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My doctoral thesis presents the main findings of a research started in 2006 as a 

project funded by the National Institute for Occupational Safety and Prevention 

(ISPESL), in order to assess some aspects of air pollution in relationship with the 

possible adverse effects on human health. 

Air pollution, both indoor and outdoor, is a well-known risk factor for human 

health, studied for many years, but still being researched because of the complexity 

of the issue. Current scientific evidences highlight some critical points which 

contribute to the difficulties of the studies regarding the health impact of air 

pollution: 

1. several airborne contaminants can cause different adverse effects on human 

health (US EPA 2010); the present research was focused principally on benzene. 

Benzene is one of the most important air pollutant both in terms of quality and 

quantity: 

a. recognized as a class I carcinogen (sufficient evidences of carcinogenicity in 

humans) by the International Agency for Research on Cancer (IARC 1982); 

b. described as an “ubiquitous” environmental pollutant by the World Health 

Organization (inhalation is the main pathway of human exposure); 

c. considered a “health-based European Union priority substance” by the 

European Union (Bruinen de Bruin et al. 2008). 

2. The concentration of air pollutants may experience significant temporal and 

spatial changes: in addition to the known daily and seasonal variations in 

atmospheric contaminants levels (Fuselli et al. 2002; Fuselli et al. 2010), 

differences in pollutants concentrations depend also on the considered 

environments; for instance, pollutants arising from motor vehicle traffic, such as 

particulate air pollutants and volatile organic compounds may reach levels up to 

ten fold higher in the autovehicles than in outdoor air. Likewise, the 

concentration of air pollutants can be higher in indoor rather that in outdoor air 

(WHO 2006a,b; 2010). This evidence is even more significant considering that, 

globally, people spend the great part of their time in indoor environments 

(Hellweg et al. 2009). 
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The scientific interest for indoor air pollution and the link with the possible 

adverse effects on human health has grown considerably in recent years. To 

support this assertion, different editions of the air quality guidelines published by 

the World Health Organization can be mentioned: in the first edition (WHO 

1987), indoor air pollution was only discussed in a chapter on radon and in a 

compendium on tobacco smoke; in the second edition (WHO 2000), a specific 

section dedicated to indoor pollution was added, while in a successive global 

update for some selected air pollutants (WHO 2006b) there were several sections 

related to specific indoor contaminants (WHO 2010). In addition, the results of a 

recent systematic review (Prüss-Ustün et al. 2010), performed to estimate the 

health impact of global exposure to some environmental contaminants, showed 

that, in 2004, 4.9 million deaths could be attributed to the exposure to 

environmental pollutants. The greatest contribution was determined by the 

contaminants present in indoor environments, produced by heating and cooking 

activities (40.8%), outdoor pollutants (24.5%) and passive smoking (12.2%). 

As regard to benzene, several studies showed that the mean indoor 

concentrations are generally higher (until two times) than those in outdoor air 

(Weisel et al. 2010). The indoor concentrations of benzene derived from the sum 

of atmospheric benzene and the amount of the substance produced in confined 

spaces. Outdoor benzene concentrations are mainly due to traffic sources, while 

indoor benzene levels are related principally to cigarette smoke, and to other 

sources of emission such as building materials and furniture, heating and cooking 

systems, stored solvents and various human activities (WHO 2010). 

3. The assessment of human exposure to air pollution and related health effects in 

epidemiological studies is the weakest step of the risk assessment and 

management process. Several strategies may be adopted, but each of them 

presents critical aspects. Proximity models assume that closer proximity is equal 

to greater exposure, while inhalation models and biomarker estimates are most 

effective in assessing personal exposure, but are too expensive for large study 

populations. Relevant advantages could be obtained through the development of 

‘hybrid’ models (Jerret et al. 2005; Zou et al. 2009), which use the positive 
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characteristics of the existing methods integrated with geospatial information 

technologies. 

4. There are different degrees of susceptibility for different population groups: 

some subgroups have been recognized as particularly vulnerable to the effects of 

air pollutants, such as patients with diseases, elderly persons, pregnant women 

and children. Children, in particular, are the general population group that spends 

more time in confined environments; besides, the World Health Organization 

Task Force for the environmental health of the children said that “children are 

not little adults” but they should be considered “unique”. Therefore, specific 

studies are needed to estimate the risk of adverse effect on children health 

resulting from air pollutants exposure (Anderson et al. 2000; WHO 2005). 

The review of the scientific literature showed that, over the years, numerous 

researches have been conducted to evaluate the health impact of benzene exposure 

both for occupational settings and for adults not professionally exposed, but there 

are lack evidences related to benzene exposure in children and dedicated research to 

explore this issue are required. 

The overall aim of the present doctoral thesis was to characterize a profile of 

exposure to air pollution, with specific reference to benzene, in a sample of Italian 

children. 
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The research was conducted according to different phases: 

Preliminary knowledge phase 

This phase consisted in the search of the scientific literature on “non-occupational 

exposure to benzene” in the electronic databases MEDLINE via PubMed, 

TOXNET, and Web of Science. The recovered literature was then accurately 

examined in order to identify 

 the most appropriate methodology for the assessment of exposure to low 

doses of benzene; 

 the main factors affecting benzene exposure in the general population, 

particularly in paediatric age. 

The results of the literature review evidenced that the best method to evaluate 

benzene exposure in general population was by biological monitoring, in particular 

the detection in urine (u) samples of unmodified benzene (UB) and its two main 

metabolites, trans,trans-muconic acid (t,t-MA) and S-phenylmercapturic acid 

(SPMA) (Johnson et al. 2007). 

As regard to the main factors influencing the exposure to benzene in non-

occupational scenarios, scientific literature showed that the degree of air pollution in 

residence area and cigarette smoke were the most important source of exposure. 

Development of a questionnaire “ad hoc” to investigate possible factors associated with benzene 

exposure in childhood 

The questionnaire was designed to obtain information on the socio-demographic 

characteristics of the children and their families, the activities of the participant 

during the sampling day and during a “typical” day of the last year, household 

characteristics, and information about cohabitants’ smoking habits and precautions 

taken by at-home smokers. 

The questionnaire, previously validated, was filled out by each child’s parents. 
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Study area 

The research was conducted in three areas of central Italy whose urbanization 

characteristics allowed us to classify as follows: very urban, fairly urban and non 

urban. The choice of the areas was based on relevant urbanization indicators from 

national databases (National Institute of Statistics, Italian Automobile Club) from 

2007-2008-2009 (the years in which the present study took place). 

The selected urbanization indicators were: 

– Resident population: total number of persons who usually live in the area. 

– Population density: number of individuals living in the area divided by its 

surface area. 

– Green area density: percentage of green areas in relation to total municipal 

territory. 

– Motorization rate: number of auto vehicles and two wheeled vehicles per 100 

inhabitants. 

Areas were also selected on the basis of the airborne concentrations of some 

indicators of urban air pollution, as available from the environmental monitoring 

program performed by the Regional Environmental Protection Agency 

(ARPALAZIO): Carbon Monoxide (CO) and Nitrogen Dioxide (NO2). 

Sample enrollment 

In each area, a district primary school was recruited; 348 children attended the very 

urban school, 150 children attended the fairly urban school, and 166 children 

attended the non urban school. 

The measurement campaigns were conducted on Wednesdays during the winter of 

the academic years 2007-2008 and 2008-2009. 

All of the students attending each school and their parents received information 

about the goals and plans of the research and were invited to take part in the cross-

sectional study. Formation meetings for all children and their parents on the 

modalities to compile the questionnaire and to collect and store urine sample were 

carried on just before sampling days. 
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One urine sample for each participant was collected in the evening (just before 

bedtime) in a benzene-free polypropylene bottle with hermetic closure, and 

immediately stored in the refrigerator at 4°C. The next morning, the sample was 

placed into a polystyrene cooler containing an ice pack and delivered together with 

the compiled questionnaire to the research team. 

Biological monitoring 

Spot urine samples were divided into two aliquots: a 14-mL aliquot was poured into 

a 20-mL glass vial previously added with 4 g of NaCl, promptly closed with a rubber 

lid with a polyperfluoroethylene lining, and crimped with an aluminum seal for u-

UB determination; and about 2 mL of specimen was partitioned into multiple plastic 

tubes for u-t,t-MA, u-SPMA, u-cotinine, and u-creatinine determinations. All 

samples were coded and then frozen at -20°C until analysis. Samples were analyzed 

within 30 days from sampling. 

Analytical determinations were performed as follows: 

 determination of u-UB: headspace solid phase micro extraction (SPME) 

followed by gas chromatography-mass spectrometry (GC-MS) (Vitali et al. 

2006). 

 determination of u-t,t-MA, u-SPMA, u-cotinine: microcapillary high-

performance liquid chromatography (LC MS / MS) (Manini et al. 2008); 

 determination of u-creatinine: Jaffé method (Henry 1974). 

Statistical analyses 

Information resulting from questionnaires were coded and entered into a database 

specifically created for the research. Statistical analyses were carried out using SPSS 

software (version 14.0 for Windows, Chicago, IL). 

Main findings step by step 

In total, 501 out of 665 children, aged between 5 and 11 years, were included in the 

study. The average rate of participation in the monitoring campaigns amounted to 

75.5%. 
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Firstly, statistical elaborations were performed on data derived from the fairly urban 

and non urban monitoring campaigns. The results evidenced that among all the 

information investigated by the questionnaires, and evaluated as potential predictors 

of benzene exposure, variables that significantly influenced the urinary excretion of 

benzene biomarkers were the degree of urbanization of residence area and the 

exposure to passive smoking (also called environmental tobacco smoke - ETS or 

secondhand smoke - SHS). 

The first interesting results on exposure to benzene as urban pollutant: the median 

levels of all urinary analytes (u-UB, u-t,t-MA and u-SPMA) of children were about 

1.5-fold higher in children living in fairly urban area than in those in the non urban 

group. These differences became more clear in the group of children unexposed to 

ETS. As regard to passive smoking exposure, u-UB was the only biomarker able to 

discriminate exposure in both fairly urban and non urban children. These results are 

also confirmed by the significant positive correlation between u-UB and u-cotinine 

(the “gold standard” biomarker of exposure to active and passive smoking), both in 

all children and in children exposed to passive smoking. 

The influence of passive smoke exposure - and smoking habits in general - on 

biological indices of benzene exposure is commonly considered negative, especially 

when these biomarkers must be used to assess benzene exposure in the workplace. 

The contribution of smoke to benzene excretion alters the role of biomarkers as 

indices of exposure due to the chemicals present in the workplace; for this reason, 

the guidelines and research in the field have judged u-t,t-MA and u-SPMA to be the 

best biological indices of benzene exposure (ACGIH 2009) and suggested a careful 

evaluation of smoking exposure when u-UB is used (Barbieri et al. 2008; Lovreglio 

et al. 2010). The influence of passive smoking exposure on u-UB excretion and the 

suitability of u-UB to differentiate between children exposed to passive smoking 

and those who were unexposed might be considered an advantageous characteristic 

of this biomarker, especially because it could permit one to assess exposure to low 

concentrations of benzene and passive exposure at the same time. U-UB could 

represent a good “carcinogen-derived biomarker” of exposure to passive smoking, 

specifically related to benzene, because it is a known carcinogen present in tobacco 
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smoke. A review of carcinogen-derived biomarkers and their application in studies 

of human exposure to passive smoking examined data on u-t,t-MA as a biomarker 

of benzene uptake derived from ETS exposure. The article concludes that, 

collectively, “benzene uptake in humans is not consistently associated with passive 

smoking exposure” (Hecht 2004). On the contrary, our results suggest that there is a 

strong association between human benzene uptake and passive smoking exposure, 

especially in children. 

For this reasons, we went on with the research to study in depth two new issues: 

- the evaluation of air pollution impact on exposure to benzene in children by 

using the biomarkers u-t,t-MA and u-SPMA that resulted not affected by 

passive smoking exposure; 

- the evaluation of the relationship between ETS exposure of children and 

related benzene intake. 

1. Evaluation of air pollution impact on exposure to benzene in children by using 

the biomarkers u-t,t-MA and u-SPMA, that resulted not affected by passive smoking 

exposure 

Human biomonitoring of exposure is a mandatory method to evaluate personal 

exposure to air pollution, and to provide data on profile exposure of general 

population to support environmental and public health policies. Given the well-

known differences of exposure to air pollution between children and adults in terms 

of magnitude of exposure and susceptibility to adverse effects, it is necessary to 

perform separate studies for the assessment of exposure to air pollutants for 

children and adults. Despite a great number of researches performed on urban 

benzene exposure for adult population is available, very few data are available for 

children. 

As regard to u-SPMA, results show that its levels increase following the increase of 

the degree of urbanization of residence area: 

– u-SPMA levels of children living in very urban area are, on average, 3.3 and 

4.8 times higher than those of children living in fairly and non urban area, 

respectively; 
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– u-SPMA levels of children living in fairly urban area are, on average, 1.5 

times higher than those of children living in non urban area. 

As regard to u-t,t-MA, differences in excretion levels related to the degree of 

urbanization of residence area in children living in very urban and fairly urban areas 

were revealed only by the multivariate analyses. The lack of specificity of u-t,t-MA 

in adult population exposed to very low concentration of urban benzene was 

demonstrated by previous researches (Pezzagno et al. 1999; Renner et al. 1999; 

Weaver et al. 2000; Aprea et al. 2008; Weisel et al. 2010; Lovreglio et al. 2011). The 

most common explanation of this result is the influence of the diet on u-t,t-MA 

excretion: u-t,t-MA is also a metabolite of sorbic acid, a common food additive. 

The other important source of benzene exposure for general population not 

occupationally exposed to benzene is tobacco smoke. The present study evidences 

no significant differences in children exposed to ETS respect to children unexposed, 

according to the results of other previous researches performed to assess benzene 

exposure in children (Weaver et al. 1996; Amodio-Cocchieri et al. 2001; Bahrami 

and Edward 2006). These findings contribute to consider u-SPMA and u-t,t-MA as 

good biomarkers for assessing urban benzene exposure in childhood. 

In conclusion, both u-SPMA and u-t,t-MA are able to assess urban benzene 

exposure in childhood, even if u-SPMA should be taken in higher consideration 

because u-t,t-MA confirmed its less specificity for benzene exposure in the 

magnitude of sub-ppm exposures (general population scenario). 

 

2. Evaluation of the relationship between ETS exposure of children and related 

benzene intake. 

Scientific literature highlights some critical points about the issues “passive smoking 

exposure” and “passive smoking-derived benzene exposure”: 

– passive smoking is a significant risk factor for health, especially for children 

(US PHS 2006); 
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– passive smoking contains over 5,000 compounds, including many substances 

that are toxics for human health or carcinogens, such as benzene (IARC 

2004); 

– household environment is the main source of exposure to passive smoking 

for children; even some researchers have hypothesized that bans on smoking 

in public places could adversely affect children’ health by shifting smoking 

into the domestic environment; 

– benzene is present in tobacco smoke in sufficient concentrations to explain 

up to half of the estimated cases of acute myeloid leukaemia (IARC 2004); 

– much research has been conducted to assess the links between youth 

benzene exposure, passive smoking exposure and the risk of 

lymphohematopoietic cancer in childhood; however this research has yielded 

contradictory findings (Chang 2009). On the other hand, considering the 

prolonged latency of the disease and the early initiation of exposure, the 

possibility of cancers in adulthood after ETS exposure during childhood 

cannot be excluded; 

– actually, there is a gap of research dedicated to the issue “ETS-related 

benzene exposure levels in childhood”. 

Thus, we tried to answer to two questions remain unresolved: 1) Can u-UB be used 

as tobacco-related carcinogen biomarker? 2) How can smoking behaviours of 

cohabitant(s) smoker(s) impacts on the benzene exposure of children? 

For this purpose, we considered just the u-UB data and information derived from 

the monitoring campaign performed on children living in the non urban area (to 

avoid as much as possible the influence of benzene present in atmospheric air due 

to motor vehicle traffic). The results showed significant differences in u-UB levels 

between passive smoking exposed and unexposed children. Besides, the excretion of 

u-UB increased significantly in parallel to increased ETS exposure as follows: 

unexposed to ETS < cohabitant(s) smoker(s) not smoking inside the home < 

cohabitant(s) smoking inside the home only when children are out < cohabitant(s) 

smoking inside the home even when children are in. 

These findings strongly highlight that: 
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– u-UB may be a good indicator of benzene exposure specifically due to 

passive smoking; 

– the smoking is a health threat for smokers and for others with whom they 

share an environment, regardless the household “precautions” of smokers; 

– urinary benzene levels of children living in non urban areas at low traffic 

density but exposed to passive smoking may result higher than those of 

children living in urban areas but unexposed to passive smoking. This fact 

may nullify the benefits of living far from traffic pollutants; 

– children passive smoking exposure increases in parallel with incorrect 

household smoking behaviors of cohabitants smokers. 

The last mentioned point highlights that the precaution measures “smoking at home 

only when children are not there” or “smoking only outside the home” are not 

actual precaution measures. This consideration led us to further investigate the 

impact of the behaviours and influence of “home smoking policy” in a large sample 

of children using u-cotinine, defined as the gold standard biological marker of 

exposure to passive smoking. For this purpose, several statistical elaborations were 

performed on all the children participant to the research (n = 501). 

The main findings showed that: 

 over one third of the smokers cohabiting with study participants do not 

observe any home-smoking restrictions and smoke inside the home even in 

the presence of children; 

 children’s u-cotinine levels increase in a parallel pattern as the home-smoking 

restrictions adopted by cohabitants decrease: 

o the u-cotinine levels of children living with smokers who do not 

smoke at home are 1.4 times higher than those of children who do 

not have any cohabitants who smoke; 

o the u-cotinine levels of children living with smokers who smoke at 

home only when that child is out are 1.7 times higher than those of 

children whose cohabitants smoke, but never at home; 
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o the u-cotinine levels of children living with smokers who smoke at 

home even when that child is home are 1.4 times higher than those of 

children whose cohabitants smoke at home only when that child is 

out. 

Consequently, the habit of smoking at home only when children are not there or 

smoking only outside the home decreases the exposure to passive smoking, but do 

not correspond to a complete lack of exposure. This argument can be related to the 

“thirdhand” smoke (THS) - so called to distinguish it from SHS. SHS is defined as 

“the combination of smoke emitted from the burning end of a cigarette or other 

tobacco products and smoke exhaled by the smoker” (WHO 2007). Thus, SHS 

exposure consists of an unintentional inhalation of smoke that occurs close to 

people smoking and/or in indoor environments where tobacco was recently used. 

THS is the residue from tobacco smoke that persists on the clothing and hair of 

smokers, on environmental surfaces, and in dust long after a cigarette has been 

extinguished (Invernizzi et al. 2007; Winickoff et al. 2009); this complex 

phenomenon is significant because it demonstrates that many components of 

tobacco smoke, including benzene, can persist in an indoor environment beyond the 

period of active smoking. THS is a major public health concern because it highlights 

the impossibility to maintaining a safe level of exposure to tobacco smoke and also 

because nicotine residues in the domestic environment can react with ambient 

nitrous acid to form new tobacco-specific, carcinogenic nitrosamines (Destaillats et 

al. 2006; Sleiman et al. 2010; Matt et al. 2011a,b; Burton 2011; Petrick et al. 2011). 

The differences in passive smoking exposure are presumably attributable to a 

combination of SHS and THS, which likely contribute to the total ETS exposure in 

variable proportions, depending on the habits of and the precautions adopted by 

cohabitant smokers. 
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ABSTRACT 

Introduction Benzene is a widespread air pollutant and a well-known human 

carcinogen. Evidence is needed regarding benzene intake in the pediatric age group. 

We investigated the use of urinary (u) trans,trans-muconic acid (t,t-MA), S-

phenylmercapturic acid (SPMA), and unmodified benzene (UB) for assessing 

exposure to low concentrations of environmental benzene and the role of living 

environment on benzene exposure in childhood. 

Material and Methods u-t,t-MA, u-SPMA, u-UB and u-cotinine were measured in 

urine samples of 243 Italian children (5-11 years) recruited in a cross-sectional study. 

Analytical results were compared with data obtained from questionnaires about 

participants’ main potential exposure factors. 

Results u-UB, u-t,t-MA and u-SPMA concentrations were about 1.5-fold higher in 

children living in urban areas than in those in the rural group. Univariate analyses 

showed that u-UB was the only biomarker able to discriminate secondhand smoke 

(SHS) exposure in urban and rural children (medians = 411.50 and 210.50 ng/L, 

respectively); these results were confirmed by the strong correlation between u-UB 

and u-cotinine in the SHS-exposed group and by multivariate analyses. A regression 

model on u-SPMA showed that the metabolite is related to residence area (p < 

0.001), SHS exposure (p = 0.048) and gender (p = 0.027). 

Conclusion u-UB is the best marker of benzene exposure in children in the present 

study, and it can be used as a good carcinogen-derived biomarker of exposure to 

passive smoking, especially related to benzene, when urine sample is collected at the 

end of the day. In addition, it is important to highlight that SHS resulted the most 

important contributor to benzene exposure, underlining the need for an information 

campaign against passive smoking exposure. 
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INTRODUCTION 

In recent decades, the potential adverse effects on human health of pollution of 

living environments have caused great concern worldwide (WHO 2006a). In this 

context, one of the most important health-based European Union priority 

substances is benzene (Bruinen de Bruin et al. 2008), a well-known human 

carcinogen classified in group 1 (carcinogenic to humans) by the International 

Agency for Research on Cancer (IARC) since 1982. Strong evidence links benzene 

exposure with lymphohematopoietic cancers, particularly acute myeloid leukemia 

(IARC 1982; Lamm et al. 2009). 

For this reason the use of benzene - an organic compound historically employed in 

numerous production and synthesis processes - has been progressively reduced and 

is rigorously regulated by occupational exposure limits and by air quality standards 

set by the European legislation for the general environment (European Commission 

2000). 

However, benzene exposure still occurs today because of its presence in 

petrochemical solvents, automobile gasoline, fuel, and their emissions. 

Environmental tobacco smoke (ETS) is another important source of benzene 

(Johnson et al. 2007). 

Benzene is a widespread, diffused air pollutant in outdoor and indoor environments. 

Its adverse health effects for the general population cannot be neglected, especially 

in the context of exposure to low concentrations for a prolonged period. 

Children are considered a high-risk population for both acute and chronic effects of 

environmental hazards because they are much more susceptible than adults are 

(Weaver et al. 1998; Barton et al. 2005; Duderstadt 2006; van Leeuwen et al. 2008). 

