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• Random terms are i.i.d. Gumbel across alternatives for each choice.
• Random terms are bi-extremal correlated across choices for each alternative.
• First- and second-choice probabilities are multinomial logit.
• Transition probabilities are in analytic form.
• Correlation coefficient varies in the full positive range between 0 and 1.
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a b s t r a c t

We consider the widely usedmultinomial logit model with i.i.d. Gumbel random terms. Transition choice
probabilities, i.e. probabilities of choosing alternative i in the first choice and alternative j in the second,
are available in analytic form in the two extreme cases where the random terms of each alternative are
independent or perfectly correlated across choices. We extend these results and provide the transition
probabilities in analytic form in the case where the random terms follow a bi-extremal distribution with
correlation coefficient varying in the full positive range between zero and one.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Logit is the most popular of the discrete choice models derived
from random utility maximisation. In logit, where random terms
are i.i.d. according to a type I extreme value distribution, a.k.a.
Gumbel distribution, choice probabilities take a particularly sim-
ple analytic form.

In this paper, we consider the sequence of two choices and
the related transition choice probabilities, i.e. the probabilities of
choosing alternative i in the first choice and alternative j in the
second. De Palma and Kilani (2005, 2011) prove that, in logit, the
transition probabilities also take an analytic form. However, their
results apply to the special case where the random terms remain
the same over the two choices, i.e. are perfectly correlated.
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The assumption of perfectly correlated random terms is restric-
tive because unobservables, and related tastes, may change from
one choice to another. Delle Site and Salucci (2013) relax this as-
sumption, and provide the transition probabilities in terms of the
joint cumulative distribution function of the random terms over
the two choices. They show that themultiple integrals that express
the transition probabilities can be solved by simulation if it is pos-
sible to draw from the joint distribution of the random terms. In
the special case where the vector of the random terms in the first
choice is independent of the vector of the random terms in the sec-
ond choice, they prove that the transition probabilities are simply
the product of the probability of choosing i in the first choice times
the probability of choosing j in the second choice.

With logit, different bivariate distributions having Gumbel as
univariatemarginals are available to treat cases where the random
terms are imperfectly correlated over the two choices. Bivariate ex-
treme value distributions are reviewed in Kotz et al. (2000). Ad-
ditionally, it is possible to construct a bivariate distribution with
Gumbel marginals using copulas, on the basis of Sklar’s theorem
(Mari and Kotz, 2001; Nelsen, 1999).
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The paper shows that, if a bi-extremal distribution is assumed,
the transition probabilities take an analytic form. The bi-extremal
distribution has been investigated extensively in a number of pa-
pers by Tiago de Oliveira (a review is in Tiago de Oliveira, 1970).
This distribution is related to sequences with Gumbel marginals
generated by maximisation procedures in an autoregressive way.
It includes as special cases independence (Pearson’s product-
moment correlation coefficient equal to zero) and perfect corre-
lation (correlation coefficient equal to one). Therefore, the paper
generalises existing results, since the correlation coefficient takes
any value between zero and one.

It is possible to see that bivariate distributions based on Farlie–
Gumbel–Morgenstern (FGM) copulas also yield transition proba-
bilities in analytic form. However, FGM copulas have the limitation
that the correlation coefficient has a low maximal value, signifi-
cantly below one. Extensions of the FGM copulas have been de-
signed to increase themaximal value of the correlation, but the full
positive range of correlation is not modelled.

The paper is organised as follows. Section 2 provides notation
and assumptions on the distribution of the random terms. Section 3
derives transition probabilities. Section 4 provides a numerical
illustration. Section 5 concludes.

2. Notation and assumptions

Let k = 1, . . . , J denote the alternatives. Let s and t denote,
respectively, the first and the second choice. For alternative k, the
first-choice utility is expressed by uk (s) ≡ vk (s) + ϵk (s), where
vk (s) is the systematic utility, ϵk (s) is the random term. Similarly,
the second-choice utility is expressed by uk (t) ≡ vk (t) + ϵk (t).

