eigenvalue. These two latter eigenvalues are
given respectively by

η+ = eT xδ
clet +

√
N‖xδ

clet‖, η− = eT xδ
clet −

√
N‖xδ

clet‖.

We then get that a sufficient condition for the positive semidefiniteness of Bs is

1

nD

(√
N‖xδ

clet‖− eT xδ
clet

)

≤ 1. (22)

But recalling that eT xδ
clet ≥ ‖x

δ
clet‖ since xδ

clet ≥ 0, that on the feasible region ‖xδ
clet‖

is at most
√

Nδmaxχ (see (13)) and that D≥ 1−Umax by (11), we see that

1

nD

(√
N‖xδ

clet‖− eT xδ
clet

)

≤
1

nD

(

δmaxχ
√

N(
√

N− 1)
)

≤
δmax

1−Umax

Nχ

n
. (23)

Therefore, (22) is certainly satisfied if (18) holds. !

Remark 1 The previous theorem hinges on condition (18) which guarantees the key
property of F being monotone. It is then important to get a good understanding of
its meaning. However, before looking at this issue, we stress that condition (18) is
just a sufficient condition for the monotonicity of F . Indeed, a look at the proof of
Theorem 1 shows that condition (18) derives from a series of majorizations based
on worst case scenarios; therefore, in practice we can expect monotonicity of F even
when (18) is not “violated too much”. This is confirmed by the numerical results in
Section 7, that show that condition (18) is not critical from the practical point of view.
Condition (18) essentially says that monotonicity of F is guaranteed if the cloudlet
is not overloaded. In fact, condition (18) requires that the maximum traffic intensity
δmax of the users (on the cloudlets) be lower than a certain threshold value. For a given
number N of users, this threshold increases when the number n of cloudlet servers
increases or when either or both Umax and χ decrease. Therefore monotonicity can
always be achieved by deploying more cloudlets or by imposing in the protocol, i.e.
in the constraints (11) and (13), suitably small values of Umax and χ .

5.2 The Extended Game

Centralized algorithms for the computation of an equilibrium could now be easily
derived by solving the VI (K,F) defined above. In fact, assuming monotonicity of
F , there are plenty of centralized algorithms available, see [17]. However, in order
to develop a distributed algorithm, we can not act directly on the original GNEP
(10)-(15) or on its equivalent VI reformulation. Roughly speaking, the reason is that
distributed algorithms require that the feasible sets (of the game or of the VI) are
the Cartesian product of lower dimensional sets, a condition that in our case is not
satisfied due to the shared constraint (5). However, as we show next, we are able
to reformulate the GNEP (10)-(15) into another game with no coupling constraints
through a simple, but non trivial transformation which, essentially, was first hinted
at in [18]. It will turn out this new game inherits the monotonicity properties of the

A game-theoretic approach to computation offloading in mobile cloud computing 15

original game so that, as we will see in the next section, under the conditions of
Theorem 1, we will be able to develop distributed algorithms for the computation of
a variational solution of the GNEP (10)-(15).

To achieve the decoupling of the users’ feasible sets, we consider an extended
game, with one extra “player”. In this extended game the first N users control xu and
have the problem

min
xu∈K̃u

λuRu(xu,x−u)+ρ

(

δu

n
xu,clet

)

while the (N + 1)− th player controls the variable ρ ∈ R and solves the problem

max
ρ≥0

ρ(
1

n ∑
u

δuxu,clet −Umax).

We call this game the extended game. Note that this extended game is a standard
Nash equilibrium problem since there is no coupling in the constraints. The first N

users are the “original” users. Their problems have been modified in two ways: (a) the
joint constraint has been eliminated and (b) in the objective function a term has been
added to make up for this omission. The (N +1)-th user is a sort of cloudlet manager
and controls the variable ρ which can be seen as the cloudlet “price”. Note that the
additional term in the objective function of the other users is then nothing else but the
“cost” of using the cloudlet. More precisely, it can be shown that ρ will just turn out
to be the Lagrange multiplier of the shared constraint (11). It is a classical result [17,
Proposition 1.4.2] that our game is equivalent to the VI (Fe,Ke), where

Fe(x,ρ) =































F(x)+























0
ρ(δ1/n)

0
...
0

ρ(δN/n)
0























−
1

n
∑
u

δuxu,clet +Umax































, Ke = (Π N
u=1K̃)×R+.

The following result is key to our developments and relates GNEP (10)-(15) to
the extended game. Note that in the theorem below, when we say that the game is
monotone, we obviously mean that its VI reformulation is so, in other words, that the
function Fe is monotone.

Theorem 2 A point x̄ is a variational solution of the original game (10)-(15) if and

only if a ρ̄ exists such that (x̄, ρ̄) is a Nash equilibrium of the extended game. Fur-

thermore, if the original game is monotone, then also the extended game is monotone.

Proof. The first assertion is just a verification which can be carried out comparing the
Karush-Kuhn-Tucker conditions of the VI (K,F) and of the extended game. Note

16 Valeria Cardellini et al.

that since all constraints involved in both problems are affine, the Karush-Kuhn-
Tucker conditions surely hold at a solution. The second assertion of the theorem can
be checked writing down the Jacobian of Fe:

JFe(x,ρ) =



























0
δ1/n

0

JF(x)
...
0

δN/n

0

0 −δ1/n 0 · · · 0 −δN/n 0 0



























.