Children’s increased vulnerability is due to several factors, such as exposure, 

physiological characteristics, and pharmacokinetics. With regard to exposure, 

children absorb more from their surroundings than adults, even when exposed to 

the same concentrations of environmental contaminants. For example, per kilogram 

bodyweight, the daily intake of air has been estimated to be 2.3 times higher in 
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children than in adults, intake of fluids 4.8 times higher, and intake of food 6.1 times 

higher (Armstrong et al. 2002). 

Moreover, one must consider differences in the biologically effective doses that 

reach target organs in children and adults. Thus, if the exposure to environmental 

pollution starts during childhood, the risk of adverse health effects with long latency 

becomes very high (Wild and Kleinjans 2003). 

For these reasons, the World Health Organization (WHO) Task Force for the 

Protection of Children’s Environmental Health, in the Bangkok statement, declared 

that children cannot be considered “little adults” with regard to the risk of adverse 

health effects resulting from exposure at an early age and exposure assessment tools 

(Anderson et al. 2000). 

Research has yielded conflicting findings with respect to the link between benzene 

exposure in childhood and the risk of lymphohematopoietic cancer. However, in 

these studies, researchers considered only secondhand smoke (SHS) exposure, not 

other sources of benzene, and the possibility of cancers in adulthood after SHS 

exposure during childhood (Chang 2009). 

Several exposure assessment studies have shown that children are exposed to low 

environmental concentrations of benzene. Many studies conducted on adults who 

are not professionally exposed to benzene suggest that urinary trans,trans-muconic 

acid (u-t,t-MA), urinary S-phenylmercapturic acid (u-SPMA) and urinary unmodified 

benzene (u-UB) serve as good exposure markers for benzene (Waidyanatha et al. 

2001; Fustinoni et al. 2005; Johnson et al. 2007; Barbieri et al. 2008; Lovreglio et al. 

2010), although their abilities to discriminate different levels of exposure (especially 

at low levels) are currently under evaluation. 

Only a few research studies are available in the literature on the specific magnitude 

of children’s exposure to benzene (Minoia et al. 1996; Weaver et al. 1996; Duarte-

Davidson et al. 2001; Amodio- Cocchieri et al. 2001; Kouniali et al. 2003; Adgate et 

al. 2004; Bahrami and Edwards 2006; Ruchirawat et al. 2007). These studies were 

conducted using predictive models of daily benzene intake in different exposure 

scenarios or by monitoring levels of benzene in the air and/or biological exposure 
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indices, such as u-UB, u-t,t-MA, u-SPMA, and urinary phenol. At present, no 

research on children’s exposure to low doses of benzene has been performed using 

u-UB, u-t,t-MA, and u-SPMA as biomarkers. 

Due to the current lack of research in this area, there is a significant need to better 

evaluate benzene exposure during childhood and to determine which tools to use 

for assessment purposes. 

The objectives of the present research were: 

– To evaluate the abilities of u-UB, u-t,t-MA, and u-SPMA to assess exposure 

to low concentrations of environmental benzene in the pediatric age group; 

and  

– To investigate the impacts of living environment and cohabitants’ habits on 

benzene exposure in childhood. 

 

MATERIALS AND METHODS 

Study area 

The research was conducted in two areas of central Italy whose urbanization 

characteristics allowed us to classify one as urban and the other as rural. The choice 

of the areas was based on relevant urbanization indicators from national databases 

(National Institute of Statistics, Italian Automobile Club) from 2007, the year in 

which the present study took place. The selected urbanization indicators were: 

– Resident population: total number of persons who usually live in the area. 

– Population density: number of individuals living in the area divided by its 

surface area. 

– Green area density: percentage of green areas in relation to total municipal 

territory. 

– Motorization rate: number of motor vehicles per 100 inhabitants. 

Summary information about these urbanization indicators for the urban and rural 

areas is reported in Table 1. 
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Table 1. Summary information on relevant urbanization indicators of the selected urban 
and rural areas in 2007 
 

 
Resident 

population 
(n) 

Population density  
(persons per km2) 

Green area density  
(% of total municipal 

territory) 

Motorization rate 
(number of vehicles 
per 100 inhabitants) 

Urban area 32,886 395 < 85 76 

Rural area 3,308 120 > 85 66 

 

In each area, a district primary school was recruited; 150 children attended the urban 

school, and 166 children attended the rural school. 

Study population and design 

All of the students attending each school and their parents received information 

about the goals and plans for the research and were invited to take part in the cross-

sectional study. The overall participation rate was 76% (urban: 81% and rural: 73%, 

respectively). 

Study subjects were 243 apparently healthy children between 5 and 11 years of age 

who were presumably exposed to benzene as a pollutant. 

Detailed information about socio-demographic characteristics, activities engaged in 

on the sampling day, living environment, and lifestyle factors of the investigated 

subjects was obtained from a questionnaire completed by their parents. 

The measurement campaigns were conducted on Wednesdays during the winter of 

2007. 

Before the monitoring day, we conducted formation meetings for all children and 

their parents on the modalities to compile the questionnaire and to collect and store 

urine sample. 

One urine sample for each participant was collected in the evening (just before 

bedtime) in a benzene-free Polypropylene bottle with hermetic closure, and 

immediately stored in the refrigerator at 4 °C. 
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The next morning, the sample was placed into a polystyrene cooler containing an ice 

pack and was delivered to the research team. 

Biological monitoring 

Spot urine samples were divided into two aliquots: a 14-mL aliquot was poured into 

a 20-mL glass vial previously added with 4 g of NaCl, promptly closed with a rubber 

lid with a polyperfluoroethylene lining, and crimped with an aluminum seal; and 

about 2 mL of specimen was partitioned into multiple plastic tubes for u-t,t-MA, u-

SPMA, urinary cotinine (u-cotinine), and u-creatinine determinations. 

All samples were coded and then frozen at -20 °C until analysis. 

A total of 243 urine samples were collected; 18 samples were rejected due to 

unsatisfactorily closure; besides, the volume of some other samples was not enough 

to carry out the whole set of analyses. 

Consequently, analytical determinations were performed on 185 vials for u-UB and 

on 225 tubes for u-t,t-MA, u-SPMA, u-cotinine, and u-creatinine. Samples were 

analyzed within 30 days from sampling. 

Determination of u-UB 

u-UB was determined by headspace solid phase micro extraction (SPME) followed 

by gas chromatography-mass spectrometry (GC-MS) according to procedures 

outlined in Vitali et al. (2006). We used a 5973 GC-MS operating in Selected 

IonMonitoring (SIM)mode (Agilent, Santa Clara, CA, USA) equipped with a 30 

m×0.25 mm×0.25 μm HP-VOC column (HP, Palo Alto, CA, USA). Pesticide-grade 

reagents, high-purity benzene and benzene d-6were supplied by Carlo Erba (Milan, 

Italy); all standards were used without further purification. The SPME apparatus, 

fitted with a 75-μm carboxen/polydimethylsiloxane fiber, was purchased from 

Supelco (Bellefonte, PA, USA). 

Before analysis, the vials were conditioned at room temperature and then 

maintained at 60 °C for 1 h. The SPME fiber was held in the headspace for 10 min 

to reach the partition equilibrium, and then it was retracted into the needle and 
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immediately inserted into the GC injector for thermal desorption. No carry-over 

effects were observed. 

The chromatographic conditions were as follows: splitless injection port (at 290 °C) 

with purge valve closed for 3 min; helium carrier gas at 1 mL/min; column 

temperature was maintained at 50 °C for 5 min and then increased at 15 °C/min to 

200 °C; dwell time was set at 50 ms/ion; and monitored ions were 78 and 52 m/z 

for benzene and 84 m/z for benzene-d6. 

Quantitative determination was conducted using benzene d-6 as the internal 

standard (IS). The linearity of the method was tested by spiking urine samples at 50, 

100, 250, 500, 1000 and 2000 ng/L. The results showed good linearity, with a 

correlation coefficient of 0.998. 

The coefficient of variation of the method (CV%) was below 9.8% for all intra- and 

inter-day determinations. 

The limit of detection (LOD), calculated as the signal to noise ratio (S/N) N3, was 8 

ng/L. All analytical determinations were above the corresponding limits of 

detection. 

Determination of u-t,t-MA, u-SPMA, u-cotinine, and u-creatinine 

The samples were analyzed using a methodology that has been previously described 

and extensively used in previous publications (Manini et al. 2008). 

Adjustment for urinary creatinine. U-t,t-MA, u-SPMA and u-cotinine were adjusted 

for u-creatinine and expressed as μg/g creatinine. U-UB levels were not adjusted for 

u-creatinine because u-UB is excreted into urine through a concentration-dependent 

passive process that involves tubular reabsorption, while creatinine is eliminated 

through glomerular filtration and is not reabsorbed (Boeniger et al. 1993, Serdar et 

al. 2003). 

Statistical analyses 

Statistical analyses were carried out using SPSS software (version 14.0 for Windows, 

Chicago, IL). 
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The first data showed that the biomarkers’ levels were not normally distributed. 

Therefore, parallel analyses were conducted with non-parametric techniques 

(Kolmogorov-Smirnov test, Mann-Whitney test, and Spearman’s correlation 

coefficients) and corresponding parametric methods on natural log-transformed 

data (t-test for independent or paired samples and Pearson’s correlation 

coefficients). 

Descriptive statistical elaborations were performed on all selected children and on 

the following four subgroups, which were categorized based on the two most 

important exposure factors (urbanization of residence area and exposure to SHS): 

1. Urban area children exposed to SHS 

2. Rural area children exposed to SHS 

3. Urban area children unexposed to SHS 

4. Rural area children unexposed to SHS 

All children were considered to be exposed to SHS if they lived in households 

where at least one person was a smoker. 

Simple linear regression analyses were used to assess the relationship between u-UB, 

u-t,t-MA, u-SPMA and u-cotinine. 

Forward multiple linear regression analysis was run on the entire sample to assess 

the role of SHS exposure status, residence area and other independent variables on 

selected urinary biomarkers (u-UB, u-t,t-MA, and u-SPMA). In every model, the 

natural log-transformed value of each urinary biomarker was included as a 

dependent variable, and the covariates were as follows: residence area (0 = rural 

area, 1 = urban area), SHS exposure status (0 = unexposed to SHS, 1 = exposed to 

SHS), gender (male = 0, female = 1), and age (0 = 1st, 2nd, or 3rd grade of primary 

school, 1 = 4th or 5th grade of primary school). 

The significance level for all tests was p ≤ 0.05 (two-tailed). Linear regression 

analyses were run using a significance level of 0.05 for entry and 0.10 for removal 

from the model. The “goodness of fit” of the model was assessed using R2 statistics. 
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RESULTS 

Descriptive characteristics of the studied subjects are presented in Table 2. 

 

Table 2. General characteristics of study individuals 
 

  Total children Urban area Rural area 

Gender (%) 
Male 51.8 52.3 51.3 

Female 48.2 47.7 48.8 

Grade of primary 
school (%) 

1st 21.0 20.5 21.4 

2nd 18.8 19.6 17.9 

3rd 19.7 18.8 20.5 

4th 20.5 24.1 17.1 

5th 20.1 17.0 23.1 

SHS exposure 
status (%) 

Exposed 39.7 23.7 56.0 

Unexposed 60.3 76.3 44.0 

Number of 
cohabitant smokers 

(only in SHS 
exposed group) (%) 

1 78.6 67.2 70.7 

> 1 21.4 32.8 29.3 

Number of 
cigarettes smoked 
daily by cohabitant 

smoker (mean) 

Total 14.4 6.6 17.8 

At home 8.7 8.0 9.1 

Home dimension 
(%) 

≤ 80 m2 15.8 9.5 22.8 

> 80 m2- ≤120 m2 49.7 44.8 55.5 

> 120 m2 34.5 45.7 21.7 

Proximity with high 
traffic area (%) 

No 93.7 89.1 98.3 

Yes 6.3 10.9 1.7 

Time (min) spent 
in different 

environments 
during sampling 
day until urine 

collection 
Mean ± SD 

At school (indoor 
environment) 

443.99 ± 75.85 461.54 ± 38.36 429.27 ± 90.38 

Other indoor 
environments 

263.85 ± 97.79 240.09 ± 83.90 290.00 ± 102.29 

Outdoor 
environments 

51.84 ± 60.83 58.47 ± 49.33 47.18 ± 68.53 

Motor vehicles 26.27 ± 43.68 21.69 ± 21.28 29.40 ± 52.00 

 

The two groups were comparable with respect to gender and time spent in indoor 

and outdoor environments. The percentage of children who lived in a rural area 

who were exposed to SHS was greater than the percentage of SHS-exposed children 

in the urban group (56.0% versus 23.7%). In addition, Table 2 shows a wide range 

of time spent in motor vehicles on the sampling day between subjects, especially in 

rural children (mean = 21.29 min; SD = 52.00 min). 

The ability of u-UB, u-t,t-MA, and u-SPMA levels to differentiate exposure due to 

air pollution and SHS was evaluated through univariate statistical analysis for all 
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children and for the four categorized subgroups. The same test was applied for u-

cotinine, to demonstrate its role as a metabolite specific to SHS exposure (Benowitz 

1996; Haufroid and Lison 1998; Keskinoglu et al. 2007). The results are reported in 

Table 3 (all children) and Table 4 (the four subgroups). 

In addition, further potential sources of benzene (activities of the child in the last 

year, house characteristic, home heating devices, and possible indoor sources such 

as chemical containing benzene) were investigated by the questionnaire. All heating 

devices except two were feed by methane, while no significance was found for the 

other variables (data not shown). 



 

Table 3. Summary statistics for urinary analytes in all children according to residence area (urban vs. rural area) 
 

 AMa ASDb GMc GSDd Median IQ Rangee 
5° - 95° 

percentile 
Range Min- Max pf pg 

u-UB ng/L 

Urban 415.60 455.80 269.80 0.90 237.00 170.00 - 429.00 64.50 - 1820.80 2,058 36 - 2,094 
0.011 0.006 

Rural 293.32 320.50 184.76 0.96 180.00 87.25 - 347.25 45.45 - 1245.00 1,455 37 - 1,492 

u-t,t-MA µg/g creatinine 

Urban 132.96 99.45 110.56 0.60 114.95 66.29 - 166.98 45.66 - 253.78 821.66 24.84 - 846.50 
<0.001 <0.001 

Rural 80.21 81.37 64.15 0.61 65.04 45.62 - 89.56 26.81 - 180.22 659.07 13.76 - 672.83 

u-SPMA µg/g creatinine 

Urban 0.31 0.17 0.27 0.51 0.28 0.20 - 0.40 0.10 - 0.59 1.14 0.07 - 1.21 
0.001 0.001 

Rural 0.24 0.13 0.22 0.51 0.22 0.16 - 0.30 0.08 - 0.51 0.73 0.05 - 0.78 

u-cotinine µg/g creatinine 

Urban 3.75 4.29 2.59 0.81 2.55 1.50 - 4.12 0.84 - 13.25 26.53 0.43 - 26.95 
0.010 0.014 

Rural 5.37 7.89 3.42 0.85 3.40 2.04 - 4.59 0.10 - 18.10 51.95 0.24 - 52.20 

u-UB: urinary unmodified benzene; u-t,t-MA: urinary trans,trans-muconic acid; u-SPMA: urinary S-phenilmercapturic acid; u-cotinine: urinary cotinine 
aAM: Arithmetic Mean 

bSD: Arithmetic Standard Deviation 
cGM: Geometric Mean 
dGSD: Geometric Standard Deviation (calculated as the Standard Deviation of ln-trasformed data) 
eIQ Range: Interquartile Range 
fMann–Whitney U-test was used to compare urban and rural areas 
gUnpaired t-test was used to compare urban and rural areas (ln-trasformed data) 



 

Table 4. Summary statistics for urinary analytes in children differentiated according to residence area and secondhand smoke (SHS) exposure 
 

 
u-UB 
ng/L 

u-t,t-MA 
µg/g creatinine 

u-SPMA 
µg/g creatinine 

u-cotinine 
µg/g creatinine 

 Urban Rural p Urban Rural p Urban Rural p Urban Rural p 

Exposed to SHS 

AMa 746.83 493.26 

0.394h 
0.400i 

156.58 67.53 

< 0.001h 
< 0.001i 

0.35 0.25 

0.007h 
0.011i 

6.96 7.48 

0.595h 
0.833i 

ASDb 659.33 367.16 155.11 31.87 0.21 0.13 6.97 10.33 

GMc 468.25 389.40 120.89 60.93 0.31 0.23 4.85 4.64 

GSDd 1.07 0.70 0.68 0.46 0.52 0.46 0.83 0.87 

Median 411.50 359.50 121.18 63.41 0.33 0.23 4.36 3.77 

IQ Rangee 234.25 - 1,188.50 267.75 - 629.50 65.67 - 182.70 47.26 - 86.25 0.23 -0.42 0.18 - 0.29 2.72 - 7.08 2.61 - 7.12 

5° - 95° 
percentile 

74.25 - 2,039.50 101.15 - 1,418.70 36.95 - 652.62 28.17 - 127.98 0.11 - 1.00 0.10 - 0.50 1.23 - 26.77 1.51 - 34.37 

Range 2,020 1,422 817.80 167.49 1.10 0.70 25.88 51.23 

Min - Max 74 - 2,094 70 - 1,492 28.70 - 846.50 22.52 - 190.01 0.11 - 1.21 0.12 - 0.35 1.10 - 26.95 0.97 - 52.20 

Unexposed to SHS 

AM 311.54 107.10 

< 0.001h 
< 0.001i 

125.80 98.53 

< 0.001h 
< 0.001i 

0.30 0.24 

0.014h 
0.008i 

2.72 2.88 

0.144h 
0.233i 

SD 303.98 67.58 75.07 117.39 0.15 0.13 2.33 1.93 

GM 227.81 89.76 107.52 69.51 0.26 0.20 2.10 2.43 

GSD 0.78 0.60 0.57 0.77 0.51 0.58 0.70 0.59 

Median 210.50 92.50 113.14 71.78 0.27 0.20 2.07 2.64 

IQ Range 167.25 - 329.50 51.25 - 141.50 68.94 - 161.06 37.45 - 98.67 0.18 - 0.38 0.14 - 0.30 1.24 - 3.15 1.51 - 3.65 

5° - 95° 
percentile 

56.40 - 914.45 37.10 - 275.70 45.13 - 250.62 23.17 - 410.42 0.10 - 0.58 0.07 - 0.54 0.61 - 7.02 0.86 - 6.13 

Range 1,914 259 480.20 659.07 0.75 0.60 13.50 11.81 

Min - Max 36 - 1,950 37 - 296 24.84 - 505.04 13.76 - 672.83 0.07 - 0.82 0.05 - 0.66 0.43 - 13.92 0.64 - 12.45 

pf 0.003 < 0.001  0.486 0.409  0.159 0.281  < 0.001 < 0.001  

pg 0.001 < 0.001  0.386 0.279  0.159 0.204  < 0.001 < 0.001  

u-UB: urinary unmodified benzene; u-t,t-MA: urinary trans,trans-muconic acid; u-SPMA: urinary S-phenilmercapturic acid; u-cotinine: urinary cotinine. 
aAM: Arithmetic Mean; bASD: Arithmetic Standard Deviation; cGM: Geometric Mean; dGSD: Geometric Standard Deviation; eIQ Range: Interquartile Range; fMann–Whitney U-test was used to compare 
exposed and unexposed to SHS; gUnpaired t-test was used to compare exposed and unexposed to SHS (ln-trasformed data); hMann–Whitney U-test was used to compare urban and rural areas; iUnpaired t-test 
was used to compare urban and rural areas (ln-trasformed data). 
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With regard to air pollution, levels of all urinary analytes were significantly different 

between the urban and rural children: u-UB, u-t,t-MA and u-SPMA concentrations 

were about 1.5-fold higher in the high-exposure group (urban) than in the low-

exposure group (rural). 

With respect to SHS exposure status, u-UB was the only biomarker able to 

discriminate SHS exposure in both urban and rural children (median = 411.50, p < 

0.003 in the urban group; median = 210.50, p < 0.001 in the rural group). 

The impact of SHS exposure status on u-UB, u-t,t-MA and u-SPMA concentrations 

also highlights the differences of biomarker levels between urban and rural children 

when differentiated according to SHS exposure status: significant differences 

between the median values of u-t,t-MA and u-SPMA were clear for urban and rural 

children in the SHS-exposed and -unexposed groups, while with u-UB the 

difference is only seen in the unexposed group. 

Table 4 shows that u-cotinine excretion was significantly higher among the SHS-

exposed group when compared with the unexposed group in both urban and rural 

children; this result confirms the reliability of the questionnaire to collect 

information on the smoking habits of the studied children’s cohabitants. 

Table 5 reports the results of simple regression analyses among biological markers in 

all of the investigated children and in children classified according to SHS status. 
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Table 5. Simple regression analyses between urinary biomarkers in children exposed and 
unexposed to secondhand smoke (SHS) 
 

  Indipendent variable 

 
Dependent 

variable 
u-t,t-MA u-SPMA u-cotinine 

All children 

u-UB 
y = 5.107 + 0.044 * x y = 5.232 - 0.064 * x y = 5.087 + 0.259 * x 

p = 0.557 (n = 179) p = 0.393(n = 179) p < 0.01 (n = 179) 

u-t,t-MA 
 y= 5.703 + 0.601 * x y= 4.236 + 0.083 * x 

 p < 0.01 (n = 225) p = 0.215 (n = 225) 

u-SPMA 
  y= - 1.594 + 0.110 * x 

  p = 0.098(n = 225) 

Unexposed 

to SHS 

u-UB 
y = 4.236 + 0.151 * x y = 4.945 - 0.049 * x y = 5.246 - 0.243 * x 

p = 0.124 (n = 105) p = 0.620 (n = 105) p = 0.030 (n = 105) 

u-t,t-MA 
 y = 5.835 + 0.596 * x y = 4.180 + 0.238 * x 

 p < 0.01 (n = 131) p < 0.01 (n = 131) 

u-SPMA 
  y = -1.647 + 0.222 * x 

  p < 0.01 (n = 131) 

Unexposed 

to SHS (with 

exclusion of 

3 outliners) 

u-UB 
y = 4.341 + 0.142 * x y = 5.075 - 0.006 * x y = 5.224 - 0.152 * x 

p = 0.155 (n = 102) p = 0.953 (n = 102) p = 0.128 (n = 102) 

u-t,t-MA 
 y = 5.753 + 0.563 * x y = 4.429 + 0.222 * x 

 p < 0.01 (n = 128) p = 0.012 (n = 128) 

u-SPMA 
  y = -1.612 + 0.207 * x 

  p = 0.019 (n = 128) 

Exposed to 

SHS 

u-UB 
y = 6.015 + 0.000 * x y = 5.577 - 0.192 * x y = 5.294 + 0.474 * x 

p = 1.000 (n = 65) p = 0.126 (n = 65) p < 0.01 (n = 65) 

u-t,t-MA 
 y = 5.500 + 0.611 * x y = 3.879 + 0.177 * x 

 p < 0.01 (n = 85) p = 0.105 (n = 85) 

u-SPMA 
  y = -1.728 + 0.154 * x 

  p = 0.158 (n = 85) 

u-UB: urinary unmodified benzene; u-t,t-MA: urinary trans,trans-muconic acid; u-SPMA: urinary S-
phenilmercapturic acid; u-cotinine: urinary cotinine. 
The concentrations of all analytes were ln-transformed. U-UB is expressed as ng/L. 
u-t,t-MA, u-SPMA and u-cotinine are expressed as a function of creatinine concentration (µg/g creatinine) 
for simple regression with u-UB. Simple regression between u-t,t-MA, u-SPMA and u-cotinine in the same 
sample were performed on concentrations expressed in µg/L. 

