provided by Archivio della ricerca- Università di Roma La S

Mathematical Proceedings of the Cambridge Philosophical Society

http://journals.cambridge.org/PSP

Additional services for *Mathematical Proceedings of the Cambridge Philosophical Society:*

Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here

On maximal ideals in certain reduced twisted C*-crossed products

ERIK BÉDOS and ROBERTO CONTI

Mathematical Proceedings of the Cambridge Philosophical Society / Volume 158 / Issue 03 / May 2015, pp 399 - 417 DOI: 10.1017/S0305004115000031, Published online: 04 February 2015

Link to this article: http://journals.cambridge.org/abstract_S0305004115000031

How to cite this article:

ERIK BÉDOS and ROBERTO CONTI (2015). On maximal ideals in certain reduced twisted C* crossed products. Mathematical Proceedings of the Cambridge Philosophical Society, 158, pp 399-417 doi:10.1017/S0305004115000031

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/PSP, IP address: 151.100.38.34 on 15 Apr 2015

On maximal ideals in certain reduced twisted C*-crossed products

BY ERIK BEDOS ´

Institute of Mathematics, University of Oslo, PB 1053 *Blindern, N-*0316 *Oslo, Norway. e-mail*: bedos@math.uio.no

AND ROBERTO CONTI

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sezione di Matematica, Sapienza Universita di Roma, Via A. Scarpa ` 16*, I-*00161 *Roma, Italy. e-mail*: roberto.conti@sbai.uniroma1.it

(*Received* 06 *June* 2014; *revised* 11 *December* 2014)

Abstract

We consider a twisted action of a discrete group *G* on a unital C[∗]-algebra *A* and give conditions ensuring that there is a bijective correspondence between the maximal invariant ideals of *A* and the maximal ideals in the associated reduced C*-crossed product.

1. *Introduction*

Let *A* be a unital C^{*}-algebra and let $\mathcal{M}(A)$ denote the maximal ideal space of *A*, consisting of the maximal ideals of *A*. As is well known, a proper ideal of *A* is maximal if and only if the associated quotient C[∗]-algebra is simple. Moreover, $\mathcal{M}(A)$ is a non-empty subset of the primitive ideal space $Prim(A)$ of A . In some cases, these spaces coincide (e.g. when *A* is commutative or when *A* is simple), and this corresponds to the fact that Prim(*A*) is a T₁-space in the Jacobson topology. In general, computing $Prim(A)$ for a given A is not an easy task. Determining $\mathcal{M}(A)$ still gives some valuable information: besides providing an invariant for *A* in itself, it also gives a way to list all the simple quotients of *A*, and this might prospectively be useful if one aims to distinguish some given C[∗]-algebras by taking into account some of the invariants that have already been computed for several classes of simple C[∗]-algebras. Our main aim in this paper is to show how one can indeed determine the maximal ideal space of the reduced twisted C[∗]-crossed products associated with exact twisted actions of certain discrete groups on unital C[∗]-algebras. As all the groups in question belong to the class of C[∗]-simple groups, we first recall some relevant facts about the latter class.

Let *G* denote a discrete group and let $C_r^*(G)$ denote its reduced group C^* -algebra, i.e., the C^{*}-algebra generated by the left regular representation of *G* on $\ell^2(G)$. The group *G* is then called C^{*}-simple [1] whenever $C_r^*(G)$ is simple. The class of C^{*}-simple groups is vast. It includes for example all Powers groups as defined by P. de la Harpe [**17**] (e.g. free nonabelian groups, as in Powers' original work [**29**], and free products of groups, with the exception of $\mathbb{Z}_2 * \mathbb{Z}_2$); all weak Powers groups, as introduced by F. Boca and V. Nitica [6] (e.g. direct products of Powers groups); the class of PH groups, as defined by S.D. Promislow [31] (e.g. extensions of weak Powers groups); the class of groups with property (P_{com}) , as

defined by M. Bekka, M. Cowling and P. de la Harpe [5] (e.g. $PSL(n, \mathbb{Z})$ for every $n \geq 2$). We refer to [**17**] for a detailed overview of C[∗]-simple groups and their properties. Some related articles written afterwards are [**7**, **19**, **22**, **25**, **27**, **30**, **34**].

In the very recent work [**7**], E. Breuillard, M. Kalantar, M. Kennedy and N. Ozawa show that if a C[∗]-simple group *G* acts on a unital C[∗]-algebra *A* in a minimal way (that is, the only invariant ideals of *A* are $\{0\}$ and *A*), then the associated reduced C[∗]-crossed product is simple. The case where *G* is a Powers group was first established by P. de la Harpe and G. Skandalis [**18**]. Their result was later extended to cover weak Powers groups and twisted actions (see $[1, 6]$), while the case where *G* has property (P_{com}) was handled by Bekka, Cowling and de la Harpe [**5**]. It is not clear to us that the result in [**7**] mentioned above holds in general for a twisted action of a C[∗]-simple group *G*. Anyhow, as we show in this paper (cf. Corollary 3.10), this is certainly true when *G* belongs to the class P consisting of all PH groups and all groups with the property (P_{com}) .

De la Harpe and Skandalis give in [**18**] an example of an action of a Powers group on a unital C[∗]-algebra *A* such that *A* has exactly one nontrivial invariant ideal while the associated reduced C[∗]-crossed product has infinitely many ideals. This could be taken as an indication that it is not possible to say something of interest about the lattice of ideals in a reduced C^* -crossed product involving a non minimal action of a C^* -simple group. Nevertheless, we will show (see Corollary 3.9) that if G belongs to the class P introduced above, then one may describe the maximal ideal space of the reduced twisted C[∗]-crossed product associated with an exact twisted action of G on a unital C^* -algebra. In the case where G is a weak Powers group, this result was briefly discussed in [**4**, example 6·6].

As an important part of our work, we introduce a certain property for a twisted unital discrete C^{*}-dynamical system $\Sigma = (A, G, \alpha, \sigma)$ that we call property (DP) (named after Dixmier and Powers). This property, which is weaker than the Dixmier property for the reduced crossed product $C_r^*(\Sigma)$, is always satisfied by the system Σ whenever *G* belongs to the class P (see Theorem 3.8 and Section 5). Moreover, we prove that if Σ is exact [4, 33] and has property (DP), then there is a one-to-one correspondence between the maximal ideal space of $C_r^*(\Sigma)$ and the set of maximal invariant ideals of *A*, and also a one-to-one correspondence between the set of all tracial states of $C_r^*(\Sigma)$ and the set of invariant tracial states of *A* (see Theorem 3·7 and Proposition 3·4).

To illustrate the usefulness of our results, we describe in Section 4 the maximal ideal space of some C^{*}-algebras that may be written as $C_r^*(\Sigma)$ for a suitably chosen system Σ . These examples include the reduced group C^* -algebra of any discrete group Γ such that the quotient of Γ by its center is exact and belongs to P , the reduced group C^{*}-algebra of $\mathbb{Z}^3 \rtimes SL(3, \mathbb{Z})$ and the "twisted" Roe algebra C_r^* ($\ell^{\infty}(G)$, G , lt, σ) associated to an exact group *G* belonging to P , the 2-cocycle σ being then assumed to be scalar-valued.

We use standard notation. For instance, if *A* is a unital C^{*}-algebra, then $U(A)$ denotes the unitary group of *A* and Aut(*A*) denotes the group of all $*$ -automorphisms of *A*. If H is a Hilbert space, then $\mathcal{B}(\mathcal{H})$ denotes the bounded linear operators on \mathcal{H} . By an ideal in a C[∗]-algebra, we always mean a closed two-sided ideal, unless otherwise specified.

2. *Preliminaries*

Throughout this paper, we let $\Sigma = (A, G, \alpha, \sigma)$ denote a twisted, unital, discrete C^* dynamical system (see for instance [**9**, **36**, **35**, **26**]). Thus, *A* is a *C*[∗]-algebra with unit 1, *G* is a discrete group with identity *e* and (α, σ) is a twisted action of *G* on *A*, that is, α is a

On maximal ideals in certain reduced twisted C-crossed products* 401 map from *G* into Aut(*A*) and σ is a map from $G \times G$ into $\mathcal{U}(A)$, satisfying

$$
\alpha_g \circ \alpha_h = \text{Ad}(\sigma(g, h)) \circ \alpha_{gh}
$$

$$
\sigma(g, h)\sigma(gh, k) = \alpha_g(\sigma(h, k))\sigma(g, hk)
$$

$$
\sigma(g, e) = \sigma(e, g) = 1,
$$

for all $g, h, k \in G$. Of course, $Ad(v)$ denotes here the (inner) automorphism of A implemented by some $v \in \mathcal{U}(A)$. One deduces easily that

$$
\alpha_e = \mathrm{id}, \ \sigma(g, g^{-1}) = \alpha_g(\sigma(g^{-1}, g))
$$

and

$$
\alpha_g^{-1} = \alpha_{g^{-1}} \circ \mathrm{Ad}(\sigma(g, g^{-1})^*) = \mathrm{Ad}(\sigma(g^{-1}, g)^*) \circ \alpha_{g^{-1}}.
$$

Note that if σ is trivial, that is, $\sigma(g, h) = 1$ for all $g, h \in G$, then Σ is an ordinary *C*[∗]-dynamical system.

The reduced crossed product $C_r^*(\Sigma)$ associated with Σ may (up to isomorphism) be characterised as follows [**3**, **36**]:

(i) $C_r^*(\Sigma)$ is generated (as a C^{*}-algebra) by (a copy of) *A* and a family $\{\lambda(g) | g \in G\}$ of unitaries satisfying

$$
\alpha_g(a) = \lambda(g) a \lambda(g)^*
$$
 and $\lambda(g) \lambda(h) = \sigma(g, h) \lambda(gh);$

for all $g, h \in G$ and $a \in A$,

(ii) there exists a faithful conditional expectation $E: C_r^*(\Sigma) \to A$ such that $E(\lambda(g)) = 0$ for all $g \in G$, $g \neq e$.