This is a block skew-symmetric matrix, and JFe(x,ρ) is monotone if and only if
JF(x) is monotone. !

The bottom line of this section is: we can compute a (variational) solution of
the GNEP (10)-(15) by finding a solution of the standard extended game. This latter
game is monotone if and only if the original GNEP is monotone and, in particular, if
the conditions of Theorem 1 are met. On the basis of these results, in the next section
we will show how to apply some very recent algorithmic developments in order to
design distributed algorithms for the solution of the extended game.

6 Distributed Solution

In this section we consider the problem of computing an equilibrium of the GNEP
(10)-(15) by a distributed algorithm. To achieve our goal we will combine in a suit-
able way classical results about proximal regularization, see e.g. [17, Chapter 12],
with some very recent, advanced distributed methods proposed in [19] and [40]. In
doing so, we take great care to make appropriate choices so that the resulting solution
method is not only mathematically sound, but also well suited to the characteristics of
our model, in terms of information exchange and computational burden of the users,
so as to be amenable to practical use.

Our approach to the solution of (10)-(15) is to solve the VI (Fe,Ke) in a distributed
way. To this end, one key requirement is that Fe be strongly monotone4. However, it
can easily be observed that, because of the 0 in the lower-right corner of JFe (see
the proof of Theorem 2) Fe can never be strongly monotone, even if F is so. To
circumvent this difficulty, we regularize the VI (Fe,Ke) and use a proximal-point

method [17, Chapter 12]. This results in the following scheme, where α is an arbitrary
positive constant.

4 We recall that Fe is strongly monotone on Ke if (Fe(y)−Fe(x))T (y− x) ≥ m‖y− x‖2 , ∀y,x ∈ Ke for
some fixed, positive m. Note that every strongly monotone function is monotone but the vice versa does
not necessarily hold. If Fe is continuously differentiable it is known that Fe is strongly monotone on Ke if
and only if JFe(x,ρ)−mI is positive semidefinite for all points in Ke.

A game-theoretic approach to computation offloading in mobile cloud computing 17

Algorithm 1: Proximal-point algorithm for the solution of VI (Fe,Ke)

(S.0) : Choose (x0,ρ0) ∈ Ke and set k = 0.

(S.1) : If (xk,ρk) is a solution of VI (Ke,Fe) stop.

(S.2) : Compute the new iteration (xk+1,ρk+1) as the unique solution of the
strongly monotone VI (Ke,Fe +α(·− (xk,ρk))).

(S.3) : Set k← k+ 1 and go to Step 1.

It is known [17, Chapter 12] that the above scheme converges to a solution of the
VI (Ke,Fe), i.e. to a (variational) solution of the GNEP (10)-(15). The key point in
developing a (totally asynchronous) distributed solution method is therefore the de-
velopment of a (totally asynchronous) distributed solution method for the VI (Ke,Fe+
α(·− (xk,ρk))). To this end we may consider the distributed Algorithm 2. Note that
the algorithm we present is synchronous. We do so for simplicity of presentation only.
Totally asynchronous (in the sense of [7]) versions can easily be envisaged and all the
derivations we make in this section readily extend to the asynchronous case.

Algorithm 2: Parallel distributed algorithm for the solution of VI
(Ke,Fe +α(·− (xk,ρk)))

(S.0) : Choose (x0,ρ0) ∈ Ke and set i = 0.

(S.1) : If (xi,ρ i) is a solution of VI (Ke,Fe +α(·− (xk,ρk))) stop.

(S.2) : For u = 1, . . . ,N set xi+1
u to be the unique solution of the strongly

convex optimization problem

min
xu

λuRu(xu,x−u
i)+ρ i δu

n
xu,clet +α‖xu− xu

k‖2

subject to xu ∈ K̃u

(S.3) : Take

ρ i+1 = max{0,ρk +
1

2α

(

1

n ∑
u

δu(x
i
u,clet)−Umax

)

}.

Set i← i+ 1 and go to Step 1.

The overall scheme resulting by the combination of the outer Algorithm 1 and
of the inner Algorithm 2 is depicted in Figure 3, where the information flows are
also represented. In the next Theorem we formally show convergence of the overall
scheme combining Algorithm 1 and 2.