Choice probabilities dependon the joint distribution of the 2×J-
dimensional random vector [ϵ1 (s) , ϵ1 (t) , . . . , ϵJ (s) , ϵJ (t)]. We
construct the joint distribution based on assumptions on marginal
distributions. Multivariate statistics theory (Bilodeau and Brenner,
1999) provides definitions of multivariate and univariate marginal
distributions.

Assumption 1. The vector [ϵk (s) , ϵk (t)] , k = 1, . . . , J , follows
a bi-extremal distribution with scale parameter λ and correlation
parameter φ.

Assumption 1 has the following implications. The first-choice
random term ϵk (s) is Gumbel distributed with scale parameter λ.
The marginal c.d.f. of ϵk (s) is Fϵk(s) (x) = e−e−x/λ

, the mean is γ · λ,
the standard deviation is π · λ/

√
6, where γ = 0.5772 is the Euler

constant. A standard Gumbel is obtained when λ = 1.
The second-choice random term ϵk (t) is generated according to

the rule:
ϵk (t) = max [ϵk (s) + λ · lnφ, ηk + λ · ln (1 − φ)] (1)
where ϵk (s) and ηk are i.i.d., and φ ∈ [0, 1].

When φ = 0, ϵk (s) and ϵk (t) are i.i.d. since ϵk (t) = ηk.
When φ = 1, ϵk (t) = ϵk (s), i.e. the random terms are perfectly
correlated. The parameter φ has a correlation meaning because
Pearson’s product-moment correlation coefficient ρ increases
monotonically with φ according to the expression (proof in Tiago
de Oliveira, 1970):

ρ (φ) = −
6
π2

·

 φ

0

ln z
1 − z

dz (2)

which yields ρ = 0 when φ = 0, and ρ = 1 when φ = 1.
Based on Eq. (1), the marginal c.d.f. of the vector [ϵk (s) , ϵk (t)]

is:
Fϵk(s),ϵk(t)(x, y) ≡ P(ϵk (s) ≤ x, ϵk (t) ≤ y)

= P (ϵk (s) ≤ min [x, y − λ · lnφ] ,
ηk ≤ y − λ · ln (1 − φ))

= e−e−
1
λ

·min[x,y−λ·lnφ]
· e−e−

1
λ

·(y−λ·ln(1−φ))

. (3)
As a consequence of Eq. (3), the marginal c.d.f. of ϵk (t) is also
Gumbelwith scale parameterλ : Fϵk(t) = P(ϵk (s) ≤ +∞, ϵk (t) ≤

y) = e−e−y/λ
.

The bi-extremal distribution is characterised by a behavioural
interpretation when the random terms are regarded as individual
specific. Consider a population of individuals with identical sys-
tematic part of the utilities. Each individual changes her random
terms, i.e. her perception of unobservables, from one choice to an-
other. Based on the drawing rule of Eq. (1), there is an individual-
specific minimum perception threshold for unobservables across
repeated choices for each alternative equal to τk = ϵk(s)+λ·lnφ. In
fact, in the second choice the perception of unobservables is never
lower than τk. In the first choice the perception of unobservables
is ϵk(s) > τk, because the natural logarithm of φ is negative when
φ ∈ [0, 1].

Assumption 2. The vector [ϵi (s) , ϵi (t)] of the random terms of
alternative i and the vector


ϵj (s) , ϵj (t)


of the random terms of

alternative j are independent, for any pair of alternatives i and
j, i, j = 1, . . . , J, i ≠ j.

Assumption 2 implies that the joint c.d.f. of the 2 × J-
dimensional vector [ϵ1 (s) , ϵ1 (t) , . . . , ϵJ (s) , ϵJ (t)] is:

Fϵ1(s),ϵ1(t),...,ϵJ (s),ϵJ (t)(x1, y1, . . . , xJ , yJ) =

J
k=1

Fϵk(s),ϵk(t)(xk, yk). (4)

3. Choice probabilities

Since both the first- and second-choice marginal distributions
of the random terms are i.i.d. Gumbel, the first- and second-choice
probabilities Pk(s), Pk(t), k = 1, . . . J , are multinomial logit. In the
following, we assume the scale parameter λ = 1. This is justified
since this parameter is not identifiedwithmaximum likelihood. As
it is easily seen, the scale parameter only rescales utilities in each
choice.