One easily cheks that the expectation *E* is equivariant, that is, we have

$$
E(\lambda(g) x \lambda(g)^*) = \alpha_g(E(x)),
$$

for all $g \in G$, $x \in C_r^*(\Sigma)$. As is well known, it follows that if φ is a tracial state on *A* which is invariant (i.e. $\varphi(\alpha_g(a)) = \varphi(a)$ for all $g \in G$, $a \in A$), then $\varphi \circ E$ is a tracial state on $C_r^*(\Sigma)$ extending φ .

Let *J* denote an invariant ideal of *A* and set $\Sigma / J = (A / J, G, \dot{\alpha}, \dot{\sigma})$, where $(\dot{\alpha}, \dot{\sigma})$ denotes the twisted action of *G* on A/J naturally associated with (α, σ) .

We will let $\langle J \rangle$ denote the ideal of $C_r^*(\Sigma)$ generated by *J*. Any ideal of this form is called an *induced ideal* of $C_r^*(\Sigma)$. Moreover, we will let \tilde{J} denote the kernel of the canonical ^{*}-homomorphism from $C_r^*(\Sigma)$ onto $C_r^*(\Sigma / J)$. It is elementary to check that we have $E(\langle J \rangle) = J$ and $\langle J \rangle \subset \tilde{J}$. Another useful fact is that

$$
\tilde{J} = \left\{ x \in C_r^*(\Sigma) \mid \hat{x}(g) \in J \text{ for all } g \in G \right\},\
$$

where $\hat{x}(g) = E(x \lambda(g)^*)$ for each $x \in C^*_r(\Sigma)$, $g \in G$. This may for instance be de-
duced from the proof of 113 theorem 5.11 by considering $C^*(\Sigma)$ as topologically graded duced from the proof of [13, theorem 5·1] by considering $C_r^*(\Sigma)$ as topologically graded C[∗]-algebra over *G*:

$$
C_r^*(\Sigma) = \overline{\bigoplus_{g \in G} A_g}^{\|\cdot\|},
$$

where $A_g = \{a \lambda(g) \mid a \in A\}$ for each $g \in G$.

Following [4, 33], we will say that the system Σ is *exact* whenever we have $\langle J \rangle = \tilde{J}$ for every invariant ideal *J* of *A*. It is known [12] that Σ is exact whenever *G* is exact. It is also known [4] that Σ is exact whenever there exists a Fourier summing net for Σ preserving the invariant ideals of A. This latter condition is for instance satisfied when Σ has Exel's approximation property [11], e.g. when the associated action of *G* on the center $Z(A)$ of *A*, obtained by restricting α to *Z*(*A*), is amenable (as being defined in [8]).

We include here two lemmas illustrating the impact of the exactness of Σ on the lattice of ideals of $C_r^*(\Sigma)$.

LEMMA 2·1. Let $\mathcal J$ *be an ideal of* $C_r^*(\Sigma)$ *and set* $J = \overline{E(\mathcal J)}$ *. Then* J *is an invariant ideal of A such that* $\mathcal{J} \subset \tilde{J}$. Hence, if Σ is exact, we have $\mathcal{J} \subset \langle J \rangle$.

Proof. As *E* is a conditional expectation, it follows readily that *J* is an ideal of *A*. The invariance of *J* is an immediate consequence of the equivariance of *E*. Let now $x \in \mathcal{J}$. Then, for each $g \in G$, we have $x \lambda(g)^* \in \mathcal{J}$, so

$$
\widehat{x}(g) = E(x \lambda(g)^*) \in E(\mathcal{J}) \subset J.
$$

Hence, $x \in \tilde{J}$. This shows that $\mathcal{J} \subset \tilde{J}$. The last assertion follows then from the definition of exactness.

An ideal $\mathcal J$ of $C_r^*(\Sigma)$ is called *E-invariant* if $E(\mathcal J) \subset \mathcal J$. Equivalently, $\mathcal J$ is *E*-invariant whenever $E(\mathcal{J}) = \mathcal{J} \cap A$ (so $E(\mathcal{J})$ is necessarily closed in this case). Any induced ideal of $C_r^*(\Sigma)$ is easily seen to be *E*-invariant. The converse is true if Σ is exact, as shown below. (When *G* is exact, this is shown in [**13**]; see [**4**] for the case where there exists a Fourier summing net for Σ preserving the invariant ideals of A.)

LEMMA 2 \cdot 2. Let $\mathcal J$ *be an E-invariant ideal of* $C_r^*(\Sigma)$ *. If* Σ *is exact, then* $\mathcal J$ *is an induced ideal. Indeed, we have* $\mathcal{J} = \langle E(\mathcal{J}) \rangle$ *in this case.*

Proof. Note that since $E(\mathcal{J}) = \mathcal{J} \cap A$ is closed, it is an invariant ideal of *A* (cf. Lemma 2·1). Assume that Σ is exact. Then Lemma 2·1 gives that $\mathcal{J} \subset \langle E(\mathcal{J}) \rangle$. On the other hand, since $E(\mathcal{J}) \subset \mathcal{J}$, we have $\langle E(\mathcal{J}) \rangle \subset \mathcal{J}$. Hence, $\mathcal{J} = \langle E(\mathcal{J}) \rangle$, as asserted.

3. *On maximal ideals and reduced twisted C*[∗]*-crossed products*

We set $U_{\Sigma} = U(C_r^*(\Sigma))$. When *S* is a subset of a (complex) vector space, we let co(*S*) denote the convex hull of *S*.

Definition 3.1. The system Σ is said to have *property* (*DP*) whenever we have

$$
0 \in \overline{\text{co}\{v \, y \, v^* \, | \, v \in \mathcal{U}_\Sigma\}}^{\|\cdot\|} \tag{3.1}
$$

for every $y \in C_r^*(\Sigma)$ satisfying $y^* = y$ and $E(y) = 0$.

Remark 3.2. Let U_G be the subgroup of U_{Σ} generated by the $\lambda(g)$'s. The above definition might be strengthened by replacing U_{Σ} with U_G , that is, by requiring that

$$
0 \in \overline{\text{co}\{v \, y \, v^* \, | \, v \in \mathcal{U}_G\}}^{\|\cdot\|} \tag{3.2}
$$

for every $y \in C_r^*(\Sigma)$ satisfying $y^* = y$ and $E(y) = 0$. All the examples of systems we are going to describe satisfy this strong form of property (DP). It can be shown (see Proposition 5·9) that if Σ has this strong property (DP), then (3·2) holds for every $y \in C_r^*(\Sigma)$ satisfying $E(y) = 0$. It is not clear to us that if Σ has property (DP), then (3·1) holds for every such *y*.

On maximal ideals in certain reduced twisted C-crossed products* 403 *Remark* 3·3. We recall that a unital C[∗]-algebra *B* is said to have the *Dixmier property* if

$$
\overline{\mathrm{co}\{u\,b\,u^*\,|\,u\in\mathcal{U}(B)\}}^{\,\|\cdot\|}\,\cap\,\mathbb{C}\cdot 1\,+\,\emptyset,
$$

for every $b \in B$. As shown by L. Zsido and U. Haagerup in [16], B is simple with at most one tracial state if and only if *B* has the Dixmier property. Using [**16**, corollaire, p. 175], it follows that if $C_r^*(\Sigma)$ has the Dixmier property, then Σ has the property (DP) introduced above. Property (DP) may be seen as a kind of relative Dixmier property for the pair $(A, C_r^*(\Sigma))$, generalizing the property considered by R. Powers [29] in the case where $\Sigma = (\mathbb{C}, \mathbb{F}_2, \text{id}, 1)$. It should not be confused with the notion of relative Dixmier property for inclusions of C[∗] algebras considered by S. Popa in [**28**].

A first consequence of property (*D P*) is the following:

PROPOSITION 3.4. Assume Σ has property (DP) . Then the map $\varphi \to \varphi \circ E$ is a bijec*tion between the set of invariant tracial states of A and the set of tracial states of* $C_r^*(\Sigma)$ *. Especially, C*[∗] *^r* () *has a unique tracial state if and only if A has a unique invariant tracial state.*

Proof. It is clear that this map is injective, so let us prove that it is surjective. Let therefore *τ* be a tracial state on $C_r^*(\Sigma)$ and let φ denote the tracial state of *A* obtained by restricting τ to *A*. It follows from the covariance relation that φ is invariant. We will show that $\tau = \varphi \circ E$.

Let $x^* = x \in C_r^*(\Sigma)$ and $\varepsilon > 0$. Set $y = x - E(x)$. As $y^* = y$ and $E(y) = E(x - E(x)) = 0$ $E(x) - E(x) = 0$, property (*DP*) enables us to pick $v_1, \ldots, v_n \in \mathcal{U}_{\Sigma}$ and $t_1, \ldots, t_n \in [0, 1]$ satisfying $\sum_{i=1}^{n} t_i = 1$ such that

$$
\Big\|\sum_{i=1}^n t_i\ v_i\ y\ v_i^*\Big\|<\varepsilon.
$$

As τ is a tracial, we have

$$
\tau\left(\sum_{i=1}^n t_i v_i y v_i^*\right) = \sum_{i=1}^n t_i \tau(y) = \tau(y),
$$

so we get

$$
|\tau(y)| = \left|\tau\left(\sum_{i=1}^n t_i v_i y v_i^*\right)\right| \leq \left\|\sum_{i=1}^n t_i v_i y v_i^*\right\| < \varepsilon.
$$

Hence, we can conclude that $\tau(y) = 0$. This gives that

$$
\tau(x) = \tau(E(x)) = (\varphi \circ E)(x).
$$

So τ agrees with $\varphi \circ E$ on the self-adjoint part of $C_r^*(\Sigma)$, and therefore on the whole of $C_r^*(\Sigma)$ by linearity.