Theorem 3 Consider the solution Algorithm 1, where all subproblems in Step S.2

are solved using Algorithm 2. There exists a positive ᾱ > 0 such that, for every α > ᾱ
and for every k, the distributed inner Algorithm 2 converges to the unique solution of
VI (Ke,Fe +α(·− (xk,ρk))) and Algorithm 1 converges to a solution of VI (Ke,Fe).
In particular, we can take

ᾱ =
3N

n

δmax

(1−Umax)3
(24)

18 Valeria Cardellini et al.

Fig. 3 Distributed algorithm

Proof. By the discussion immediately after Algorithm 1, we only need to show that
for every α ≥ ᾱ and for every k, the distributed inner Algorithm 2 converges to the
unique solution of VI (Ke,Fe +α(·− (xk,ρk))) and we also need to justify the value
of ᾱ in (24). By [19, Theorem 3] or [40, Theorem 13] we only need to show that a
certain matrix ϒ is P (meaning that all principal minors are positive). The matrix ϒ
is an N + 1 square matrix related to the regularized VI (Ke,Fe +α(·− (xk,ρk))) and
we describe next how it is constructed. Consider the Jacobian of Fe +α(·− (xk,ρk)),
which is given by



























A1 0 0 0 0 0 . . . 0 0 0 0
0 B1 0 0 B12 0 . . . 0 B1N 0 δ1/n

0 0 0 0 0 0 . . . 0 0 0 0
...

...

0 0 0 0 0 0 . . . AN 0 0 0
0 BN1 0 0 BN2 0 . . . 0 BN 0 δN/n

0 0 0 0 0 0 . . . 0 0 0 0

0 −δ1/n 0 · · · 0 −δN/n 0 0



























+αI(N+1)×(N+1), (25)

where the matrices Au, Bu, and Buv (whose dependence on x has been omitted for
simplicity) are defined in (17). From this matrix we can now build ϒ (according to
what indicated in [19] or [40]) in the following way:

ϒ :=















s1 −t12 · · · −t1(N+1)

−t21 s2 · · · −t2(N+1)

...
. . .

...

−t(N+1)1 −t(N+1)2 · · · sN+1















+αI,

A game-theoretic approach to computation offloading in mobile cloud computing 19

where the constants si and ti j, i, j = 1, . . . ,N +1, are related to the blocks in (25) and,
more precisely, are given by

si := min
(x,ρ)∈Ke

λmin





Au 0 0
0 Bu 0
0 0 0



= 0, i = 1, . . . ,N, sN+1 := min
(x,ρ)∈Ke

λmin(0) = 0,

where λmin(A) denotes the minimum eigenvalue of the matrix A, while

ti j :=































































max(x,ρ)∈Ke

∥

∥

∥

∥

∥

∥

0 0 0
0 Bi j 0
0 0 0

∥

∥

∥

∥

∥

∥

= max(x,ρ)∈Ke
Bi j if i, j = 1, . . . ,N

max(x,ρ)∈Ke

∥

∥

∥

∥

∥

∥

0
δi/n

0

∥

∥

∥

∥

∥

∥

= δi/n if j = N + 1

max(x,ρ)∈Ke

∥

∥

∥

∥

∥

∥

0
−δi/n

0

∥

∥

∥

∥

∥

∥

= δi/n if i = N + 1.

It is clear that the matrix ϒ is a Z matrix (meaning that all off-diagonal elements are
non positive), and therefore if we write ϒ ≥ ϒ̃ (where ≥ indicates component-wise
≥) and ϒ̃ is a Z and P matrix, then also ϒ is a P matrix (this is an easy consequence
of [13, Theorem 3.11.10]). By the above discussion we can write

ϒ =

















α − max
(x,ρ)∈Ke

B12 · · · −δ1/n

− max
(x,ρ)∈Ke

B21 α · · · −δ2/n

...
. . .

...

−δ1/n −δ2/n · · · α

















≥

















α − 3
n

δmax

(1−Umax)3 · · · − 3
n

δmax

(1−Umax)3

− 3
n

δmax

(1−Umax)3 α · · · − 3
n

δmax

(1−Umax)3

...
. . .

...

− 3
n

δmax

(1−Umax)3 − 3
n

δmax

(1−Umax)3 · · · α

















:= ϒ̃

The matrix ϒ̃ is clearly a Z-matrix. In order to check that it is also P, we can,
equivalently check, see [13, Lemma 5.3.14], that the spectral radius of the matrix

















0 1
α

3
n

δmax

(1−Umax)3 · · · 1
α

3
n

δmax

(1−Umax)3

1
α

3
n

δmax

(1−Umax)3 0 · · · 1
α

3
n

δmax

(1−Umax)3

...
. . .

...

1
α

3
n

δmax

(1−Umax)3
1
α

3
n

δmax

(1−Umax)3 · · · 0

















20 Valeria Cardellini et al.

is less than 1. But if α ≥ ᾱ this easily follows from Geršgorin circle theorem, see for
example [24, Theorem 6.1.1]. !

We note that the fact that if α is large enough the matrix ϒ is P, actually even positive
definite, can be proved relatively easily. Part of the complication of the proof above
is given by the fact that we wanted to give an explicit expression for ᾱ showing the
qualitative behavior of this threshold value. Once again this parameter behaves in an
expected way and its dependency on the system parameters goes in the direction: the
more congested the system is, the higher ᾱ can be expected to be. We also remark
that the expression of ᾱ in the above theorem is obtained through a really crude
majorization of the terms Buv and δu/n; better, if more complicated, estimates can
certainly be obtained, but we do not pursue this issue further.

Below we discuss in more detail some important issues.

