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Abstract

We consider a twisted action of a discrete group G on a unital C∗-algebra A and give
conditions ensuring that there is a bijective correspondence between the maximal invariant
ideals of A and the maximal ideals in the associated reduced C*-crossed product.

1. Introduction

Let A be a unital C∗-algebra and let M(A) denote the maximal ideal space of A, con-
sisting of the maximal ideals of A. As is well known, a proper ideal of A is maximal if and
only if the associated quotient C∗-algebra is simple. Moreover, M(A) is a non-empty subset
of the primitive ideal space Prim(A) of A. In some cases, these spaces coincide (e.g. when
A is commutative or when A is simple), and this corresponds to the fact that Prim(A) is a
T1-space in the Jacobson topology. In general, computing Prim(A) for a given A is not an
easy task. Determining M(A) still gives some valuable information: besides providing an
invariant for A in itself, it also gives a way to list all the simple quotients of A, and this
might prospectively be useful if one aims to distinguish some given C∗-algebras by taking
into account some of the invariants that have already been computed for several classes of
simple C∗-algebras. Our main aim in this paper is to show how one can indeed determine
the maximal ideal space of the reduced twisted C∗-crossed products associated with exact
twisted actions of certain discrete groups on unital C∗-algebras. As all the groups in question
belong to the class of C∗-simple groups, we first recall some relevant facts about the latter
class.

Let G denote a discrete group and let C∗
r (G) denote its reduced group C∗-algebra, i.e.,

the C∗-algebra generated by the left regular representation of G on �2(G). The group G
is then called C∗-simple [1] whenever C∗

r (G) is simple. The class of C∗-simple groups is
vast. It includes for example all Powers groups as defined by P. de la Harpe [17] (e.g. free
nonabelian groups, as in Powers’ original work [29], and free products of groups, with the
exception of Z2 ∗ Z2); all weak Powers groups, as introduced by F. Boca and V. Nitica [6]
(e.g. direct products of Powers groups); the class of PH groups, as defined by S.D. Promislow
[31] (e.g. extensions of weak Powers groups); the class of groups with property (Pcom), as
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defined by M. Bekka, M. Cowling and P. de la Harpe [5] (e.g. P SL(n, Z) for every n � 2).
We refer to [17] for a detailed overview of C∗-simple groups and their properties. Some
related articles written afterwards are [7, 19, 22, 25, 27, 30, 34].

In the very recent work [7], E. Breuillard, M. Kalantar, M. Kennedy and N. Ozawa show
that if a C∗-simple group G acts on a unital C∗-algebra A in a minimal way (that is, the
only invariant ideals of A are {0} and A), then the associated reduced C∗-crossed product
is simple. The case where G is a Powers group was first established by P. de la Harpe and
G. Skandalis [18]. Their result was later extended to cover weak Powers groups and twisted
actions (see [1, 6]), while the case where G has property (Pcom) was handled by Bekka,
Cowling and de la Harpe [5]. It is not clear to us that the result in [7] mentioned above holds
in general for a twisted action of a C∗-simple group G. Anyhow, as we show in this paper
(cf. Corollary 3·10), this is certainly true when G belongs to the class P consisting of all PH
groups and all groups with the property (Pcom).

De la Harpe and Skandalis give in [18] an example of an action of a Powers group on a
unital C∗-algebra A such that A has exactly one nontrivial invariant ideal while the associated
reduced C∗-crossed product has infinitely many ideals. This could be taken as an indication
that it is not possible to say something of interest about the lattice of ideals in a reduced
C∗-crossed product involving a non minimal action of a C∗-simple group. Nevertheless, we
will show (see Corollary 3·9) that if G belongs to the class P introduced above, then one
may describe the maximal ideal space of the reduced twisted C∗-crossed product associated
with an exact twisted action of G on a unital C∗-algebra. In the case where G is a weak
Powers group, this result was briefly discussed in [4, example 6·6].

As an important part of our work, we introduce a certain property for a twisted unital
discrete C∗-dynamical system � = (A, G, α, σ ) that we call property (DP) (named after
Dixmier and Powers). This property, which is weaker than the Dixmier property for the
reduced crossed product C∗

r (�), is always satisfied by the system � whenever G belongs to
the class P (see Theorem 3·8 and Section 5). Moreover, we prove that if � is exact [4, 33]
and has property (DP), then there is a one-to-one correspondence between the maximal
ideal space of C∗

r (�) and the set of maximal invariant ideals of A, and also a one-to-one
correspondence between the set of all tracial states of C∗

r (�) and the set of invariant tracial
states of A (see Theorem 3·7 and Proposition 3·4).

To illustrate the usefulness of our results, we describe in Section 4 the maximal ideal
space of some C∗-algebras that may be written as C∗

r (�) for a suitably chosen system �.
These examples include the reduced group C∗-algebra of any discrete group � such that
the quotient of � by its center is exact and belongs to P , the reduced group C∗-algebra of
Z3 � SL(3, Z) and the “twisted” Roe algebra C∗

r (�∞(G), G, lt, σ ) associated to an exact
group G belonging to P , the 2-cocycle σ being then assumed to be scalar-valued.

We use standard notation. For instance, if A is a unital C∗-algebra, then U(A) denotes
the unitary group of A and Aut(A) denotes the group of all ∗-automorphisms of A. If H
is a Hilbert space, then B(H) denotes the bounded linear operators on H. By an ideal in a
C∗-algebra, we always mean a closed two-sided ideal, unless otherwise specified.

2. Preliminaries

Throughout this paper, we let � = (A, G, α, σ ) denote a twisted, unital, discrete C∗-
dynamical system (see for instance [9, 36, 35, 26]). Thus, A is a C∗-algebra with unit 1, G
is a discrete group with identity e and (α, σ ) is a twisted action of G on A, that is, α is a
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map from G into Aut(A) and σ is a map from G × G into U(A), satisfying

αg ◦ αh = Ad(σ (g, h)) ◦ αgh

σ(g, h)σ (gh, k) = αg(σ (h, k))σ (g, hk)

σ (g, e) = σ(e, g) = 1,

for all g, h, k ∈ G. Of course, Ad(v) denotes here the (inner) automorphism of A imple-
mented by some v ∈ U(A). One deduces easily that

αe = id, σ (g, g−1) = αg(σ (g−1, g))

and

α−1
g = αg−1 ◦ Ad(σ (g, g−1)∗) = Ad(σ (g−1, g)∗) ◦ αg−1 .

Note that if σ is trivial, that is, σ(g, h) = 1 for all g, h ∈ G, then � is an ordinary
C∗-dynamical system.

The reduced crossed product C∗
r (�) associated with � may (up to isomorphism) be char-

acterised as follows [3, 36]:

(i) C∗
r (�) is generated (as a C∗-algebra) by (a copy of) A and a family {λ(g) | g ∈ G} of

unitaries satisfying

αg(a) = λ(g) a λ(g)∗ and λ(g) λ(h) = σ(g, h) λ(gh);
for all g, h ∈ G and a ∈ A,

(ii) there exists a faithful conditional expectation E : C∗
r (�) → A such that E(λ(g)) = 0

for all g ∈ G, g � e.