Next, we have:

PROPOSITION 3.5. Assume that Σ has property (DP) and let $\mathcal J$ be a proper ideal of $C_r^*(\Sigma)$ *. Set* $J = \overline{E(\mathcal{J})}$ *. Then J is a proper invariant ideal of A.*

Proof. We know from Lemma 2·1 that *J* is an invariant ideal of *A*. Assume that *J* is not proper, i.e., $\overline{E(\mathcal{J})} = A$. Since *A* is unital, we have $E(\mathcal{J}) = A$. So we may pick $x \in \mathcal{J}$ such that $E(x) = 1$.

Set $z = x^*x \in \mathcal{J}^+$. Using the Schwarz inequality for complete positive maps [8], we get

$$
E(z) = E(x^*x) \ge E(x)^* E(x) = 1.
$$

Now, set *y* = *z* − *E*(*z*), so *y*[∗] = *y* ∈ *C*_{*r*}[∗](Σ) and *E*(*y*) = 0. Since Σ has property (*DP*), we can find $v_1, \ldots, v_n \in \mathcal{U}_{\Sigma}$ and $t_1, \ldots, t_n \in [0, 1]$ satisfying $\Sigma_{i=1}^n t_i = 1$ such that

$$
(*) \quad \Big\| \sum_{i=1}^n t_i \, v_i \, z \, v_i^* \, - \sum_{i=1}^n t_i \, v_i \, E(z) \, v_i^* \, \Big\| = \Big\| \sum_{i=1}^n t_i \, v_i \, y \, v_i^* \, \Big\| \, < \, \frac{1}{2}.
$$

Setting $z' = \sum_{i=1}^{n} t_i v_i z v_i^*$, we have $z' \in \mathcal{J}^+$. Since $E(z) \geq 1$, we also have

$$
\sum_{i=1}^n t_i v_i E(z) v_i^* \geq 1.
$$

Hence, it follows from (*) that *z'* is invertible. So we must have $\mathcal{J} = C_r^*(\Sigma)$, which contradicts the properness of J . This shows that J is proper.

COROLLARY 3.6. Assume Σ has property (DP) and is minimal (that is, $\{0\}$ is the only *proper invariant ideal of A*). Then $C_r^*(\Sigma)$ *is simple.*

Proof. Since *E* is faithful, this follows immediately from Proposition 3.5.

If Σ is exact and has property (*DP*), we can in fact characterize the maximal ideals of $C_r^*(\Sigma)$. We therefore set

$$
\mathcal{M}I(A) = \{ J \subset A \mid J \text{ is a maximal invariant ideal of } A \},\
$$

$$
\mathcal{M}(C_r^*(\Sigma)) = \{ \mathcal{J} \subset C_r^*(\Sigma) \mid \mathcal{J} \text{ is a maximal ideal of } C_r^*(\Sigma) \}.
$$

It follows from Zorn's lemma that both these sets are non-empty.

THEOREM 3.7. Assume Σ is exact and has property (DP). *Then the map* $J \to \langle J \rangle$ *is a bijection between* $\mathcal{M}I(A)$ *and* $\mathcal{M}(C_r^*(\Sigma))$ *. Thus, the family of all simple quotients of* $C_r^*(\Sigma)$ *is given by*

$$
\left\{C_r^*(\Sigma/J)\right\}_{J\in\mathcal{M}I(A)}
$$

.

Proof. Let $J \in M I(A)$. We have to show that $\langle J \rangle \in M(C_r^*(\Sigma))$. We first note that $\langle J \rangle$ is a proper ideal of $C_r^*(\Sigma)$; otherwise, we would have $J = E(\langle J \rangle) = A$, contradicting that *J* is a proper ideal of *A*.

Next, let K be a proper ideal of $C_r^*(\Sigma)$ containing $\langle J \rangle$, and set $K = \overline{E(\mathcal{K})}$. Since Σ has property (*D P*), Proposition 3·5 gives that *K* is a proper invariant ideal of *A*. Moreover, we have *J* = *E*(J) ⊂ *E*(K) ⊂ *K*. By maximality of *J*, we get *J* = *K*, which gives

$$
E(\mathcal{K})=K=J\subset\langle J\rangle\subset\mathcal{K}.
$$

Thus, K is E-invariant. Since Σ is exact, we get from Lemma 2.2 that $\mathcal{K} = \langle K \rangle$. As $J = K$, we conclude that $\mathcal{K} = \langle J \rangle$. Thus, we have shown that $\langle J \rangle$ is maximal among the proper ideals of $C_r^*(\Sigma)$, as desired.

This means that the map $J \to \langle J \rangle$ maps $\mathcal{M}I(A)$ into $\mathcal{M}(C_r^*(\Sigma))$. This map is clearly injective (since $E(\langle J \rangle) = J$ for every invariant ideal *J* of *A*).

To show that it is surjective, let $\mathcal{J} \in \mathcal{M}(C_r^*(\Sigma))$ and set $J = \overline{E(\mathcal{J})}$. We will show that $J \in MI(A)$ and $\mathcal{J} = \langle J \rangle$.

Since Σ has property (*DP*) and $\mathcal J$ is a proper ideal of $C_r^*(\Sigma)$, Proposition 3·5 gives that *J* is a proper invariant ideal of *A*. Further, since Σ is exact, Lemma 2·1 gives that $\mathcal{J} \subset \langle J \rangle$. As $\mathcal J$ is maximal, we get $\mathcal J = \langle J \rangle$.

Finally, *J* is maximal among the proper invariant ideals of *A*. Indeed, let *K* be a proper invariant ideal of *A* containing *J*. Then we have $\mathcal{J} = \langle J \rangle \subset \langle K \rangle$. By maximality of \mathcal{J} , we get $\langle J \rangle = \langle K \rangle$. This implies that $J = E(\langle J \rangle) = E(\langle K \rangle) = K$. Hence, we have shown that $J \in MI(A)$.

To give examples of systems satisfying property (DP) , we let $\mathcal P$ denote the class of discrete groups consisting of PH groups [31] and of groups satisfying the property (P_{com}) introduced in [5]. The class P , which is a subclass of the class of discrete C^* -simple groups, contains a huge variety of groups, including for instance many amalgamated free products, HNN-extensions, hyperbolic groups, Coxeter groups, and lattices in semisimple Lie groups. For a more precise description, we refer to [**17**] (see also [**19**]). The following result may be seen as a generalization of results in [**1**, **5**, **6**, **18**, **31**]. For the convenience of the reader, we will give a proof in Section 5.

THEOREM 3.8. Let $G \in \mathcal{P}$. Then Σ has property (DP).

Thus, we get:

COROLLARY 3.9. Let $G \in \mathcal{P}$. Then the map $\varphi \to \varphi \circ E$ is a bijection between the set of *invariant tracial states of A and the set of tracial states of* $C_r^*(\Sigma)$ *.*

Moreover, assume Σ *is exact. Then the map* $J \rightarrow \langle J \rangle$ *is a bijection between* $\mathcal{M}(A)$ *and* $\mathcal{M}(C_r^*(\Sigma))$. Thus, the family of all simple quotients of $C_r^*(\Sigma)$ is given by

$$
\left\{C_r^*\big(\Sigma/J\big)\right\}_{J\in\mathcal{M}I(A)}.
$$

Proof. Since $G \in \mathcal{P}$, we know from Theorem 3.8 that Σ has property (*DP*). The result follows therefore from Proposition 3·4 and Theorem 3·7.

COROLLARY 3.10. Assume $G \in \mathcal{P}$. If A has a unique invariant tracial state, then $C_r^*(\Sigma)$ *has a unique tracial state. If* Σ *is minimal, then* $C_r^*(\Sigma)$ *is simple.*

Proof. This follows from Proposition 3.4, Corollary 3.6 and Theorem 3.8.

COROLLARY 3.11. Let $G \in \mathcal{P}$ and let $\omega \in \mathbb{Z}^2(G, \mathbb{T})$. Then $C_r^*(G, \omega)$ is simple with a *unique tracial state.*

In fact, proceeding as in the proof of [**1**, corollary 4·10] and [**2**, corollary 4], one sees that Corollary 3·11 holds whenever *G* is a *ultra-*P group, meaning that *G* has a normal subgroup belonging to P with trivial centralizer in G . Moreover, in the same way, one easily deduces that [**1**, corollaries 4·8 − 4·12] and [**2**, corollaries 5 and 6] still hold if one replaces *weak Powers group* by *group in the class* P, and *ultraweak Powers group* by *ultra-*P *group* in the statement of these results.

It may also be worth mentioning explicitely the following result:

COROLLARY 3.12. Let $G \in \mathcal{P}$ and assume A is abelian, so $A = C(X)$ for some compact *Hausdorff space X. Then there is a one-to-one correspondence between the set of Borel probability measures on X and the set of tracial states of* $C_r^*(\Sigma)$ *given by* $\mu \to \int_X E(\cdot) \, d\mu$ *.*

Moreover, assume Σ *is exact. Then there is a one-to-one correspondence between the set* \mathcal{Y} *of minimal closed invariant subsets of X and* $\mathcal{M}(C_r^*(\Sigma))$ given by $Y \to \langle C_0(X \setminus Y) \rangle$. *Moreover, the family of all simple quotients of* $C_r^*(\Sigma)$ *is given by*

$$
\left\{C_r^*\big(C(Y), G, \alpha_Y, \sigma_Y\big)\right\}_{Y \in \mathcal{Y}}
$$

where (α_Y, σ_Y) *denotes the twisted quotient action of G on C(Y) associated with* (α, σ) *.*

Proof. This follows immediately from Theorem 3.9 and Gelfand theory.