– Both Algorithm 1 and 2 stop in Step 1 when a solution of VI (Ke,Fe) and VI
(Ke,Fe +α(·− (xk,ρk))) respectively have been reached. In practice, in all cases,
one can stop when a inexact solution has been found, provided the degree of inex-
actness decreases as the the algorithms progress. We do not discuss this technical
issue here, but refer the reader to [19,40] instead. In any case this point does not
pose any serious practical problem. For example, usually very few inner itera-
tions are needed to reach a very accurate solution of VI (Ke,Fe+α(·− (xk,ρk))),
since as the outer iterations progress and (xk,ρk) converges, we are solving a se-
quence of outer problems that are more and more similar. This is confirmed in
our numerical experiments in Section 7.

– The problems solved by each user at Step 2 can be rather easily interpreted. The
objective function includes two additional terms with respect to the original game.

The first term, ρ
(

δu
n xu,clet

)

, is a cost associated to the use of the cloudlet with a

price of ρ . In other words we penalize the shared constraint (11) and “put it in the
objective function” in order to decouple the feasible sets of the users. The second
term, α‖xu− xu

k‖2, is a classical regularization term that is needed to guarantee
strong convexity of the objective function.

– The problems solved by each user at Step 2 are three variables strongly convex
problems with linear constraints and can be solved extremely efficiently and very
fast by any commercial optimization software.

– The updating of the “price” ρ requires the cloudlet to monitor the system load
(the term 1

n ∑u δuxi
u,clet). The system load along with the price ρ are then sent by

the cloudlet to the users which require this information to solve their optimization
problem. We observe that the system load can be easily measured at the cloudlet
side, and the cloudlet can be easily instrumented to transmit this information to
the users exploiting its resources, so the distributed algorithm is amenable to a
real-world implementation.

– We remark once more that our algorithm computes a variational solution of the
GNEP (10)-(15), that is, one of the possibly infinite number of equilibria of the
game. The variational solution is characterized by the fact that the multipliers of
the shared constraint (11) are the same for all users (see [15]). This solution is
particularly appealing from a practical point of view since it can be interpreted

A game-theoretic approach to computation offloading in mobile cloud computing 21

as a fairness condition for it implies that the “cost” of use of the cloudlet (the
multiplier) is the same for all users.

7 Experimental Results

In this section we investigate through numerical experiments the behavior of the pro-
posed computation offloading strategy. First, in Section 7.1, we compute the system
equilibria under different scenarios and study how the users’ tasks are dispatched
among the mobile device, the cloudlet, and the remote cloud infrastructure. Then,
in Section 7.2 we compare the proposed non-cooperative strategy solution with the
social optimum. Our aim is to understand how the performance degrades due to the
selfish behavior of the users.

For the analysis, we implemented in MATLAB the distributed algorithm in Sec-
tion 6, setting the parameter α to 0.1. The algorithm stops when the norm of the
difference of two consecutive iterations is less than 10−4.

7.1 Non-cooperative Strategy Analysis

We consider a homogeneous scenario where the users profile is characterized by the
same set of parameters. If not stated otherwise, as basic setting we consider n = 2
cloudlet servers, λu = 0.25 task/s, 1/µu,m = 0.5 s, µu,clet = 5µu,m, µu,cloud = 10µu,m,
1/µu,wl = 0.1 s, 1/µu,wn = 0.4 s and Umax = 0.7. The execution time parameters are
consistent with those experimentally measured in [29,11,26]. We also set χ = 1, i.e.
all tasks can be offloaded to the cloud. Moreover, unless otherwise noted, we do not
consider the power consumption constraint, i.e. we set Pu,max = ∞.

In Figure 4, we show the results of four set of experiments to investigate the be-
havior of the non-cooperative strategy as number of users, number of cloudlet servers,
task execution time, and maximum power consumption increase. Note that, since we
consider a homogeneous scenario, the user’s strategies coincide. Hence, we only need
to show the strategy of one user.

In the first set of experiments, we study the computation offloading strategy as
the number of users (N) increases from 20 to 70. From Figure 4(a) we can observe
that until the cloudlet is not overloaded, the users take fully advantage of its compu-
tational resources to execute their tasks (xu,clet = 1). As the number of users grows,
the cloudlet utilization increases. Eventually, when the utilization hits the threshold
Umax, which occurs when N = 56, the cloudlet cannot serve all the tasks; as N in-
creases further, a larger percentage of tasks is executed on the mobile nodes them-
selves. It is worth observing that, nevertheless, the tasks are not dispatched to the
remote cloud due to the high delays which offset the faster computational speed. Fig-
ure 5(a) shows the number of user tasks in the system (i.e. the objective function
value) for the first set of experiments. As we can expect, it increases with the number
of users in the cloudlet, because the resource contention increases and a percentage
of the tasks must be even executed on the slow mobile devices.