One easily cheks that the expectation E is equivariant, that is, we have

E(λ(g) x λ(g)∗) = αg(E(x)),

for all g ∈ G, x ∈ C∗
r (�). As is well known, it follows that if ϕ is a tracial state on A which

is invariant (i.e. ϕ(αg(a)) = ϕ(a) for all g ∈ G, a ∈ A), then ϕ ◦ E is a tracial state on
C∗

r (�) extending ϕ.
Let J denote an invariant ideal of A and set �/J = (A/J, G, α̇, σ̇ ), where (α̇, σ̇ ) denotes

the twisted action of G on A/J naturally associated with (α, σ ).
We will let 〈J 〉 denote the ideal of C∗

r (�) generated by J . Any ideal of this form is
called an induced ideal of C∗

r (�). Moreover, we will let J̃ denote the kernel of the canon-
ical ∗-homomorphism from C∗

r (�) onto C∗
r (�/J ). It is elementary to check that we have

E(〈J 〉) = J and 〈J 〉 ⊂ J̃ . Another useful fact is that

J̃ = {
x ∈ C∗

r (�) | x̂(g) ∈ J for all g ∈ G
}
,

where x̂ (g) = E(x λ(g)∗) for each x ∈ C∗
r (�), g ∈ G . This may for instance be de-

duced from the proof of [13, theorem 5·1] by considering C∗
r (�) as topologically graded

C∗-algebra over G:

C∗
r (�) =

⊕
g∈G

Ag

‖·‖
,

where Ag = {
a λ(g) | a ∈ A

}
for each g ∈ G.
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Following [4, 33], we will say that the system � is exact whenever we have 〈J 〉 = J̃ for
every invariant ideal J of A. It is known [12] that � is exact whenever G is exact. It is also
known [4] that � is exact whenever there exists a Fourier summing net for � preserving
the invariant ideals of A. This latter condition is for instance satisfied when � has Exel’s
approximation property [11], e.g. when the associated action of G on the center Z(A) of A,
obtained by restricting α to Z(A), is amenable (as being defined in [8]).

We include here two lemmas illustrating the impact of the exactness of � on the lattice of
ideals of C∗

r (�).

LEMMA 2·1. Let J be an ideal of C∗
r (�) and set J = E(J ). Then J is an invariant

ideal of A such that J ⊂ J̃ . Hence, if � is exact, we have J ⊂ 〈J 〉.
Proof. As E is a conditional expectation, it follows readily that J is an ideal of A. The

invariance of J is an immediate consequence of the equivariance of E . Let now x ∈ J .
Then, for each g ∈ G, we have x λ(g)∗ ∈ J , so

x̂(g) = E
(
x λ(g)∗) ∈ E(J ) ⊂ J.

Hence, x ∈ J̃ . This shows that J ⊂ J̃ . The last assertion follows then from the definition
of exactness.

An ideal J of C∗
r (�) is called E-invariant if E(J ) ⊂ J . Equivalently, J is E-invariant

whenever E(J ) = J � A (so E(J ) is necessarily closed in this case). Any induced ideal of
C∗

r (�) is easily seen to be E-invariant. The converse is true if � is exact, as shown below.
(When G is exact, this is shown in [13]; see [4] for the case where there exists a Fourier
summing net for � preserving the invariant ideals of A.)

LEMMA 2·2. Let J be an E-invariant ideal of C∗
r (�). If � is exact, then J is an induced

ideal. Indeed, we have J = 〈E(J )〉 in this case.

Proof. Note that since E(J ) = J � A is closed, it is an invariant ideal of A (cf. Lemma
2·1). Assume that � is exact. Then Lemma 2·1 gives that J ⊂ 〈E(J )〉. On the other hand,
since E(J ) ⊂ J , we have 〈E(J )〉 ⊂ J . Hence, J = 〈E(J )〉, as asserted.

3. On maximal ideals and reduced twisted C∗-crossed products

We set U� = U(C∗
r (�)). When S is a subset of a (complex) vector space, we let co(S)

denote the convex hull of S.

Definition 3·1. The system � is said to have property (D P) whenever we have

0 ∈ co{v y v∗ | v ∈ U�} ‖·‖
(3·1)

for every y ∈ C∗
r (�) satisfying y∗ = y and E(y) = 0.

Remark 3·2. Let UG be the subgroup of U� generated by the λ(g)’s. The above definition
might be strengthened by replacing U� with UG , that is, by requiring that

0 ∈ co{v y v∗ | v ∈ UG} ‖·‖
(3·2)

for every y ∈ C∗
r (�) satisfying y∗ = y and E(y) = 0. All the examples of systems we are

going to describe satisfy this strong form of property (DP). It can be shown (see Proposition
5·9) that if � has this strong property (DP), then (3·2) holds for every y ∈ C∗

r (�) satisfying
E(y) = 0. It is not clear to us that if � has property (DP), then (3·1) holds for every such y.
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Remark 3·3. We recall that a unital C∗-algebra B is said to have the Dixmier property if

co{u b u∗ | u ∈ U(B)} ‖·‖
� C · 1 ��,

for every b ∈ B. As shown by L. Zsido and U. Haagerup in [16], B is simple with at most one
tracial state if and only if B has the Dixmier property. Using [16, corollaire, p. 175], it fol-
lows that if C∗

r (�) has the Dixmier property, then � has the property (DP) introduced above.
Property (DP) may be seen as a kind of relative Dixmier property for the pair (A, C∗

r (�)),
generalizing the property considered by R. Powers [29] in the case where � = (C, F2, id, 1).
It should not be confused with the notion of relative Dixmier property for inclusions of C∗-
algebras considered by S. Popa in [28].

A first consequence of property (D P) is the following:

PROPOSITION 3·4. Assume � has property (D P). Then the map ϕ → ϕ ◦ E is a bijec-
tion between the set of invariant tracial states of A and the set of tracial states of C∗

r (�).
Especially, C∗

r (�) has a unique tracial state if and only if A has a unique invariant tracial
state.

Proof. It is clear that this map is injective, so let us prove that it is surjective. Let therefore
τ be a tracial state on C∗

r (�) and let ϕ denote the tracial state of A obtained by restricting τ

to A. It follows from the covariance relation that ϕ is invariant. We will show that τ = ϕ ◦ E .
Let x∗ = x ∈ C∗

r (�) and ε > 0. Set y = x−E(x). As y∗ = y and E(y) = E(x−E(x)) =
E(x) − E(x) = 0, property (D P) enables us to pick v1, . . . , vn ∈ U� and t1, . . . , tn ∈ [0, 1]
satisfying �n

i=1ti = 1 such that ∥∥∥ n∑
i=1

ti vi y v∗
i

∥∥∥ < ε.

As τ is a tracial, we have

τ

(
n∑

i=1

ti vi y v∗
i

)
=

n∑
i=1

ti τ(y) = τ(y),

so we get

|τ(y)| =
∣∣∣τ (

n∑
i=1

ti vi y v∗
i

) ∣∣∣ �
∥∥∥ n∑

i=1

ti vi y v∗
i

∥∥∥ < ε.

Hence, we can conclude that τ(y) = 0. This gives that

τ(x) = τ(E(x)) = (ϕ ◦ E)(x).

So τ agrees with ϕ ◦ E on the self-adjoint part of C∗
r (�), and therefore on the whole of

C∗
r (�) by linearity.