 

 

Significant correlations were found between u-SPMA and u-t,t-MA both in all 

children and in exposed and unexposed SHS groups, with similar equations (u-t,t-

MA = 5.703 + 0.601 * u-SPMA for all children, u-t,t-MA = 5.835 + 0.596 * u-

SPMA for children unexposed to SHS, and u-t,t-MA = 5.500 + 0.611 * u-SPMA for 

children exposed to SHS). In addition, in the subgroup of children unexposed to 

SHS, u-SPMA and u-t,t-MA were most closely correlated to u-cotinine. 
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Good positive relations were found between u-UB and u-cotinine in all children and 

in the exposed to SHS group, while for these variables an inverse relationship was 

found among the unexposed subgroup (u-UB = 5.246 - 0.243 * u-cotinine; p = 

0.03). However, the significant inverse relationship was lost when children 

considered not exposed to SHS with a very high value of u-cotinine (three children 

with u-cotinine > 10 μg/g creatinine) were excluded from the SHS unexposed 

group (u-UB = 5.224 - 0.152 * u-cotinine; p = 0.128). 

Significant correlations were found between u-SPMA and u-t,t-MA both in all 

children and in exposed and unexposed SHS groups, with similar equations (u-t,t-

MA = 5.703 + 0.601 * u-SPMA for all children, u-t,t-MA = 5.835 + 0.596 * u-

SPMA for children unexposed to SHS, and u-t,t-MA = 5.500 + 0.611 * u-SPMA for 

children exposed to SHS). In addition, in the subgroup of children unexposed to 

SHS, u-SPMA and u-t,t-MA were most closely correlated to u-cotinine. 

Fig. 1 shows the correlations between u-UB and u-cotinine in the samples of 

children exposed to SHS. 

 

 

Figure 1. Relationships between urinary unmodified benzene (u-UB) and urinary cotinine 
(u-cotinine) in samples from children exposed to secondhand smoke (SHS) (number of 
sample = 65) 
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Finally, multiple linear regression analyses were run to assess the independent roles 

of age, gender, urban pollution, and SHS exposure on selected urinary biomarkers 

(u-UB, u-t,t-MA, and u-SPMA). Table 6 shows unstandardized and standardized 

regression coefficients, p and R2 of the final models. 

 

Table 6. Significant predictors of urinary concentration of benzene biomarkers (natural 
log-transformed data) in forward multiple linear regression models 
 

Dependent 
variable 

Independent 
variable 

Ba SEb βc p 
R2 of the 
model 

u-UB ng/Le 

Constant d 4.684 0.110  < 0.001 

0.337 
SHS exposure 

(exposed) 
1.120 0.130 0.568 < 0.001 

Residence 
area (urban) 

0.685 0.127 0.357 < 0.001 

u-t,t-MA 
µg/g 

creatininee 

Constant d 4.170 0.059  < 0.001 
0.159 Residence 

area (urban) 
0.529 0.085 0.404 < 0.001 

u-SPMA 
µg/g 

creatininee 

Constant d -1.698 0.077  < 0.001 

0.072 

Residence 
area (urban) 

0.277 0.077 0.257 < 0.001 

Gender 
(female) 

0.164 0.074 0.153 0.027 

SHS exposure 
(exposed) 

0.157 0.079 0.143 0.048 

u-UB: urinary unmodified benzene; u-t,t-MA: urinary trans,trans-muconic acid; u-SPMA: urinary S-
phenilmercapturic acid. 
aB = unstandardized regression coefficients. 
bSE = standard error. 
cβ = standardized regression coefficients. 
dConstant = estimated intercept value. 
eVariables considered: Residence area (urban vs. rural), SHS exposure status (exposed vs. unexposed), age (1st, 
2nd, and 3rdgrade vs. 4th and 5th grade of primary school), gender (female vs. male). 

 

 

The results confirmed an association of the u-UB concentrations with both SHS 

exposure (β = 0.568, p < 0.001) and residence area (β = 0.357, p < 0.001); the 

applied regression model explained up to 33.7% of the u-UB levels. 

With respect to the other benzene biomarkers, u-t,t-MA was dependent only on 

residence area and explained 15.9% of the variance; in contrast, u-SPMA was 

associated with residence area, SHS exposure and female gender, even though the 
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regression model only explained a small fraction of variance of the metabolite 

(7.2%). 

 

DISCUSSION 

The present research studied the validity of u-UB, u-t,t-MA and u-SPMA as 

biomarkers to assess benzene exposure in children and to study in depth the effects 

of passive smoking and environmental exposure to low levels of benzene on the 

results. U-UB, u-t,t-MA and u-SPMA are the three biological markers of benzene 

exposure considered most suitable for detecting low exposure environmental 

benzene by experts in the field, but to our knowledge, this is the first study that has 

compared u-UB, u-t,t-MA and u-SPMA to establish the best biological indices of 

benzene exposure during childhood. 

Urinary levels of benzene biomarkers present a great variability. This finding is in 

line with data reported in other recent studies on children and general population 

(Johnson et al. 2007). In our study, levels varied from a low of 36 to high of 2,094 

ng/L for u-UB, from 13.76 to 672.83 μg/g creatinine for u-t,t-MA, and from 0.05 

to 0.66 μg/g creatinine for u-SPMA, while other researches reported urinary 

concentrations ranges of 27-2,060 ng/L for u-UB (Waidyanatha et al. 2001), 28-840 

μg/g creatinine for u-t,t-MA (Amodio-Cocchieri et al. 2001), and < 2-6 for u-SPMA 

(van Sittert et al. 1993). 

Maximum levels of all biomarkers resulted for “worst cases” (urban children 

exposed to SHS). However, urinary biomarkers were found in all the analyzed 

samples, confirming the ubiquitous diffusion of benzene even in rural 

environments. 

Significantly larger values of all analyzed biological indices were observed in children 

living in urban areas compared to the rural area group (Table 3), as already reported 

by other authors. Amodio-Cocchieri et al. (2001) observed mean urinary u-t,t-MA 

levels of 141.2 ± 145.4 μg/g creatinine in children who lived in cities and 109.8 ± 

133.2 μg/g creatinine in those living in small towns. Similarly, Ruchirawat et al. 

(2007) reported that u-t,t-MA was more than twofold higher in Bangkok school 
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children than in school children living outside Bangkok. With regard to u-SPMA, 

research conducted in Australia showed a significant difference in metabolite 

concentrations in the urine of children living in homes situated more than 200 m 

from a main road compared to children living in homes situated less than 200 m 

from a main road (3.09 and 9.40 μg/g creatinine, respectively) (Bahrami and 

Edwards 2006). These results are hardly surprising considering that benzene is a 

known traffic-related pollutant. It is clear, in fact, that children living in urban areas 

are exposed to higher levels of air pollutants, such as benzene, than are children in 

rural areas, who are exposed to much less traffic congestion; however, the 

comparison of data between urban and rural groups permitted us to confirm the 

sensitivity of these biomarkers and their suitability for the assessment of 

environmental benzene exposure at and below ppm levels. 

Apart from urban pollution, another important source of benzene exposure during 

childhood is passive smoking, especially in the household environment. In the 

univariate analysis, the u-UB levels are similar in urban and rural children exposed to 

SHS, while the median values of u-t,t-MA and u-SPMA are greater in urban than in 

rural children. This apparent anomaly could be explained by the strong influence of 

passive smoke on the u-UB, and its lower impact on u-t,t-MA and SPMA: same 

statistical analyses, performed on unexposed to SHS, show a significant difference 

between rural and urban groups, emphasizing the role of residence area on urinary 

excretion of benzene. Besides, our data show that only u-UB (out of the three 

biomarkers) distinguished between children exposed and not exposed to SHS both 

in the urban and rural groups; these results were also confirmed by the significant 

positive relationship between u-UB and u-cotinine in all samples and in the 

subgroup exposed to SHS (Table 5). 

These results are in agreement with other previous studies. Minoia et al. (1996), for 

instance, evaluated u-UB as a biomarker of benzene exposure during childhood and 

found a significant increase of u-UB in the group exposed to SHS compared with 

unexposed subjects; on the contrary, other research carried out on u-t,t-MA 

(Weaver et al. 1996; Amodio-Cocchieri et al. 2001) and u-SPMA (Bahrami and 
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Edwards 2006) has reported no significant differences between children whose 

parents were smokers versus those who were non-smokers. 

The influence of passive smoke exposure - and smoking habits in general - on 

biological indices of benzene exposure is commonly considered negative, especially 

when these biomarkers must be used to assess benzene exposure in the workplace. 

The contribution of smoke to benzene excretion could alter the role of biomarkers 

as indices of exposure due to chemicals present in the workplace; for this reason, 

the guidelines and research in the field have judged u-t,t-MA and u-SPMA to be the 

best biological indices of benzene exposure (ACGIH 2009) and suggested a careful 

evaluation of smoking exposure when u-UB is used (Barbieri et al. 2008; Lovreglio 

et al. 2010). 

The influence of passive smoke exposure on u-UB excretion and the suitability of u-

UB to differentiation between children exposed to SHS and those who were 

unexposed (as found in our study), might be considered an advantageous 

characteristic of this biomarker, especially because it could permit one to assess 

exposure to low concentrations of benzene and SHS exposure at the same time. 

Today, in addition to the need for a specific biomarker to assess benzene exposure 

in children, an index of passive smoking exposure is under evaluation (Florescu et 

al. 2009). In this context, u-cotinine is considered a very sensitive and specific 

method to assess ETS exposure as cotinine is a major metabolite of nicotine and 

presents a relatively long plasma half-life (about 20 hours) (Gourlay et al. 1996); our 

results confirmed this assumption. Despite this, it is noteworthy that u-cotinine 

concentration must be corrected for creatinine excretion, while benzene can be 

expressed directly as ng analyte/L of urine without the necessity of additional 

analysis for adjustment. Moreover, u-UB could represent a good “carcinogen-

derived biomarker” of exposure to SHS, specifically related to benzene, because it is 

a known carcinogen present in tobacco smoke. A review of carcinogen-derived 

biomarkers and their application in studies of human exposure to SHS examined 

data on u-t,t-MA as a biomarker of benzene uptake derived from SHS exposure; on 

the basis of available data, the review concluded that, collectively, “benzene uptake 

in humans is not consistently associated with SHS exposure” (Hecht 2004). On the 
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contrary, our results suggest that there is a strong association between human 

benzene uptake and passive smoking exposure, especially in children. Carcinogen-

derived biomarker evaluation might offer not only distinction between individuals 

exposed and unexposed to passive smoking but also information about the amount 

of carcinogen actually absorbed into the body and carcinogen metabolism in 

humans. 

An apparent anomalous preliminary result is the significant inverse correlation 

between u-UB and u-cotinine in children unexposed to SHS. Statistical significance 

failed when three children with u-cotinine levels > 10 μg/g creatinine were excluded 

from analysis. These three children presented very low benzene concentrations (< 

100 ng/L in all cases) and they were unexposed to SHS in domestic environment 

according to questionnaire. Against, the same children presented high values of u-

cotinine and, even if there isn’t an universal cut-off of u-cotinine to distinguish 

exposed and unexposed to SHS, these levels are probably due to an occasional 

exposure to passive smoke many hours preceding urine sampling. 

The strong association between u-UB and SHS exposure status can be seen also 

from the results of the final multiple linear regression analysis (Table 6): the most 

important contributor to u-UB excretion in the present study was SHS exposure 

status (β = 0.568, p < 0.001). These results can be attributed to the choice of 

collecting urine samples during the evening, just before bedtime; it is known that 

unmodified benzene released in urine reflects exposure during the preceding hours 

because of its relatively short biological half-life in the human body (approximately a 

couple of hours) (Waidyanatha et al. 2001). Thus, since most of the studied 

population spent the afternoon and evening of the sampling day at home, probably 

due to the winter season, benzene intake in those hours was likely due to indoor 

benzene levels. As a matter of fact, one could assume that it is unlikely that the 

children in the present study smoke or are exposed to ETS at school, and benzene 

levels are highest in indoor environments, above all when smokers are present. With 

regard to the latter issue, the INDEX project of the European Commission 

(European Commission 2005) found that mean indoor levels of benzene were 

typically higher than the respective outdoor concentrations all over Europe. In 
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addition, when tobacco smoke was present in indoor air, the recovered quantity of 

benzene was two-fold higher than the outdoor levels. 

The choice of collecting the urine samples in the evening could explain even the 

strong relationship of u-t,t-MA with u-SPMA but not with u-UB (Table 5). U-t,t-

MA and u-SPMA present longer elimination half-lives than u-UB, but they are 

comparable with each other (about 5 and 9 h, respectively) (Boogaard and van 

Sittert 1996). The long elimination half-lives of metabolites could contribute to the 

lack of sensitivity of u-t,t-MA and u-SPMA as biomarkers of SHS exposure in the 

following way: the time elapsed since onset of exposure might have been 

insufficient for the excretion of a significant quantity of metabolites after exposure 

to passive smoking at home during the afternoon or evening. 

The final multiple linear regression models (Table 6) summarize how the weights of 

residence area, SHS exposure, age and gender explain the variability of all studied 

analytes. 

Unlike previous research (Fustinoni et al. 2005; Manini et al. 2008), we prefer to use 

the questionnaire as indicator of exposure to SHS both for the different half-life of 

cotinine and benzene and the reliability of questionnaire to distinguish children 

exposed and unexposed to SHS. 

For u-UB, data show that residence area and SHS exposure are significant 

contributors to benzene exposure; in particular, SHS exposure represents the most 

important dependent variable, supporting the conclusion that benzene uptake from 

ETS is considerably higher than that from outdoor air. 

With regard to u-t,t-MA, the selected regression model explained just 15.9% of its 

variance, and the only statistically correlated variable was residence in an urban area. 

The use of u-t,t-MA should be carefully evaluated because of its lack of specificity, 

yet it has been employed by previous studies (Pezzagno et al. 1999; Renner et al. 

1999; Weaver et al. 2000; Aprea et al. 2008). In fact, t,t-MA, apart from metabolism 

of benzene, is also a metabolite of sorbic acid, an antimycotic commonly added to 

foods such as salad dressing, margarine, mayonnaise, cheese slices and spreads, 

refrigerated flavored drinks, sweet baked goods, and candy. In Europe, for instance, 
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its intake has been estimated at 6-30 mg/day (Ruppert et al. 1997). Its use as a 

biomarker may thus have to be partial; to limit this disadvantage, research on u-t,t-

MA in urine samples should always be associated with an investigation of the 

individual’s sorbic acid consumption during the sampling day. This kind of 

investigation is very difficult, especially when the studied population includes 

children, because questionnaires on children’s dietary sorbic acid intake must be 

completed by parents. Presumably, parents do not know the kind and the amount of 

all foods ingested by their children each day. 

An interesting result derived from multivariate analysis of u-SPMA was that this 

biomarker is related to residence in an urban area, SHS exposure and female gender. 

With respect to the influence of gender on excretion of u-SPMA, previous studies 

(Bergamaschi et al. 1999; Melikian et al. 2002; Cocco et al. 2003; Aprea et al. 2008) 

have found gender differences in excretion of u-t,t-MA and u-SPMA and 

hypothesized that higher excretion by females could be due to a higher blood/air 

partition coefficient and faster metabolism (> 23-26%) of benzene. 

Aprea et al. (2008) observed differences between males and females only when u-t,t-

MA concentrations were expressed in μg/g creatinine but not if they were expressed 

as μg/L. Consequently, the authors suggested that creatininuria is influenced by 

gender, probably because males have more muscle mass than females. Despite these 

findings, u-creatinine is an important correction factor for the compounds excreted 

from the renal pathway, and it is also used for biological limits of u-t,t-MA and u-

SPMA reported by international bodies such as the American Conference of 

Governmental Industrial Hygienists (ACGIH) (Aprea et al. 2008). 

All the shown regression models present a not very high adjusted R2, the 

explanation could be the variability determined by other individual determinants of 

exposure, not considered in this study, such as body mass index, genetic 

polymorphism, etc. 

This study has several limitations. First, urine samples were collected only at the end 

of the sampling day, so we cannot rule out the possibility of changes in biomarker 

excretion within that time. Second, we did not measure benzene concentrations in 

the living environments of selected children, so we cannot establish a correlation 
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between the benzene level in a specific environment and its intake. Third, urine 

samples were collected by parents just before bedtime and delivered to us the next 

morning, when samples were frozen. As described in literature (Weisel 2010), 

refrigeration and freezing phases could involve benzene loss. For this reason, we 

performed a series of preliminary tests on urine samples from adult donors smokers 

and no-smokers, stored in refrigerator (0 - +4 °C) for 12 and 24 h, and frozen (-20 

°C) until 30 days. Calculated benzene losses resulted in average equal to 2.6% in the 

worst case (refrigeration for 24 h and freezing for 30 days). Finally, because the 

studied population was made up of children only, we could not examine 

associations between sorbic acid intake and excretion of u-t,t-MA. 

 

CONCLUSIONS 

In conclusion we found that, using the strategy to collect urine sample at the end of 

the day, u-UB is resulted the best marker of benzene exposure in children and that it 

could be used as a good carcinogen derived biomarker of exposure to passive 

smoking, specifically related to benzene. However, there is a need of further 

investigations to confirm or not that the good correlation between u-UB and SHS 

observed in children in this study is hold when urine samples are collected at other 

times of the day. 

As regards to u-t,t-MA and u-SPMA, the high levels found in some children could 

reflect other sources of benzene out of SHS, other reasons such as genetic 

polymorphisms and body mass index, or sources of t-t-MA other than benzene. 

Finally, it is important to highlight that passive smoking was the most important 

contributor to benzene exposure (40% of selected children can be considered 

exposed to SHS). This fact underlines the need for an information campaign 

discouraging tobacco use, with parents as its main target (Roncarolo et al. 2008). 
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INTRODUCTION 

Ambient air pollution is an established health risk factor worldwide, and it was 

estimated to be the eighth leading risk factor for mortality, associating with 2.5% of 

all deaths in high-income countries (Narayan et al. 2010). 

Benzene is considered one of the most important airborne pollutants, released to 

the atmosphere mainly from gasoline vapors, automobile exhaust, chemical 

production and user facilities (Johnson et al. 2007; ATSDR 2007). 

The relevance of benzene is due to its well-recognized link with adverse health 

effects. Benzene, in fact, has been known as a human carcinogen since 1982 (IARC 

1982). These observations conducted to progressively reduce the use of benzene in 

many production and synthesis processes, and to regulate exposure by the 

introduction in European Union of standards limits for workplace scenarios (1 ppm 

or 3.25 mg/m3) (European Commission 2004b) and general environment (1.5 ppb 

or 5 μg/m3) (European Commission 2000, 2008). 

Besides, since 1 January 2000 the amount of benzene concentration in fuels was 

reduced below 1% by volume by European legislation (European Commission 

1998). Despite of these revised emission standards, the constant growth in traffic 

volumes involves the increase of total emissions of many air pollutants, including 

benzene, both in developed and developing countries (Krzyzanowski et al. 2005, 

Han and Naeher 2006). Thus, benzene exposure still occurs in general population, 

and it cannot be neglected in the light of actual scientific evidences on the 

association between benzene exposure and adverse health effects: it is no possible to 

determine a safe level of benzene exposure, and all kind of exposures represent a 

risk for human health (Smith 2010). 

At today, one of the main objectives of epidemiological studies performed on this 

issue is to provide evidences for risk characterization and management of benzene 

exposure for the general population. The exposure assessment is an essential point - 

and often the weakest point - of this process (Weisel 2010). 

General tools for assessing exposure to airborne benzene include elaboration of air 

pollution data from monitoring network, personal exposure monitoring, exposure 
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modeling, and human biomonitoring (Johnson et al. 2007; ATSDR 2007). The last 

cited method is the most significant health-related assessment tool for evaluating 

exposure to chemicals present in the environment, because it provides an actual 

measure of the chemical that gets into the body (CDC 2009). Besides, the 

application of human biomonitoring is more motivated by its recent adoption as 

Action 3 in the Environmental Action Plan 2004 - 2010 of the European 

Commission (European Commission 2004a). 

An important debated question related to the biomonitoring of chemicals is the 

need to routinely collect human samples for large-scale surveys. For this purpose, 

non-invasively matrices is preferable, especially when the study population is 

constituted by most susceptible subjects such as children. Spot urine sampling is the 

most widely method to quantify exposure to environmental pollutants, because it 

represents a non-invasively matrix that permit sampling easily to repeat, with no 

risk, and without major ethical or practical limitations (Esteban and Castaňo 2009; 

Smolders et al. 2009). On the other hand, an undoubted disadvantage of urine 

samples is the possibility of variations in the volume and concentration of urine. 

Consequently, there is the necessity to adopt techniques to compensate differences 

in urine dilutions, i.e. taking into account their osmolality, gravity, relative density or 

creatinine content (Smolders et al. 2009). 

Several studies were conducted on adults not occupationally exposed to benzene. 