To derive the transition choice probabilities Pij (s, t) ≡ P(ui (s)
≥ uk(s), k ≠ i; uj (t) ≥ uk(t), k ≠ j), the following lemma is
needed.

Lemma 1. If the vectors [uk(s), uk(t)] , k = 1, ..J , of utilities admit
a p.d.f. fuk(s),uk(t)(Xk, Yk), k = 1, . . . , J , and are independent across
alternatives, then the transition choice probabilities are expressed in
terms of the c.d.f. Fuk(s),uk(t)(xk, yk) of the vectors of utilities by:

Pij(s, t) =


+∞

xi=−∞


+∞

yj=−∞

J
k=1;k≠i,j

Fuk(s),uk(t)

xi, yj


·
∂Fui(s),ui(t)


xi, yj


∂xi

·
∂Fuj(s),uj(t)


xi, yj


∂yj

dxidyj. (5)

Proof. First, consider that, under the independence across alter-
natives assumption, the p.d.f. of the 2 × J-dimensional vector
u1(s), u1(t), . . . , uJ(s), uJ(t)


of utilities is:

fu1(s),u1(t),...,uJ (s),uJ (t)(X1, Y1,...,XJ , YJ) =

J
k=1

fuk(s),uk(t)(Xk, Yk). (6)

Thus, the transition choice probability is given by:

Pij(s, t) =


. . .


S

J
k=1

fuk(s),uk(t)(Xk, Yk)dXkdYk (7)

where the set S ⊂ R2xJ is defined by:

S ≡

uk(s) ≤ ui(s), k ≠ i; uk(t) ≤ uj(t), k ≠ j


=

Xk ≤ Xi = xi, k ≠ i; Yk ≤ Yj = yj, k ≠ j


. (8)
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By the rules of reduction of multiple integrals to iterated inte-
grals (Zorich, 2004), we have:

Pij(s, t) =


+∞

xi=−∞


+∞

yj=−∞

 xi

X1=−∞

. . .

 xi

Xk≠i=−∞

. . .

 xi

XJ=−∞

 yj

Y1=−∞

. . .

 yj

Yk≠j=−∞

. . .

 yj

YJ=−∞

·


J

k=1;k≠i,j

fuk(s),uk(t) (Xk, Yk)


· fui(s),ui(t) (xi, Yi)

· fuj(s),uj(t)

Xj, yj


dX1 . . . dXk≠i . . . dXJdY1

. . . dYk≠j . . . dYJ


dxidyj

=


+∞

xi=−∞


+∞

yj=−∞


J

k=1;k≠i,j

 xi

Xk=−∞

 yj

Yk=−∞

fuk(s),uk(t)

· (Xk, Yk) dXkdYk

 yj

Yi=−∞

fui(s),ui(t) (xi, Yi) dYi

·

 xi

Xj=−∞

fuj(s),uj(t)

Xj, yj


dXj


dxidyj

=


+∞

xi=−∞


+∞

yj=−∞

J
k=1;k≠i,j

Fuk(s),uk(t)

xi, yj



·
∂F ui(s),ui(t)


xi, yj


∂xi

·
∂Fuj(s),uj(t)


xi, yj


∂yj

dxidyj (9)

where the last equality is consequence of the following:

∂Fui(s),ui(t)

xi, yj


∂xi

=
∂

∂xi

 xi

Xi=−∞

 yj

Yi=−∞

fui(s),ui(t) (Xi, Yi) dXidYi

=

 yj

Yi=−∞

fui(s),ui(t) (xi, Yi) dYi (10)

∂Fuj(s),uj(t)

xi, yj


∂yj

=
∂

∂yj

 xi

Xj=−∞

 yj

Yj=−∞

fuj(s),uj(t)

Xj, Yj


dXjdYj

=

 xi

Xj=−∞

fuj(s),uj(t)

Xj, yj


dXj. (11)

Notice that we have used capital letters to denote arguments of
the p.d.f., lower case letters to denote the specific values that are
arguments of the c.d.f. �

The following proposition provides the transition probabilities
in the model with the assumptions of Section 2. Let I (·) be the
indicator function.