When α is trivial, σ is just some 2-cocycle on *G* with values in $\mathcal{U}(Z(A))$, so $C_r^*(\Sigma)$ is a kind of "twisted" tensor product of *A* with $C_r^*(G)$. In this case, we don't have to restrict our attention to maximal ideals of $C_r^*(\Sigma)$:

PROPOSITION 3.13. Assume α *is trivial,* Σ *is exact and* $G \in \mathcal{P}$ *. Then the map* $J \rightarrow \langle J \rangle$ *is a bijection between the set of ideals of A and the set of ideals of* $C_r^*(\Sigma)$ *.*

Proof. Since α is trivial and Σ is exact, it follows immediately from Lemma 2.2 that the map $J \to \langle J \rangle$ is a bijection between the set of ideals of *A* and the set of *E*-invariant ideals of $B = C_r^*(\Sigma)$. Hence, it suffices to show that any ideal of *B* is *E*-invariant.

Let $\mathcal J$ be an ideal of *B*, $y^* = y \in \mathcal J$ and $\varepsilon > 0$. Set $x = y - E(y)$. Then $x^* = x \in B$ and $E(x) = 0$. Since $G \in \mathcal{P}$, it follows from the proof of Theorem 3.8 given in Section 5 that there exists a *G*-averaging process ψ on *B* (as defined in Section 5) such that $\|\psi(x)\| < \varepsilon$. Now, since α is trivial, any *G*-averaging process on *B* restricts to the identity map on *A*. Thus, we get $\psi(x) = \psi(y) - \psi(E(y)) = \psi(y) - E(y)$, so

$$
\|\psi(y)-E(y)\|<\varepsilon.
$$

As any *G*-averaging process on *B* preserves ideals, we have $\psi(y) \in \mathcal{J}$. Hence, we get $E(y) \in \overline{\mathcal{J}} = \mathcal{J}$. It clearly follows that \mathcal{J} is *E*-invariant, as desired.

4. *Examples*

This section is devoted to the discussion of some concrete examples.

4·1. As a warm-up, we consider the simple, but instructive case of an action of a group *G* on a non-empty finite (discrete) set X with *n* elements. Let α denote the associated action of *G* on $A = C(X) \simeq \mathbb{C}^n$ and $\sigma \in \mathbb{Z}^2(G, \mathbb{T})$.

We may then pick $x_1, \ldots, x_m \in X$ such that *X* is the disjoint union of the orbits O_i ${g \cdot x_j \mid g \in G}$ for $j = 1, \ldots, m$. Clearly, the O_j 's are the minimal (closed) invariant subsets of *X*. Hence, if *G* is an exact group in the class P , we get from Corollary 3.12 that the simple quotients of $B = C_r^*(C(X), G, \alpha, \sigma)$ are given by

$$
B_j = C_r^* (C(O_j), G, \alpha_j, \sigma), \ \ j = 1, \ldots, m,
$$

where α_j is the action on $C(O_j)$ obtained by restricting α for each *j*.

The assumption above that *G* is exact is in fact not necessary. Indeed, one easily sees that *B* is the direct sum of the B_j 's. So if *G* belongs to P , then Corollary 3.10 gives that all the *B_i*'s are simple, and the same assertion as above follows readily.

Finally, assume that $\sigma = 1$. Then this characterisation of the simple quotients of *B* still holds whenever *G* is a C^{*}-simple group. Indeed, letting G_x denotes the isotropy group of x_j in *G* and identifying O_j with G/G_{x_j} , one gets from [9, example 6.6] (see also [23, 32]) that each B_j is Morita equivalent to $C_r^*(G_{x_j})$. Now, if *G* is C[∗]-simple, then each $C_r^*(G_{x_j})$ is

simple (i.e. G_{x_i} is C^{*}-simple) because G_{x_i} has finite index in *G* (cf. [17] and [28]), so the *Bj*'s are the simple quotients of *B*.

4.2. Consider the canonical action It of a group G by left translation on $\ell^{\infty}(G)$, in other words, the action associated with the natural left action of G on its Stone-Cech compactification βG [10, 21], and let $\sigma \in Z^2(G, \mathbb{T})$.

It is known that βG has $2^{2^{|G|}}$ minimal closed invariant subsets (see for instance [20, theorem 1·4] and [**21**, lemma 19·6]). Moreover, all these subsets are *G*-equivariantly homeomorphic to each other (this follows from [21, theorem 19·8]). Hence, letting X_G denote one of these minimal closed invariant subsets, we get from Corollary 3·12 that if *G* is exact and belongs to \mathcal{P} , then the simple quotients of the "twisted" Roe algebra $C_r^*(\ell^{\infty}(G), G, \text{lt}, \sigma)$ are all isomorphic to $C_r^*(C(X_G), G, \text{lt}, \sigma)$.

In general, if *G* is exact and we assume that $\sigma = 1$, one may in fact deduce that there is a one-to-correspondence between the set of all invariant closed subsets of β*G* and the ideals of the Roe algebra C_r^* ($\ell^{\infty}(G)$, G , lt); indeed, since the action of G on βG is known to be free [**10**, proposition 8·14], this follows from [**33**, theorem 1·20].

4.3. Let $\Gamma = \mathbb{Z}^3 \rtimes SL(3, \mathbb{Z})$ be the semidirect product of \mathbb{Z}^3 by the canonical action of $SL(3, \mathbb{Z})$. Since \mathbb{Z}^3 is a normal nontrivial amenable subgroup of Γ , it is well known that Γ is not C^* -simple. In aim to describe the maximal ideals of $C^*_r(\Gamma)$, we decompose

$$
C_r^*(\Gamma) \simeq C_r^*(C_r^*(\mathbb{Z}^3), SL(3,\mathbb{Z}),\alpha) \simeq C_r^*(C(\mathbb{T}^3), SL(3,\mathbb{Z}),\tilde{\alpha}),
$$

where α (resp. $\tilde{\alpha}$) denotes the associated action of *SL*(3, \mathbb{Z}) on $C_r^*(\mathbb{Z}^3)$ (resp. $C(\mathbb{T}^3)$). Now, $SL(3, \mathbb{Z})$ is exact [8] and belongs to \mathcal{P} (since it has property (P_{com}) [5]). Hence, appealing to Corollary 3·12, the maximal ideals of $C_r^*(\Gamma)$ are in a one-to-one correspondence with the minimal closed invariant subsets of \mathbb{T}^3 . The orbits of the action of $SL(3, \mathbb{Z})$ on \mathbb{T}^3 are either finite or dense (see for instance [15, 24]), hence the minimal closed invariant subsets of \mathbb{T}^3 are the orbits of rational points in $\mathbb{T}^3 = \mathbb{R}^3 / \mathbb{Z}^3$.

Let $x \in \mathbb{Q}^3/\mathbb{Z}^3 \subset \mathbb{T}^3$ and let G_x denote the isotropy group of x in $G = SL(3, \mathbb{Z})$. Then identifying the (finite) orbit O_x of x in \mathbb{T}^3 with G/G_x , we get that the simple quotient B_x of $C_r^*(\Gamma)$ corresponding to O_x is given by the reduced crossed product

$$
B_x = C_r^*(C(O_x), G, \alpha^x) \simeq C_r^*(C(G/G_x), G, \beta^x)
$$

where α^x is implemented by the action of *G* on O_x and β^x is implemented by the canonical left action of *G* on G/G_x . We note that B_x has a unique tracial state since *G* belongs to \mathcal{P} and there is obviously only one invariant state on $C(O_x)$. Moreover, it follows from [9, example 6·6] (see also [23, 32]) that B_x is Morita equivalent to $C^*_r(G_x)$. This implies that G_x is C^{*}-simple, a fact that may also be deduced from [17] (see also [28]) since G_x has finite index in *G*.

4.4. Let Γ be an exact discrete group such that $G = \Gamma/Z$ belongs to the class P, where $Z = Z(\Gamma)$ denotes the center of Γ . We can then easily deduce that the ideals of $C_r^*(\Gamma)$ are in a one-to-one correspondence with the open (resp. closed) subsets of the dual group \widehat{Z} . Indeed, using [**1**, theorem 2·1], we can decompose

$$
C_r^*(\Gamma) \simeq C_r^*(C_r^*(Z), G, id, \omega) \simeq C_r^*(C(\widehat{Z}), G, id, \widehat{\omega})
$$

where ω : $G \times G \rightarrow \mathcal{U}(C_r^*(Z))$ is given by

$$
\omega(g, h) = \lambda_Z \big(n(g) n(h) n(gh)^{-1} \big), \quad (g, h \in G),
$$

for some section $n : G \to \Gamma$ of the canonical homomorphism $q : \Gamma \to G$ such that $n(e_G) = e_{\Gamma}$, while the second isomorphism is implemented by Fourier transform. So the assertion follows from Gelfand theory and Proposition 3·13.

Some specific examples are as follows:

- (i) consider $\Gamma = SL(2n, \mathbb{Z})$ for some $n \in \mathbb{N}$. Then $Z = Z(\Gamma) \simeq \mathbb{Z}_2$. Also, $G = \Gamma/Z =$ $PSL(2n, \mathbb{Z})$ is exact (cf. [8, Section 5.4]) and belongs to \mathcal{P} (cf. [5]). Hence, we get that $C_r^*(SL(2n, \mathbb{Z}))$ has two nontrivial ideals;
- (ii) consider the pure braid group $\Gamma = P_n$ on *n* strands for some $n \geq 3$. Then $Z_n :=$ $Z(P_n) \simeq \mathbb{Z}$ and $G = P_n/Z_n$ is a weak Powers group (cf. [14] and [6]). Moreover P_n is exact; this follows by induction on *n*, using the exact sequence

$$
1 \longrightarrow \mathbb{F}_{n-1} \longrightarrow P_n/Z_n \longrightarrow P_{n-1}/Z_{n-1} \longrightarrow 1
$$

(cf. [14, proposition 6], where $P_2 = Z_2 = 2\mathbb{Z}$) and the fact that extension of exact groups are exact (cf. [8, proposition 5·11]). Hence, we obtain that the ideals of $C_r^*(P_n)$ are in a one-to-one correspondence with the open (resp. closed) subsets of \mathbb{T} ;

(iii) consider the braid group $\Gamma = B_3$ (i.e. the trefoil knot group). Then, $Z = Z(\Gamma) \simeq \mathbb{Z}$, and $G = \Gamma/Z \simeq \mathbb{Z}_2 * \mathbb{Z}_3 \simeq PSL(2, \mathbb{Z})$ belongs to P. As, by definition of P_3 , we have an exact sequence $1 \rightarrow P_3 \rightarrow B_3 \rightarrow S_3 \rightarrow 1$, where S_3 denotes the symmetric group on three symbols, it follows that B_3 is exact. (This also follows from the fact that braid groups are known to be linear groups.) Hence, we get that the ideals of $C_r^*(B_3)$ are in a one-to-one correspondence with the open (resp. closed) subsets of T.