The authors suggested the use of urinary trans,trans-muconic acid (u-t,t-MA) 

normalized for gram of creatinine, urinary S-phenylmercapturic acid (u-SPMA) 

normalized for gram of creatinine, and urinary unmodified benzene (u-UB) as 

biomarkers of benzene exposure (Waidyanatha et al. 2001; Fustinoni et al. 2005, 

2010, 2012; Johnson et al. 2007; Barbieri et al. 2008; Lovreglio et al. 2010, 2011; 

Weisel et al. 2010; Campo et al. 2011). However, the feasibility of these biomarkers 

to discriminate different levels of urban benzene exposure - especially at very low 

airborne concentrations - is still under evaluation. One of the most stressed 

consideration is the possible influence of the active and/or passive smoking on the 

results: tobacco smoke, in fact, is another important source of benzene exposure 

(Johnson et al. 2007; Weisel 2010). 
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All the studies cited above were performed on adults. Since children cannot be 

considered “little adults” with regard nor to the risk of adverse health effects 

resulting from exposure at an early age and neither for the choice of the exposure 

assessment tools (Anderson et al. 2000), the results of “adults” researches cannot be 

used to estimate children exposure. For example, a detailed assessment on u-

creatinine excretion of general population evidenced significant differences related 

to age, gender and ethnicity (Barr et al. 2005). Consequently, adults exposure 

profiles to chemicals obtained by values corrected for u-creatinine cannot be 

representative for children. 

In our knowledge, few publications are available in literature on the assessment of 

benzene exposure by biomarkers monitoring in childhood (Minoia et al. 1996; 

Weaver et al. 1996; Amodio-Cocchieri et al. 2001; Kouniali et al. 2003; Bahrami and 

Edwards; 2006; Ruchirawat et al. 2007; Protano et al. 2010, Protano et al. 2011). 

Among the cited studies only our investigation (Protano et al. 2010) evaluated, in 

the same study population, the ability of u-UB, u-t,t-MA, and u-SPMA for this 

purpose. The results of this study showed that all investigated biomarkers were 

suitable assessment tools for benzene exposure in childhood: u-UB was mainly 

influenced by environmental tobacco smoke (ETS), and could be used as a good 

biomarker to predict ETS-derived benzene exposure levels, while u-t,t-MA and u-

SPMA (both normalized for gram of creatinine) were lower affected by ETS and 

were able to discriminate differences in exposure to air pollution in children. 

The aims of the present study were 

To evaluate the feasibility of u-t,t-MA and u-SPMA as tracers of urban 

benzene pollution for human biomonitoring studies performed on children 

To investigate the impact that the creatinine correction may have on 

classifying exposure status of children in the evaluation of benzene exposure 

by u-t,t-MA and u-SPMA. 
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MATERIALS AND METHODS 

Study area 

The research was conducted in three areas of central Italy whose urbanization 

characteristics allowed us to classify them as follows: very urban, fairly urban and 

non urban. The choice of the areas was based on some relevant urbanization 

indicators (resident population, population density, green area density, motorization 

rate for autovehicles and two wheeled vehicles) from national databases (National 

Institute of Statistics, Italian Automobile Club). In Table 1 are reported urbanization 

indicators data for each selected area in the years of the monitoring campaign. 

 

Table 1. Summary information on relevant urbanization indicators of the three study areas 
in the year of monitoring campaigns (2007-2009) 

 

 
Resident 

population 
(n) 

Population 
density 

(persons per 
km2) 

Green area 
density 

(% of total 
municipal 
territory) 

Motorization rate 

Number of 
autovehicles per 
100 inhabitants 

Number of two 
wheeled 

vehicles per 
100 inhabitants 

Very urban 2,743,796 2,098 < 85 69 15 

Fairly urban 32,886 395 < 85 76 10 

Non urban 3308 120 > 85 66 8 

 

Besides, areas were selected on the basis of the airborne concentrations of some 

indicators of urban air pollution available from the environmental monitoring 

program performed by the Regional Environmental Protection Agency 

(ARPALAZIO): Carbon Monoxide (CO) and Nitrogen Dioxide (NO2). Figure 1 

shows the trends in the levels of CO and NO2 in the three selected areas for the 

years 1999-2010. 
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Figure 1. Temporal trend of monoxide carbon (CO) and nitrogen oxide (NO2) levels 
monitored by local regulatory agency (ARPALAZIO) in the three selected area (very urban, 
fairly urban, non urban area). Years 1999 - 2010 
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Study population and design 

The study population consisted of all of the students (655 children aged 5-11 years) 

frequenting three primary-school districts. 

All of the students and their parents received information about the research goals 

and plans and were invited to take part in the cross-sectional study, which was 

conducted on Wednesdays (a typical weekday) during the winter seasons of the 

academic years 2007-08 and 2008-09. 

Detailed information about socio-demographic characteristics, activities engaged in 

on the sampling day, lifestyle factors, and living environment, with particular 

reference to household characteristics, of the investigated subjects was obtained 

from a questionnaire completed by their parents. Formation meetings for all 

children and their parents on the modalities to compile the questionnaire and to 

collect and store urine sample were carried on just before sampling days. 

One urine sample for each participant was collected in the evening (just before go to 

sleep) in a benzene-free polypropylene bottle with hermetic closure, and 

immediately stored in the refrigerator at 4°C. The next morning, the sample was 

placed into a polystyrene cooler containing an ice pack and was delivered to the 

research team. 

Covariates gathered by questionnaire 

The answers about the gender of the child and the age (as defined by the primary-

school grade they were attending), were classified as 0 = male and 1 = female and as 

0 = 1st, 2nd, or 3rd grade (the younger group) and 1 = 4th or 5th grade (the older 

group). 

The practices of sport activities by participants during the sampling day were 

gathered using a simple Yes/No questions, then categorized as 0 = No and 1 = Yes. 

With respect to the characteristics of the home environment, we asked about the 

home typology (detached/semi-detached unit housing or attached multi-unit 

housing) and the type of heating device used (open answer). 



Chapter 4 
Urinary trans,trans-muconic acid and S-phenylmercapturic acid as tracers of exposure to urban 

benzene pollution in childhood 

48 

 

The questionnaire examined also other characteristics associated with potential 

sources of urban benzene in proximity of the home in which the participants live by 

using the questions “Are there petrol stations close to home?”, “Are there factories 

close to home?” “Are there parking areas close to home?”. The possible responses 

to each these questions were “Yes” and “No”, then categorized as 0 = No and 1 = 

Yes. 

Finally, the respondents were asked some questions about road traffic features close 

to home, with the following questions: “Is there traffic queues close to home?” “Is 

there passing of buses close to home?” “Is there passing of trucks close to home?”. 

Possible answers to all these questions were “Frequently” or “Rarely/Not at all”. 

The last question about road traffic in proximity of the home was “How intense is 

traffic close to home?” Possible responses were “No/Low” or “Moderate/High”. 

The presence of cohabitants smokers was assessed with the question “Are there 

smokers living with the child?” The possible responses were “Yes” and “No” 

(categorized as 0 = No and 1 = Yes). If the response was “Yes”, the child was 

considered to be exposed to ETS. 

Biological monitoring and analytical determinations 

Spot urine samples were prepared and analyzed using a methodology that has been 

previously described and extensively used in previous publications (Manini et al. 

2008; Protano et al. 2010). 

Briefly, about 2 mL of urine for each sample was partitioned into multiple plastic 

tubes for u-t,t-MA, u-SPMA, and u-creatinine determinations. All samples were 

coded and then frozen at -20°C until analysis. 

u-t,t-MA and u-SPMA were determined by isotopic dilution liquid chromatography 

tandem mass spectrometry (LC-MS-MS) using a PE-Sciex API 365 triple-

quadrupole mass spectrometer (Applied Biosystems, Thornhill, Canada) equipped 

with a Ionspray interface for pneumatically assisted electrospray (ESI). U-Creatinine 

was determined by the method of Jaffé (Henry, 1974). 

Samples were analyzed within 30 days from sampling. 
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Statistical analyses 

Statistical analyses were carried out using SPSS software (version 14.0 for Windows, 

Chicago, IL). 

Firstly, the normality of the distribution of analytes concentration was assessed by 

the one-sample Kolmogorov-Smirnov test: u-creatinine concentrations were 

normally distributed, while u-t,t,-MA and u-SPMA followed a normal distribution 

after natural log-transformation (both unadjusted or normalized data). Therefore, 

the statistical elaboration related to u-t,t,-MA and u-SPMA were performed with 

parallel analyses using non-parametric techniques (Mann-Whitney and Kruskal-

Wallis tests) and corresponding parametric methods on natural log-transformed data 

(t-test for independent variables and one-way analysis of variance (ANOVA) with 

Bonferroni post-hoc tests). Simple linear regression analyses were run to assess the 

relationships between urinary analytes. 

Finally, two forward multiple linear regression analyses for each metabolite were run 

to test the independent role of several variables - gender, age, degree of urbanization 

of residence area (dummy variable taking non urban area group as reference 

category), practice of sport during the sampling day, ETS exposure status - on 

natural-log transformed values of metabolites. In the first model, the dependent 

variable was the metabolite expressed as µg/g creatinine, while in the second model 

the dependent variable was the unadjusted metabolite, while u-creatinine 

concentration was included in the multiple regression as an independent variable, as 

suggested by Barr et al. (2005). The significance level for all tests was p ≤ 0.05 (two-

tailed). Linear regression analyses were run using a significance level of 0.05 for 

entry and 0.10 for removal from the model. The “goodness of fit” of the model was 

assessed using R2 statistics. 

 

RESULTS 

In total, 501 out of 665 children took part in the research (response rate of 75%). 

However, 46 urine samples were rejected because of unsatisfactory sealing of 

sample containers; therefore, analytical determinations of t,t-MA, u-SPMA and u-
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creatinine were performed for 455 samples. In addition, 59 children who had at least 

one parent who was not Italian were excluded from the data analysis to avoid 

interference from possible ethnic differences in the metabolism of benzene (US 

EPA, 1998). In the end, the analysis was conducted using the data of 396 children. 

Descriptive characteristics of the studied subjects are presented in Table 2. 
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Table 2. General characteristics of study population (total sample and three groups 
distinguished according to the degree of urbanization of residence area) 
 

  Degree of urbanization of residence area 

 Total children Very urban Fairly urban Non urban 

Gender n (%)     

Male 197 (52.2) 88 (52.6) 53 (52.3) 56 (51.3) 

Female 180 (47.8) 81 (47.4) 48 (47.7) 51 (48.8) 

Grade of primary school n (%)     

1st - 2nd - 3rd 212 (55.9) 90 (52.9) 63 (58.9) 59 (57.8) 

4th 5th 167 (44.1) 80 (47.1) 44 (41.1) 43 (42.2) 

Practice of sport activities during 
sampling day n (%) 

    

Yes 132 (34.1) 54 (32.1) 51 (45.9) 27 (25.0) 

No 255 (65.9) 114 (67.9) 60 (54.1) 81 (75.0) 

Home type n (%)     

Detached/Semi-detached unit housing 199 (52.1) 22 (13.5) 72 (65.5) 105 (96.3) 

Attached Multi-unit housing 183 (47.9) 141 (86.5) 38 (34.5) 4 (3.7) 

Factories close to home n (%)     

Yes 119 (31.2) 78 (47.6) 25 (22.9) 16 (14.7) 

No 263 (68.8) 86 (52.4) 84 (77.1) 93 (85.3) 

Petrol station close to home n (%)     

Yes 96 (25.0) 65 (38.7) 17 (15.6) 14 (13.1) 

No 288 (75.0) 103 (61.3) 92 (84.4) 93 (86.9) 

Parking close to home n (%)     

Yes 142 (37.0) 93 (55.0) 29 (26.9) 20 (18.7) 

No 242 (63.0) 76 (45.0) 79 (73.1) 87 (81.3) 

Traffic queues close to home n (%)     

Frequently 65 (17.0) 47 (28.1) 15 (13.9) 3 (2.8) 

Rarely/Not at all 317 (83.0) 120 (71.9) 93 (86.1) 104 (97.2) 

Truck passing close to home n (%)     

Frequently 94 (24.3) 40 (23.8) 21 (19.3) 33 (30.0) 

Rarely/Not at all 239 (75.7) 128 (76.2) 88 (80.7) 77 (70.0) 

Buses passing close to home n (%)     

Frequently 107 (27.7) 76 (45.2) 15 (13.8) 16 (14.7) 

Rarely/Not at all 209 (72.3) 92 (54.8) 94 (86.2) 93 (85.3) 

Traffic density close to home n (%)     

Moderate/High 189 (49.0) 122 (72.6) 46 (42.2) 21 (19.3) 

No/Low 197 (51.0) 46 (27.4) 63 (57.8) 88 (80.7) 

Environmental Tobacco Smoke 
(ETS) exposure status n (%) 

    

Yes 172 (45.1) 88 (52.7) 26 (24.1) 59 (56.0) 

No 209 (54.9) 79 (47.3) 82 (75.9) 47 (44.0) 

Time (min) spent in different 
environments during sampling day 
until urine collection (Mean ± SD) 

    

Time at school 447.1 ± 71.8 448.1 ± 73.3 461.5 ± 38.4 429.3 ± 90.4 

Time in indoor environments 321.7 ± 148.9 380.9 ± 169.8 240.1 ± 83.9 290.0 ± 102.3 

Time in outdoor environments 66.00 ± 91.7 78.9 ± 111.6 58.5 ± 49.3 47.2 ± 68.5 

Time in motor vehicles 18.7 ± 35.5 12.1 ± 26.1 21.7 ± 21.3 29.4 ± 52.0 

 

The three groups were comparable with respect to gender, age and time spent in 

indoor and outdoor environments, while it is notably a wide range of time spent in 
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motor vehicles on the sampling day between subjects, especially in non urban 

children (mean ± standard deviation = 29.4 ± 52.0 min). Apart from the school, the 

most common activity carried out by participants during the sampling day was the 

sport (34.1%), while a very few number of children were engaged in other activities, 

such as foreign language or music school. 

In addition, Table 2 shows that the living environments’ characteristics of 

participants were typically related to the degree of urbanization of residence area. 

First of all, the main typology of very urban and non urban houses was, respectively, 

a housing unit in a building and a detached or semi-detached unit housing. Likewise, 

the percentage of petrol stations, factories, parking area, frequently traffic queues, 

buses passing, and moderate/high traffic density close to home increases in parallel 

with the degree of urbanization of residence area. Even, the frequency of the 

category “high” of the variable “traffic density close to home” was 25.0% for 

children living in very urban area, 10.1% for those living in fairly urban area, and 

1.8% for those living in non urban area. 

The only exception to these results is the frequency of trucks passing near the 

participants’ domicile: 30.0, 23.8 and 19.3% in non urban, in fairly urban and very 

urban area. 

Descriptive statistics of the metabolites u-SPMA and u-t,t-MA levels (unadjusted 

and as µg/g creatinine) of all children are reported in Table 3. 
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Table 3. Summary of descriptive statistics of urinary levels of S-phenylmercapturic (u-
SPMA) and trans,trans-muconic acid (u-t,t-MA) in participants (total sample) 
 

  
SPMA 
µg/l 

SPMAµg/g 
creatinine 

t,t-MA 
µg/l 

t,t-MA 
µg/g 

creatinine 

N. 396 395 396 395 

Mean 0.59 0.62 127.10 127.59 

Standard Deviation 0.57 0.56 126.68 123.12 

Minimum 0.03 0.06 5.50 13.76 

Maximum 3.20 4.35 1159.70 972.918 

Range 3.17 4.29 1154.20 959.16 

Geometric Mean 0.40 0.44 88.25 96.03 

Percentiles 

5 0.10 0.11 20.87 30.78 

10 0.12 0.15 31.58 40.02 

25 0.21 0.23 50.80 59.39 

50 0.38 0.40 87.50 90.15 

75 0.78 0.84 159.90 149.29 

90 1.41 1.37 265.78 230.54 

95 1.82 1.83 358.26 363.47 

 

 

Figure 2 (a and b) shows the distributions of median levels of u-SPMA and u-t,t-MA 

according to the degree of urbanization of residence areas and the ETS exposure 

status. In the same Figure are reported the results of univariate analyses performed 

to evaluate the impact of the degree of urbanization of residence area and ETS 

exposure (considering the children ETS-exposed and -unexposed of each of the 

three residence areas) on u-SPMA and u-t,t-MA levels. 
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aKruskal-Wallis test was used to compare between groups according to the degree of urbanization of residence area 
bOne-way analysis of variance (ANOVA) with Bonferroni post hoc-tests was use to compare between groups 

according to the degree of urbanization of residence area (ln-data) 
cBonferroni post hoc tests 
dMann–Whitney U-test was used to compare exposed and unexposed to ETS 
eUnpaired t-test was used to compare exposed and unexposed to ETS (ln-data) 

 
Figure 2a. Urinary levels (median ± interquartile range) of S-phenylmercapturic (u-SPMA) 
in children differentiated according to the degree of urbanization of residence area and 
Environmental Tobacco Smoke (ETS) exposure 

u-SPMA µg/g creatinine 

u-SPMA µg/L 
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aKruskal-Wallis test was used to compare between groups according to the degree of urbanization of residence area 
bOne-way analysis of variance (ANOVA) with Bonferroni post hoc-tests was use to compare between groups 

according to the degree of urbanization of residence area (ln-data) 
cBonferroni post hoc tests 
dMann–Whitney U-test was used to compare exposed and unexposed to ETS 
eUnpaired t-test was used to compare exposed and unexposed to ETS (ln-data) 

 
Figure 2b. Urinary levels (median ± interquartile range) of trans,trans-muconic acid (u-t,t-
MA) in children differentiated according to the degree of urbanization of residence area 
and Environmental tobacco smoke (ETS) exposure  

u-t,t-MA µg/g creatinine 

u-t,t-MA µg/L 
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u-SPMA concentrations significantly increased in parallel to the increasing degree of 

urbanization of residence area, following sequence among the groups: non urban 

group (median = 0.19 µg/L; 0.22 µg/g creatinine) < fairly urban group (median = 

0.28 µg/L; 0.28 µg/g creatinine) < very urban groups (median = 0.92 µg/L; 0.90 

µg/g creatinine). 

The results related to u-t,t-MA levels differ respect to those derived from u-SPMA 

concentrations: highest concentrations of u-t,t-MA were found for fairly urban 

group (median = 120.60 µg/L or 116.57 µg/g creatinine), medium concentrations 

for very urban group (median = 100.30 µg/L or 102.54 µg/g creatinine), and 

minimum concentrations for non urban one (median = 55.37 µg/L or 66.36 µg/g 

creatinine). These results were not significant at all: Bonferroni post-hoc tests 

showed that differences existed only between very urban versus non urban group 

(p<0.001) and fairly urban versus non urban group (p<0.001). 

As regard to ETS exposure status, u-SPMA and u-t,t-MA levels of participants 

living in very urban, fairly urban or non urban area were not influenced by passive 

smoking. 

Additional univariate analyses were conducted to evaluate the possible differences in 

u-SPMA and u-t,t-MA levels due to gender, age, characteristics of household 

environment, activities of child during the sampling day and in the last year, and 

other possible indoor sources. All the statistical elaborations were performed 

separately for the three areas, and all the variables resulted not significant predictors 

both for u-SPMA and u-t,t-MA (data not shown). 

Table 4 shows the results of simple regression analyses among analytes for all of the 

investigated children and for children classified according to degree of urbanization 

of their residence area. 
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Table 4. Simple regression analyses between urinary biomarkers in all sample and in 
children according to degree of urbanization of residence area 

 

  Indipendent variable 

 
Dependent 
variable 

u-t,t-MA u-creatinine 

All children 

u-SPMA 
y= -3.047 + 0.462 * x y= - 1.542 + 0.328 * x 

p < 0.001 (n = 396) p < 0.001 (n = 395) 

u-t,t-MA 
 y= 3.545 + 0.507 * x 

 p < 0.001 (n = 395) 

Very urban 

u-SPMA 
y = - 1.447 + 0.376 * x y = - 0.815 + 0.488 * x 

p < 0.001 (n = 173) p < 0.001 (n = 172) 

u-t,t-MA 
 y= 3.894 + 0.418 * x 

 p < 0.001 (n = 172) 

Fairly urban 

u-SPMA 
y = -2.722 + 0.480 * x y = - 1.767 + 0.442 * x 

p < 0.001 (n = 111) p < 0.001 (n = 111) 

u-t,t-MA 
 y = 3.671 + 0.605 * x 

 p < 0.001 (n = 111) 

Non urban 

u-SPMA 
y = -3.299 + 0.554 * x y = - 2.348 + 0.547 * x 

p < 0.001 (n = 112) p < 0.001 (n = 112) 

u-t,t-MA 
 y = 3.143 + 0.520 * x 

 p < 0.001 (n = 112) 

u-SPMA: urinary S-phenilmercapturic acid; u-t,t-MA: urinary trans,trans-muconic acid. 
The concentrations of u-SPMA and u-t,t-MA were ln-transformed. 

 

Significant correlations were found between u-t,t-MA, u-SPMA and u-creatinine 

both for all group and for children living in very urban, fairly urban and non urban 

areas, with similar equations. 

The results of three multiple linear regression analyses are reported in Table 5. 
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Table 5. Significant predictors of urinary concentration of S-phenilmercapturic acid (u-
SPMA) and trans,trans-muconic acid (u-t,t-MA) as natural log-transformed data expressed 
as µg/L and µg/g creatinine in forward multiple linear regression models 
 

Independent variable Ba SEb βc p 
Adjusted 
R2 of the 
model 

Model 1 - u-SPMA µg/g creatinined 

  Constante -1.492 0.055 - <0.001 

0.616 

Degree of 
urbanization of 
residence area 

Non urban Reference - - - 

Fairly urban 0.263 0.076 0.137 0.001 

Very urban 1.452 0.067 0.848 <0.001 

Practice of sport 
activity during 
sampling day 

Yes -0.159 0.060 -0.088 0.009 

Model 2 - u-SPMA µg/Lf 

 Constante -2.264 0.72 - <0.001 

0.681 
Degree of 

urbanization of 
residence area 

Non urban Reference - - - 

Fairly urban 0.326 0.073 0.163 <0.001 

Very urban 1.502 0.064 0.837 <0.001 

 u-creatinine 0.567 0.055 0.314 <0.001 

Model 3 - u-t,t-MA µg/g creatinined 

  Constante 4.427 0.049  <0.001 

0.110 Degree of 
urbanization of 
residence area 

Non urban Reference - - - 

Fairly urban 0.533 0.095 0.336 <0.001 

Very urban 0.529 0.085 0.373 <0.001 

Model 4 - u-t,t-MA µg/Lf 

 Constante 3.162 0.099  <0.001 

0.358 
Degree of 

urbanization of 
residence area 

Non urban Reference   - 

Fairly urban 0.564 0.101 0.289 <0.001 

Very urban 0.568 0.089 0.325 <0.001 

 u-creatinine 0.856 0.076 0.587 <0.001 

aB = unstandardized regression coefficients. 
bSE = standard error. 
cβ = standardized regression coefficients. 
dVariables considered: degree of urbanization of residence area (dummy variables: non urban rural area as 
reference category, fairly urban area, very urban area), gender (female vs. male), age (1st, 2nd, and 3rdgrade vs. 
4th and 5th grade of primary school), ETS exposure status (ETS exposed vs. ETS unexposed), practice of 
sport activity during sampling day (yes vs. no). 
eConstant = estimated intercept value. 
fVariables considered: degree of urbanization of residence area (dummy variables: non urban rural area as 
reference category, fairly urban area, very urban area), gender (female vs. male), age (1st, 2nd, and 3rdgrade vs. 
4th and 5th grade of primary school), ETS exposure status (ETS exposed vs. ETS unexposed), practice of 
sport activity during sampling day (yes vs. no), u-creatinine. 