Proposition 1. In a model where the distribution of the random
terms satisfies Assumptions 1 and 2, and with the ranking of the al-
ternatives a1 ≤ · · · ≤ aJ , ak = vk(s) − vk(t) − lnφ, k = 1, . . . , J ,
the transition choice probabilities are given by:

Pij(s, t) = J0 +

J−1
r=1

[I (i > r, j ≤ r) · Jr1

+ I (i > r, j ≥ r + 1) · Jr2] (12)

Pii(s, t) = Pi(s) −

J
j=1;j≠i

Pij(s, t) (13)

i, j = 1, . . . , J; i ≠ j; φ ∈ [0, 1]
where

J0 =
(1 − φ) · evi(s)+vj(t) J

k=1
evk(s)


·


φ · e−v1(s)+v1(t) ·

J
k=1

evk(s) + (1 − φ) ·

J
k=1

evk(t)

 (14)

Jr1 =
evi(s)+vj(t)

J
k=r+1;k≠i,j

evk(s) + evi(s)

·


1

e−vr+1(s)+vr+1(t) · ξ1 + ξ2
−

1
e−vr (s)+vr (t) · ξ1 + ξ2


(15)

ξ1 = φ ·


J

k=r+1;k≠i,j

evk(s) + evi(s)


(16)

ξ2 =

r
k=1;k≠i,j

evk(t) + evj(t) + (1 − φ) ·


J

k=r+1;k≠i,j

evk(t) + evi(t)


(17)

Jr2 =
(1 − φ) · evi(s)+vj(t)

J
k=r+1;k≠i,j

evk(s) + evi(s) + evj(s)

·


1

e−vr+1(s)+vr+1(t) · ξ3 + ξ4
−

1
e−vr (s)+vr (t) · ξ3 + ξ4


(18)

ξ3 = φ ·


J

k=r+1;k≠i,j

evk(s) + evi(s) + evj(s)


(19)

ξ4 =

r
k=1;k≠i,j

evk(t) + (1 − φ) ·


J

k=r+1;k≠i,j

evk(t) + evi(t) + evj(t)


. (20)

Proof. We only need to prove Eq. (12), because Eq. (13) is an ap-
plication of Proposition 1 in Delle Site and Salucci (2013).

First, we provide the c.d.f. of the bivariate vector [uk (s) , uk (t)]
of the random utilities of alternative k under Assumption 1. We
have:

Fuk(s),uk(t) (x, y) ≡ P (uk (s) ≤ x, uk (t) ≤ y)

= P (vk (s) + ϵk (s) ≤ x, vk (t) + ϵk (t) ≤ y)

= e−e−min[x−vk(s),y−vk(t)−lnφ]
· e−e−y+vk(t)+ln(1−φ)

(21)

where we have used the c.d.f. of the vector of the random terms
[ϵk (s) , ϵk (t)] given by Eq. (3).

The c.d.f. Fuk(s),uk(t) (x, y) is non differentiable, and, therefore,
does not admit a p.d.f. To use Lemma 1 and obtain the transition
probabilities, we need to partition the 2-dimensional Euclidean
space R2 into regions Ωr where the c.d.f. of the bivariate vector of
random terms of each alternative is, at least twice, differentiable.
We denote by F r

uk(s),uk(t)


xi, yj


the (differentiable) c.d.f. of the bi-

variate vector [uk (s) , uk (t)] over the region Ωr ⊂ R2.
For ease of notation let:

F r
k ≡ F r

uk(s),uk(t)


xi, yj


(22)

F r
i,x ≡

∂F r
ui(s),ui(t)


xi, yj


∂xi

(23)

F r
j,y ≡

∂F r
uj(s),uj(t)


xi, yj


∂yj

. (24)

Based on Eq. (21) we have:

F r
k =


F x
k if xi − vk(s) ≤ yj − vk(t) − lnφ

F y
k otherwise

(25)
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with

F x
k = e−e−xi+vk(s)

· e−e−yj+vk(t)+ln(1−φ)

(26)

F y
k = e−e−yj+vk(t)+lnφ

· e−e−yj+vk(t)+ln(1−φ)