Next, we have:

PROPOSITION 3·5. Assume that � has property (D P) and let J be a proper ideal of
C∗

r (�). Set J = E(J ). Then J is a proper invariant ideal of A.

Proof. We know from Lemma 2·1 that J is an invariant ideal of A. Assume that J is not
proper, i.e., E(J ) = A. Since A is unital, we have E(J ) = A. So we may pick x ∈ J such
that E(x) = 1.
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Set z = x∗x ∈ J +. Using the Schwarz inequality for complete positive maps [8], we get

E(z) = E(x∗x) � E(x)∗E(x) = 1.

Now, set y = z − E(z), so y∗ = y ∈ C∗
r (�) and E(y) = 0. Since � has property (D P), we

can find v1, . . . , vn ∈ U� and t1, . . . , tn ∈ [0, 1] satisfying �n
i=1ti = 1 such that

(∗)

∥∥∥ n∑
i=1

ti vi z v∗
i −

n∑
i=1

ti vi E(z) v∗
i

∥∥∥ =
∥∥∥ n∑

i=1

ti vi y v∗
i

∥∥∥ <
1

2
.

Setting z′ = �n
i=1ti vi z v∗

i , we have z′ ∈ J +. Since E(z) � 1, we also have

n∑
i=1

ti vi E(z) v∗
i � 1.

Hence, it follows from (∗) that z′ is invertible. So we must have J = C∗
r (�), which contra-

dicts the properness of J . This shows that J is proper.

COROLLARY 3·6. Assume � has property (D P) and is minimal (that is, {0} is the only
proper invariant ideal of A). Then C∗

r (�) is simple.

Proof. Since E is faithful, this follows immediately from Proposition 3·5.

If � is exact and has property (D P), we can in fact characterize the maximal ideals of
C∗

r (�). We therefore set

MI (A) = {
J ⊂ A | J is a maximal invariant ideal of A

}
,

M
(
C∗

r (�)
) = {

J ⊂ C∗
r (�) | J is a maximal ideal of C∗

r (�)
}
.

It follows from Zorn’s lemma that both these sets are non-empty.

THEOREM 3·7. Assume � is exact and has property (D P).
Then the map J → 〈J 〉 is a bijection between MI (A) and M(C∗

r (�)).
Thus, the family of all simple quotients of C∗

r (�) is given by{
C∗

r

(
�/J

)}
J∈MI (A)

.

Proof. Let J ∈ MI (A). We have to show that 〈J 〉 ∈ M(C∗
r (�)). We first note that 〈J 〉

is a proper ideal of C∗
r (�); otherwise, we would have J = E(〈J 〉) = A, contradicting that

J is a proper ideal of A.
Next, let K be a proper ideal of C∗

r (�) containing 〈J 〉, and set K = E(K). Since � has
property (D P), Proposition 3·5 gives that K is a proper invariant ideal of A. Moreover, we
have J = E(〈J 〉) ⊂ E(K) ⊂ K . By maximality of J , we get J = K , which gives

E(K) = K = J ⊂ 〈J 〉 ⊂ K.

Thus, K is E-invariant. Since � is exact, we get from Lemma 2·2 that K = 〈K 〉. As J = K ,
we conclude that K = 〈J 〉. Thus, we have shown that 〈J 〉 is maximal among the proper
ideals of C∗

r (�), as desired.
This means that the map J → 〈J 〉 maps MI (A) into M(C∗

r (�)). This map is clearly
injective (since E(〈J 〉) = J for every invariant ideal J of A).

To show that it is surjective, let J ∈ M(C∗
r (�)) and set J = E(J ). We will show that

J ∈ MI (A) and J = 〈J 〉.
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Since � has property (D P) and J is a proper ideal of C∗
r (�), Proposition 3·5 gives that

J is a proper invariant ideal of A. Further, since � is exact, Lemma 2·1 gives that J ⊂ 〈J 〉.
As J is maximal, we get J = 〈J 〉.

Finally, J is maximal among the proper invariant ideals of A. Indeed, let K be a proper
invariant ideal of A containing J . Then we have J = 〈J 〉 ⊂ 〈K 〉. By maximality of J , we
get 〈J 〉 = 〈K 〉. This implies that J = E(〈J 〉) = E(〈K 〉) = K . Hence, we have shown that
J ∈ MI (A).

To give examples of systems satisfying property (D P), we let P denote the class of dis-
crete groups consisting of PH groups [31] and of groups satisfying the property (Pcom) in-
troduced in [5]. The class P , which is a subclass of the class of discrete C∗-simple groups,
contains a huge variety of groups, including for instance many amalgamated free products,
HNN-extensions, hyperbolic groups, Coxeter groups, and lattices in semisimple Lie groups.
For a more precise description, we refer to [17] (see also [19]). The following result may be
seen as a generalization of results in [1, 5, 6, 18, 31]. For the convenience of the reader, we
will give a proof in Section 5.

THEOREM 3·8. Let G ∈ P . Then � has property (D P).

Thus, we get:

COROLLARY 3·9. Let G ∈ P . Then the map ϕ → ϕ ◦ E is a bijection between the set of
invariant tracial states of A and the set of tracial states of C∗

r (�).
Moreover, assume � is exact. Then the map J → 〈J 〉 is a bijection between MI (A) and

M(C∗
r (�)). Thus, the family of all simple quotients of C∗

r (�) is given by{
C∗

r

(
�/J

)}
J∈MI (A)

.

Proof. Since G ∈ P , we know from Theorem 3·8 that � has property (D P). The result
follows therefore from Proposition 3·4 and Theorem 3·7.

COROLLARY 3·10. Assume G ∈ P . If A has a unique invariant tracial state, then C∗
r (�)

has a unique tracial state. If � is minimal, then C∗
r (�) is simple.

Proof. This follows from Proposition 3·4, Corollary 3·6 and Theorem 3·8.

COROLLARY 3·11. Let G ∈ P and let ω ∈ Z 2(G, T). Then C∗
r (G, ω) is simple with a

unique tracial state.

In fact, proceeding as in the proof of [1, corollary 4·10] and [2, corollary 4], one sees that
Corollary 3·11 holds whenever G is a ultra-P group, meaning that G has a normal subgroup
belonging to P with trivial centralizer in G. Moreover, in the same way, one easily deduces
that [1, corollaries 4·8 − 4·12] and [2, corollaries 5 and 6] still hold if one replaces weak
Powers group by group in the class P , and ultraweak Powers group by ultra-P group in the
statement of these results.

It may also be worth mentioning explicitely the following result:

COROLLARY 3·12. Let G ∈ P and assume A is abelian, so A = C(X) for some compact
Hausdorff space X. Then there is a one-to-one correspondence between the set of Borel
probability measures on X and the set of tracial states of C∗

r (�) given by μ → ∫
X E(·) dμ.
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Moreover, assume � is exact. Then there is a one-to-one correspondence between the set
Y of minimal closed invariant subsets of X and M(C∗

r (�)) given by Y → 〈C0(X \ Y )〉.
Moreover, the family of all simple quotients of C∗

r (�) is given by{
C∗

r

(
C(Y ), G, αY , σY

)}
Y∈Y

where (αY , σY ) denotes the twisted quotient action of G on C(Y ) associated with (α, σ ).