Chapter 4 
Urinary trans,trans-muconic acid and S-phenylmercapturic acid as tracers of exposure to urban 

benzene pollution in childhood 

59 

 

First of all, multivariate analyses show the significant independent role of the degree 

of urbanization of residence area on the metabolites levels, previously showed by 

univariate analysis for u-SPMA and new-evidenced for u-t,t-MA. Secondly, an 

interesting result emerged from the model run for u-SPMA µg/g creatinine: the 

practice of a sport during the sampling day was a significant predictor of u-SPMA 

levels. 

The regression models explained up to 35.8% of the variance of u-t,t-MA levels 

(unadjusted) or 11.0% (µg/g creatinine), and up to 68.1% (unadjusted) or 61.6% 

(µg/g creatinine) of the variance of u-SPMA levels. 

 

DISCUSSION 

Human biomonitoring of exposure is a mandatory method to evaluate personal 

exposure to air pollution, and to provide data on profile exposure of general 

population to support environmental and public health policies. Given the well-

known differences of exposure to air pollution between children and adults in terms 

of magnitude of exposure and susceptibility to adverse effects, it is necessary to 

perform separate studies for the assessment of exposure to air pollutants for 

children and adults. 

Despite a great number of researches performed on urban benzene exposure for 

adult population is available, very few data are available for children. 

The first objective of the present research was aimed to evaluate the feasibility of u-

SPMA and u-t,t-MA as tracers for assessing urban benzene exposure in a large 

sample of Italian children. 

First of all, a great variability of studied metabolites concentrations was found, in 

line with other data available in literature for general population - both adults and 

children (Amodio-Cocchieri et al. 2001; Bahrami and Edward 2006; Johnson et al. 

2007; Ruchirawat et al. 2007). 

However, the concentrations of u-SPMA and u-t,t-MA were significantly higher in 

children living in the fairly/very urban areas respect to those living in no urban area. 
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As regard to u-SPMA, levels increase following the increase of the degree of 

urbanization of residence area: 

– u-SPMA levels of children living in very urban area are, on average, 3.3 and 

4.8 times higher than those of children living in fairly and non urban area, 

respectively; 

– u-SPMA levels of children living in fairly urban area are, on average, 1.5 

times higher than those of children living in non urban area. 

According to the assumption that the degree of urbanization can be used as a proxy 

indicator for estimating exposure to traffic-related air pollutants (Rijnders et al. 

2001), the findings of the study demonstrate that u-SPMA (unadjusted or µg/g 

creatinine) is able to discriminate differences in airborne benzene exposure of 

children, even in typical condition of general population exposure (very low 

concentrations of benzene). 

As regard to u-t,t-MA, it is notable that differences in levels of excretion related to 

the degree of urbanization of residence area in children living in very urban and 

fairly urban areas were revealed only by the multivariate analyses. The lack of 

specificity of u-t,t-MA in adult population exposed to very low concentration of 

urban benzene was demonstrated by previous researches (Pezzagno et al. 1999; 

Renner et al. 1999; Weaver et al. 2000; Aprea et al. 2008; Weisel 2010; Lovreglio et 

al. 2011). The most common explanation of this result is the influence of the diet on 

u-t,t-MA excretion: t,t-MA is also a metabolite of sorbic acid, a common food 

additive for fruit juices, candies, etc, and the ingestion of sorbic acid could result 

more relevant in the increases of u-t,t-MA respect to sub-ppm exposure to airborne 

benzene. This reason is plausible as well as for adults and children; even, if the 

research on t,t-MA in urine samples of adults for monitoring benzene exposure 

could be associated with the examination of the individual consumption of sorbic 

acid during the sampling day, this kind of investigation results very hard when the 

study population is represented by children. It could be really difficult that a child 

recalls accurately what he ingested during a day. 

The other important source of benzene exposure for general population not 
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occupationally exposed to benzene is tobacco smoke. It has been estimated that the 

benzene daily intake derived from the smoking habit is up to 85% of total benzene 

exposure, while the contribution of ETS to benzene exposure is approximately 

equal to 23% of total benzene exposure (Fruin et al. 2001; Weisel 2010). Different 

studies performed on adults exposed to very low concentrations of benzene 

evidenced the influence of active smoking on excretion of u-SPMA and u-t,t-MA 

(Fustinoni et al. 2005; Johnson et al. 2007; Manini et al. 2008; Lovreglio et al. 2011); 

the present study evidences no significant differences in children ETS-exposed 

respect to ETS-unexposed, according to the results of other previous researches 

performed to assess benzene exposure in children (Weaver et al. 1996; Amodio-

Cocchieri et al. 2001; Bahrami and Edward 2006). These findings contribute to 

consider u-SPMA and u-t,t-MA as good biomarkers for assessing urban benzene 

exposure in childhood. However, the results of the present research should be 

interpreted in the light of the time of urine sample collection and the times of 

benzene metabolism: spot urine samples were collected in the evening, just before 

bedtime, and the elimination half-lives of u-t,t-MA and u-SPMA are about 5 and 9 

hours, respectively (Boogaard and van Sittert 1996). Thus, it is comprehensible that 

the quantity of the metabolites found in the urine samples derived mainly from 

benzene taken into the body many hours before the sample collection. Considering 

that the major source of ETS exposure for children is the domestic environments 

(WHO 2007), and that the participants stayed at home during the afternoon or 

evening of the sampling day, the time elapsed since the intake of benzene from ETS 

exposure might have been insufficient for the formation of the related metabolites 

and their urinary excretion. It would be interesting to compare the results of 

analytical determination performed on urine samples of the same children collected 

at the end of a day and at the next morning. 

The second objective of the present study was to investigate the role of the 

creatinine correction to normalize urinary values of the studied metabolites in 

children population. 

Traditionally u-creatinine-corrected u-SPMA and u-t,t-MA were used as biomarkers 

of benzene exposure both in occupational and non occupational scenarios 
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(Waidyanatha et al. 2001; Fustinoni et al. 2005; Johnson et al. 2007; Barbieri et al. 

2008; Lovreglio et al. 2010, 2011; Weisel 2010). Even, u-creatinine correction is also 

used for the biological exposure indices for u-t,t-MA and u-SPMA reported by 

international bodies such as the American Conference of Governmental Industrial 

Hygienists (ACGIH 2009). Despite of this, previous studies (Aprea et al., 2008; 

Protano et al. 2010) observed a significant influence of gender on benzene 

biomarkers concentrations, suggesting that the results could be distorted by the 

relationship between gender and creatininuria. Besides, other authors suggested that 

actual concentration of biomarkers of benzene exposure is a more appropriate 

metric to report data, because creatinine excretion rate of active subjects is not 

constant during the course of a day (Weisel 2010)  

Thus, the results of all statistical elaborations performed on the two benzene 

biomarkers in the present study were presented both unadjusted and corrected for 

u-creatinine. As regard to the univariate analyses, results show a similar trend in the 

levels of metabolites, either expressed as unadjusted or as µg/g creatinine. As regard 

to the multiple linear regression analyses, an interesting result derives from the two 

models including u-SPMA as dependent variable, the first performed on creatinine-

corrected u-SPMA levels, and the other carried out on unadjusted u-SPMA levels 

adding u-creatinine as an independent variable. In the first model, the practice of a 

sport activity during the sampling day resulted a significant predictor of u-creatinine-

corrected u-SPMA levels (inverse relationship of the variables), while in the second 

model the same independent variable has not an independent role on unadjusted u-

SPMA levels. This is the practical demonstration of the possibility to alter the results 

when an independent variable is unrelated to the chemical concentration itself, but 

related to the u-creatinine levels, in line with the considerations reported by Barr et 

al. (2005). Most likely, the practice of a sport activity during the sampling day does 

not reduce the u-SPMA levels, but increases the concentrations of u-creatinine after 

some hours respect to the practice of the sport. This last assertion is confirmed by 

the significant increase of creatininuria in children after two hours from the end of a 

physical exercise (Turgut et al. 2003). 

Another interesting result is the positive influence of u-creatinine on both the 
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metabolites, just evidenced in recently studies on benzene biomarkers of exposure 

performed on adults (Fustinoni et al. 2010, 2012; Manini et al. 2010, Campo et al. 

2011). 

This study present some limitations. Firstly, only one spot urine sample was 

collected at the end of the sampling day. Consequently, we could not evaluate 

possible changes in biomarker excretion within the time. Secondly, benzene 

concentrations in the living environments of selected children were not measured, 

and air monitoring programs performed by local regulatory agency (ARPALAZIO) 

did not include the assessment of airborne benzene concentrations for all the 

selected areas; however, the temporal trends in the levels of CO and NO2 

demonstrated the differences in urban air pollution in the selected areas. Third, we 

could not examine the contribution of sorbic acid intake on excretion of u-t,t-MA. 

Finally, some possible individual determinants of exposure to benzene such as body 

mass index or genetic polymorphism were not evaluated in this study. 

 

CONCLUSIONS 

In conclusion, using the strategy to collect urine samples at the end of the day, both 

u-SPMA and u-t,t-MA were able to assess urban benzene exposure in childhood, 

even if u-SPMA should be taken in higher consideration because u-t,t-MA 

confirmed its less specificity for benzene exposure in the magnitude of sub-ppm 

exposures (general population scenario). 

In addition, it is important to highlight that, in order to avoid the possible 

confounding effect of the creatinine correction, we think that it should be more 

correct to use u-creatinine as additional independent variable in multiple linear 

regression analyses performed to evaluate the independent role of covariate on the 

variability of u-t,t-MA and u-SPMA levels. 
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ABSTRACT 

Background Secondhand smoke (SHS) represents a major preventable cause of 

morbidity for communities, especially for children, who are more susceptible than 

adults to the adverse effects of passive smoking. SHS contains several carcinogens, 

including benzene. 

Objective To investigate the role of household characteristics and the smoking 

behaviours of cohabitants in predicting SHS-derived benzene exposure levels. 

Methods In this cross-sectional study, 122 children (aged 5-11 years old) were 

selected from a school in rural Italy. Characteristics of their home environment and 

the smoking habits of the children’s cohabitants were obtained via questionnaire, 

and urinary unmodified benzene (u-UB) and cotinine (a specific nicotine metabolite) 

levels were determined from spot urine samples. 

Results Significant differences between SHS-exposed and SHS-unexposed children 

were found with respect to u-UB levels (median values 359.50 and 92.50 ng/litre, 

respectively; p<0.001). The excretion of u-UB increased significantly in parallel to 

increased SHS exposure as follows: unexposed to SHS (median value 92.50 ng/litre) 

< cohabitant(s) smoker(s) not smoking inside the home (282.00 ng/litre) < 

cohabitant(s) smoking inside the home only when children are out (314.50 ng/litre) 

< cohabitant(s) smoking inside the home even when children are in (596.00 

ng/litre). The difference between groups was significant (p = 0.019). 

Conclusions Although smoke-free legislation has transformed the smoking 

behaviours of some, domestic environments remain an important source of SHS 

exposure for children. This fact holds true even in the case of parents and other 

cohabitants who believe they are fully protecting children by smoking only outdoors 

or at home only when the children are not present. These findings should be 

included in Italian community-level health promotion interventions for discouraging 

tobacco use. 
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INTRODUCTION 

In recent years, given the strong association of secondhand smoke (SHS) exposure 

and adverse health effects in humans (US PHS 2006), numerous countries have 

introduced restrictions or complete bans on smoking in the workplace and public 

areas for the sake of the health of non-smokers. Nevertheless, these bans do not 

protect those individuals exposed to SHS in their home environment; even greater 

concern exists for children, who are understood to be more susceptible than adults 

are to the adverse effects of SHS (Muller 2007), and whose exposure is strongly 

associated with parental smoking (McNabola and Gill 2009). 

The link between passive smoking and disease is mediated by many chemicals in 

SHS (about 5000 compounds), including many compounds that have met the 

criteria for being a human or animal carcinogen as classified by various regulatory 

agencies (Environmental Protection Agency, International Agency for Research on 

Cancer, etc.) (Brownson et al. 2002; IARC 2004). 

One of the major known human carcinogens in SHS is benzene, a well known 

leukaemogen (IARC 1982) present in tobacco smoke in sufficient concentrations to 

explain up to half of the estimated cases of acute myeloid leukaemia (IARC 2004). 

Much research has been conducted to assess the links between youth benzene 

exposure, SHS and the risk of lymphohaematopoietic cancer in childhood; however 

this research has yielded contradictory findings (Chang 2009). However, considering 

the prolonged latency of the disease and the early initiation of exposure, the 

possibility of cancers in adulthood after SHS exposure during childhood cannot be 

excluded. 

Due to the possible adverse effects of benzene exposure in childhood, of which 

household SHS is the most important contributor (US EPA 2005), it is of relevant 

concern to investigate SHS-related benzene exposure levels in childhood, but, at 

present, there is a gap in the research in this area. Several previous studies 

conducted on subjects who are not professionally exposed to benzene (very low 

exposure levels) suggest that urinary unmodified benzene (u-UB) serves as good 

exposure marker for benzene for adults (Fustinoni et al. 2005; Lovreglio et al. 2010) 

and children (Protano et al. 2010). 
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The objective of this study was therefore to investigate the influence of the smoking 

behaviours of cohabitants in predicting passive-smoking derived benzene exposure 

levels of children, objectively measured by u-UB levels. 

 

MATERIALS AND METHODS 

Study population and design 

The study was carried out in 122 apparently healthy children between 5-11 years of 

age, recruited from a primary district school located in a rural area in the province of 

Rieti (central Italy). 

The rural area, far from freeways or highways, was selected to avoid interference 

from vehicular traffic fumes and other sources of environmental benzene on the 

children’s exposure levels. The rural classification was based on urbanization 

characteristics (i.e., population density, green area density and motorization rate) 

obtained from national databases (i.e., National Institute of Statistics, Italian 

Automobile Club). 

All attending students and their parents were invited to take part in this cross-

sectional study and received information about its aims and design. Data collection 

was conducted on a Wednesday in the winter of 2007. 

Methods to measure SHS exposure and u-UB levels 

Questionnaires to investigate participants’ characteristics and SHS exposure We 

collected detailed information on participants using a self-administered 

questionnaire filled by the parents. The following topics were investigated: 

sociodemographic characteristics, daily activities, living conditions and cohabitant 

smoking habits. 

Based on the grades of primary school attended by the children, we coded age into 

two classes, 0 = first to third grades and 1 = fourth and fifth grades. We coded sex 

as 0 = male and 1 = female. 
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With respect to the characteristics of the home environment, we asked about the 

number of residents, the home dimensions, the number of floors in the residence 

and the type of heating device(s) used. These characteristics were classified in the 

following manner: 

– Housing density: home dimension in m2 divided by the number of people 

living in the home. The results were coded into two categories, 0 for < 30 

m2/inhabitant and 1 for ≥ 30 m2/inhabitant. 

– House floor: 0 = ground floor and 1 = first floor and higher. This 

characteristic was chosen in order to evaluate the possible influence of car-

exhaust-related benzene on floor levels. 

– Heating devices: respondents were permitted to provide an open answer. We 

classified different heating systems by potential sources of benzene: methane 

or electric heaters as 0 and oil or wood heaters as 1. 

The questionnaire also examined other potential benzene exposure sources, such as 

parking areas, service stations or freeways near the house. 

The presence of cohabitant(s) who smoked was determined by the question: ‘Are 

there smokers living with children?’ Possible responses here were yes or no. If the 

response was yes, the child was considered to have been exposed to SHS and the 

respondent was then invited to answer the following questions: 

– ‘Do cohabitant(s) smoke inside the home in which the child lives?’ (yes/no); 

– ‘Do people smoke inside the home when the child is present?’ (yes/no). 

For yes/no questions, the response was coded as 0 = no and 1 = yes. 

u-UB monitoring 

One urine sample was collected from each participant at home in the evening (just 

before bedtime). The sample was immediately stored in the domestic refrigerator 

(about + 4°C). The next morning, all samples were collected, stored in transportable 

refrigerators and delivered to the laboratory, where they were each immediately 

coded and then frozen at - 18°C until analysis. 
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A total of 122 urine samples were collected: 10 samples were rejected because of 

unsatisfactory sample closure and 24 samples were of insufficient quantities for 

carrying out the analyses. Consequently, analytical tests for u-UB were performed 

on 88 vials, whereas tests for u-cotinine and u-creatinine were performed on 112 

tubes. 

u-Cotinine was included in the set of analytes because it is the main nicotine 

metabolite and thus its levels correlate strongly with active and passive tobacco 

smoke exposure (Haufroid and Lison 1998). 

The analytical procedures used for u-UB, u-cotinine and u-creatinine determinations 

have been described in detail in other studies (Vitali et al. 2006; Manini et al. 2008). 

In brief, u-UB was determined by headspace solid phase microextraction followed 

by gas chromatography-mass spectrometry; the limit of detection, calculated as the 

signal to noise ratio > 3, was 8 ng/litre. U-Cotinine was determined by isotopic 

dilution liquid chromatography tandem mass spectrometry; the limit of detection, 

calculated as the signal to noise ratio > 3, was 0.2 µg/litre. U-Creatinine was 

determined using the method of Jaffé (Henry 1974). 

Statistical analyses 

Statistical analyses were carried out using SPSS software (V.14.0; SPSS, Chicago, 

Illinois, USA). 

Our initial examination of the data showed that biomarkers levels were not normally 

distributed. Consequently, forward multiple linear regression (controlling for age, 

gender, house density and house floor) was conducted to predict the natural log-

transformed values of u-UB levels on the basis of the smoking habits of some 

cohabitants. For this purpose, dummy variables were created for the categories of 

the cohabitants’ smoking habits: ‘habit of smoking only outdoors’, ‘habit of smoking 

inside the home only when child is out’ and ‘habit of smoking inside the home even 

when children are in’; no smoking represented the reference category. 

The significance level chosen for all statistical tests was p < 0.05 (two tailed). Linear 

regression analyses were run using a significance level of 0.05 for entry and a 0.10 
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level for removal from the model. The goodness of fit for the model was assessed 

using R2 statistics. 

 

RESULTS 

A summary of the participants’ relevant characteristics and the relative u-UB and u-

cotinine levels is presented in table 1. 



 

Table 1. Urinary unmodified benzene (u-UB) levels of the participants categorised by general characteristics and smoking habits of cohabitant(s) 
 

Variable 
Frequency 

(%) 
u-UB ng/L 

Median ± IQR 
p 

u-cotinine µg/g 
creatinine 

Median ± IQR 
p 

Gender 
Male 57.1 233.00 ± 266.00 

0.578a 
3.44 ± 2.01 

0.960a 
Female 42.9 162.50 ± 296.00 3.03 ± 22.30 

Grade in primary 
school 

1st, 2nd, 3rd 60.7 181.00 ± 224.00 
1.000a 

3.38 ± 50.38 
0.432a 

4th, 5th  39.3 178.00 ± 344.00 3.04 ± 51.95 

House density 
(m2/habitant) 

< 30 61.4 178.00 ± 394.00 
0.668a 

3.38 ± 51.95 
0.500a 

≥ 30 38.6 244.00 ± 277.00 3.21 ± 15.73 

House floor 
ground 46.8 220.00 ± 393.00 

0.827a 
3.38 ± 51.36 

0.799a 
≥ 1 53.2 180.00 ± 278.00 3.21 ± 23.15 

ETS exposure 
status 

Exposed 51.2 359.50 ± 362.00  
<0.001a 

1.89 ± 0.94 
<0.001a 

Unexposed 48.8 92.50 ± 90.00 3.15 ± 33.65 

Habits of 
cohabitant(s) 

smoker(s) 

Habit of smoking only outdoor 23.8 282.00 ± 131.00 

0.019b 

3.04 ± 4.19 

<0.001b 
Habit of smoking inside the home 

only when children are out 
28.5 314.50 ± 177.00 3.61 ± 21.92 

Habit of smoking inside the home 
even when children are in 

47.7 596.00 ± 548.00 5.95 ± 51.23 

a Value by independent t test using natural log-transformed values. 
b Value by one-way analysis of variance (ANOVA) using natural log-transformed values. 
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About half of the children were considered to have been exposed to SHS, of which 

47.7% were living with at least one adult who smoked inside the home even when 

children were present. 

The u-UB mean concentrations were over four times greater among SHS-exposed 

children than among those unexposed (p < 0.001). 

Further evidence of the association between u-UB and SHS exposure was given by 

the significant linear relationship between u-UB and u-cotinine (Pearson’s r = 0.765; 

p < 0.001) in SHS exposed children, but not for SHS-unexposed children (Pearson’s 

r = 0.196; p < 0.232), as shown in figure 1. These findings confirm the impact of 

passive smoking on the excretion of u-UB. 
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Figure 1. Relationships between urinary unmodified benzene (u-UB) and urinary cotinine 
(u-cotinine) in children exposed and unexposed to environmental tobacco smoke (ETS) 

 

 

The excretion of u-UB increased significantly in parallel to increased SHS exposure. 

Levels of u-UB showed the following sequence among the groups: unexposed to 
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SHS (median = 92.50 ng/litre) < cohabitant(s) smoker(s) not smoking inside the 

home (median = 282.00 ng/litre) < cohabitant(s) smoking inside the home only 

when children are out (median = 314.50 ng/litre) < cohabitant(s) smoking inside 

the home even when children are in (median = 596.00 ng/litre). The difference 

between groups was significant with a p value of 0.019. The same differences were 

found in the same groups by using u-cotinine data, as shown in table 1. 

The multivariate model for the natural log transformed u-UB levels of children, 

calculated after adjusting for the variables mentioned above, confirmed the results 

of the univariate analyses. 

Compared with SHS-unexposed children, the u-UB levels (natural log data) of 

children increase, on average, by 1.01 ng/litre for the habit of smoking only 

outdoors, and by 1.36 ng/litre and 1.89 ng/litre for the habit of smoking inside the 

home (only when children are out or even when children are in, respectively). Data 

are shown in table 2. 