In the second set of experiments, we study the behavior of the proposed strategy
as the number of cloudlet servers increases from n = 2 to n = 10. We set the number

22 Valeria Cardellini et al.

20 30 40 50 60 700

0.2

0.4

0.6

0.8

1

Number of users

Pr
ob

ab
ilit

y

xu,m

xu,clet

xu,cloud

(a)

2 4 6 8 100

0.2

0.4

0.6

0.8

1

Number of cloudlet servers
Pr

ob
ab

ilit
y

xu,m

xu,clet

xu,cloud

(b)

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

Task execution time (s)

Pr
ob

ab
ilit

y

xu,m
xu,clet
xu,cloud

(c)

0.114 0.116 0.118 0.12 0.122 0.1240

0.2

0.4

0.6

0.8

1

Pu,max

Pr
ob

ab
ilit

y

xu,m

xu,clet

xu,cloud

(d)

Fig. 4 User strategies for different system parameters.

of users to N = 15 and increase the task execution time, setting it to 1/µu,m = 2.2 s (so
that the local execution on the mobile device is not suitable). The results are shown in
Figure 4(b). As expected, increasing the computational power of the cloudlet allows
for a larger percentage of tasks to be executed on it, which results, as shown in Figure
5(b), in a reduction of the number of user tasks in the system, also due to the faster
network connection to the cloudlet.

20 30 40 50 60 700.04

0.06

0.08

0.1

0.12

Number of users

λ uR
u(x

u,x
−u

)

(a)

2 4 6 8 100.155

0.16

0.165

0.17

0.175

0.18

Number of cloudlet servers

λ uR
u(x

u,x
−u

)

(b)

Fig. 5 Number of user tasks in the system

A game-theoretic approach to computation offloading in mobile cloud computing 23

In the third set of experiments, we study the computation offloading strategy as
the task execution time on the mobile node, 1/µu,m, ranges from 0.1 s up to 2.2 s
(µu,clet and µu,cloud are scaled accordingly). We fix the number of users N = 15 as
in the previous experiments and set the number of cloudlet servers to n = 2. The
results are shown in Figure 4(c). As we can see, at low-medium load the users take
fully advantage of the cloudlet resources (xu,clet = 1), except when the task execution
time is very small (1/µu,m = 0.1 s), in which case it is more convenient to execute
the task locally on the mobile device. In particular, xu,clet remains equal to 1 until
1/µu,m ≤ 1.3 s, corresponding to a cloudlet utilization of about 0.49. From this point
onwards, an ever growing number of tasks is offloaded to the remote cloud, because
in these experiments the cloudlet is overloaded by the larger task execution time.
Hence, when the cloudlet is overloaded, it is more convenient to dispatch some tasks
to the remote cloud rather than to the mobile device, because the delay introduced by
the wireless network and the Internet is compensated by the faster execution on the
remote cloud.

We now analyze the impact of the constraint on the power consumption, which
has been neglected in the previous experiments where we set Pu,max = ∞. Follow-
ing [31], we set Pu,m = 0.9 W, Pu,t = 1.3 W, and we study how the offloading strategy
changes as Pu,max increases from 0.112 W to 0.125 W. We also increase the transfer
time over the wireless network, setting 1/µu,wl = 0.5 s (for example, we can sup-
pose that the access network is congested), while keeping 1/µu,m = 0.5 s, so that
the power consumption to transmit the task weighs more than the power consumed
to execute the task locally. The results are shown in Figure 4(d). As we can see,
when Pu,max

∼= 0.124W, the users’ strategy is to offload to the cloudlet more than
20% of the tasks. Indeed, the high transmission time is compensated by the cloudlet
faster response time and the power constraint is still satisfied. However, as the power
constraint becomes more stringent, the user strategy is to reduce progressively the
number of offloaded tasks, because offloading consumes too much energy due to the
high transfer time over the wireless network.

0 0.5 1 1.5 20

50

100

150

200

Task execution time (s)

N
um

be
r o

f i
te

ra
tio

ns

Outer Iterations
Inner Iterations

(a)

2 4 6 8 100

50

100

150

200

250

Number of cloudlet servers

N
um

be
r o

f i
te

ra
tio

ns

Outer Iterations
Inner iterations

(b)

Fig. 6 Inner and outer number of iterations of the distributed algorithm

24 Valeria Cardellini et al.

0 10 20 30 400

0.2

0.4

0.6

0.8

1

Outer loop iterations

Pr
ob

ab
ilit

y

xu,m

xu,clet

xu,cloud

Fig. 7 Intermediate algorithm solution strategies

We now turn our attention to the convergence speed of the proposed distributed
algorithm. In our experiments we set (x0,ρ0) = (xk,ρk) each time Algorithm 2 is ex-
ecuted (step S.0). Furthermore, the values of x and ρ in the first outer loop are taken
equal to {xu,m,xu,clet ,xu,cloud} = {1,0,0} ∀u and 0 respectively. Figure 6 shows the
number of iterations needed to compute the equilibrium policies. For space limits,
we show only the results for the second and third sets of experiments; however, sim-
ilar conclusions hold for the other experiments. If we compare Figures 6(a) and 6(b)
with Figures 4(c) and 4(b), we can see that whenever the cloudlet is overloaded and
the strategy requires to distribute the tasks between the remote cloud or the mobile
device, the number of required inner iterations, i.e. the number of times step S.2 of
Algorithm 2 is executed, grows up to 200. However, the number of iterations can
be decreased up to one third by using as initial state of Algorithm 1 the previously
computed equilibrium. This could be a promising solution to speed up the algorithm
convergence in a real environment, where we could expect that the users gradually
join and leave the system. Furthermore, intermediate solutions that progressively ap-
proximate the new system equilibrium can also be used as they are computed, rather
than waiting the algorithm to stop. For example, Figure 7 shows the intermediate
outer loop solutions, i.e. the xk

u values (this figure refers to the same setting of the
first set of experiments when the number of cloudlet users is equal to 60). As we can
see, from 10 outer iterations onwards, we already have a good approximation of the
system equilibrium.