Proof. This follows immediately from Theorem 3·9 and Gelfand theory.

When α is trivial, σ is just some 2-cocycle on G with values in U(Z(A)), so C∗
r (�) is a

kind of “twisted” tensor product of A with C∗
r (G). In this case, we don’t have to restrict our

attention to maximal ideals of C∗
r (�):

PROPOSITION 3·13. Assume α is trivial, � is exact and G ∈ P . Then the map J → 〈J 〉
is a bijection between the set of ideals of A and the set of ideals of C∗

r (�).

Proof. Since α is trivial and � is exact, it follows immediately from Lemma 2·2 that the
map J → 〈J 〉 is a bijection between the set of ideals of A and the set of E-invariant ideals
of B = C∗

r (�). Hence, it suffices to show that any ideal of B is E-invariant.
Let J be an ideal of B, y∗ = y ∈ J and ε > 0. Set x = y − E(y). Then x∗ = x ∈ B and

E(x) = 0. Since G ∈ P , it follows from the proof of Theorem 3·8 given in Section 5 that
there exists a G-averaging process ψ on B (as defined in Section 5) such that ‖ψ(x)‖ < ε.
Now, since α is trivial, any G-averaging process on B restricts to the identity map on A.
Thus, we get ψ(x) = ψ(y) − ψ(E(y)) = ψ(y) − E(y), so

‖ψ(y) − E(y)‖ < ε.

As any G-averaging process on B preserves ideals, we have ψ(y) ∈ J . Hence, we get
E(y) ∈ J = J . It clearly follows that J is E-invariant, as desired.

4. Examples

This section is devoted to the discussion of some concrete examples.

4·1. As a warm-up, we consider the simple, but instructive case of an action of a group G
on a non-empty finite (discrete) set X with n elements. Let α denote the associated action of
G on A = C(X)  Cn and σ ∈ Z 2(G, T).

We may then pick x1, . . . , xm ∈ X such that X is the disjoint union of the orbits O j =
{g · x j | g ∈ G} for j = 1, . . . , m. Clearly, the O j ’s are the minimal (closed) invariant
subsets of X . Hence, if G is an exact group in the class P , we get from Corollary 3·12 that
the simple quotients of B = C∗

r (C(X), G, α, σ ) are given by

Bj = C∗
r

(
C(O j), G, α j , σ

)
, j = 1, . . . , m,

where α j is the action on C(O j ) obtained by restricting α for each j .
The assumption above that G is exact is in fact not necessary. Indeed, one easily sees that

B is the direct sum of the Bj ’s. So if G belongs to P , then Corollary 3·10 gives that all the
Bj ’s are simple, and the same assertion as above follows readily.

Finally, assume that σ = 1. Then this characterisation of the simple quotients of B still
holds whenever G is a C∗-simple group. Indeed, letting Gx j denotes the isotropy group of
x j in G and identifying O j with G/Gx j , one gets from [9, example 6·6] (see also [23, 32])
that each Bj is Morita equivalent to C∗

r (Gx j ). Now, if G is C∗-simple, then each C∗
r (Gx j ) is



On maximal ideals in certain reduced twisted C*-crossed products 407

simple (i.e. Gx j is C∗-simple) because Gx j has finite index in G (cf. [17] and [28]), so the
Bj ’s are the simple quotients of B.

4·2. Consider the canonical action lt of a group G by left translation on �∞(G), in other
words, the action associated with the natural left action of G on its Stone-Čech compactific-
ation βG [10, 21], and let σ ∈ Z 2(G, T).

It is known that βG has 22|G|
minimal closed invariant subsets (see for instance [20,

theorem 1·4] and [21, lemma 19·6]). Moreover, all these subsets are G-equivariantly homeo-
morphic to each other (this follows from [21, theorem 19·8]). Hence, letting XG denote one
of these minimal closed invariant subsets, we get from Corollary 3·12 that if G is exact and
belongs to P , then the simple quotients of the ”twisted” Roe algebra C∗

r (�∞(G), G, lt, σ )

are all isomorphic to C∗
r (C(XG), G, lt, σ ).

In general, if G is exact and we assume that σ = 1, one may in fact deduce that there is a
one-to-correspondence between the set of all invariant closed subsets of βG and the ideals
of the Roe algebra C∗

r (�∞(G), G, lt); indeed, since the action of G on βG is known to be
free [10, proposition 8·14], this follows from [33, theorem 1·20].

4·3. Let � = Z3 � SL(3, Z) be the semidirect product of Z3 by the canonical action of
SL(3, Z). Since Z3 is a normal nontrivial amenable subgroup of �, it is well known that �

is not C∗-simple. In aim to describe the maximal ideals of C∗
r (�), we decompose

C∗
r (�)  C∗

r

(
C∗

r (Z3), SL(3, Z), α
)  C∗

r

(
C(T3), SL(3, Z), α̃

)
,

where α (resp. α̃) denotes the associated action of SL(3, Z) on C∗
r (Z3) (resp. C(T3)). Now,

SL(3, Z) is exact [8] and belongs to P (since it has property (Pcom) [5]). Hence, appealing
to Corollary 3·12, the maximal ideals of C∗

r (�) are in a one-to-one correspondence with the
minimal closed invariant subsets of T3. The orbits of the action of SL(3, Z) on T3 are either
finite or dense (see for instance [15, 24]), hence the minimal closed invariant subsets of T3

are the orbits of rational points in T3 = R3/Z3.
Let x ∈ Q3/Z3 ⊂ T3 and let Gx denote the isotropy group of x in G = SL(3, Z). Then

identifying the (finite) orbit Ox of x in T3 with G/Gx , we get that the simple quotient Bx of
C∗

r (�) corresponding to Ox is given by the reduced crossed product

Bx = C∗
r (C(Ox), G, αx)  C∗

r (C(G/Gx), G, βx)

where αx is implemented by the action of G on Ox and βx is implemented by the canonical
left action of G on G/Gx . We note that Bx has a unique tracial state since G belongs to
P and there is obviously only one invariant state on C(Ox). Moreover, it follows from [9,
example 6·6] (see also [23, 32]) that Bx is Morita equivalent to C∗

r (Gx). This implies that Gx

is C∗-simple, a fact that may also be deduced from [17] (see also [28]) since Gx has finite
index in G.

4·4. Let � be an exact discrete group such that G = �/Z belongs to the class P , where
Z = Z(�) denotes the center of �. We can then easily deduce that the ideals of C∗

r (�) are
in a one-to-one correspondence with the open (resp. closed) subsets of the dual group Ẑ .
Indeed, using [1, theorem 2·1], we can decompose

C∗
r (�)  C∗

r

(
C∗

r (Z), G, id, ω
)  C∗

r

(
C(Ẑ), G, id, ω̂

)
where ω : G × G → U(C∗

r (Z)) is given by

ω(g, h) = λZ

(
n(g)n(h)n(gh)−1

)
, (g, h ∈ G),
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for some section n : G → � of the canonical homomorphism q : � → G such that
n(eG) = e�, while the second isomorphism is implemented by Fourier transform. So the
assertion follows from Gelfand theory and Proposition 3·13.