= e−e−yj+vk(t)
. (27)

We also have:

F r
i,x =

F x
i,x if xi − vi(s) ≤ yj − vi(t) − lnφ

F y
i,x otherwise

(28)

with

F x
i,x = −e−xi+vi(s) · e−e−xi+vi(s)

· e−e−yj+vi(t)+ln(1−φ)

(29)

F y
i,x = 0 (30)

and:

F r
j,y =


F x
j,y if xi − vj(s) ≤ yj − vj(t) − lnφ

F y
j,y otherwise

(31)

with

F x
j,y = −e−e−xi+vj(s)

· e−yj+vj(t)+ln(1−φ)
· e−e−yj+vj(t)+ln(1−φ)

(32)

F y
j,y = −e−yj+vj(t) · e−e−yj+vj(t)

. (33)

We assumew.l.o.g. the ranking a1 ≤ · · · ≤ aJ , with ak = vk(s)−
vk(t) − lnφ, k = 1, . . . , J . We partition the 2-dimensional Eu-
clidean space R2 into the following sets:

Ω0 ≡

xi ≤ yj + a1


Ωr ≡


yj + ar ≤ xi ≤ yj + ar+1


r = 1, ..J − 1

ΩJ ≡

xi ≥ yj + aJ


. (34)

We have:

in Ω0 :


F 0
k = F x

k k ≠ i, j

F 0
i,x = F x

i,x

F 0
j,y = F x

j,y

(35)

in Ωr , r = 1, ..J − 1 :



F r
k = F y

k k = 1, ..r; k ≠ i, j
F r
k = F x

k k = r + 1, ..J; k ≠ i, j
F r
i,x = F y

i,x = 0 if (i ≤ r)

F r
i,x = F x

i,x and F r
j,y = F y

j,y

if (i > r, j ≤ r)
F r
i,x = F x

i,x and F r
j,y = F x

j,y

if (i > r, j ≥ r + 1)

(36)

in ΩJ :


F J
k = F y

k k ≠ i, j

F J
i,x = F y

i,x = 0

F J
j,y = F y

j,y.

(37)

Using Lemma 1 we can write the transition probabilities as a
sum of double integrals:

Pij(s, t) =

J
r=0


Ωr

J
k=1;k≠i,j

F r
k · F r

i,x · F r
j,ydxidyj. (38)

Notice that if ar = ar+1 the set Ωr reduces to a line in R2 and,
therefore, the integral on Ωr vanishes.

We have:

Pij(s, t) = J0 +

J−1
r=1

[I (i > r, j ≤ r) · Jr1

+ I (i > r, j ≥ r + 1) · Jr2] (39)
with:

J0 =


+∞

yj=−∞

 yj+a1

xi=−∞

J
k=1;k≠i,j

F x
k · F x

i,x · F x
j,ydxidyj (40)

Jr1 =


+∞

yj=−∞

 yj+ar+1

xi=yj+ar

r
k=1;k≠i,j

F y
k

·

J
k=r+1;k≠i,j

F x
k · F x

i,x · F y
j,ydxidyj (41)

Jr2 =


+∞

yj=−∞

 yj+ar+1

xi=yj+ar

r
k=1;k≠i,j

F y
k

·

J
k=r+1;k≠i,j

F x
k · F x

i,x · F x
j,ydxidyj. (42)

The analytic solution of the double integrals of Eqs. (40)–(42)
is a simple calculus exercise. Each integral has the following form
where A, B, C,D and E are constants:

+∞

y=−∞

 y+B

x=y+A
C · e−x

· e−D·e−x
· e−y

· e−E·e−y
dxdy

=
C
D

·


1

D · e−B + E
−

1
D · e−A + E


. (43)

The rule of reduction of double integrals to iterated integrals
is used. Therefore, we obtain, respectively, Eqs. (14), (15) and
(18).1 �

4. Numerical illustration

We provide a numerical example in the binomial case. Transi-
tion choice probabilities reduce, with any ranking of the two alter-
natives, to Eqs. (44) and (45) as given in Box I.