Finally, observe that in our experiments we never had problems due to assumption
(18) in Theorem 1 not being satisfied. Indeed, our experiments showed that such
assumption is not critical from a practical point of view, as the system appears to
converge to an equilibrium even when it is not satisfied (for example, this is the case
of the experiment in Figure 4(a) where assumption (18) does not hold for N > 24).
Nevertheless, the parameter α should be carefully tuned depending on the cloudlet
load to ensure the algorithm convergence. As indicated by Theorem 3, the higher the
expected cloudlet load, the larger α should be in order to ensure convergence. In our
experiments, we used α = 0.1 to accomodate the higher loads (even though a smaller
α would have ensured faster convergence at lower loads).

A game-theoretic approach to computation offloading in mobile cloud computing 25

7.2 Comparison with the Social Optimum

We now compare the proposed non-cooperative strategy with the social optimum
solution to investigate the performance degradation caused by the selfish users be-
haviour. The social problem is the problem of maximizing the sum of all users objec-
tive functions (the social utility), i.e. ∑N

v=1 λvRv, subject to the union of all the user
constraints. Under Assumption A the corresponding problem is a convex optimiza-
tion problem with linear constraints. We study the social optimum solution with the
same set of parameters used in the first set of experiments as the number of users
varies. Figure 8(a) shows the social optimum solution. As we can see, differently

20 30 40 50 60 700

0.2

0.4

0.6

0.8

1

Number of users

Pr
ob

ab
ilit

y

xu,m
xu,clet
xu,cloud

(a) Social optimum solution

20 30 40 50 60 700.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Number of users

λ uR
u(x

u,x
−u

)

Non−cooperative
Social optimum

(b) Number of tasks in the system for the two
strategies

Fig. 8 Comparison of the proposed non-cooperative strategy with the social optimum

from the non-cooperative solution, the users switch earlier their computation to the
mobile devices (N = 40 against N = 56) because they are not acting selfishly. Indeed,
we can expect that the behaviour of a selfish user is to offload as much as possible its
computation to the cloud, regardless of what the others do. However, by doing so the
users performance degrade as the overall load increases, as shown in Figure 8(b). This
is the so called “price of anarchy”. Note also that, under light load, the two solutions
coincide, because the cloudlet capacity can accommodate all the tasks.

8 Conclusions

We have considered the problem of computation offloading in a mobile cloud com-
puting scenario, motivated by the increasing interest in this architectural paradigm.
In particular, as suggested by recent literature on this topic, we have considered a
three-tier architecture where mobile nodes have the choice of offloading their com-
putation to a nearby resource-constrained cloudlet or to a distant tier of resourceful
cloud servers. While previous works have either dealt with single-user scenarios with-
out considering the overall system or at most with centralized global approaches to
tackle the interactions among different mobile users on a resource-limited cloud, in

26 Valeria Cardellini et al.

this paper we have focused on a non-cooperative usage scenario where individual
users try to take advantage selfishly of the available resources.

We have adopted a game theoretic approach to investigate the dynamics of user
interactions, modeling the offloading strategy of mobile users as a Generalized Nash
Equilibrium Problem. We have shown existence of an equilibrium and have provided
a distributed algorithm to compute an equilibrium strategy for each user. Through a
set of numerical experiments we have illustrated the properties of the equilibrium that
can be achieved and compared the resulting solutions with the social optimum. The
proposed distributed algorithm has a solid theoretical foundation and is appealing for
a real-world implementation, since it requires only a limited amount of information
that can be easily obtained.

As noted in Section 5, our solution refers to the case where cloudlets and remote
cloud nodes can be used to improve the user experience for a computational load that
could in principle be sustained by his/her mobile device. We do not consider the case
where the user generated load exceeds the mobile device capacity, and leave dealing
with this scenario for future work.

Besides this, other topics may be explored in future research, including a multi-
class model of the tasks launched by each user, as well as a monetary cost model to
use the cloud servers. Furthermore, while we have proved the existence of a solution
for the variational inequality, a further step with some practical relevance is the se-
lection of the given variational solution if more than one exists. Besides working on
these methodological extensions, we also plan to implement the distributed algorithm
in a system prototype, to validate the results in a real environment.

References

1. E. Abebe and C. Ryan. Adaptive application offloading using distributed abstract class graphs in
mobile environments. J. Syst. Softw., 85(12):2755–2769, 2012.

2. S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya. Cloud-based augmentation for mobile
devices: Motivation, taxonomies, and open challenges. IEEE Communications Surveys & Tutorials,
16(1):337–368, 2014.