Some specific examples are as follows:

(i) consider � = SL(2n, Z) for some n ∈ N. Then Z = Z(�)  Z2. Also, G = �/Z =
P SL(2n, Z) is exact (cf. [8, Section 5.4]) and belongs to P (cf. [5]). Hence, we get that
C∗

r (SL(2n, Z)) has two nontrivial ideals;
(ii) consider the pure braid group � = Pn on n strands for some n � 3. Then Zn :=

Z(Pn)  Z and G = Pn/Zn is a weak Powers group (cf. [14] and [6]). Moreover Pn is
exact; this follows by induction on n, using the exact sequence

1 −→ Fn−1 −→ Pn/Zn −→ Pn−1/Zn−1 −→ 1

(cf. [14, proposition 6], where P2 = Z2 = 2Z) and the fact that extension of exact
groups are exact (cf. [8, proposition 5·11]). Hence, we obtain that the ideals of C∗

r (Pn)

are in a one-to-one correspondence with the open (resp. closed) subsets of T;
(iii) consider the braid group � = B3 (i.e. the trefoil knot group). Then, Z = Z(�)  Z,

and G = �/Z  Z2 ∗ Z3  P SL(2, Z) belongs to P . As, by definition of P3, we have
an exact sequence 1 → P3 → B3 → S3 → 1, where S3 denotes the symmetric group
on three symbols, it follows that B3 is exact. (This also follows from the fact that braid
groups are known to be linear groups.) Hence, we get that the ideals of C∗

r (B3) are in a
one-to-one correspondence with the open (resp. closed) subsets of T.

If one considers the braid group Bn on n strands for n � 4, then we believe that one should
arrive at the same result as the one for B3, but we don’t know for the moment whether Bn/Zn

belongs to the class P . The group Bn/Zn is known to be a ultraweak Powers group (cf. [1,
p. 536]), and Promislow has a result indicating that ultraweak Powers groups might be PH
groups (see [31, theorem 8·1]), but this is open in general.

5. Proof of Theorem 3·8
We start by representing B = C∗

r (�) faithfully on a Hilbert space. Without loss of gen-
erality, we may assume that A acts faithfully on a Hilbert space H, and let (π, λ) be any
regular covariant representation of � on the Hilbert space �2(G,H); as in [1], we will work
with the one defined by (

π(a)ξ
)
(h) = αh−1(a) ξ(h),(

λ(g)ξ
)
(h) = σ(h−1, g) ξ(g−1h),

for a ∈ A, ξ ∈ �2(G,H), h, g ∈ G.
We may then identify B with C∗(π(A), λ(G)). The canonical conditional expectation

from B onto π(A) will still be denoted by E . When x ∈ B, we set supp (x) = {g ∈ G |
x̂(g) � 0}, where x̂(g) = E(x λ(g)∗). We will let B0 denote the dense ∗-subalgebra of B
generated by π(A) and λ(G). So if x ∈ B0, we have

x =
∑

g ∈ supp (x)

x̂(g) λ(g) (finite sum).

If D ⊂ G, we let PD denote the orthogonal projection from �2(G,H) to �2(D,H) (identified
as a closed subspace of �2(G,H)).
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Moreover, if F ∈ �∞(G,B(H)), that is, F : G → B(H) is a map satisfying ‖F‖∞ :=
suph∈G ‖F(h)‖ < ∞, we let MF ∈ B(�2(G,H)) be defined by

(MF ξ)(h) = F(h) ξ(h) , ξ ∈ �2(G,H), h ∈ G,

noting that ‖MF‖ = ‖F‖∞ < ∞.
We remark that if a ∈ A and we let πa : G → B(H) be defined by πa(h) = αh−1(a) for

each h ∈ H , then πa ∈ �∞(G,B(H)) and Mπa = π(a).
Straightforward computations give that for F ∈ �∞(G,B(H)), D ⊂ G and g ∈ G, we

have

MF PD = PD MF , λ(g) PD = PgD λ(g). (5·1)

In passing, we remark that we also have λ(g) MF λ(g)∗ = MFg , where

Fg(h) = σ(h−1, g) F(g−1h) σ (h−1, g)∗.

As a sample, we check that the second equation in (5·1) holds. Let ξ ∈ �2(G,H) and h ∈ G.
Then we have

[(λ(g) PD)ξ ](h) = σ(h−1, g)(PDξ)(g−1h) =
⎧⎨⎩

σ(h−1, g) ξ(g−1h) if g−1h ∈ D,

0 if g−1h � D

=
⎧⎨⎩

σ(h−1, g) ξ(g−1h) if h ∈ gD,

0 if h � gD
=

⎧⎨⎩
(λ(g)ξ)(h) if h ∈ gD,

0 if h � gD

= [(PgD λ(g))ξ ](h), as desired.

Let H be a subgroup of G. By a simple H-averaging process on B, we will mean a linear
map φ : B → B such that there exist n ∈ N and h1, . . . , hn ∈ H satisfying

φ(x) = 1

n

n∑
i=1

λ(hi) x λ(hi)
∗ for all x ∈ B.

Moreover, an H-averaging process on B is a linear map ψ : B → B such that there exist
m ∈ N and φ1, . . . , φm simple H -averaging processes on B with ψ = φm ◦ φm−1 ◦ · · · ◦ φ1.

Let UG denote the subgroup of U(B) generated by the λ(g)’s and let ψ be a G-averaging
process on B. Clearly, for all x ∈ B, we then have

ψ(x) ∈ co
{
v x v∗ | v ∈ UG

}
.

Hence, to show that � has (the strong) property (DP), it suffices to show that for every
x∗ = x ∈ B satisfying E(x) = 0 and every ε > 0, there exists a G-averaging process ψ on
B such that ‖ψ(x)‖ < ε.

In fact, it suffices to show the last claim for every x∗ = x ∈ B0 satisfying E(x) = 0
and every ε > 0. Indeed, assume that this holds and consider some b∗ = b ∈ B satisfying
E(b) = 0 and ε > 0. Then pick y∗ = y ∈ B0 such that ‖b−y‖ � ε/3, and set x = y−E(y).
Then x∗ = x ∈ B0 and E(x) = 0, so we can find a G-averaging process on B such that
‖ψ(x)‖ < ε/3. Since ‖E(y)‖ = ‖E(y − b)‖ � ‖y − b‖ < ε/3 , we get

‖ψ(b)‖ � ‖ψ(b − y)‖ + ‖ψ(y − E(y))‖ + ‖ψ(E(y))‖
� ‖b − y‖ + ‖ψ(x)‖ + ‖E(y)‖ < ε,
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as desired.

5·1. In this subsection we will prove that Theorem 3·8 holds when G is a PH group, as
defined in [31]. We first recall the definition of a PH group.

If g ∈ G and A ⊂ G, then set

<g >A= {aga−1 | a ∈ A}.
Now, if T ⊂ G and �� M ⊂ G \ {e}, then T is said to be M-large (in G) if

m(G \ T ) ⊂ T for all m ∈ M.

Further, let � � F ⊂ G \ {e} and H ⊂ G. Then H is said to be a Powers set for F if, for
any N ∈ N, there exist h1, . . . , hN ∈ H and pairwise disjoint subsets T1, . . . , TN of G such
that Tj is h j Fh−1

j -large for j = 1, . . . , N . Moreover, if g ∈ G \ {e}, then H is said to be a
c-Powers set for g if H is a Powers set for <g >M for all finite, non-empty subsets M of H .