 

Table 2. Significant predictors of unmodified benzene (u-UB) (natural log-transformed 
data) in forward multiple linear regression models 

 

Variables B a SE b β c p 
Adjusted 
R2 of the 
modeld 

No smoking Reference    

0.654 

Habit of smoking 
only outdoor 

1.010 0.272 0.287 p < 0.001 

Habit of smoking 
inside the home only 
when children are out 

1.363 0.242 0.439 p < 0.001 

Habit of smoking 
inside the home even 
when children are in 

1.893 0.177 0.842 p < 0.001 

a B = 74nstandardized regression coefficients; 
b SE = standard error; 
c β = standardised regression coefficients; 
d Model adjusted for gender (male vs. Female), age (1st, 2nd and 3rdgrade vs. 4th and 5th grade), house density 
(m2/inhabitant < 30 vs. M2/inhabitant ≥ 30), house floor (ground vs. ≥ 1). 

 



Chapter 5 
A tobacco-related carcinogen: assessing the impact of smoking behaviours of cohabitants on 

benzene exposure in children 

75 

 

DISCUSSION 

This was a cross-sectional study carried out with the aim of detecting the impact of 

household smoking habits of cohabitant smokers on the passive smoking-derived 

benzene exposure levels of children. 

After the introduction of smoking bans in public places, household environments 

became the focus of several studies on SHS exposure, in particular with regard to 

SHS exposure in children, which is mainly related to household parental smoking 

(IARC 2009; Kabir et al. 2010). Findings from these research projects showed that 

smoke-free public places seem to stimulate adoption of smoke-free homes, 

especially when smokers live with non-smoking adults or children (Soliman et al. 

2004; Borland et al. 2006). 

Borland et al (2006), for example, reported an increase of complete smoking 

restriction at home of 8.7%, 5.6%, 5.9% and 7.5% for Canada, USA, UK and 

Australia, respectively after seven months of smoke-free home policies in those 

countries. 

Despite this, the same survey highlighted that in all investigated countries most 

children were inadequately protected, with a percentage of total bans from smoking 

at home ranging from 16% to 42%. 

These results are similar to our findings that show a low prevalence of total smoking 

restriction inside the home (28.5%). 

The impact of ‘at home’ smoking behaviours on children’s exposure to benzene is 

marked by the significant continuous increase of u-UB in children unexposed to 

SHS to those exposed with cohabitant(s) not smoking inside the home, to those 

exposed with cohabitant(s) smoking inside the home only when children are out and 

finally to those with cohabitant(s) smoking inside the home even when children are 

in. 

Our results concur with previous research (Matt et al. 2004) that reported children’s 

exposure to SHS to be up to eight times higher in households of smokers who 

smoke indoors than that in households of smokers who smoke only outdoors. In 
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addition, exposure to SHS can still be up to seven times higher in households of 

smokers who smoke outdoors than that in the homes of non-smokers. 

This argument can be related to the ‘thirdhand’ smoke (Invernizzi et al. 2007; 

Winickoff et al. 2009) (i.e., the remaining tobacco smoke contamination that persists 

after a cigarette is extinguished); this complex phenomenon is significant because it 

demonstrates that many components of tobacco smoke, including benzene, can 

persist in an indoor environment beyond the period of active smoking. 

Consequently, the habit of smoking outdoors or in different rooms of the home, or 

in the absence of children, can reduce the level of exposure but cannot assure 

adequate protection of children from tobacco smoke. 

The only effective way to defend children from SHS is creating whole smoke-free 

living environments. 

The present analyses and their interpretation are subject to several limitations. First 

of all, the classification of groups based on the smoking habits of cohabitants were 

determined by the responses to the questions ‘Are there smokers living with 

children?’, ‘Do cohabitant(s) smoke inside the home in which the child lives?’ and 

‘Do people smoke inside the home when the child is present?’. Parents could have 

been not completely sincere in their responses to the questionnaire; however, 

effective categorization of the groups was given good support by measured u-

cotinine levels. Secondly, we did not consider the influence of household cigarette 

consumption of cohabitant smokers with respect to their smoking habits at home to 

predict differences in benzene excretion in the children studied. Nevertheless, it is 

plausible that lower tobacco dependence may have been one of the factors 

permitting smokers to avoid smoking at home, as previously shown by Jarvis et al. 

(2009). Thirdly, even if the multivariate model was adjusted for main benzene 

exposure factors for children living in a rural area (home dimension, inhabitants, 

house floor level, smoking habits at home), it explained 65.4% of the variance in 

benzene levels, suggesting that additional factors (eg, genetic polymorphisms, body 

mass index, etc.) may influence benzene urinary excretion; unfortunately, these 

additional factors were not investigated in the present study. 
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In conclusion, our findings show that although the smoke-free legislation 

introduced in many countries has transformed the smoking behaviours of some and 

increased the number of children living in smoke-free homes, household 

environments remain an important source of SHS exposure for children. This fact 

holds true even in the case of parents and other cohabitants who believe they are 

protecting children by smoking only outdoors or at home only when children are 

absent. 

These findings strongly highlight that: 

– Smoking is a health threat for smokers and for others with whom they share 

an environment, regardless of the ‘precautions’ taken by smokers. 

– The SHS exposure level of children increases in parallel with the increased 

(i.e., less considerate) household smoking behaviours of their cohabitants. 

– As reported by Protano et al (2010), urinary benzene levels of SHS exposed 

children living in rural areas at low traffic density may be higher than those 

of children living in urban areas but unexposed to SHS. This fact may nullify 

the health benefits of living far from traffic pollutants. 

For these reasons, apart from the smoking bans at workplace and in public places, it 

is essential to promote educational intervention for parents with the aim to increase 

their awareness of the negative impacts of SHS exposure during childhood and to 

teach correct behaviours to protect the health of children. 

As objectifiable data, these results should be included in Italian community-level 

health promotion interventions because they could contribute to a further 

persuasive discouragement of tobacco use. 

 

 

 

 

REFERENCES ARE PRESENTED IN THE GENERAL REFERENCE LIST 



 
 

78 

 

 

 

 

 

CHAPTER 6 
 

HOW HOME-SMOKING HABITS AFFECT 

CHILDREN: A CROSS-SECTIONAL STUDY USING 

URINARY COTININE MEASUREMENT IN ITALY 
 

Protano C, Andreoli R, Manini P, Vitali M 
International Journal of Public Health 

DOI: 10.1007/s00038-012-0354-0 
Accepted for publication 

 



Chapter 6 
How home smoking habits affect children: a cross-sectional study using urinary cotinine 

measurement in Italy 

79 

 

Abstract 

Objectives To assess the impact of different home-smoking rules and smoking 

habits of cohabitant on environmental tobacco smoke (ETS) exposure of children. 

Methods Information about 396 Italian children (5-11 years old) and cohabitants’ 

smoking habits was collected by a questionnaire. Exposure assessment was 

performed by determination of urinary cotinine (u-cotinine). 

Results Median u-cotinine concentrations in children significantly increased in a 

similar fashion as theoretical ETS exposure increase: cohabitants do not smoke 

(1.79 μg/g creatinine), cohabitant(s) smoker(s) never smoke at home (2.84), smoke 

at home only when children are out (3.90), and smoke at home even if children are 

in (6.02). Median u-cotinine levels of exposed children were associated to the 

strength of cohabitant’ s smoking behaviours when smoker(s) consume daily a high 

number of cigarettes (≥ 20) respect to light consumption (1-9) (4.52 and 3.24 μg/g 

creatinine). 

Conclusions The magnitude of ETS exposure in children is correlated with 

smoking habits and home-smoking precautions adopted by their cohabitants. 

Educational interventions on parents are essential to increase their awareness about 

ETS exposure and to teach correct behaviours to protect health of kids, especially in 

household environment. 
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INTRODUCTION 

The well-known health problems associated with passive smoking, or environmental 

tobacco smoke (ETS) exposure (IARC 2004), have led numerous countries, Italy 

included, to introduce restrictions or complete bans on smoking in public areas. The 

Italian government established an official ban on smoking in any indoor public place 

on January 10, 2005. 

However, this type of ban does not guarantee full protection from ETS exposure 

for non-smokers who live with smokers. This issue is of particular concern when 

the non-smoker is a child for two reasons: 1) in any community, children are the 

most susceptible population to the harmful health effects caused by ETS exposure 

(Adgent 2006; Muller 2007; Asomaning et al. 2008; Cheraghi and Salvi 2009); and 2) 

the greatest proportion of children’s ETS exposure occurs in the household 

environment, because that is where they spend most of their time (McNabola and 

Gill 2009). 

Some researchers have hypothesised that bans on smoking in public places could 

adversely affect children’ health by shifting smoking into the domestic environment. 

Contrary to this assertion, Hyland et al. (2008) showed that at-home-smoking habits 

were similar in Ireland, which had introduced a smoking ban, and in the United 

Kingdom, which did not have such a ban at the time the research was conducted. In 

addition, several surveys conducted in the United Kingdom (O’Dowd 2005), 

Canada, the United States, and Australia (Borland et al. 2006) have shown an 

increase in the prevalence of smoke-free homes in recent years. The authors of 

these studies observed that making public places smoke-free seems to encourage 

smokers to also make their homes smoke-free or to at least adopt protective 

behaviours towards non-smoking adults or children, such as smoking at home only 

when non-smoking cohabitants are not home or are in separate rooms. 

Further studies have been performed to evaluate the impacts of maintaining a 

smoke-free home and of adopting other smoking precautions in the household on 

the ETS exposure of children by measuring salivary and/or urinary cotinine (u-

cotinine). Cotinine is the main metabolite of nicotine and is a proven biomarker for 

assessing passive-smoking exposure (Benowitz 1996; Haufroid and Lison 1998; 
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Keskinoglu et al. 2007). The results of these studies indicated that, for those who 

live with smokers, having a smoke-free home or a home where other protective 

measures are taken offers appreciable, but not complete, protection against passive 

smoking (Johansson et al. 2004; Jarvis et al. 2009). 

These findings may be associated with the newly defined issue of “thirdhand” 

smoke (THS), which is the residue from tobacco smoke that persists on the clothing 

and hair of smokers, on environmental surfaces, and in dust long after a cigarette 

has been extinguished (Winickoff et al. 2009). THS contains many different 

chemicals that are re-emitted as a gas, either directly or as a result of reacting with 

oxidants or other compounds to form secondary contaminants, some of which are 

carcinogenic or toxic to humans (Destaillats et al. 2006; Sleiman et al. 2010; Burton 

2011; Matt et al. 2011a; Petrick et al. 2011). 

The term “thirdhand smoke” is derived from “secondhand smoke” (SHS), which is 

“the combination of smoke emitted from the burning end of a cigarette or other 

tobacco products and smoke exhaled by the smoker” (WHO 2007). Passive 

smoking is the combination of SHS and THS exposure (Protano and Vitali 2011). 

To the best of our knowledge, no data exist regarding on the impact of policies 

adopted by Italian smokers for smoking at home on children’s exposure to SHS and 

THS. 

 

The present study was conducted with a group of Italian children (5-11 years old) 

using u-cotinine determination in order to: 

- assess how the smoking habits of cohabitants predict ETS exposure levels; 

- quantify the effectiveness of home-smoking policies adopted by smokers 

with respect to ETS exposure; 

- identify the possible individual contributions of SHS and THS to overall 

ETS exposure. 
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METHODS 

Study population and design 

The study population consisted of all of the students in three primary-school 

districts located, respectively in northern, central, and southern area of Latium 

region (central Italy), comprising a total of 665 children aged 5-11 years. 

All of the students and their parents received information about the research goals 

and plan and were invited to take part in the cross-sectional study, which was 

conducted on Wednesdays (a typical weekday) during the winter season of the 

academic years 2007-08 and 2008-09. 

Information about cohabitants’ smoking habits and precautions taken by at-home 

smokers as well as detailed information about the sociodemographic characteristics 

of the children and their families, the children’s Wednesday activities, and 

household characteristics was collected using a self-administered questionnaire, 

previously validated, filled out by each child’s parents. 

Each participant’s level of ETS exposure was estimated using an analytical 

determination of the cotinine level in a urine sample collected at the end of the 

sampling day. The urinary sample was taken at the last time of the day each 

participant urinated just before going to sleep in polypropylene bottle; then, the 

sample was immediately stored in the refrigerator at 4°C. The next morning, the 

sample was placed into a polystyrene cooler containing an ice pack and was 

delivered to the research team. 

Covariates and ETS exposure data gathered by questionnaire 

The answers to the first questions, which were about the gender of the child and the 

age (as defined by the primary-school grade they were attending), were classified as 

0 = male and 1 = female and as 0 = first, second, or third grade (the younger group) 

and 1 = fourth or fifth grade (the older group). The sizes of the children’s homes 

(expressed in cubic metres) were gathered using an open question. 

The presence of cohabitant smokers was assessed with the question, “Are there 

smokers living with the child?” The possible responses were “Yes” and “No”. If the 
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response was “Yes”, the child was considered to be exposed to ETS, and the 

respondent was invited to answer some other questions: 

“How many cohabitant smokers live with the child?” (An open numeric answer, 

which was categorised in the analysis as 0 = 1 cohabitant smoker and 1 = more than 

1 cohabitant smoker); 

‘‘Do(es) the cohabitant smoker(s) smoke inside the home in which the child lives?’’ 

(Yes or no); 

‘‘Do cohabitants smoke inside the home when the child is present?’’ (Yes or no). 

The formulation of these questions was nonspecific (avoiding terms such as 

“precautions” or “preventive measures”) to encourage responses that would be as 

honest as possible. We classified the responses as 0 = no and 1 = yes. 

The entire sample was divided into four groups on the basis of cohabitant smokers’ 

behaviours and home-smoking rules: 

 Children not living with smoker(s); 

 Children living with smoker(s), with a total home-smoking-restriction 

(cohabitant smokers do not smoke at home); 

 Children living with smoker(s), with a partial home-smoking-restriction 

(cohabitants smoke inside the home only if the child is out); 

 Children living with smoker(s), with no home-smoking-restriction 

(cohabitants smoke inside the home even if the child is present). 

Finally, the respondents were asked two questions about the average cigarettes 

consumption of each cohabitant smoker: 

“On average, how many cigarettes are smoked by the cohabitant smoker(s) in the 

course of a weekday?” (Open numeric answer); 

“On average, how many cigarettes are smoked by the cohabitant smoker(s) in the 

course of a weekday inside the home?” (Open numeric answer). 
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The responses to each of these questions were analysed as a single continuous 

variable; i.e., the smokers were added together for each question, but the questions 

were analysed separately (if there was more than one cohabitant smoker, the 

numbers of cigarettes consumed by all of the smokers were added together). In our 

evaluation of how the intensity of cohabitants’ smoking habits affected the 

children’s ETS exposure, the combined total daily consumption of cigarettes was 

categorised as: 

– 0-9 cigarettes consumed daily by the cohabitant smokers: light-consumption; 

– 10-19 cigarettes: moderate-consumption; 

– ≥ 20 cigarettes: heavy-consumption. 

ETS exposure level as measured by u-cotinine 

u-Cotinine and urinary creatinine (u-creatinine) in the urine samples were measured 

using the procedures outlined in previous publications (Manini et al. 2008; Protano 

et al. 2010); in brief, about 2 mL of spot urine sample was partitioned into plastic 

tubes for u-cotinine and u-creatinine determinations. All samples were coded and 

then frozen at -20°C until analysis. The samples were analyzed within 30 days from 

sampling. 

u-Cotinine was determined by isotopic dilution liquid chromatography tandem mass 

spectrometry (LC-MS-MS). Before analyses, urine samples were added with the 

internal standard (cotinine-d3) and centrifuged at 3,000 g for 10 min. 

Chromatography was performed on an Atlantis®dC18 column (100 x 2.0 mm i.d., 

3µm; Waters, Milford, MA, USA) using variable proportions of 10 mM aqueous 

formic acid (pH 3.75) and methanol. Elution program: 12% methanol, hold for 12 

min; from 12% to 70% methanol in 2.5 min (linear gradient); 70% methanol, hold 

for 1 min. The flow-rate was 0.2 ml/min and the injection volume 30 µl. Analytes 

were ionized in positive-ion mode and the transitions chosen for selected reaction 

monitoring detection of cotinine and its internal standard were m/z 177 → 80 and 

m/z 180 → 101, respectively. The limit of detection was 0.2 µg/l (20 µl injected), 

the coefficient of variation of the method (expressed as %CV) was below 2% for all 

intra- and inter-day determinations. 
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u-Creatinine was measured by the method of Jaffe (Henry 1974). U-Cotinine 

concentrations were expressed in microgram/gram creatinine to adjust for urine 

dilution. 

Statistical analyses 

The statistical analyses were conducted using the SPSS software package (Version 

14.0 for Windows, Chicago, IL). 

As the u-cotinine results were not normally distributed, analyses were conducted 

using non-parametric techniques. Mann-Whitney tests were used to assess 

differences in the concentrations of u-cotinine between the following groups: 

 children not living with smoker(s) and children living with smoker(s) groups; 

 children living with one smoker and children living with more than one 

smoker groups. 

Kruskal-Wallis test was used to explore differences in the u-cotinine levels for 

children living with smoker(s), on the basis of the different smoking rules at home 

and the daily cigarette consumption of cohabitant smoker(s). 

Even, since the total number of cigarettes consumed in a day and at home were not 

normally distributed, Kruskal-Wallis test was used to examine differences in the 

amount of the total number of cigarettes consumed in a day between total home-

smoking-restriction, partial home-smoking-restriction, and no home-smoking-

restriction groups. Mann-Whitney test was used to assess the differences in the 

mean total numbers of cigarettes consumed at home between the partial home-

smoking-restriction and the no home-smoking restriction groups. 

In all, two forward multiple-linear-regression analyses were conducted to estimate 

the independent effects of cohabitant smokers’ behaviours on the children’s u-

cotinine excretion. The first model was used to test the independent effects of 

home-smoking-restriction-related strategies adopted by cohabitant smokers 

(complete, partial or no restriction) on u-cotinine excretion, taking the children not 

living with smoker(s) group as the reference group. The second model (involving 

only the children living with smokers) was used to examine the contributions to 
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ETS exposure of home-smoking rules (taking the total home-smoking-restriction 

group as the reference group), number of cohabitant smokers, and intensity of 

cohabitant smokers’ smoking habits (taking the light-daily-cigarette-consumption 

group as the reference group), as measured by the u-cotinine excretion. The two-

tailed significance threshold chosen for all of the statistical tests was p ≤ 0.05. 

Linear-regression analyses were conducted using a significance level of 0.05 for 

entry and a level of 0.10 for removal from the models. The goodness of fit of the 

models was assessed using adjusted R2. 

 

RESULTS 

In total, out of 665 children 501 took part in the research, which constituted a 

response rate of 75%. However, 46 urine samples were rejected because of 

unsatisfactory sealing of sample containers; therefore, analytical determinations of u-

cotinine and u-creatinine were performed for 455 samples. 

In addition, we excluded 59 children who had at least one parent who was not 

Italian from the data analysis to avoid interference from well-known ethnic 

differences in the metabolism and excretion of u-cotinine (Perez-Stable et al. 1998; 

Benowitz et al. 1999). In the end, the analysis was conducted using the data on 396 

children. 

The descriptive characteristics of the study subjects are given in Table 1. 
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Table 1. Basic characteristics of the study population (Latium region, Italy; winter season 
of the academic years 2007-08 and 2008-09) 
 

Characteristic N. Value 

Gender 
(%) 

Male 197 52.3 

Female 180 47.7 

Grade in primary school 
(%) 

1st, 2nd or 3rd  212 55.9 

4th or 5th  167 44.1 

Time spent in indoor vs. Outdoor 
environments on the sampling 
day prior to the time of urine 
collection 
(Min; mean ± SD) 

At school (indoor 
environment) 

377 444.7 ± 74.2 

Home and other indoor 
environments 

377 156.1 ± 147.1 

Outdoor environments 377 29.5 ± 52.1 

Home size 
(m3; mean ± SD) 

340 312.4 ± 181.5 

Children ETS-exposure statusa 
(%) 

Living with smoker(s) 172 45.1 

Not living with smoker(s) 209 54.9 

At-home smoking rules of 
cohabitant(s)b 
(%) 

Total home-smoking-
restriction 

58 33.7 

Partial home-smoking-
restriction 

48 27.9 

No home-smoking-restriction 66 38.4 

Number of cohabitant smokersb 

(%) 

1 107 63.3 

> 1 62 36.7 

Number of cigarettes smoked in a 
day by cohabitantsb 
(Mean ± SD) 

Overall 163 16.6 ± 12.2 

At home 108 8.4 ± 7.1 

Daily –cigarette consumptionb 
(%) 

Light (0-9 cigarettes) 49 30.1 

Moderate (10-19 cigarettes) 46 28.2 

Heavy (≥ 20 cigarettes) 68 41.7 

a ETS: Environmental tobacco smoke 
b Only includes responses for children exposed to ETS 
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The sample was well-balanced with respect to gender and age. Responses to the 

question regarding the children’s activities on the sampling day revealed that they 

spent the greatest proportion of their time in indoor environments (school, home 

and other indoor settings). 

The percentage of children who were exposed to ETS was similar to the percentage 

of unexposed children (45.1% vs. 54.9%). Approximately two-thirds of the children 

had cohabitant smokers who usually smoked inside the home. The mean overall 

cigarette-consumption level for cohabitant smokers was 16.6 per day, of which 34%, 

on average, was smoked inside the home. 

A summary of the statistics on u-cotinine levels for all of the children combined and 

for each of the four ETS-exposure-status groups is given in Table 2. 