The following special cases are derived from Eq. (44). When the
random terms of each alternative are independent across choices
(φ = 0), we have:

Pij (s, t) =
evi(s)

evi(s) + evj(s)
·

evj(t)

evi(t) + evj(t)
= Pi (s) · Pj (t) (46)

which is the result obtained by Delle Site and Salucci (2013).When
the random terms of each alternative are perfectly correlated
across choices (φ = 1), we have:

Pij (s, t) = max

0,

evj(t)

evi(t) + evj(t)
−

evj(s)

evi(s) + evj(s)


= max


0, Pj (t) − Pj (s)


(47)

which is the specialisation to two alternatives of the result ob-
tained by De Palma and Kilani (2011, Proposition 1).

Fig. 1 shows the variation of the transition probabilities P12 (s, t)
and P11 (s, t) with the parameter φ when the systematic utilities
take the values: v1 (s) = 0.6, v1 (t) = 0.3, v2 (s) = 0.3, v2 (t) =

0.5. According to intuition, the probability of shifting from alterna-
tive 1 to alternative 2 decreases with correlation.

Fig. 2 shows the variation, for five distinct values of the param-
eter φ, of the transition probability P12 (s, t) with the systematic
utility of alternative 1 in the first choice v1 (s), the other system-
atic utilities being constant at the values above. The curves show a
non-differentiability point atv1 (s) = 0.1,which is the pointwhere
the maximum and the minimum functions in Eq. (44) change ar-
gument. The only exception is the curve for φ = 0 which is every-
where differentiable.

1 Detailed solution of the integrals is available from the authors upon request.
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4)

5)
Pij (s, t) =
evi(s)

evi(s) + evj(s)
×

(1 − φ) · evj(t)

φ ·

evi(s) + evj(s)


· e−min[vi(s)−vi(t),vj(s)−vj(t)] + (1 − φ) ·


evi(t) + evj(t)


+ max


0,

evj(t)

evi(t) + evj(t)
−

evj(t)

evi(t) + evj(t) + φ ·

evi(s)−vj(s)+vj(t) − evi(t)

 (4

Pii (s, t) = Pi(s) − Pij (s, t) (4
i, j = 1, 2; i ≠ j; φ ∈ [0, 1] .

Box I.
Fig. 1. Transition probabilities P12(s, t) and P11(s, t) as function of φ.

5. Conclusions

The paper has provided the transition probabilities in a model
where first- and second-choice probabilities are multinomial logit.
The use of the bi-extremal distribution yields transition probabili-
ties in analytic form. The correlation coefficient takes values in the
full positive range between0 and1. As shownclearly by thenumer-
ical example, transition probabilities are non differentiable with
respect to the estimation parameters in the systematic utilities.

Extension of the results to state dependence is straightforward.
With second-choice systematic utilities depending on the alter-
native chosen in the first choice, transition probabilities can be
computed using Proposition 1 by appropriately evaluating the
second-choice systematic utilities according to the transition, as in
De Palma and Kilani (2005). Extension to logit with random coeffi-
cients also is straightforward, since Proposition 1 provides kernels
of probabilities.

Extension to sequences of multiple choices is of relevance
to estimation, and is an area of future research. With repeated
observations of the same individual and under an independence
assumption across individuals, the likelihood is the product of
sequence probabilities.Multiple choices can bemodelled assuming
aMarkov process at the level of the random terms according to the
drawing rule of Eq. (1). Simulations carried out by the authors have
confirmed that the resulting choice process is not Markov.

In the absence of theMarkov property at the choice level, factor-
ing of sequence probabilities into transition probabilities, which is
a convenient property of Markov chains (Norris, 1998), is not pos-
sible. Nevertheless, the use of the bi-extremal distribution yields
Fig. 2. Transition probability P12(s, t) as function of v1(s).

sequence probabilities in analytic form, and the full range between
0 and 1 of the correlation coefficient is modelled. The limitation is
that sequence probabilities, and the resulting likelihood, are non
differentiable in the estimation parameters. This is problematic, in
particular, for inference, since theorems that are commonly used to
derive properties of maximum likelihood estimators assume that
the likelihood is at least twice differentiable.
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