If G is a weak Powers group (see [1, 6, 17]), then G is a c-Powers set for any g ∈ G \ {e}.
More generally, G is said to be a PH group if, given any finite non-empty subset F of G\{e},
one can write F = { f1, f2, . . . , fn} and find a chain of subgroups G1 ⊂ G2 ⊂ · · · ⊂ Gn ⊂
G such that G j is a c-Powers set for f j , j = 1, . . . , n.

Note that in his definition of a PH group, Promislow just requires that one can find a
chain of subsets e ∈ G1 ⊂ G2 ⊂ · · · ⊂ Gn of G such that G j is a c-Powers set for
f j , j = 1, . . . , n. Requiring these subsets to be subgroups of G (or at least subsemigroups)
seems necessary to us for the proof of his main result, [31, theorem 5·3], to go through. We
will use the subsemigroup property in the proof of Lemma 5·3.

The class of PH groups has the interesting property that it closed under extensions [31,
theorem 4·6]1. For example, an extension of a weak Powers group by a weak Powers group
is a PH group (but not necessarily a weak Powers group).

We will need a lemma of de la Harpe and Skandalis ([18, lemma 1]; see also [1, lemma
4·3]) in a slightly generalised form. For completeness, we include the proof, which is close
to the one given in [18].

LEMMA 5·1. Let H be a Hilbert space and x∗ = x ∈ B(H). Assume that there exist
orthogonal projections p1, p2, p3 and unitary operators u1, u2, u3 on H such that

p1 x p1 = p2 x p2 = p3 x p3 = 0

and u1(1 − p1)u∗
1, u2(1 − p2)u∗

2, u3(1 − p3)u∗
3 are pairwise orthogonal. Then we have∥∥∥∥∥∥ 1

3

3∑
j=1

u j x u∗
j

∥∥∥∥∥∥ �
(

5

6
+

√
2

9

)
‖x‖ < 0.991 ‖x‖.

Proof. Without loss of generality, we may clearly assume that ‖x‖ = 1.
Set y = (1/3)�3

j=1u j x u∗
j and q j = u j (1 − p j )u∗

j , j = 1, 2, 3.
Let ξ ∈ H, ‖ξ‖ = 1. Since the q j ’s are pairwise orthogonal, there exists an index j such

that ‖q j ξ‖2 � 1/3. We may assume that j = 1, and set ξ1 = u∗
1 ξ .

As ‖(1 − p1) ξ1‖2 = ‖q1 ξ‖2 � 1/3, one has

‖p1ξ1‖2 � 2/3 and ‖p1 x (1 − p1) ξ1‖2 � 1/3 .

1 One easily checks that all the results in [31] are still true under our slightly more restrictive definition.
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Now, since p1 x p1 = 0 by assumption, we get

‖x ξ1 − ξ1‖ � ‖p1 ξ1 − p1 x ξ1‖ = ‖p1 ξ1 − p1 x (1 − p1)ξ1 − p1 x p1ξ1‖

�
∣∣ ‖p1 ξ1‖ − ‖p1 x (1 − p1)ξ1‖

∣∣ �
√

2 − 1√
3

.

As ‖x ξ1 − ξ1‖2 � 2 (1 − 〈x ξ1, ξ1〉), it follows that

〈
x ξ1, ξ1

〉
� 1 − 1

2
‖x ξ1 − ξ1‖2 � 1 − 1

2

(√
2 − 1√

3

)2

= 3 + 2
√

2

6
.

So, using the Cauchy–Schwarz inequality, we get〈
y ξ, ξ

〉
� 1

3

〈
x ξ1, ξ1

〉 + 2

3
� 1

3

(
3 + 2

√
2

6
+ 2

)
= 5

6
+

√
2

9
< 0.991.

The same argument with −x gives∣∣∣ 〈y ξ, ξ
〉 ∣∣∣ � 5

6
+

√
2

9
< 0.991.

Since y is self-adjoint, taking the supremum over all ξ ∈ H such that ‖ξ‖ = 1, we obtain

‖y‖ � 5

6
+

√
2

9
< 0.991 ,

as desired.

LEMMA 5·2. Let x∗ = x ∈ B0 satisfy E(x) = 0. Assume that supp (x) ⊂ F � F−1 for
some finite non-empty subset F of G \ {e} and that there exists a subgroup H of G which is
a Powers set for F.

Then there exists a simple H-averaging process φ on B such that

‖φ(x)‖ < 0.991 ‖x‖.
Proof. One easily sees that H is also a Powers set for S = F � F−1 (cf. [31, lemma 2·2]).

We may therefore pick h1, h2, h3 ∈ H and pairwise disjoint subsets T1, T2, T3 of G such that
Tj is h j Sh−1

j -large for j = 1, 2, 3.
For each j = 1, 2, 3, set E j = h−1

j Tj , D j = G \ E j and let p j be the orthogonal
projection from �2(G,H) onto �2(D j ,H). Then we have p j x p j = 0 for each j . Indeed, as
is easily checked, h j Sh−1

j -largeness of Tj means that

s D j � D j = � for every s ∈ S.

Thus, for a ∈ A and s ∈ S, using the identities in (5·1), we get p jπ(a)λ(s)p j =
π(a)p jλ(s)p j = π(a)PD j Ps D j λ(s) = 0. Since supp (x) ⊂ S, the above assertion read-
ily follows.

Moreover, for each j = 1, 2, 3, set q j = λ(h j )(1 − p j )λ(h j )
∗. Then q j is the ortho-

gonal projection from �2(G,H) onto �2(h j E j ,H) = �2(Tj ,H). Since the Tj ’s are pairwise
disjoint, the q j ’s are pairwise orthogonal. Thus, we can apply Lemma 5·1 and conclude that∥∥∥ 1

3

3∑
j=1

λ(h j ) x λ(h j )
∗
∥∥∥ < 0.991 ‖x‖

which shows the assertion.
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LEMMA 5·3. Let δ > 0, g ∈ G \ {e} and assume that there exists a subgroup H of G
which is a c-Powers set for g. Let x∗ = x ∈ B0 satisfy

supp (x) ⊂ <g >M � <g−1 >M

for some finite non-empty subset M of H.
Then there exists an H-averaging process ψ on B such that ‖ψ(x)‖ < δ.

Proof. By assumption, H is a Powers set for < g >M . Applying Lemma 5·2 (with F =
<g >M ), we get that there exists a simple H -averaging process φ1 on B such that ‖φ1(x)‖ <

d ‖x‖, where d = 0.991. Now, one easily checks (cf. [1, lemma 4·4]) that

supp
(
φ1(x)

) ⊂ <g >M1 � <g−1 >M1,

where M1 is a finite non-empty subset of H (since H is closed under multiplication, being a
subgroup). Moreover, φ1(x) is a selfadjoint element of B0 satisfying E(φ1(x)) = 0. Hence
we can apply Lemma 5·2 (with F =<g >M1 ) and get that there exists a simple H -averaging
process φ2 on B such that

‖φ2(φ1(x))‖ < d ‖φ1(x)‖ < d 2 ‖x‖.
Iterating this process, we get that for each k ∈ N, there exist simple H -averaging processes
φ1, . . . , φk on B such that

‖(φk ◦ · · · ◦ φ1)(x)‖ < d k ‖x‖.
Choosing k such that d k < δ gives the result.