If one considers the braid group B_n on *n* strands for $n \geq 4$, then we believe that one should arrive at the same result as the one for B_3 , but we don't know for the moment whether B_n/Z_n belongs to the class P. The group B_n/Z_n is known to be a ultraweak Powers group (cf. [1, p. 536]), and Promislow has a result indicating that ultraweak Powers groups might be PH groups (see [**31**, theorem 8·1]), but this is open in general.

5. *Proof of Theorem* 3·8

We start by representing $B = C_r^*(\Sigma)$ faithfully on a Hilbert space. Without loss of generality, we may assume that *A* acts faithfully on a Hilbert space H , and let (π, λ) be any regular covariant representation of Σ on the Hilbert space $\ell^2(G, \mathcal{H})$; as in [1], we will work with the one defined by

$$
(\pi(a)\xi)(h) = \alpha_{h^{-1}}(a)\xi(h),
$$

$$
(\lambda(g)\xi)(h) = \sigma(h^{-1}, g)\xi(g^{-1}h),
$$

for $a \in A$, $\xi \in \ell^2(G, \mathcal{H})$, $h, g \in G$.

We may then identify *B* with $C^*(\pi(A), \lambda(G))$. The canonical conditional expectation from *B* onto $\pi(A)$ will still be denoted by *E*. When $x \in B$, we set supp $(x) = \{g \in G \mid$ $\hat{x}(g) \neq 0$, where $\hat{x}(g) = E(x \lambda(g)^*)$. We will let *B*₀ denote the dense ∗-subalgebra of *B* generated by $\pi(A)$ and $\lambda(G)$. So if $x \in B_0$, we have generated by $\pi(A)$ and $\lambda(G)$. So if $x \in B_0$, we have

$$
x = \sum_{g \in \text{supp}(x)} \widehat{x}(g) \lambda(g) \quad \text{(finite sum)}.
$$

If $D \subset G$, we let P_D denote the orthogonal projection from $\ell^2(G, \mathcal{H})$ to $\ell^2(D, \mathcal{H})$ (identified as a closed subspace of $\ell^2(G, \mathcal{H})$).

On maximal ideals in certain reduced twisted C-crossed products* 409

Moreover, if $F \in \ell^{\infty}(G, \mathcal{B}(\mathcal{H}))$, that is, $F : G \to \mathcal{B}(\mathcal{H})$ is a map satisfying $||F||_{\infty} :=$ $\sup_{h \in G} ||F(h)|| < \infty$, we let $M_F \in \mathcal{B}(\ell^2(G, \mathcal{H}))$ be defined by

$$
(M_F \xi)(h) = F(h)\xi(h), \quad \xi \in \ell^2(G, \mathcal{H}), h \in G,
$$

noting that $||M_F|| = ||F||_{\infty} < \infty$.

We remark that if $a \in A$ and we let $\pi_a : G \to \mathcal{B}(\mathcal{H})$ be defined by $\pi_a(h) = \alpha_{h^{-1}}(a)$ for each $h \in H$, then $\pi_a \in \ell^{\infty}(G, \mathcal{B}(\mathcal{H}))$ and $M_{\pi_a} = \pi(a)$.

Straightforward computations give that for $F \in \ell^{\infty}(G, \mathcal{B}(\mathcal{H}))$, $D \subset G$ and $g \in G$, we have

$$
M_F P_D = P_D M_F, \quad \lambda(g) P_D = P_{gD} \lambda(g). \tag{5.1}
$$

In passing, we remark that we also have $\lambda(g) M_F \lambda(g)^* = M_{F_g}$, where

$$
F_g(h) = \sigma(h^{-1}, g) F(g^{-1}h) \sigma(h^{-1}, g)^*.
$$

As a sample, we check that the second equation in (5·1) holds. Let $\xi \in \ell^2(G, \mathcal{H})$ and $h \in G$. Then we have

$$
[(\lambda(g) P_D)\xi](h) = \sigma(h^{-1}, g)(P_D\xi)(g^{-1}h) = \begin{cases} \sigma(h^{-1}, g)\xi(g^{-1}h) & \text{if } g^{-1}h \in D, \\ 0 & \text{if } g^{-1}h \notin D \end{cases}
$$

$$
= \begin{cases} \sigma(h^{-1}, g)\xi(g^{-1}h) & \text{if } h \in gD, \\ 0 & \text{if } h \notin gD \end{cases} = \begin{cases} (\lambda(g)\xi)(h) & \text{if } h \in gD, \\ 0 & \text{if } h \notin gD \end{cases}
$$

$$
= [(P_{gD}\lambda(g))\xi](h), \text{ as desired.}
$$

Let *H* be a subgroup of *G*. By a *simple H-averaging process* on *B*, we will mean a linear map $\phi : B \to B$ such that there exist $n \in \mathbb{N}$ and $h_1, \ldots, h_n \in H$ satisfying

$$
\phi(x) = \frac{1}{n} \sum_{i=1}^{n} \lambda(h_i) x \lambda(h_i)^* \text{ for all } x \in B.
$$

Moreover, an *H-averaging process on B* is a linear map $\psi : B \to B$ such that there exist $m \in \mathbb{N}$ and ϕ_1, \ldots, ϕ_m simple *H*-averaging processes on *B* with $\psi = \phi_m \circ \phi_{m-1} \circ \cdots \circ \phi_1$.

Let U_G denote the subgroup of $U(B)$ generated by the $\lambda(g)$'s and let ψ be a *G*-averaging process on *B*. Clearly, for all $x \in B$, we then have

$$
\psi(x) \in \text{co}\big\{v \, x \, v^* \, | \, v \in \mathcal{U}_G\big\}.
$$

Hence, to show that Σ has (the strong) property (DP), it suffices to show that for every $x^* = x \in B$ satisfying $E(x) = 0$ and every $\varepsilon > 0$, there exists a *G*-averaging process ψ on *B* such that $\|\psi(x)\| < \varepsilon$.

In fact, it suffices to show the last claim for every $x^* = x \in B_0$ satisfying $E(x) = 0$ and every $\varepsilon > 0$. Indeed, assume that this holds and consider some $b^* = b \in B$ satisfying $E(b) = 0$ and $\varepsilon > 0$. Then pick $y^* = y \in B_0$ such that $||b - y|| \leq \varepsilon/3$, and set $x = y - E(y)$. Then $x^* = x \in B_0$ and $E(x) = 0$, so we can find a *G*-averaging process on *B* such that $\|\psi(x)\| < \varepsilon/3$. Since $\|E(y)\| = \|E(y-b)\| \le \|y-b\| < \varepsilon/3$, we get

$$
\|\psi(b)\| \le \|\psi(b - y)\| + \|\psi(y - E(y))\| + \|\psi(E(y))\|
$$

$$
\le \|b - y\| + \|\psi(x)\| + \|E(y)\| < \varepsilon,
$$

as desired.

5·1. In this subsection we will prove that Theorem 3·8 holds when *G* is a PH group, as defined in [**31**]. We first recall the definition of a PH group.

If $g \in G$ and $A \subset G$, then set

$$
\langle g \rangle_A = \{ aga^{-1} \mid a \in A \}.
$$

Now, if $T \subset G$ and $\emptyset \neq M \subset G \setminus \{e\}$, then *T* is said to be *M*-*large* (in *G*) if

 $m(G \setminus T) \subset T$ for all $m \in M$.

Further, let $\emptyset \neq F \subset G \setminus \{e\}$ and $H \subset G$. Then *H* is said to be a *Powers set for F* if, for any $N \in \mathbb{N}$, there exist $h_1, \ldots, h_N \in H$ and pairwise disjoint subsets T_1, \ldots, T_N of *G* such that *T_j* is $h_j F h_j^{-1}$ -large for $j = 1, ..., N$. Moreover, if $g \in G \setminus \{e\}$, then *H* is said to be a *c*-Powers set for g if *H* is a Powers set for $\lt g >_M$ for all finite, non-empty subsets *M* of *H*.

If *G* is a weak Powers group (see [1, 6, 17]), then *G* is a c-Powers set for any $g \in G \setminus \{e\}$. More generally, *G* is said to be a *PH group* if, given any finite non-empty subset *F* of $G \{e\}$, one can write $F = \{f_1, f_2, \ldots, f_n\}$ and find a chain of subgroups $G_1 \subset G_2 \subset \cdots \subset G_n \subset$ *G* such that G_j is a c-Powers set for f_j , $j = 1, \ldots, n$.

Note that in his definition of a PH group, Promislow just requires that one can find a chain of subsets $e \in G_1 \subset G_2 \subset \cdots \subset G_n$ of *G* such that G_i is a c-Powers set for f_i , $j = 1, \ldots, n$. Requiring these subsets to be subgroups of *G* (or at least subsemigroups) seems necessary to us for the proof of his main result, [**31**, theorem 5·3], to go through. We will use the subsemigroup property in the proof of Lemma 5.3.