 

Table 2. Summary of statistics on urinary-cotinine (u-cotinine) concentrations (expressed as µg/g creatinine) for all participants and for subgroups stratified 
according to environmental tobacco smoke (ETS) exposure and the smoking habits of their cohabitants (Latium region, Italy; winter season of the academic 
years 2007-08 and 2008-09) 
 
 

 N 
Missing 
values 

Arithmetic 
mean 

95% CI Median 
IQ 

range 
p value 

All children 396  4.37  2.59 1.51 - 4.23  

ETS-unexposed 209 
15 

2.40 2.14 - 2.66 1.79 1.30 - 2.88 
< 0.001a 

ETS-exposed 172 6.65 5.40 - 7.89 3.90 2.22 - 7.07 

Children living with smoker(s) 172       

No. Of 
cohabitant 
smokers 

1 107 
0 

5.34 4.01 - 6.64 3.51 2.01 - 5.70 
0.008a 

> 1 62 8.69 6.11 - 11.19 5.05 2.63 - 9.71 

1. Total home-smoking-restriction 58 

3 

3.34 2.60 - 4.08 2.84 1.56 - 3.86 

< 0.001b 2. Partial home-smoking-restriction 48 5.49 4.29 - 6.70 3.90 2.66 - 6.41 

3. No home-smoking-restriction 66 10.40 7.54 - 13.26 6.02 2.88 - 12.30 

Daily cigarette 
consumption of 

cohabitant 
smoker(s) 

1. Light (0-9) 49 

9 

5.18 3.51 - 6.86 3.24 1.84 - 5.39 

0.022b 2. Moderate (10-19) 46 5.05 3.35 - 6.74 3.73 2.23 - 5.71 

3. Heavy (≥20) 68 8.76 6.01 - 11.31 4.52 2.64 - 9.03 

a Mann-Whitney test 
b Kruskal-Wallis test 
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The median u-cotinine concentration value for the whole sample was 2.59 µg/g 

creatinine (interquartile (IQ) range = 1.51 - 4.23), whereas the median concentration 

for the children not living with smoker(s) and those living with smoker(s) taken 

separately were 1.79 and 3.90 µg/g creatinine, respectively (p < 0.001). u-Cotinine 

median levels increased significantly in a similar pattern as the levels of ETS 

exposure revealed by the questionnaire increased: children not living with smoker(s) 

<< children living with smoker(s) total-home-smoking-restriction << partial-home-

smoking-restriction << no-home-smoking-restriction. 

The relationship between differences in the mean numbers of cigarettes consumed 

in a day and home-smoking rules was also examined. We found that the median 

total number of cigarettes consumed in a day by cohabitant smokers who did not 

smoke at home at all, by cohabitant smokers who smoked at home only when the 

child was not at home, and by cohabitants who smoked at home even when the 

child was there were 10.0, 15.0, and 17.5 respectively (p = 0.034). Every day, 

cohabitant smokers who smoked at home only when the child was out consumed, 

on average, 8.0 cigarettes at home, whereas cohabitants who smoked at home even 

when the child was there consumed, on average, 8.9 cigarettes at home (p = 0.768). 

The results of the univariate analyses were confirmed by the first linear-regression 

model (Table 3). 



 

Table 3. Differences in urinary-cotinine (u-cotinine) levels (ln u-cotinine expressed as µg/g creatinine) for children whose cohabitants have different at-
home-smoking habits in comparison with children whose cohabitants do not smoke group (Model 1) and for different at-home-smoking habits among those 
children who live with smoker(s) (Model 2) (Latium region, Italy; winter season of the academic years 2007-08 and 2008-09) 
 

Independent variable 
B 

(regression coefficient) a 
95% CIa t statistic P value 

MODEL 1 b 

Children not living with smoker(s) 
(reference group) 

1    

Children living with smoker(s) 
with total home-smoking-restriction 

1.259 1.003 - 1.587 1.946 0.050 

Children not living with smoker(s) 
with partial home-smoking-restriction 

2.375 1.842 - 3.059 6.716 <0.001 

Children not living with smoker(s) 
with no home smoking-restriction 

3.307 2.672 - 4.092 11.045 <0.001 

MODEL 2c 

Home-
smoking rules 

Total home-smoking-restriction 
(reference group) 

1    

Partial home-smoking-restriction 1.797 1.251 - 2.581 3.200 0.002 

No home-smoking-restriction 2.425 1.747 - 3.367 5.340 < 0.001 

Daily cigarette 
consumption 

Heavy 
(≥ 20 cigarettes) 

1.452 1.093 - 1.929 2.601 0.010 

a Values were converted back to the original state by using the anti-log, EXP(). 
b Final forward linear-regression model with the participants’ ages, genders, home sizes and the home-smoking habits of their cohabitants entered in step 1; constant = 
1.891; final adjusted R equal to 0.307. 
c Final forward linear-regression model with the participants’ ages, genders, home sizes, the home-smoking habits of their cohabitants, the number of cohabitant smokers, 
and the cohabitants’ daily cigarette consumption entered in step 1; constant = 2.065; final adjusted R equal to 0.218. 
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The various types of home-smoking behaviour were associated with significant 

increases in the children’s u-cotinine levels in comparison with children not living 

with smoker(s). 

In the second multivariate-regression model (also shown in Table 3), the significant 

predictors of higher levels of u-cotinine excretion were having partial (B = 1.797; p 

= 0.002) or no home-smoking-restriction (B = 2.425; p < 0.001) (in comparison 

with having a total home-smoking-restriction) and heavy daily cigarette 

consumption by cohabitants (B = 1.452; p < 0.010). Age, gender, home size and 

number of cohabitant smokers did not have significant effects on u-cotinine 

excretion. The presented models explained a percentage of the variability in u-

cotinine levels equal to 31 and 21% (first and second model, respectively). 

 

DISCUSSION 

Principal findings and synthesis with prior research 

In the present study, we found that only one-third of children living with smokers 

had a total restriction on smoking in the home is similar to the findings of studies 

conducted in other countries (Borland et al. 2006). 

The second relevant result of this study relates to the impact of different home-

smoking rules on the nicotine uptake of children. The impact of at-home-smoking 

practices on children’s ETS exposure is highlighted by the significant and 

progressive increases in u-cotinine levels from children not living with smoker(s) to 

children living with smoker(s) who do not smoke at home to children living with 

smoker(s) who only smoke at home when the child is not there, and finally to 

children living with smoker(s) who smoke at home even if the child is in. 

In addition, in comparing the three groups of children who living with smokers, we 

found that the ETS exposure was directly related to the home-smoking rules that 

parents reported in their responses to the questionnaires. The lowest levels of 

exposure were found among children living in domestic environments where there 

were complete smoking-restriction, children whose cohabitants observed partial 
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smoking-restriction evidenced median levels of exposure, and the highest levels of 

exposure were found among children living in homes without any smoking-

restriction. This finding is in agreement with previous studies (Matt et al. 2004; 

Akhtar et al. 2009) and highlights two critical realities: 

- The domestic environment is an important source of ETS exposure, even for 

Italian children. 

- Smoking at home only when children are not there or smoking only outside 

the home gives smokers a false perception that they are fully protecting the 

children’s health. 

This last point is supported by evidence that children can be exposed not only to 

SHS but to THS as well. THS is a major public health concern because it highlights 

the impossibility to maintaining a safe level of exposure to tobacco smoke and also 

because nicotine residues in the domestic environment can react with ambient 

nitrous acid to form new tobacco-specific, carcinogenic nitrosamines (Sleiman et al. 

2010). 

Finally, we found that the u-cotinine levels of children living with smoker(s) increase 

in direct proportion to the intensity of the smoking habits of the cohabitant 

smokers; this finding is especially significant among children who live with smokers 

who consume a high number of cigarettes daily (≥ 20). This significant relationship 

shows that heavy smokers, in addition to risking adverse effects on their own health, 

are endangering people living in the same environment. 

The possible contributions of SHS and THS to children’s ETS exposure levels 

The differences in u-cotinine levels that we found among the four groups of 

participants described above are presumably attributable to a combination of SHS 

and THS, which likely contribute to total ETS exposure in variable proportions, 

depending on the habits of and the precautions adopted by cohabitant smokers. 

However, it should be noted that a small amount of cotinine is always present in 

human bodily fluids because of the consumption of foodstuffs containing nicotine 

(e.g., potatoes, tomatoes, eggplant, or beverages) (Domino et al. 1993). The exact 



Chapter 6 
How home smoking habits affect children: a cross-sectional study using urinary cotinine 

measurement in Italy 

94 

 

quantity of u-cotinine derived from dietary nicotine is not well-defined and very 

difficult to evaluate: a range from 0.6 to 6.2 µg/L of possible values for urinary 

cotinine concentrations was calculated based on estimated average and maximal 

consumption of food and beverages containing nicotine and cotinine (Davis et al. 

1991). These results are in line with u-cotinine levels we found in the group of 

children not living with smoker(s). 

Possible sources of nicotine for the study participants are listed in Table 4. 



 

Table 4. The possible contributions of secondhand (SHS) and thirdhand smoke (THS) to children’s urinary-cotinine levels (Latium region, Italy; winter 
season of the academic years 2007-08 and 2008-09) 
 

 Possible contributors to nicotine uptake 

Group 
Dietary intake 

of nicotine 

Occasional passive 
smoking through 

exposure to 
noncohabiting smokers 

SHS from 
cohabitants 

occurring outside 
the home 

THS from 
contaminated hair 

and clothing 

THS from 
household 

surfaces and dust 

SHS from 
cohabitants 

smoking at home 

Children not living with smoker(s) + +     

Children 
living with 
smoker(s) 

Total home-smoking 
restriction 

+ + + +   

Partial home-
smoking- restriction 

+ + + + +  

No home-smoking-
restriction 

+ + + + + + 
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Taking nicotine ingested in food and resulting from occasional ETS exposure 

unrelated to cohabitant smokers as the sources of the base amount of u-cotinine 

excreted by both children not living and children living with smoker(s), we can 

assume that the nicotine intake of the latter group is also affected by SHS from 

cohabitants smoking outside the home, THS from contaminated hair and clothing 

and from household surfaces and dust, and SHS from cohabitants smoking at 

home. Which of these sources is relevant depends on the smoking policy adopted in 

the participants’ homes. 

Strengths and weaknesses of the study 

To the best of our knowledge, the present study is the first to examine the impact of 

the home-smoking rules of cohabitant smokers on a large sample of Italian children, 

using a proven biomarker of exposure to tobacco smoke such as u-cotinine as an 

objective parameter. 

There are several methodological limitations that should be considered in 

interpreting the findings of this study. First, urine samples were collected only once 

from each child (at the end of the sampling day), so possible changes in u-cotinine 

excretion over time could not be examined. However, previous studies have 

indicated that although multiple-occasion urine sampling does provide highly 

accurate estimates of an individual child’s exposure to nicotine, cotinine 

measurements from single urine samples provide a very accurate estimation of a 

child’s recent exposure (2-3 days) (Matt et al. 2007). Second, the findings of the 

present study should be confirmed by conducting similar studies in different seasons 

and with children living in other areas of Italy. In addition to the variables 

investigated in the present study, u-cotinine concentrations may also be affected by 

the size of each room in a child’s house and the level of ventilation (Blackburn et al. 

2003). However, we did not collect any data regarding these potentially variables. 

Besides, final adjusted R2 was quite low for both models; in our opinion, residual 

variability in u-cotinine levels could be explained by other determinants of exposure, 

evidenced in previous studies but not considered in the present one (parental 

education, socio-economic status, genetic polymorphism, etc) (Mannino et al. 2001). 
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Implications for policy-makers 

Our findings suggest that the u-cotinine levels of Italian children are correlated with 

the smoking habits of and home-smoking precautions adopted by their cohabitants. 

As there is a constant policy debate about possible strategies for limiting ETS 

exposure, especially among children, this is an issue with major public health 

significance. 

For this reason, in addition to adopting smoking bans for workplaces and public 

places, educational interventions on parents are essential to increase their awareness 

of the negative impacts of ETS exposure in childhood and promoting behaviours 

that will better protect the children’s health. 
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Passive smoking exposure is a topic of great concern for public health because of its 

well-known adverse effects on human health (IARC 2004). Two news articles on 

this topic were published in the February 2011 issue of Environmental Health 

Perspectives (Burton 2011; Lubick 2011). Lubick (2011) discussed the global health 

burden of secondhand smoke, and Burton (2011) emphasized a new and alarming 

consequence of smoking in indoor environments - “thirdhand smoke” - a term first 

coined in 2006 (Szabo 2006). 

Secondhand smoke is defined as “the combination of smoke emitted from the 

burning end of a cigarette or other tobacco products and smoke exhaled by the 

smoker” (WHO 2007). Thus, secondhand smoke exposure consists of an 

unintentional inhalation of smoke that occurs close to people smoking and/or in 

indoor environments where tobacco was recently used. 

Thirdhand smoke is a complex phenomenon resulting from residual tobacco smoke 

pollutants that adhere to the clothing and hair of smokers and to surfaces, 

furnishings, and dust in indoor environments. These pollutants persist long after the 

clearing of secondhand smoke. They are reemitted into the gas phase or react with 

oxidants or other compounds present in the environment to form secondary 

contaminants, some of which are carcinogenic or otherwise toxic for human health 

(Matt et al. 2011b). Thus, thirdhand smoke exposure consists of unintentional intake 

(mainly through inhalation but also via ingestion and dermal routes) of tobacco 

smoke and other related chemicals that occurs in the absence of concurrent 

smoking. Exposure can even take place long after smoking has ceased, through 

close contact with smokers and in indoor environments in which tobacco is 

regularly smoked. 

Lubick (2011) considers secondhand smoke synonymous with passive smoking, as 

do the majority of the authors publishing on this topic. However, in light of new 

evidence about thirdhand smoke (Matt et al. 2011b), it is no longer appropriate to 

use the term “secondhand smoke” as a synonym for passive smoking or 

environmental tobacco smoke, because it represents a pars pro toto. In other words, 

using the term “secondhand smoke” mistakes one part of the problem for the 

whole. Instead, we propose that “passive smoking” or “environmental tobacco 
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smoke” be used as a more inclusive term to describe any tobacco smoke exposure 

outside of active smoking. 

This question of terminology is of particular concern for researchers evaluating 

passive smoking exposure in indoor settings, especially in domestic environments. 

Since numerous countries have introduced smoking bans in enclosed public places, 

domestic environments have become the main sources of passive smoking exposure 

(WHO 2007). We believe researchers should determine the independent 

contributions of secondhand and thirdhand smoke when they assess the magnitude 

of pollutant intake due to passive smoking exposure. 
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The results of the present doctoral thesis allow to draw some final considerations: 

– The main sources of benzene exposure of the investigated sample are the 

urbanization degree of residence area, indirect indicator of air pollution, and the 

exposure to passive smoking. 

 

– The use of the biological indices of benzene exposure, already successfully used 

to assess benzene exposure in occupational setting and for adult groups of 

general population showed that: 

o u-SPMA was a good biomarker for assessing exposure to benzene 

derived from air pollution in childhood; 

o u-UB can be effectively used as a tobacco-related carcinogen biomarker 

for assessing the intake of benzene resulting from passive smoking 

exposure in childhood. 

 

– The intake of benzene specifically related to exposure to passive smoking 

increases significantly in parallel to increased environmental tobacco smoke 

exposure at home, and it shows the following sequence among subject groups: 

unexposed to environmental tobacco smoke < cohabitant(s) smoker(s) not 

smoking inside the home < cohabitant(s) smoking inside the home only when 

children are out < cohabitant(s) smoking inside the home even when children 

are in. It is even more demonstrated that smoking is a health threat for smokers 

and for others with whom they share an environment, regardless of the 

‘precautions’ taken by smokers. 

 

– Exposure to passive smoking derives from the sum of exposures to secondhand 

and thirdhand smoke. This result is of fundamental importance for several 

reasons: 
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o Appropriateness of the terminology: the term “secondhand smoke”, often 

used as synonymous with passive smoking, is only part of the 

phenomenon; thus, it would be more appropriate to use the term “passive 

smoking” or “environmental tobacco smoke” to describe any tobacco 

smoke exposure outside of active smoking. 

o Appropriateness of the studies: researchers should determine the 

independent contributions of secondhand and thirdhand smoke when 

they assess the magnitude of pollutant intake due to passive smoking 

exposure. 

 Implications for policy makers in health policies: Apart from smoking bans in 

public places, educational interventions on parents are essential to increase their 

awareness about the negative impact of environmental tobacco smoke exposure 

during childhood, and to teach correct behaviors to protect health of kids, 

especially in household environment. 

 

In conclusion, we can affirm that benzene is an old and well known pollutant but it 

must still be considered of great concern for children health, despite its use has been 

progressively reduced and rigorously regulated worldwide by occupational exposure 

limits and air quality standards. 

For these reasons, it is essential that Public Health authorities encourage and 

promote monitoring programs for the assessment of children exposure to benzene. 

The results should be use as objectifiable data for orienting the strategies aimed to 

control air pollution. 

On the other hand, the same data should be included in community-level health 

promotion interventions. They could determine a higher awareness of the actual 

state of the living environments and, consequently, encourage the adoption of 

“health and ecological friendly” lifestyles. 

 



 
 

104 

 

 

 

 

 

REFERENCES 

 



 
References 

105 

 

ACGIH (American Conference of Governmental Industrial Hygienists). 2009 TLVs 
and BEIs. Based on the documentation of the threshold limit values for 
chemical substances and physical agents and biological exposure indices. 
Cincinnati, OH: American Conference of Governmental Industrial 
Hygienists; 2009. 

Adgate JL, Church TR, Ryan AD, Ramachandran G, Fredrickson AL, Stock TH, et 
al. Outdoor, indoor, and personal exposure to VOCs in children. Environ 
Health Perspect. 2004;112:1386-92. 

Adgent MA. Environmental tobacco smoke and sudden infant death syndrome: a 
review. Birth Defects Res B Dev Reprod Toxicol. 2006;77:69-85. 

Akhtar PC, Haw SJ, Currie DB, Zachary R, Currie CE. Smoking restrictions in the 
home and second-hand smoke exposure among primary schoolchildren 
before and after introduction of the Scottish smoke-free legislation. Tob 
Control. 2009;18:409-15. 

Amodio-Cocchieri R, Del Prete U, Cirillo T, Agozzino E, Scarano G. Evaluation of 
benzene exposure in children living in Campania (Italy) by urinary trans, 
trans-muconic acid assay. J Toxicol Environ Health A. 2001;63:79-87. 

Anderson LM, Diwan BA, Fear NT, Roman E. Critical windows of exposure for 
children’s health: cancer in human epidemiological studies and neoplasms in 
experimental animal models. Environ Health Perspect. 2000;108:573-94. 

Aprea C, Sciarra G, Bozzi N, Pagliantini M, Perico M, Bavazzano P, et al. Reference 
values of urinary trans, trans-muconic acid: Italian multicentric study. Arch 
Environ Contam Toxicol. 2008;55:329-40. 

Armstrong TW, Zaleski RT, Konkel WJ, Parkerton TJ. A tiered approach to 
assessing children’s exposure: a review of methods and data. Toxicol Lett. 
2002;127:111-9. 

Asomaning K, Miller DP, Liu G, Wain JC, Lynch TJ, Su L, Christiani DC. Second 
hand smoke, age of exposure and lung cancer risk. Lung Cancer. 2008;61:13-
20. 

ATSDR (Agency for Toxic Substances and Disease Registry). ToxGuideTM for 
Benzene C6H6. CAS# 71-43-2. U.S. Atlanta, GA: Department of Health and 
Human Services Public Health Service Agency for Toxic Substances and 
Disease Registry; 2007 [cited 2011 Dec 12]. Available from: 
http://www.atsdr.cdc.gov/toxguides/toxguide-3.pdf. 

Bahrami AR, Edwards JW. Evaluation of benzene exposure in adults and urinary 
sphenylmercapturic acid in children living in Adelaide, South Australia. Int J 
Environ Sci Tech. 2006;3:113-7. 

Barbieri A, Violante FS, Sabatini L, Graziosi F, Mattioli S. Urinary biomarkers and 
low level environmental benzene concentration: assessing occupational and 
general exposure. Chemosphere. 2008;74:64-9. 



 
References 

106 

 

Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary 
creatinine concentrations in the U.S. population: implications for urinary 
biologic monitoring measurements. Environ Health Perspect. 2005;113:192-
200. 

Barton HA, Cogliano VJ, Flowers L, Valcovic L, Setzer RW, Woodruff TJ. 
Assessing susceptibility from early-life exposure to carcinogens. Environ 
Health Perspect. 2005;113:1125-33. 

Benowitz NL, Perez-Stable EJ, Fong I, Modin G, Herrera B, Jacob P 3rd. Ethnic 
differences in N-glucuronidation of nicotine and cotinine. J Pharmacol Exp 
Ther. 1999;291:1196-203. 

Benowitz NL. Cotinine as a biomarker of environmental tobacco smoke exposure. 
Epidem Rev. 1996;18:188-204. 

Bergamaschi E, Brustolin A, De Palma G, Manini P, Mozzoni P, Andreoli R, et al. 
Biomarkers of dose and susceptibility in cyclists exposed to monoaromatic 
hydrocarbons. Toxicol Lett. 1999;108:241-7. 

Blackburn C, Spencer N, Bonas S, Coe C, Dolan A, Moy R. Effect of strategies to 
reduce exposure of infants to environmental tobacco smoke in the home: 
cross sectional survey. BMJ. 2003;327:257. 

Boeniger MF, Lowry LK, Rosenberg J. Interpretation of urine results used to assess 
chemical exposure with emphasis on creatinine adjustments: a review. Am 
Ind Hyg Assoc J. 1993;54:615-27. 

Boogaard PJ, van Sittert NJ. Suitability of s-phenyl mercapturic acid and trans-
transmuconic acid as biomarkers for exposure to low concentrations of 
benzene. Environ Health Perspect. 1996;104(Suppl 6):1151-7. 

Borland R, Yong HH, Cummings KM, Hyland A, Anderson S, Fong GT. 
Determinants and consequences of smoke-free homes: findings from the 
International Tobacco Control (ITC) Four Country Survey. Tob Control. 
2006;15(Suppl 3):iii42-50. 

Brownson RC, Figgs LW, Caisley LE. Epidemiology of environmental tobacco 
smoke exposure. Oncogene. 2002;21:7341-8. 

Bruinen de Bruin Y, Koistinen K, Kephalopoulos S, Geiss O, Tirendi S, Kotzias D. 
Characterisation of urban inhalation exposures to benzene, formaldehyde 
and acetaldehyde in the European Union: comparison of measured and 
modeled exposure data. Environ Sci Pollut Res Int. 2008;15:417-30. 

Burton A. Does the smoke ever really clear? Thirdhand smoke exposure raises new 
concerns. Environ Health Perspect. 2011;119:A70-4. 

Campo L, Cattaneo A, Consonni D, Scibetta L, Costamagna P, Cavallo DM, et al. 
Urinary methyl tert-butyl ether and benzene as biomarkers of exposure to 
urban traffic. Environ Int. 2011;37:404-11. 



 
References 

107 

 

CDC (Centers for Disease Control and Prevention). Fourth National Report on 
Human Exposure to Environmental Chemicals; 2009 [cited 2012 Jan 03]. 
Available from: http://www.cdc.gov/exposurereport/. 

Chang JS. Parental smoking and childhood leukemia. Methods Mol Biol 
2009;472:103-37. 

Cheraghi M, Salvi S. Environmental tobacco smoke (ETS) and respiratory health in 
children. Eur J Pediatr. 2009;168:897-905. 

Cocco P, Tocco MG, Ibba A, Scano L, Ennas MG, Flore C, et al. Trans, trans-
muconic acid excretion in relation to environmental exposure to benzene. Int 
Arch Occup Environ Health. 2003;76:456-60. 