THEOREM 5·4. Assume G is a PH group. Then � has property (DP).

Proof. Let x∗ = x ∈ B0 satisfy E(x) = 0, and let ε > 0. Write S = supp (x) as a disjoint
union S = R � F � F−1 where R = {s ∈ S | s2 = e}.

Consider R � F ⊂ G \ {e}. Since G is a PH group, we can write R � F = {s1, s2, . . . , sn}
and find a chain of subgroups G1 ⊂ G2 ⊂ · · · ⊂ Gn ⊂ G such that G j is a c-Powers set for
s j , j = 1, . . . , n. Thus, each G j is a Powers set for <s j >M , for all finite subsets M of G j .

Write x = �n
j=1 x j , where x∗

j = x j ∈ B0 and supp (x j ) = {s j } � {s−1
j } for each j . (Note

that if s j ∈ R, we have s−1
j = s j , so supp (x j ) = {s j } in this case.)

Since supp (x1) = < s1 >M � < s−1
1 >M , with M = {e} ⊂ G1, and G1 is a c-Powers set

for s1, Lemma 5·3 applies and gives that there exists a G1-averaging process ψ1 on B such
that ‖ψ1(x1)‖ < ε/n.

Now, consider x̃2 = ψ1(x2). Then supp (x̃2) ⊂ <s2 >M � <s−1
2 >M for some finite subset

M of G1. Since G1 is contained in G2, and G2 is a c-Powers set for s2, Lemma 5·3 applies
again and gives that there exists a G2-averaging process ψ2 on B such that ‖ψ2(x̃2)‖ < ε/n,
that is, ‖(ψ2 ◦ ψ1)(x2)‖ < ε/n.

Proceeding inductively, let 1 � k � n − 1 and assume that for each j = 1, . . . , k, we
have constructed a G j -averaging process ψ j on B, such that ‖(ψ j ◦ · · · ◦ψ1)(x j )‖ < ε/n for
j = 1, . . . , k. Then consider x̃k+1 = (ψk ◦ · · · ◦ ψ1)(xk+1). Then supp (x̃k+1) ⊂ < sk+1 >M

� < s−1
k+1 >M for some finite subset M of Gk . Since Gk is contained in Gk+1, and Gk+1

is a c-Powers set for sk+1, Lemma 5·3 applies and gives that there exists a Gk+1-averaging
process ψk+1 on B such that ‖ψk+1(x̃k+1)‖ < ε/n, that is, ‖(ψk+1 ◦ · · · ◦ ψ1)(xk+1)‖ < ε/n.
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Repeating this until k = n −1, we obtain, for each 1 � j � n, a G j -averaging process ψ j

on B such that ‖(ψ j ◦ · · · ◦ψ1)(x j )‖ < ε/n. Set ψ = ψn ◦ · · · ◦ψ1. Then ψ is a G-averaging
process on B and, for each 1 � j � n, we have

‖ψ(x j )‖ = ‖(ψn ◦ · · · ◦ ψ j+1 ◦ ψ j ◦ · · · ◦ ψ1)(x j )‖ � ‖(ψ j ◦ · · · ◦ ψ1)(x j )‖ < ε/n,

so we get

‖ψ(x)‖ �
n∑

j=1

‖ψ(x j )‖ < ε.

This shows that � satisfies (the strong) property DP.

5·2. We now turn to the proof that � has property (DP) when G satisfies property (Pcom).
We will adapt the arguments given in [5] to cover the twisted case. We recall from [5] that G
is said to have property (Pcom) when the following holds given any non-empty finite subset
F ⊂ G \ {e}, there exist n ∈ N, g0 ∈ G and subsets U, D1, . . . , Dn of G such that:

(i) G \ U ⊂ D1 � · · · � Dn ;

(ii) g U � U = � for all g ∈ F ;

(iii) g− j
0 Dk � Dk = � for all j ∈ N and k = 1, . . . , n .

LEMMA 5·5. (c f. [5]). Let g ∈ G \ {e} and assume there exist n ∈ N and subsets
U, D1, . . . , Dn of G such that

G \ U ⊂ D1 � · · · � Dn and g U � U = �.

Let F ∈ �∞(
G,B(H)

)
and ξ, η ∈ �2(G,H). Then we have

| 〈 MFλ(g)ξ, η
〉 | �

n∑
j=1

(‖MFλ(g)ξ‖ ‖PD j η‖ + ‖PD j ξ‖ ‖M ∗
F η‖) . (5·2)

Proof. We set V = G \ U , and note that PU Pg U = PU � g U = 0. Thus, making use of
(5·1), we get〈

MFλ(g)ξ, η
〉 = 〈

MFλ(g)PU ξ, η
〉 + 〈

MFλ(g)PV ξ, η
〉

= 〈
Pg U MFλ(g) ξ, (PU + PV ) η

〉 + 〈
λ(g)PV ξ, M ∗

F η
〉

= 〈
Pg U MFλ(g) ξ, PV η

〉 + 〈
λ(g)PV ξ, M ∗

F η
〉
.

Thus, the triangle inequality and the Cauchy–Schwarz inequality give

| 〈 MFλ(g) ξ, η
〉 | � | 〈 Pg U MFλ(g) ξ, PV η

〉 | + | 〈 λ(g)PV ξ, M ∗
F η

〉 |
� ‖MFλ(g) ξ‖ ‖PV η‖ + ‖PV ξ‖ ‖M ∗

F η‖

�
n∑

j=1

(‖MFλ(g) ξ‖ ‖PD j η‖ + ‖PD j ξ‖ ‖M ∗
F η‖)

since ‖PV ζ‖ � �n
j=1‖PD j ζ‖ for any ζ ∈ �2(G,H), as is easily checked, using that V ⊂

D1 � · · · � Dn .
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LEMMA 5·6. Let D ⊂ G, ζ ∈ �2(G,H) and assume there exist N ∈ N and g1, . . . , gN ∈
G such that g1 D, . . . , gN D are pairwise disjoint. Then we have

N∑
j=1

‖Pg j D ζ‖ �
√

N ‖ζ‖.

Proof. The Cauchy–Schwarz inequality and the assumption give

N∑
j=1

‖Pg j D ζ‖ �
√

N
[ N∑

j=1

‖Pg j D ζ‖2
]1/2

= √
N

[ ∑
h ∈ g1 D �···� gN D

‖ζ(h)‖2
]1/2

�
√

N ‖ζ‖.
LEMMA 5·7. Assume that G has property (Pcom).

Let F be a finite non-empty subset of G \ {e}, ag ∈ A for each g ∈ F, and set
y0 = �g ∈ F π(ag) λ(g) ∈ B. Then we have

0 ∈ co{v y0 v∗ | v ∈ UG} ‖·‖
.

Proof. Since G has property (Pcom), we may pick n ∈ N, g0 ∈ G and subsets
U, D1, . . . , Dn of G so that (i), (ii) and (iii) in the definition of property (Pcom) hold with
respect to the given F .

For each j ∈ N, we set g j = g − j
0 . Moreover, for each N ∈ N, we set

yN = 1

N

N∑
j=1

λ(g j ) y0 λ(g j )
∗ ∈ co{v y0 v∗ | v ∈ UG}.