The class of PH groups has the interesting property that it closed under extensions [**31**, theorem 4.6]¹. For example, an extension of a weak Powers group by a weak Powers group is a PH group (but not necessarily a weak Powers group).

We will need a lemma of de la Harpe and Skandalis ([**18**, lemma 1]; see also [**1**, lemma 4·3]) in a slightly generalised form. For completeness, we include the proof, which is close to the one given in [**18**].

LEMMA 5.1. Let H be a Hilbert space and $x^* = x \in B(H)$. Assume that there exist *orthogonal projections* p_1 *,* p_2 *,* p_3 *<i>and unitary operators u*₁, *u*₂, *u*₃ *on H such that*

$$
p_1 x p_1 = p_2 x p_2 = p_3 x p_3 = 0
$$

and $u_1(1 - p_1)u_1^*$, $u_2(1 - p_2)u_2^*$, $u_3(1 - p_3)u_3^*$ are pairwise orthogonal. Then we have

$$
\left\| \frac{1}{3} \sum_{j=1}^{3} u_j x u_j^* \right\| \leq \left(\frac{5}{6} + \frac{\sqrt{2}}{9} \right) \|x\| < 0.991 \|x\|.
$$

Proof. Without loss of generality, we may clearly assume that $||x|| = 1$. Set $y = (1/3) \sum_{j=1}^{3} u_j x u_j^*$ and $q_j = u_j (1 - p_j) u_j^*$, $j = 1, 2, 3$.

Let $\xi \in \mathcal{H}$, $\|\xi\| = 1$. Since the q_i 's are pairwise orthogonal, there exists an index *j* such that $||q_j \xi||^2 \leq 1/3$. We may assume that $j = 1$, and set $\xi_1 = u_1^* \xi$.

As $||(1 - p_1)\xi_1||^2 = ||q_1\xi||^2 \le 1/3$, one has

$$
||p_1\xi_1||^2 \geq 2/3
$$
 and $||p_1x(1-p_1)\xi_1||^2 \leq 1/3$.

¹ One easily checks that all the results in [**31**] are still true under our slightly more restrictive definition.

On maximal ideals in certain reduced twisted C-crossed products* 411 Now, since $p_1 x p_1 = 0$ by assumption, we get

$$
||x \xi_1 - \xi_1|| \ge ||p_1 \xi_1 - p_1 x \xi_1|| = ||p_1 \xi_1 - p_1 x (1 - p_1)\xi_1 - p_1 x p_1 \xi_1||
$$

\n
$$
\ge ||p_1 \xi_1|| - ||p_1 x (1 - p_1)\xi_1|| \ge \frac{\sqrt{2} - 1}{\sqrt{3}}.
$$

As $\|x \xi_1 - \xi_1\|^2 \leq 2(1 - \langle x \xi_1, \xi_1 \rangle)$, it follows that

$$
\langle x \xi_1, \xi_1 \rangle \leq 1 - \frac{1}{2} \|x \xi_1 - \xi_1\|^2 \leq 1 - \frac{1}{2} \left(\frac{\sqrt{2} - 1}{\sqrt{3}} \right)^2 = \frac{3 + 2\sqrt{2}}{6}.
$$

So, using the Cauchy–Schwarz inequality, we get

$$
\langle y\xi, \xi \rangle \le \frac{1}{3} \langle x\xi_1, \xi_1 \rangle + \frac{2}{3} \le \frac{1}{3} \left(\frac{3 + 2\sqrt{2}}{6} + 2 \right) = \frac{5}{6} + \frac{\sqrt{2}}{9} < 0.991.
$$

The same argument with $-x$ gives

$$
\left|\left\langle y\xi,\xi\right\rangle\right| \leqslant \frac{5}{6} + \frac{\sqrt{2}}{9} < 0.991.
$$

Since *y* is self-adjoint, taking the supremum over all $\xi \in \mathcal{H}$ such that $\|\xi\| = 1$, we obtain

$$
\|y\| \leqslant \frac{5}{6} + \frac{\sqrt{2}}{9} < 0.991
$$

as desired.

LEMMA 5.2. *Let* $x^* = x \text{ ∈ } B_0$ *satisfy* $E(x) = 0$ *. Assume that* supp(x) ⊂ $F \cup F^{-1}$ *for some finite non-empty subset F of G \ {e} and that there exists a subgroup H of G which is a Powers set for F.*

Then there exists a simple H-averaging process φ on B such that

$$
\|\phi(x)\| < 0.991 \, \|x\|.
$$

Proof. One easily sees that *H* is also a Powers set for $S = F \cup F^{-1}$ (cf. [31, lemma 2·2]). We may therefore pick $h_1, h_2, h_3 \in H$ and pairwise disjoint subsets T_1, T_2, T_3 of *G* such that *T_j* is $h_j Sh_j^{-1}$ -large for $j = 1, 2, 3$.

For each $j = 1, 2, 3$, set $E_j = h_j^{-1}T_j$, $D_j = G \setminus E_j$ and let p_j be the orthogonal projection from $\ell^2(G, \mathcal{H})$ onto $\ell^2(D_j, \mathcal{H})$. Then we have $p_j x p_j = 0$ for each *j*. Indeed, as is easily checked, $h_j Sh_j^{-1}$ -largeness of T_j means that

$$
s D_j \cap D_j = \varnothing \quad \text{for every } s \in S.
$$

Thus, for $a \in A$ and $s \in S$, using the identities in (5·1), we get $p_j \pi(a)\lambda(s)p_j =$ $\pi(a)p_j\lambda(s)p_j = \pi(a)P_{D_j}P_{sD_j}\lambda(s) = 0$. Since supp $(x) \subset S$, the above assertion readily follows.

Moreover, for each $j = 1, 2, 3$, set $q_j = \lambda(h_j)(1 - p_j)\lambda(h_j)^*$. Then q_j is the orthogonal projection from $\ell^2(G, \mathcal{H})$ onto $\ell^2(h_j E_j, \mathcal{H}) = \ell^2(T_j, \mathcal{H})$. Since the T_j 's are pairwise disjoint, the q_i 's are pairwise orthogonal. Thus, we can apply Lemma 5.1 and conclude that

$$
\left\| \frac{1}{3} \sum_{j=1}^{3} \lambda(h_j) x \lambda(h_j)^* \right\| < 0.991 \, \|x\|
$$

which shows the assertion.

LEMMA 5.3. Let $\delta > 0$, $g \in G \setminus \{e\}$ and assume that there exists a subgroup H of G *which is a c-Powers set for g. Let* $x^* = x \in B_0$ *satisfy*

$$
\operatorname{supp}\left(x\right) \subset \langle g \rangle_M \cup \langle g^{-1} \rangle_M
$$

for some finite non-empty subset M of H.

Then there exists an H-averaging process ψ *on B such that* $\|\psi(x)\| < \delta$.

Proof. By assumption, *H* is a Powers set for $\lt g \gt_M$. Applying Lemma 5.2 (with $F =$ $\langle g \rangle_{M}$, we get that there exists a simple *H*-averaging process ϕ_1 on *B* such that $\|\phi_1(x)\|$ $d ||x||$, where $d = 0.991$. Now, one easily checks (cf. [1, lemma 4.4]) that

$$
\mathrm{supp}(\phi_1(x)) \subset \langle g \rangle_{M_1} \cup \langle g^{-1} \rangle_{M_1},
$$

where M_1 is a finite non-empty subset of H (since H is closed under multiplication, being a subgroup). Moreover, $\phi_1(x)$ is a selfadjoint element of B_0 satisfying $E(\phi_1(x)) = 0$. Hence we can apply Lemma 5.2 (with $F = \langle g \rangle_{M_1}$) and get that there exists a simple *H*-averaging process ϕ_2 on *B* such that

$$
\|\phi_2(\phi_1(x))\| < d\|\phi_1(x)\| < d^2\|x\|.
$$

Iterating this process, we get that for each $k \in \mathbb{N}$, there exist simple *H*-averaging processes ϕ_1, \ldots, ϕ_k on *B* such that

$$
\|(\phi_k\circ\cdots\circ\phi_1)(x)\| < d^k \|x\|.
$$

Choosing *k* such that $d^k < \delta$ gives the result.

THEOREM 5-4. Assume G is a PH group. Then Σ has property (DP).

Proof. Let $x^* = x \in B_0$ satisfy $E(x) = 0$, and let $\varepsilon > 0$. Write $S = \text{supp}(x)$ as a disjoint union *S* = *R* \cup *F* \cup *F*^{−1} where *R* = {*s* ∈ *S* | *s*² = *e*}.

Consider $R \cup F \subset G \setminus \{e\}$. Since *G* is a PH group, we can write $R \cup F = \{s_1, s_2, \ldots, s_n\}$ and find a chain of subgroups $G_1 \subset G_2 \subset \cdots \subset G_n \subset G$ such that G_j is a c-Powers set for s_j , $j = 1, \ldots, n$. Thus, each G_j is a Powers set for $\langle s_j \rangle_M$, for all finite subsets *M* of G_j .

Write $x = \sum_{j=1}^{n} x_j$, where $x_j^* = x_j \in B_0$ and supp $(x_j) = \{s_j\} \cup \{s_j^{-1}\}\$ for each *j*. (Note that if $s_j \in R$, we have $s_j^{-1} = s_j$, so supp $(x_j) = \{s_j\}$ in this case.)

Since $\text{supp}(x_1) = \langle s_1 \rangle_M \cup \langle s_1^{-1} \rangle_M$, with $M = \{e\} \subset G_1$, and G_1 is a c-Powers set for s_1 , Lemma 5.3 applies and gives that there exists a G_1 -averaging process ψ_1 on *B* such that $\|\psi_1(x_1)\| < \varepsilon/n$.