Davis RA, Stiles MF, de Bethizy JD, Reynolds JH. Dietary nicotine: a source of 
urinary cotinine. Food Chem Toxicol. 1991;29:821-7. 

Destaillats H, Singer BC, Lee SK, Gundel LA. Effect of ozone on nicotine 
desorption from model surfaces: evidence for heterogeneous chemistry. 
Environ Sci Technol. 2006;40:1799-805. 

Domino EF, Hornbach E, Demana T. The nicotine content of common vegetables. 
N Engl J Med. 1993;329:437. 

Duarte-Davidson R, Courage C, Rushton L, Levy L. Benzene in the environment: 
an assessment of the potential risks to the health of the population. Occup 
Environ Med. 2001;58:2-13. 

Duderstadt KG. Environmental health policy and children’s health. J Pediatr Health 
Care. 2006;20:411-3. 

Esteban M, Castaňo A. Non-invasive matrices in human biomonitoring: a review. 
Environ Int, 2009;35:438-49. 

European Commission. Communication from the Commission to the Council, the 
European Parliament, the European Economic and Social Committee. “The 
European Environmental & Health and Action Plan 2004–2010” SEC (2004) 
729. Brussels, Belgium: European Commission; 2004a [cited 2012 Jan 03]. 
Available from: http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52004DC0416:EN:H
TML. 

European Commission. Directive 2000/69/EC of the European Parliament of the 
Council of 16 November 2000 relating to limit values for benzene and 
carbon monoxide in ambient air. Brussels, Belgium: European Commission; 
2000 [cited 2012 Jan 03]. Available from: http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2000:313:0012:0021:EN:
PDF [last accessed 09 December 2011]. 

European Commission. Directive 2004/37/EC of the European Parliament and of 
the Council of 29 April 2004 on the protection of workers from the risks 
related to exposure to carcinogens or mutagens at work (Sixth individual 



 
References 

108 

 

Directive within the meaning of Article 16(1) of Council Directive 
89/391/EEC). Brussels, Belgium: European Commission; 2004b [cited 2012 
Jan 03]. Available from: http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004: 
229:0023:0034:EN:PDF. 

European Commission. Directive 2008/50/EC of the European Parliament and of 
the Council of 21 May 2008 on ambient air quality and cleaner air for 
Europe. Brussels, Belgium: European Commission; 2008 [cited 2012 Jan 03]. 
Available from: 
http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:000
1:0044:EN:PDF. 

European Commission. Directive 98/70/EC of the European Parliament and of the 
Council of 13 October 1998 relating to the quality of petrol and diesel fuels 
and amending Directive 93/12/EEC. Brussels, Belgium: European 
Commission; 1987 [cited 2012 Jan 03]. Available from: http://eur-
lex.europa.eu/LexUriServ/site/en/consleg/1998/ L/01998L0070-
20031120-en.pdf. 

European Commission. Final Report: The INDEX Project: Critical Appraisal of the 
Setting and Implementation of Indoor Exposure Limits in the EU. Institute 
for Health and Consumer Protection, Physical and Chemical Exposure Unit. 
Brussels: European Commission; 2005 [cited 2010 Jan 10]. Available from: 
http://sanidadambiental.com/wp-
content/uploads/2009/02/fp_pollution_2002_exs_02.pdf. 

Florescu A, Ferrence R, Einarson T, Selby P, Soldin O, Koren G. Methods for 
quantification of exposure to cigarette smoking and environmental tobacco 
smoke: focus on developmental toxicology. Ther Drug Monit. 2009;31:14-30. 

Fruin SA, Denis MJS, Winer AM, Colome SD, Lurmann FW. Reductions in human 
benzene exposure in the California south coast air basin. Atmos Environ. 
2001;35:1069-77. 

Fuselli S, De Felice M, Morlino R, Turrio-Baldassarri L. A three year study on 14 
VOCs at one site in Rome: levels, seasonal variations, indoor/outdoor ratio 
and temporal trends. Int J Environ Res Public Health. 2010;7:3792-803. 

Fuselli S, Paduano S, Soriero A. Andamenti stagionali di alcuni composti organici 
volatili all’interno ed all’esterno di abitazioni situate in zone caratterizzate da 
differenti intensità di traffico veicolare nella città di Roma. Ann Ist Super 
Sanità. 2002;38:175-85. 

Fustinoni S, Campo L, Satta G, Campagna M, Ibba A, Tocco MG, et al. 
Environmental and lifestyle factors affect benzene uptake biomonitoring of 
residents near a petrochemical plant. Environ Int. 2012;39:2-7. 

Fustinoni S, Consonni D, Campo L, Buratti M, Colombi A, Pesatori AC, et al. 
Monitoring low benzene exposure: comparative evaluation of urinary 



 
References 

109 

 

biomarkers, influence of cigarette smoking, and genetic polymorphisms. 
Cancer Epidemiol Biomark Prev. 2005;14:2237-44. 

Fustinoni S, Rossella F, Campo L, Mercadante R, Bertazzi PA. Urinary BTEX, 
MTBE and naphthalene as biomarkers to gain environmental exposure 
profiles of the general population. Sci Total Environ. 2010;408:2840-49. 

Gourlay SG, Benowitz NL, Forbes A, McNeil JJ. Determinants of plasma 
concentrations of nicotine and cotinine during cigarette smoking and 
transdermal nicotine treatment. Eur J Clin Pharmacol. 1996;51:407-14. 

Han X, Naeher LP. A review of traffic-related air pollution exposure assessment 
studies in the developing world. Environ Int. 2006;32:106-20. 

Haufroid V, Lison D. Urinary cotinine as a tobacco-smoke exposure index: a 
minireview. Int Arch Occup Environ Health. 1998;71:162-8. 

Hecht SS. Carcinogen derived biomarkers: applications in studies of human 
exposure to secondhand tobacco smoke. Tob Control. 2004;13(Suppl 1):i48-
56. 

Hellweg S, Demou E, Bruzzi R, Meijer A, Rosenbaum RK, Huijbregts MAJ, et al. 
Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact 
Assessment. Environ Sci Technol. 2009;43:1670-9. 

Henry RJ. Clinical chemistry principle and techniques (2nd edn). New York: Harper 
& Row; 1974. 

Hyland A, Higbee C, Hassan L, Fong GT, Borland R, Cummings KM, et al. Does 
smoke-free Ireland have more smoking inside the home and less in pubs 
than the United Kingdom? Findings from the international tobacco control 
policy evaluation project. Eur J Public Health. 2008;18:63-5. 

IARC (International Agency for Research on Cancer). Handbooks of Cancer 
Prevention, Tobacco Control: Evaluating the Effectiveness of Smoke-Free 
Policies. Vol. 13. Lyon, France: International Agency for Research on 
Cancer; 2009. 

IARC (International Agency for Research on Cancer). Some Industrial Chemicals 
and Dyestuffs. IARC Monographs on the Evaluation of Carcinogenic Risks 
to Humans. Vol. 29. Lyon, France: International Agency for Research on 
Cancer; 1982. 

IARC (International Agency for Research on Cancer). Tobacco Smoke and 
Involuntary Smoking. IARC Monographs on the Evaluation of Carcinogenic 
Risks to Humans. Vol. 83. Lyon, France: International Agency for Research 
on Cancer; 2004. 

Invernizzi G, Ruprecht A, De Marco C, Paredi P, Boffi R. Residual tobacco smoke: 
measurement of its washout time in the lung and of its contribution to 
secondhand smoke. Tob Control. 2007;16:29-33. 



 
References 

110 

 

Jarvis MJ, Mindell J, Gilmore A, Feyerabend C, West R. Smoke-free homes in 
England: prevalence, trends and validation by cotinine in children. Tob 
Control. 2009;18:491-5. 

Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T, et al. 
A review and evaluation of intraurban air pollution exposure models. J Expo 
Anal Environ Epidemiol. 2005;15:185-204. 

Johansson A, Hermansson G, Ludvigsson J. How should parents protect their 
children from environmental tobacco-smoke exposure in the home? 
Pediatrics. 2004;113:e291-5. 

Johnson ES, Langard S, Lin YS. A critique of benzene exposure in the general 
population. Sci Total Environ. 2007;374:183-98. 

Kabir Z, Manning PJ, Holohan J, Goodman PG, Clancy L. Active smoking and 
secondhandsmoke exposure at home among Irish children, 1995-2007. Arch 
Dis Child 2010;95:42-5. 

Keskinoglu P, Cimrin D, Aksakoglu G. Which cut-off level of urine cotinine: 
creatinine ratio (CCR) should be used to determine passive smoking 
prevalence in children in community based studies? Tob Control. 
2007;16:358-9. 

Kouniali A, Cicolella A, Gonzalez-Flesca N, Dujardin R, Gehanno JF, Bois FY. 
Environmental benzene exposure assessment for parent-child pairs in 
Rouen, France. Sci Total Environ. 2003;308:73-82. 

Krzyzanowski M, Kuna-Dibbert B, Schneider J, editors. World Health 
Organization: health effects of transport-related air pollution. Bonn: World 
Health Organization 2005 [cited 2012 Jan 03]. Available from: 
http://www.euro.who.int/__data/assets/pdf_file/0006/74715/E86650.pdf. 

Lamm SH, Engel A, Joshi KP, Byrd D, Chen R. Chronic myelogenous leukemia and 
benzene exposure: a systematic review and meta-analysis of the case-control 
literature. Chem Biol Interact. 2009;182:93-7. 

Lovreglio P, Barbieri A, Carrieri M, Sabatini L, Fracasso ME, Doria D, et al. Validity 
of new biomarkers of internal dose for use in the biological monitoring of 
occupational and environmental exposure to low concentrations of benzene 
and toluene. Int Arch Occup Environ Health. 2010;83:341-56. 

Lovreglio P, D’Errico MN, Fustinoni S, Drago I, Barbieri A, Sabatini L, et al. 
Biomarkers of internal dose for the assessment of environmental exposure to 
benzene. J Environ Monit. 2011;13:2921-8. 

Lubick N. Smoking and secondhand smoke. Global estimate of SHS burden. 
Environ Health Perspect. 2011;119:A66-7. 

Manini P, De Palma G, Andreoli R, Poli D, Petyx M, Corradi M, et al. Biological 
monitoring of low benzene exposure in Italian traffic policemen. Toxicol 
Lett. 2008;181:25-30. 



 
References 

111 

 

Mannino DM, Caraballo R, Benowitz N, Repace J. Predictors of cotinine levels in 
US children: data from the Third National Health and Nutrition 
Examination Survey. Chest. 2001;120:718-24. 

Matt GE, Hovell MF, Quintana PJ, Zakarian J, Liles S, Meltzer SB, et al. The 
variability of urinary cotinine levels in young children: implications for 
measuring ETS exposure. Nicotine Tob Res. 2007;9:83-92. 

Matt GE, Quintana PJ, Hovell MF, Bernert JT, Song S, Novianti N, et al. 
Households contaminated by secondhand smoke: sources of infant 
exposures. Tob Control. 2004;13:29-37. 

Matt GE, Quintana PJ, Zakarian JM, Fortmann AL, Chatfield DA, Hoh E, et al. 
When smokers move out and non-smokers move in: residential third-hand 
smoke pollution and exposure. Tob Control. 2011°;20:e1. 

Matt GE, Quintana PJE, Destaillats H, Gundel LA, Sleiman M, Singer BC, et al. 
Thirdhand tobacco smoke: emerging evidence and arguments for a 
multidisciplinary research agenda. Environ Health Perspect. 2011b;119:1218-
26. 

McNabola A, Gill LW. The control of secondhand smoke: a policy review. Int J 
Environ Res Public Health. 2009;6:741-58. 

Melikian AA, Qu Q, Shore R, Li G, Li H, Jin X, et al. Personal exposure to different 
levels of benzene and its relationships to the urinary metabolites S-
phenylmercapturic acid and trans, trans-muconic acid. J Chromatogr B 
Analyt Technol Biomed Life Sci. 2002;778:211-21. 

Minoia C, Meroni G, Aprea C, Oppezzo MC, Magnaghi S, Sciarra G, et al. 
Environmental and urinary reference values as markers of exposure to 
hydrocarbons in urban areas. Sci Tot Environ. 1996;192:163-82. 

Muller T. Breaking the Cycle of Children’s Exposure to Tobacco Smoke. London: 
British Medical Association; 2007. 

Narayan KM, Ali MK, Koplan JP. Global noncommunicable diseases--where 
worlds meet. N Engl J Med. 2010;363:1196-8. 

O’Dowd A. Smoking ban in public places also cuts smoking at home. BMJ 
2005;331:129. 

Pérez-Stable EJ, Herrera B, Jacob P 3rd, Benowitz NL. Nicotine metabolism and 
intake in black and white smokers. JAMA 1998;280:152-6. 

Petrick LM, Svidovsky A, Dubowski Y. Third-hand smoke: heterogeneous 
oxidation of nicotine and secondary aerosol formation in the indoor 
environment. Environ Sci Technol. 2011;45:328-33. 

Pezzagno G, Maestri L, Fiorentino ML. Trans, trans-muconic acid, a biological 
indicator to low levels of environmental benzene: some aspects of its 
specificity. Am J Ind Med. 1999;35:511-8. 



 
References 

112 

 

Protano C, Andreoli R, Manini P, Guidotti M, Vitali M. A tobacco-related 
carcinogen: assessing the impact of smoking behaviours of cohabitants on 
benzene exposure in children. Tob Control. 2011 Jul 5. DOI: 
10.1136/tc.2010.039255. 

Protano C, Guidotti M, Manini P, Petyx M, La Torre G, Vitali M. Benzene exposure 
in childhood: role of living environments and assessment of available tools. 
Environ Int. 2010;36:779-87. 

Protano C, Vitali M. The New Danger of Thirdhand Smoke: Why Passive Smoking 
Does Not Stop at Secondhand Smoke. Environ Health Perspect. 
2011;119:A422. 

Prüss-Ustün A, Vickers C, Haefliger P, Bertollini R. Knowns and unknowns on 
burden of disease due to chemicals: a systematic review. Environ Health. 
2011;10:9. 

Renner T, Baer-Koetzle M, Scherer G. Determination of sorbic acid in urine by 
gaschromatography-mass spectrometry. J Chromatogr A. 1999;847:127-33. 

Rijnders E, Janssen NA, van Vliet PH, Brunekreef B. Personal and outdoor 
nitrogen dioxide concentrations in relation to degree of urbanization and 
traffic density. Environ Health Perspect. 2001;109(Suppl 3):411-7. 

Roncarolo F, Ramella F, Sacco S, Pretti G, Bonfanti M, Tenconi MT. Mr. Starbene 
e il Club dei Vincenti: assessing an anti-smoking campaign for school 
children. Ital J Public Health. 2008;5:72-9. 

Ruchirawat M, Settachan D, Navasumrit P, Tuntawiroon J, Autrup H. Assessment 
of potential cancer risk in children exposed to urban air pollution in 
Bangkok, Thailand. Toxicol Lett. 2007;168:200-9. 

Ruppert T, Scherer G, Tricker AR, Adlkofer F. Trans, trans-muconic acid as a 
biomarker of non-occupational environmental exposure to benzene. Int 
Arch Occup Environ Health. 1997;69:247-51. 

Serdar B, Egeghy PP, Waidyanatha S, Gibson R, Rappaport SM. Urinary biomarkers 
of exposure to jet fuel (JP-8). Environ Health Perspect. 2003;111:1760-4. 

Sleiman M, Gundel LA, Pankow JF, Jacob P 3rd, Singer BC, Destaillats, H. 
Formation of carcinogens indoors by surface-mediated reactions of nicotine 
with nitrous acid, leading to potential third-hand smoke hazards. Proc Natl 
Acad Sci USA. 2010;107:6576-81. 

Smith MT. Advances in understanding benzene health effects and susceptibility. 
Annu Rev Public Health. 2010;31:133-48. 

Smolders R, Shramm K-W, Nickmilder M, Schoeters G. Applicability of non-
invasive collected matrices for human biomonitoring. Environ Health. 
2009;8:1-8. 



 
References 

113 

 

Soliman S, Pollack HA, Warner KE. Decrease in the prevalence of secondhand 
smoke exposure in the home during the 1990s in families with children. Am J 
Public Health. 2004;94:314-20. 

Szabo L. Babies May Absorb Smoke Residue in Home. USA Today, 2006 August 6 
[cited 2011 Jun 01]. Available from: 
http://www.usatoday.com/news/health/2006-08-06-thirdhand-smoke-
usat_x.htm. 

Turgut G, Kaptanoğlu B, Turgut S, Genç O, Tekintürk S. Influence of acute 
exercise on urinary protein, creatinine, insulin-like growth factor-I (IGF-I) 
and IGF binding protein-3 concentrations in children. Tohoku J Exp Med. 
2003;201:165-70. 

US EPA (US Environmental Protection Agency). Carcinogenic effects of benzene: 
An update. EPA/600/P-97/001F. Washington DC: Office of Research and 
Development; 1998 [cited 2012 Jan 04]. Available from: 
http://www.epa.gov/ncea/pdfs/benzenef.pdf. 

US EPA (US Environmental Protection Agency). Our Nation’s Air. Status And 
Trends Through 2008. United States Environmental Protection Agency. 
North Carolina: Office of Air Quality Planning and Standards. Research 
Triangle Park; 2010 [cited 2011 Oct 10]. Available from: 
http://www.epa.gov/airtrends/2010/report/coverandtoc.pdf. 

US EPA (US Environmental Protection Agency). Toxicity and Exposure 
Assessments for Children’s Health. Benzene TEACH Chemical Summary. 
US Environmental Protection Agency, TEACH Database, updated 2005 
May 10 [cited 2011 Oct 10]. Available from: 
http://www.epa.gov/teach/chem_summ/BENZ_summary.pdf. 

US PHS (US Public Health Service). The Health Consequences of Involuntary 
Exposure to Tobacco Smoke: A Report of the Surgeon General: Executive 
Summary. Rockville, MD: US Department of Health and Human Services, 
Public Health Service, Office of the Surgeon General; 2006. 

Van Leeuwen DM, Pedersen M, Hendriksen PJ, Boorsma A, van Herwijnen MH, 
Gottschalk RW, et al. Genomic analysis suggests higher susceptibility of 
children to air pollution. Carcinogenesis. 2008;29:977-83. 

Van Sittert NJ, Boogaard PJ, Beulink GDJ. Application of the urinary S-
phenylmercapturic acid test as a biomarker for low levels of exposure to 
benzene in industry. Br J Ind Med. 1993;50:460-9. 

Vitali M, Ensabella F, Stella D, Guidotti M. Exposure to organic solvents among 
handicraft car painters: a pilot study in Italy. Ind Health 2006;44:310-7. 

Waidyanatha S, Rothman N, Fustinoni S, Smith MT, Hayes RB, Bechtold W, et al. 
Urinary benzene as a biomarker of exposure among occupationally exposed 
and unexposed subjects. Carcinogenesis. 2001;22:279-86. 



 
References 

114 

 

Weaver VM, Buckley T, Groopman JD. Lack of specificity of trans, trans-muconic 
acid as a benzene biomarker after ingestion of sorbic acid-preserved foods. 
Cancer Epidemiol Biomarker Prev. 2000;9:749-55. 

Weaver VM, Buckley TJ, Groopman JD. Approaches to environmental exposure 
assessment in children. Environ Health Perspect. 1998;106(Suppl 3):827-32. 

Weaver VM, Davoli CT, Heller PJ, Fitzwilliam A, Peters HL, Sunyer J, et al. 
Benzene exposure, assessed by urinary trans, trans-muconic acid, in urban 
children with elevated blood lead levels. Environ Health Perspect. 
1996;104:318-23. 

Weisel CP. Benzene exposure: an overview of monitoring methods and their 
findings. Chem Biol Interact 2010;19:58-66. 

WHO (World Health Organization). Air quality guidelines for Europe. WHO 
Regional Publications, European Series, No. 23. Copenhagen: World Health 
Organization Regional Office for Europe; 1987. 

WHO (World Health Organization). Air quality guidelines for Europe, 2nd ed. 
WHO Regional Publications, European Series, No. 91. Copenhagen: World 
Health Organization Regional Office for Europe; 2000 [cited 2011 Oct 11]. 
Available from: 
http://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf. 

WHO (World Health Organization). Effects of air pollution in children’s health and 
development. A review of evidence. Bonn: The WHO European Centre for 
Environment and Health, Bonn Office; 2005 [cited 2011 Oct 10]. Available 
from: 
http://www.euro.who.int/__data/assets/pdf_file/0010/74728/E86575.pdf. 

WHO (World Health Organization). Indoor Air Quality Guidelines: selected 
pollutants. Bonn: The WHO European Centre for Environment and Health, 
Bonn Office; 2010 [cited 2011 Oct 10]. Available from: 
http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf
. 

WHO (World Health Organization). Preventing disease through healthy 
environments: towards an estimate of the environmental burden of disease. 
Geneva: World Health Organization; 2006a [cited 2011 Dec 14]. Available 
from: 
http://www.who.int/quantifying_ehimpacts/publications/preventingdisease
.pdf. 

WHO (World Health Organization). Protection from exposure to second-hand 
tobacco smoke. Policy recommendations. Geneva: World Health 
Organization; 2007 [cited 2011 Dec 17]. Available from: 
http://whqlibdoc.who.int/publications/2007/9789241563413_eng.pdf. 

WHO (World Health Organization). WHO Air quality guidelines for particulate 
matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. 
Summary of risk assessment. Geneva: World Health Organization; 2006b 



 
References 

115 

 

[cited 2011 Oct 11]. Available from: 
http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_eng.p
df. 

Wild CP, Kleinjans J. Children and increased susceptibility to environmental 
carcinogens: evidence or empathy? Cancer Epidemiol Biomarkers Prev. 
2003;12:1389-94. 

Winickoff JP, Friebely J, Tanski SE, Sherrod C, Matt GE, Hovell MF, et al. Beliefs 
about the health effects of “Thirdhand” smoke and home smoking bans. 
Pediatrics. 2009;123:74-9. 

Zou B, Wilson JG, Zhan FB, Zeng Y. Air pollution exposure assessment methods 
utilized in epidemiological studies. J Environ Monit. 2009;11:475-90. 



 

Dottoranda: Carmela Protano 

GIUDIZIO ESPRESSO DAL COLLEGIO DEI DOCENTI DEL 

DOTTORATO DI RICERCA IN 

“SCIENZE DI SANITÀ PUBBLICA E MICROBIOLOGIA” - XXIV Ciclo 

  



 

 

 