We will show that

‖yN‖ � 2 n√
N

∑
g∈F

‖ag‖. (5·3)

Thus, we will get that ‖yN‖ → 0 as N → ∞, from which the assertion to be proven will
clearly follow.

To prove (5·3), fix N ∈ N. Since

yN = 1

N

∑
g ∈ F

N∑
j=1

λ(g j ) π(ag) λ(g) λ(g j )
∗,

we have

‖yN‖ � 1

N

∑
g ∈ F

‖zg‖, (5·4)

where zg = �N
j=1 λ(g j ) π(ag) λ(g) λ(g j)

∗ for each g ∈ F .
Let g ∈ F and ξ, η ∈ �2(G,H). As condition (iii) implies that for each k ∈ {1, 2, . . . , n},

the sets g1 Dk, . . . , gN Dk are pairwise disjoint, Lemma 5·6 gives that

N∑
j=1

‖Pg j Dk η‖ �
√

N ‖η‖ and
N∑

j=1

‖Pg j Dk ξ‖ �
√

N ‖ξ‖. (5·5)
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Using Lemma 5·5 N times (with MF = π(ag)) at the second step, we get

|〈zg ξ, η〉| �
N∑

j=1

∣∣〈π(ag)λ(g) λ(g j )
∗ ξ, λ(g j )

∗ η
〉∣∣

�
N∑

j=1

n∑
k=1

(‖π(ag)λ(g) λ(g j)
∗ ξ‖ ‖PDk λ(g j )

∗ η‖

+ ‖PDk λ(g j )
∗ ξ‖ ‖π(ag)

∗ λ(g j )
∗ η‖)

�
N∑

j=1

n∑
k=1

(‖π(ag)‖ ‖ξ‖ ‖Pg j Dk η‖ + ‖Pg j Dk ξ‖ ‖π(ag)‖ ‖η‖)

= ‖ag‖
n∑

k=1

⎛⎝‖ξ‖ ( N∑
j=1

‖Pg j Dk η‖) + ‖η‖ ( N∑
j=1

‖Pg j Dk ξ‖)
⎞⎠

� ‖ag‖ 2 n
√

N ‖ξ‖ ‖η‖,
where we have used (5·5) to get the final inequality.

This implies that

‖zg‖ � 2 n
√

N ‖ag‖.
Using (5·4), we therefore get

‖yN‖ � 1

N
2 n

√
N

∑
g∈F

‖ag‖ = 2 n√
N

∑
g∈F

‖ag‖ ,

that is, the inequality (5·3) holds, as desired.

THEOREM 5·8. Assume that G has property (Pcom). Then � has property (D P).

Proof. Lemma 5·7 shows that if x ∈ B0 satisfies E(x) = 0, and ε > 0, then there exists a
G-averaging process on B such that ‖ψ(x)‖ < ε. Hence, it follows that � has (the strong)
property (DP).

Note that the proof of Theorem 5·8 in fact implies that when G has property (Pcom), then
� satisfies that

0 ∈ co{v y v∗ | v ∈ UG} ‖·‖
(5·6)

for every y ∈ B satisfying E(y) = 0. As mentioned in Remark 3·2, this is true whenever �

satisfies the strong form of property (DP) (hence also when G is a PH group):

PROPOSITION 5·9. Assume that � satisfies the strong form of property (D P). Then (5·6)

holds for every y ∈ B satisfying E(y) = 0.

Proof. Let y ∈ B satisfy E(y) = 0 and ε > 0. Write y = x1 + i x2, where x1 = Re(y),
x2 = Im(y). Note that E(x1) = (E(y) + E(y)∗)/2 = 0, and, similarly, E(x2) = 0. Using
the assumption, we can find a G-averaging process ψ1 on B such that ‖ψ1(x1)‖ < ε/2.
Now, set x̃2 = ψ1(x2). Then x̃2 is self-adjoint, and, using the equivariance property of E ,
one deduces that E(x̃2) = 0. Hence, we can find a G-averaging process ψ2 on B such that
‖ψ2(x̃2)‖ < ε/2. Set ψ = ψ2 ◦ ψ1. Then we get

‖ψ(y)‖ � ‖ψ(x1)‖ + ‖ψ(x2)‖ � ‖ψ1(x1)‖ + ‖ψ2(x̃2)‖ < ε,

and it follows that (5·6) holds.
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[19] P. DE LA HARPE and J.-P. PRÉAUX. C∗-simple groups: amalgamated free products, HNN-extensions,

and fundamental groups of 3-manifolds. J. Topol. Anal. 3 (2011), 451–489.
[20] N. HINDMAN, L. LEGETTE and D. STRAUSS. The number of minimal left and minimal right ideals

in βS. Topology Proc. 39 (2012), 45–68.
[21] N. HINDMAN and D. STRAUSS. Algebra in the Stone–Cech compactification – Theory and applica-

tions (2nd revised and extended ed.). (De Gruyter, Berlin/Boston, 2012).
[22] N. A. IVANOV. On the structure of some reduced amalgamated free product C∗-algebras. Internat. J.

of Math. 22 (2011), 281–306.
[23] E. KIRCHBERG and S. WASSERMANN. Permanence properties of C∗-exact groups. Doc. Math. J. 4

(1999), 513–558.
[24] R. MUCHNIK. Semigroup actions on Tn . Geom. Dedicata 110 (2005), 1–47.
[25] A. OLSHANSKII and D. OSIN. C∗-simple groups without free subgroups. Groups Geom. Dyn. 8

(2014), 933–983.
[26] J. A. PACKER and I. RAEBURN. Twisted crossed products of C∗-algebras. Math. Proc. Camb. Phil.

Soc. 106 (1989), 293–311.
[27] J. PETERSON and A. THOM. Group cocycles and the ring of affiliated operators. Invent. Math. 185

(2011), 561–592.
[28] S. POPA. On the relative Dixmier property for inclusions of C∗-algebras. J. Funct. Anal. 171 (2000),

139–154.
[29] R. T. POWERS. Simplicity of the C∗-algebra associated with the free group on two generators. Duke

Math. J. 42 (1975), 151–156.
[30] T. POZNANSKY. Characterisation of linear groups whose reduced C∗-algebras are simple. Preprint

(2008), arXiv:0812.2486.



On maximal ideals in certain reduced twisted C*-crossed products 417
[31] S. D. PROMISLOW. A class of groups producing simple, unique trace C∗-algebras. Math. Proc. Camb.

Phil. Soc. 114 (1993), 223–233.
[32] J. C. QUIGG and J. SPIELBERG. Regularity and hyporegularity in C∗-dynamical systems. Houston J.

Math. 18 (1992), 139–152.
[33] A. SIERAKOWSKI. The ideal structure of reduced crossed products. Münster J. Math. 3 (2010), 237–

262.
[34] R. D. TUCKER–DROB. Shift-minimal groups, fixed price 1, and the unique trace property. Preprint

(2012), arXiv:1211.6395.
[35] D. P. WILLIAMS. Crossed Products of C∗-Algebras. Mathematical Surveys and Monographs, vol.

134 (Amer. Math. Soc., Providence, RI, 2007).
[36] G. ZELLER-MEIER. Produits croisés d’une C∗-algèbre par un groupe d’automorphismes. J. Math.
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