Now, consider $\tilde{x}_2 = \psi_1(x_2)$. Then supp $(\tilde{x}_2) \subset \langle s_2 \rangle_M \cup \langle s_2^{-1} \rangle_M$ for some finite subset *M* of G_1 . Since G_1 is contained in G_2 , and G_2 is a c-Powers set for s_2 , Lemma 5.3 applies again and gives that there exists a G_2 -averaging process ψ_2 on *B* such that $\|\psi_2(\tilde{x}_2)\| < \varepsilon/n$, that is, $\|(\psi_2 \circ \psi_1)(x_2)\| < \varepsilon/n$.

Proceeding inductively, let $1 \leq k \leq n - 1$ and assume that for each $j = 1, \ldots, k$, we have constructed a *G*_{*j*}-averaging process ψ_j on *B*, such that $\|(\psi_j \circ \cdots \circ \psi_1)(x_j)\| < \varepsilon/n$ for $j = 1, \ldots, k$. Then consider $\tilde{x}_{k+1} = (\psi_k \circ \cdots \circ \psi_1)(x_{k+1})$. Then supp $(\tilde{x}_{k+1}) \subset \langle s_{k+1} \rangle \neq M$ \bigcup < s_{k+1}^{-1} > *M* for some finite subset *M* of G_k . Since G_k is contained in G_{k+1} , and G_{k+1} is a c-Powers set for s_{k+1} , Lemma 5.3 applies and gives that there exists a G_{k+1} -averaging process ψ_{k+1} on *B* such that $\|\psi_{k+1}(\tilde{x}_{k+1})\| < \varepsilon/n$, that is, $\|(\psi_{k+1} \circ \cdots \circ \psi_1)(x_{k+1})\| < \varepsilon/n$.

Repeating this until $k = n - 1$, we obtain, for each $1 \leq j \leq n$, a G_j -averaging process ψ_j on *B* such that $\|(\psi_i \circ \cdots \circ \psi_1)(x_i)\| < \varepsilon/n$. Set $\psi = \psi_n \circ \cdots \circ \psi_1$. Then ψ is a *G*-averaging process on *B* and, for each $1 \leq j \leq n$, we have

$$
\|\psi(x_j)\| = \|(\psi_n \circ \cdots \circ \psi_{j+1} \circ \psi_j \circ \cdots \circ \psi_1)(x_j)\| \leq \|\psi_j \circ \cdots \circ \psi_1)(x_j)\| < \varepsilon/n,
$$

so we get

$$
\|\psi(x)\| \leqslant \sum_{j=1}^n \|\psi(x_j)\| < \varepsilon.
$$

This shows that Σ satisfies (the strong) property DP.

5.2. We now turn to the proof that Σ has property (DP) when *G* satisfies property (P_{com}). We will adapt the arguments given in [**5**] to cover the twisted case. We recall from [**5**] that *G is said to have property* (P_{com}) when the following holds given any non-empty finite subset *F* ⊂ *G* \ {*e*}, there exist *n* ∈ \mathbb{N} , *g*₀ ∈ *G* and subsets *U*, *D*₁, ..., *D_n* of *G* such that:

- (i) $G \setminus U \subset D_1 \cup \cdots \cup D_n$;
- (ii) $g U \cap U = \emptyset$ for all $g \in F$;
- (iii) $g_0^{-j}D_k \cap D_k = \emptyset$ for all $j \in \mathbb{N}$ and $k = 1, \ldots, n$.

LEMMA 5.5. (*cf.* [5]). Let g ∈ $G \setminus \{e\}$ *and assume there exist* $n ∈ ℕ$ *and subsets* U, D_1, \ldots, D_n *of G such that*

$$
G \setminus U \subset D_1 \cup \cdots \cup D_n \quad and \quad g \cup \cap U = \emptyset.
$$

Let $F \in \ell^{\infty} (G, \mathcal{B}(\mathcal{H}))$ and $\xi, \eta \in \ell^2 (G, \mathcal{H})$ *. Then we have*

$$
|\langle M_F \lambda(g)\xi, \eta \rangle| \leq \sum_{j=1}^n (||M_F \lambda(g)\xi|| ||P_{D_j}\eta|| + ||P_{D_j}\xi|| ||M_F^*\eta||). \qquad (5.2)
$$

Proof. We set $V = G \setminus U$, and note that $P_U P_{gU} = P_{U \cap gU} = 0$. Thus, making use of (5.1) , we get

$$
\langle M_F \lambda(g)\xi, \eta \rangle = \langle M_F \lambda(g) P_U \xi, \eta \rangle + \langle M_F \lambda(g) P_V \xi, \eta \rangle
$$

= $\langle P_{g} U M_F \lambda(g) \xi, (P_U + P_V) \eta \rangle + \langle \lambda(g) P_V \xi, M_F^* \eta \rangle$
= $\langle P_{g} U M_F \lambda(g) \xi, P_V \eta \rangle + \langle \lambda(g) P_V \xi, M_F^* \eta \rangle.$

Thus, the triangle inequality and the Cauchy–Schwarz inequality give

$$
|\langle M_F \lambda(g)\xi, \eta \rangle| \leq |\langle P_{gU} M_F \lambda(g)\xi, P_V \eta \rangle| + |\langle \lambda(g) P_V \xi, M_F^* \eta \rangle|
$$

\n
$$
\leq \|M_F \lambda(g)\xi\| \|P_V \eta\| + \|P_V \xi\| \|M_F^* \eta\|
$$

\n
$$
\leq \sum_{j=1}^n (\|M_F \lambda(g)\xi\| \|P_{D_j} \eta\| + \|P_{D_j}\xi\| \|M_F^* \eta\|)
$$

since $||P_V \zeta|| \le \sum_{j=1}^n ||P_{D_j} \zeta||$ for any $\zeta \in \ell^2(G, \mathcal{H})$, as is easily checked, using that $V \subset$ $D_1 \cup \cdots \cup D_n$.

LEMMA 5.6. Let $D \subset G$, $\zeta \in \ell^2(G, \mathcal{H})$ and assume there exist $N \in \mathbb{N}$ and $g_1, \ldots, g_N \in$ *G* such that g_1D, \ldots, g_ND are pairwise disjoint. Then we have

$$
\sum_{j=1}^N \|P_{g_j D} \zeta\| \leqslant \sqrt{N} \| \zeta \|.
$$

Proof. The Cauchy–Schwarz inequality and the assumption give

$$
\sum_{j=1}^{N} \|P_{g_j D} \zeta\| \leq \sqrt{N} \Big[\sum_{j=1}^{N} \|P_{g_j D} \zeta\|^2 \Big]^{1/2}
$$

= $\sqrt{N} \Big[\sum_{h \in g_1 D \cup \dots \cup g_N D} \| \zeta(h) \|^2 \Big]^{1/2}$
 $\leq \sqrt{N} \| \zeta \|.$

LEMMA 5.7. Assume that G has property (P_{com}) . *Let F* be a finite non-empty subset of $G \setminus \{e\}$, $a_g \in A$ for each $g \in F$, and set $y_0 = \sum_{g \in F} \pi(a_g) \lambda(g) \in B$. Then we have

$$
0 \in \overline{co\{v\ y_0\ v^* \mid v \in \mathcal{U}_G\}}^{\|\cdot\|}.
$$

Proof. Since *G* has property (P_{com}), we may pick $n \in \mathbb{N}$, $g_0 \in G$ and subsets *U*, D_1 , ..., D_n of *G* so that (i), (ii) and (iii) in the definition of property (P_{com}) hold with respect to the given *F*.

For each $j \in \mathbb{N}$, we set $g_j = g_0^{-j}$. Moreover, for each $N \in \mathbb{N}$, we set

$$
y_N = \frac{1}{N} \sum_{j=1}^N \lambda(g_j) y_0 \lambda(g_j)^* \in \text{co}\{v y_0 v^* \mid v \in \mathcal{U}_G\}.
$$

We will show that

$$
\|y_N\| \leqslant \frac{2n}{\sqrt{N}} \sum_{g \in F} \|a_g\|.
$$
 (5.3)

Thus, we will get that $\|y_N\| \to 0$ as $N \to \infty$, from which the assertion to be proven will clearly follow.

To prove (5.3), fix $N \in \mathbb{N}$. Since

$$
y_N = \frac{1}{N} \sum_{g \in F} \sum_{j=1}^N \lambda(g_j) \pi(a_g) \lambda(g) \lambda(g_j)^*,
$$

we have

$$
\|y_N\| \leqslant \frac{1}{N} \sum_{g \in F} \|z_g\|,\tag{5.4}
$$

where $z_g = \sum_{j=1}^N \lambda(g_j) \pi(a_g) \lambda(g) \lambda(g_j)^*$ for each $g \in F$.

Let $g \in F$ and ξ , $\eta \in \ell^2(G, \mathcal{H})$. As condition (iii) implies that for each $k \in \{1, 2, ..., n\}$, the sets g_1D_k , ..., g_ND_k are pairwise disjoint, Lemma 5.6 gives that

$$
\sum_{j=1}^N \|P_{g_j D_k} \eta\| \leqslant \sqrt{N} \|\eta\| \quad \text{and} \quad \sum_{j=1}^N \|P_{g_j D_k} \xi\| \leqslant \sqrt{N} \|\xi\|.
$$
 (5.5)

Using Lemma 5.5 *N* times (with $M_F = \pi(a_e)$) at the second step, we get

$$
|\langle z_{g} \xi, \eta \rangle| \leq \sum_{j=1}^{N} |\langle \pi(a_{g})\lambda(g) \lambda(g_{j})^{*} \xi, \lambda(g_{j})^{*} \eta \rangle|
$$

\n
$$
\leq \sum_{j=1}^{N} \sum_{k=1}^{n} (|\pi(a_{g})\lambda(g) \lambda(g_{j})^{*} \xi| ||P_{D_{k}}\lambda(g_{j})^{*} \eta||
$$

\n
$$
+ ||P_{D_{k}}\lambda(g_{j})^{*} \xi|| ||\pi(a_{g})^{*} \lambda(g_{j})^{*} \eta||)
$$

\n
$$
\leq \sum_{j=1}^{N} \sum_{k=1}^{n} (|\pi(a_{g})|| ||\xi|| ||P_{g_{j}D_{k}} \eta|| + ||P_{g_{j}D_{k}} \xi|| ||\pi(a_{g})|| ||\eta||)
$$

\n
$$
= ||a_{g}|| \sum_{k=1}^{n} (||\xi|| (\sum_{j=1}^{N} ||P_{g_{j}D_{k}} \eta||) + ||\eta|| (\sum_{j=1}^{N} ||P_{g_{j}D_{k}} \xi||)
$$

\n
$$
\leq ||a_{g}|| 2 n \sqrt{N} ||\xi|| ||\eta||,
$$

where we have used (5.5) to get the final inequality.