3. Eitan Altman, Urtzi Ayesta, and Balakrishna Prabhu. Load balancing in processor sharing systems. In
Proc. of 3rd Int’l Conf. on Performance Evaluation Methodologies and Tools, ValueTools ’08, 2008.

4. Paramvir Bahl, Richard Y. Han, Li Erran Li, and Mahadev Satyanarayanan. Advancing the state of
mobile cloud computing. In Proc. of 3rd ACM Workshop on Mobile Cloud Computing and Services,
MCS ’12, pages 21–28, 2012.

5. S. Barbarossa, S. Sardellitti, and P. Di Lorenzo. Joint allocation of computation and communication
resources in multiuser mobile cloud computing. In Proc. of IEEE 14th Workshop on Signal Processing
Advances in Wireless Communications, SPAWC ’13, pages 26–30, June 2013.

6. Dennis S. Bernstein. Matrix Mathematics: Theory, Facts, And Formulas With Application To Linear
Systems Theory. Princeton University Press, 2005.

7. Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation: Numerical Meth-
ods. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.

8. Steven Bohez, Tim Verbelen, Pieter Simoens, and Bart Dhoedt. Discrete-event simulation for efficient
and stable resource allocation in collaborative mobile cloudlets. Simulation Modelling Practice and
Theory, 2014. to appear.

9. Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and its role in the
Internet of Things. In Proc. of 1st Workshop on Mobile Cloud Computing, MCC ’12, pages 13–16.
ACM, 2012.

10. Xu Chen. Decentralized computation offloading game for mobile cloud computing. IEEE Trans.
Parallel Distrib. Syst., 2014. To appear.

A game-theoretic approach to computation offloading in mobile cloud computing 27

11. Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin Patti. Clonecloud:
elastic execution between mobile device and cloud. In Proc. of EuroSys 2011, pages 301–314, 2011.

12. Sarah Clinch, Jan Harkes, Adrian Friday, Nigel Davies, and Mahadev Satyanarayanan. How close
is close enough? Understanding the role of cloudlets in supporting display appropriation by mobile
users. In Proc. of 2012 IEEE Int’l Conf. on Pervasive Computing and Communications, PerCom ’12,
pages 122–127, March 2012.

13. Richard W Cottle, Jong-Shi Pang, and Richard E Stone. The linear complementarity problem, vol-
ume 60. Siam, 2009.

14. Eduardo Cuervo, Aruna Balasubramanian, Dae-Ki Cho, Alec Wolman, Stefan Saroiu, Ranveer Chan-
dra, and Paramvir Bahl. MAUI: making smartphones last longer with code offload. In Proc. of 8th
Int’l Conf. on Mobile Systems, Applications, and Services, MobiSys ’10, pages 49–62. ACM, 2010.

15. Francisco Facchinei, Andreas Fischer, and Veronica Piccialli. On generalized Nash games and varia-
tional inequalities. Operations Research Letters, 35(2):159–164, 2007.

16. Francisco Facchinei and Christian Kanzow. Generalized Nash equilibrium problems. Annals of Op-
erations Research, 175(1):177–211, 2010.

17. Francisco Facchinei and Jong-Shi Pang. Finite-dimensional Variational Inequalities and Complemen-
tarity Problems, volume 1,2. Springer Verlag, 2003.

18. Francisco Facchinei and Jong-Shi Pang. Nash equilibria: the variational approach. In Daniel P. Palo-
mar and Yonina C. Eldar, editors, Convex Optimization in Signal Processing and Communications,
pages 443–493. Cambridge Books, 2009.

19. Francisco Facchinei, Jong-Shi Pang, Gesualdo Scutari, and Lorenzo Lampariello. VI-constrained
hemivariational inequalities: distributed algorithms and power control in ad-hoc networks. Mathe-
matical Programming, 145(1-2):59–96, 2014.

20. Niroshinie Fernando, Seng W. Loke, and Wenny Rahayu. Mobile cloud computing: A survey. Future
Gener. Comput. Syst., 29(1):84–106, 2013.

21. D. Fesehaye, Yunlong Gao, K. Nahrstedt, and Guijun Wang. Impact of cloudlets on interactive mobile
cloud applications. In Proc. of IEEE 16th Int’l Enterprise Distributed Object Computing Conf., EDOC
’12, pages 123–132, September 2012.

22. Ioana Giurgiu, Oriana Riva, and Gustavo Alonso. Dynamic software deployment from clouds to
mobile devices. In Proc. of Middleware 2012, pages 394–414. Springer-Verlag, 2012.

23. Kiryong Ha, Padmanabhan Pillai, Grace A. Lewis, Soumya Simanta, Sarah Clinch, Nigel Davies, and
Mahadev Satyanarayanan. The impact of mobile multimedia applications on data center consolida-
tion. In Proc. of IEEE Int’l Conf. on Cloud Engineering, IC2E ’13, pages 166–176, 2013.

24. Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1990.

25. Gonzalo Huerta-Canepa and Dongman Lee. A virtual cloud computing provider for mobile devices.
In Proc. of 1st ACM Workshop on Mobile Cloud Computing & Services, MCS ’10, 2010.

26. Shigeru Imai and Carlos A. Varela. Light-weight adaptive task offloading from smartphones to nearby
computational resources. In Proc. of 2011 ACM Symp. on Research in Applied Computation, 2011.

27. Mike Jia, Jiannong Cao, and Lei Yang. Heuristic offloading of concurrent tasks for computation-
intensive applications in mobile cloud computing. In Proc. of IEEE INFOCOM Workshops, pages
352–357, April 2014.

28. Leonard Kleinrock. Queueing Systems, Volume 1: Theory. Wiley-Interscience, 1975.

29. Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang. ThinkAir: Dynamic
resource allocation and parallel execution in the cloud for mobile code offloading. In Proc. of IEEE
INFOCOM 2012, pages 945–953, March 2012.

30. Sokol Kosta, Vasile Perta, Julinda Stefa, Han Hui, and Alessandro Mei. Clone2Clone (C2C): Peer-
to-peer networking of smartphones on the cloud. In Proc. of 5th USENIX Workshop on Hot topics in
Cloud Computing, June 2013.

31. Karthik Kumar and Yung-Hsiang Lu. Cloud computing for mobile users: Can offloading computation
save energy? IEEE Computer, 43(4):51–56, April 2010.

32. Xue Lin, Yanzhi Wang, and M. Pedram. An optimal control policy in a mobile cloud computing
system based on stochastic data. In Proc. of IEEE 2nd Int’l Conf. on Cloud Networking, pages 117–
122, November 2013.

33. Peter Mell and Timothy Grance. The NIST definition of cloud computing. NIST Special Publication
800-145, September 2011.

34. Shumao Ou, Kun Yang, and Jie Zhang. An effective offloading middleware for pervasive services on
mobile devices. Pervasive Mob. Comput., 3(4):362–385, August 2007.

28 Valeria Cardellini et al.

35. Kiran K. Rachuri, Christos Efstratiou, Ilias Leontiadis, Cecilia Mascolo, and Peter J. Rentfrow. Smart-
phone sensing offloading for efficiently supporting social sensing applications. Pervasive Mob. Com-
put., 10:3–21, 2014.

36. Reza Rahimi, Nalini Venkatasubramanian, Sharad Mehrotra, and Athanasios Vasilakos. MAPCloud:
Mobile applications on an elastic and scalable 2-tier cloud architecture. In Proc. of IEEE 5th Int’l
Conf. on Utility and Cloud Computing, UCC ’12, pages 83–90, November 2012.

37. Reza Rahimi, Nalini Venkatasubramanian, and Athanasios Vasilakos. MuSIC: On mobility-aware
optimal service allocation in mobile cloud computing. In Proc. of IEEE 6th Int’l Conf. on Cloud
Computing, Cloud ’13, pages 75–82, July 2013.

38. Mahadev Satyanarayanan. Pervasive computing: vision and challenges. IEEE Personal Communica-
tions, 8(4):10–17, August 2001.

39. Mahadev Satyanarayanan, Paramvir Bahl, Ramón Cáceres, and Nigel Davies. The case for VM-based
cloudlets in mobile computing. IEEE Pervasive Computing, 8(4):14–23, 2009.

40. G. Scutari, F. Facchinei, J. Pang, and D.P. Palomar. Real and complex monotone communication
games. IEEE Transactions on Information Theory, 60(7):4197–4231, July 2014.

41. Mohsen Sharifi, Somayeh Kafaie, and Omid Kashefi. A survey and taxonomy of cyber foraging of
mobile devices. IEEE Communications Surveys & Tutorials, 14(4):1232–1243, 2012.

42. Muhammad Shiraz, Abdullah Gani, Rashid Khokhar, and Rajkumar Buyya. A review on distributed
application processing frameworks in smart mobile devices for mobile cloud computing. IEEE Com-
munications Surveys & Tutorials, 15(3):1294–1313, 2013.

43. J. Song, Y. Cui, M. Li, J. Qiu, and R. Buyya. Energy-traffic tradeoff cooperative offloading for mobile
cloud computing. In Proc. of IEEE/ACM Int’l Symp. on Quality of Service, IWQoS ’14, May 2014.

44. Narseo Vallina-Rodriguez and Jon Crowcroft. ErdOS: achieving energy savings in mobile OS. In
Proc. of 6th Int’l Workshop on Mobility in the Evolving Internet Architecture, MobiArch ’11, pages
37–42, 2011.

45. Tim Verbelen, Tim Stevens, Filip De Turck, and Bart Dhoedt. Graph partitioning algorithms for
optimizing software deployment in mobile cloud computing. Future Gener. Comput. Syst., 29(2),
February 2013.

46. Yanzhi Wang, Xue Lin, and M. Pedram. A nested two stage game-based optimization framework
in mobile cloud computing system. In Proc. of IEEE 7th Int’l Symp. on Service Oriented System
Engineering, SOSE ’13, March 2013.

47. Lei Yang, Jiannong Cao, Yin Yuan, Tao Li, Andy Han, and Alvin Chan. A framework for partitioning
and execution of data stream applications in mobile cloud computing. Sigmetrics Perform. Eval. Rev.,
40(4), April 2013.