This implies that

$$
||z_g|| \leq 2 n \sqrt{N} ||a_g||.
$$

Using (5·4), we therefore get

$$
||y_N|| \leq \frac{1}{N} 2n \sqrt{N} \sum_{g \in F} ||a_g|| = \frac{2n}{\sqrt{N}} \sum_{g \in F} ||a_g||,
$$

that is, the inequality (5·3) holds, as desired.

THEOREM 5.8. Assume that G has property (P_{com}) . Then Σ has property (DP).

Proof. Lemma 5.7 shows that if $x \in B_0$ satisfies $E(x) = 0$, and $\varepsilon > 0$, then there exists a *G*-averaging process on *B* such that $\|\psi(x)\| < \varepsilon$. Hence, it follows that Σ has (the strong) property (DP).

Note that the proof of Theorem 5.8 in fact implies that when *G* has property (P_{com}), then Σ satisfies that

$$
0 \in \overline{\text{co}\{v \, v^* \, | \, v \in \mathcal{U}_G\}}^{\|\cdot\|} \tag{5.6}
$$

for every $y \in B$ satisfying $E(y) = 0$. As mentioned in Remark 3.2, this is true whenever Σ satisfies the strong form of property (DP) (hence also when *G* is a PH group):

PROPOSITION 5.9. Assume that Σ satisfies the strong form of property (DP). Then (5.6) *holds for every* $y \in B$ *satisfying* $E(y) = 0$ *.*

Proof. Let $y \in B$ satisfy $E(y) = 0$ and $\varepsilon > 0$. Write $y = x_1 + i x_2$, where $x_1 = \text{Re}(y)$, $x_2 = \text{Im}(y)$. Note that $E(x_1) = (E(y) + E(y)^*)/2 = 0$, and, similarly, $E(x_2) = 0$. Using the assumption, we can find a *G*-averaging process ψ_1 on *B* such that $\|\psi_1(x_1)\| < \varepsilon/2$. Now, set $\tilde{x}_2 = \psi_1(x_2)$. Then \tilde{x}_2 is self-adjoint, and, using the equivariance property of *E*, one deduces that $E(\tilde{x}_2) = 0$. Hence, we can find a *G*-averaging process ψ_2 on *B* such that $\|\psi_2(\tilde{x}_2)\| < \varepsilon/2$. Set $\psi = \psi_2 \circ \psi_1$. Then we get

$$
\|\psi(y)\| \le \|\psi(x_1)\| + \|\psi(x_2)\| \le \|\psi_1(x_1)\| + \|\psi_2(\tilde{x}_2)\| < \varepsilon,
$$

and it follows that (5·6) holds.

Acknowledgements. The authors thank the referee for carefully reading the manuscript.

REFERENCES

- [**1**] E. BEDOS ´ . Discrete groups and simple *C*∗-algebras. *Math. Proc. Camb. Phil. Soc.* **109** (1991), 521– 537.
- [2] E. BÉDOS. On the uniqueness of the trace on some simple C[∗]-algebras. *J. Operator Theo.* **30** (1993), 149–160.
- [**3**] E. BÉDOS and R. CONTI. On discrete twisted C^{*}-dynamical systems, Hilbert C^{*}-modules and regularity. *Münster J. Math.* **5** (2012), 183-208.
- [4] E. BÉDOS and R. CONTI. Fourier series and twisted C^* -crossed products. *J. Fourier Anal. Appl.* 21 (2015), 32–75.
- [5] M. E. BEKKA, M. COWLING and P. DE LA HARPE. Some groups whose reduced C^{*}-algebra is simple. *Inst. Hautes Etudes Sci. Publ. Math. ´* no. **80** (1994), 117–134.
- [**6**] F. BOCA and V. NITICA. Combinatorial properties of groups and simple C∗-algebras with a unique trace. *J. Operator Theo.* **20** (1988) 183–196.
- [**7**] E. BREUILLARD, M. KALANTAR, M. KENNEDY and N. OZAWA. C∗-simplicity and the unique trace property for discrete groups. Preprint (2014), arXiv: 1410.2518v3.
- [**8**] N. P. BROWN and N. OZAWA. *C*∗*-Algebras and Finite-Dimensional Approximations*. Graduate Studies in Mathematics, vol. 88 (Amer. Math. Soc., Providence, RI, 2008).
- [**9**] S. ECHTERHOFF. Crossed products, the Mackey–Rieffel–Green machine and applications. Preprint (2010), arXiv:1006.4975.
- [**10**] R. ELLIS. *Lectures on Topological Dynamics*. (W.A. Benjamin, Inc. New York, 1969).
- [**11**] R. EXEL. Amenability for Fell bundles. *J. Reine Angew. Math.* **492** (1997), 41–73.
- [**12**] R. EXEL. Exact groups and Fell bundles. *Math. Ann.* **323** (2002), 259–266.
- [**13**] R. EXEL. Exact groups, induced ideals and Fell bundles. Preprint (2000), version 1 of [**12**], arXiv:math/0012091v1.
- [**14**] T. GIORDANO and P. DE LA HARPE. Groupes de tresses et moyennabilite int ´ erieure. ´ *Ark. Mat.* **29** (1991), 63–72.
- [**15**] Y. GUIVARC'H and A. N. STARKOV. Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms. *Ergodic Theory Dynam. Systems* **24** (2004), 767–802.
- [16] U. HAAGERUP and L. ZSIDO. Sur la propriété de Dixmier pour les C^{*}-algèbres. C. R. Acad. Sci. Paris **298** (1984), 173–177.
- [**17**] P. DE LA HARPE. On simplicity of reduced group C∗-algebras. *Bull. Lond. Math. Soc.* **39** (2007), 1–26.
- [**18**] P. DE LA HARPE and G. SKANDALIS. Powers' property and simple C∗-algebras. *Math. Ann.* **273** (1986), 241–250.
- [19] P. DE LA HARPE and J.-P. PRÉAUX. C^{*}-simple groups: amalgamated free products, HNN-extensions, and fundamental groups of 3-manifolds. *J. Topol. Anal.* **3** (2011), 451–489.
- [**20**] N. HINDMAN, L. LEGETTE and D. STRAUSS. The number of minimal left and minimal right ideals in β*S*. *Topology Proc.* **39** (2012), 45–68.
- [**21**] N. HINDMAN and D. STRAUSS. *Algebra in the Stone–Cech compactification Theory and applications* (2nd revised and extended ed.). (De Gruyter, Berlin/Boston, 2012).
- [**22**] N. A. IVANOV. On the structure of some reduced amalgamated free product C∗-algebras. *Internat. J. of Math.* **22** (2011), 281–306.
- [**23**] E. KIRCHBERG and S. WASSERMANN. Permanence properties of C∗-exact groups. *Doc. Math. J.* **4** (1999), 513–558.
- [**24**] R. MUCHNIK. Semigroup actions on T*n*. *Geom. Dedicata* **110** (2005), 1–47.
- [**25**] A. OLSHANSKII and D. OSIN. C∗-simple groups without free subgroups. *Groups Geom. Dyn.* **8** (2014), 933–983.
- [**26**] J. A. PACKER and I. RAEBURN. Twisted crossed products of C∗-algebras. *Math. Proc. Camb. Phil. Soc.* **106** (1989), 293–311.
- [**27**] J. PETERSON and A. THOM. Group cocycles and the ring of affiliated operators. *Invent. Math.* **185** (2011), 561–592.
- [**28**] S. POPA. On the relative Dixmier property for inclusions of C∗-algebras. *J. Funct. Anal.* **171** (2000), 139–154.
- [**29**] R. T. POWERS. Simplicity of the C∗-algebra associated with the free group on two generators. *Duke Math. J.* **42** (1975), 151–156.
- [**30**] T. POZNANSKY. Characterisation of linear groups whose reduced C∗-algebras are simple. Preprint (2008), arXiv:0812.2486.
- [**31**] S. D. PROMISLOW. A class of groups producing simple, unique trace C∗-algebras. *Math. Proc. Camb. Phil. Soc.* **114** (1993), 223–233.
- [**32**] J. C. QUIGG and J. SPIELBERG. Regularity and hyporegularity in C∗-dynamical systems. *Houston J. Math.* **18** (1992), 139–152.
- [33] A. SIERAKOWSKI. The ideal structure of reduced crossed products. *Münster J. Math.* 3 (2010), 237– 262.
- [**34**] R. D. TUCKER–DROB. Shift-minimal groups, fixed price 1, and the unique trace property. Preprint (2012), arXiv:1211.6395.
- [**35**] D. P. WILLIAMS. *Crossed Products of C*∗*-Algebras*. Mathematical Surveys and Monographs, vol. 134 (Amer. Math. Soc., Providence, RI, 2007).
- [36] G. ZELLER-MEIER. Produits croisés d'une C^{*}-algèbre par un groupe d'automorphismes. *J. Math. Pures Appl.* **47** (1968), 101–239.