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Abstract

Coronary artery disease (CAD) is one of the major cardiovascular diseases and repre-

sents the leading causes of global mortality. Developing new diagnostic and thera-

peutic approaches for CAD treatment are critically needed, especially for an early

accurate CAD detection and further timely intervention. In this study, we successfully

isolated human plasma small extracellular vesicles (sEVs) from four stages of CAD

patients, that is, healthy control, stable plaque, non-ST-elevation myocardial infarc-

tion, and ST-elevation myocardial infarction. Surface-enhanced Raman scattering

(SERS) measurement in conjunction with five machine learning approaches, including

Quadratic Discriminant Analysis, Support Vector Machine (SVM), K-Nearest Neigh-

bor, Artificial Neural network, were then applied for the classification and prediction

of the sEV samples. Among these five approaches, the overall accuracy of SVM

shows the best predication results on both early CAD detection (86.4%) and overall

prediction (92.3%). SVM also possesses the highest sensitivity (97.69%) and specific-

ity (95.7%). Thus, our study demonstrates a promising strategy for noninvasive, safe,

and high accurate diagnosis for CAD early detection.
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1 | INTRODUCTION

Coronary artery disease (CAD) is represented by the accumulation of

atheromatous plaques within the walls of the arteries that supply

blood to the heart.1 CAD is one of the major cardiovascular diseases

and remains the leading causes of death worldwide.2–4 CAD is

responsible for about 7 million deaths worldwide.5,6 Based on the

degree of stenosis and plaque characteristics, CAD patients can pre-

sent clinically with cardiac symptoms and can be divided into different

categories, that is, patients with stable nonobstructive plaques (SP),

non-ST-elevation myocardial infarction (NSTEMI) and ST-elevation

myocardial infarction (STEMI). This reflects the continuum of CAD

and with increased severity there are decreased lumen areas, greater

plaque burden, more plaque rupture all of which are associated with a

greater risk of mortality.1,7 Thus, there is still a huge need to develop

new diagnostic and therapeutic approaches for CAD treatment, espe-

cially an early accurate CAD detection and timely intervention, which

is expected to avert many late CAD events and deaths.

In the past few decades, various preventive and therapeutic strat-

egies have substantially improved the prognosis of patients suffering

from CAD. Many advanced techniques have been developed,

reported, and clinically applied to the diagnostic and prognostic

workup of CAD, such as electrocardiogram,8,9 echocardiography,10

intravascular imaging,11,12 coronary angiography.13,14 Although these

diagnostic methods have revolutionized the management of CAD

patients, the prevalence of adverse cardiac events remains high. Imag-

ing approaches, like coronary angiography, are invasive and should

not be used to diagnose the early-stage CAD. Some chemical agents

used in cardiac stress testing, such as radiocontrast media may have

potential side effects for CAD patients. As well, these stress tests are

designed to detect significant CAD which represents a luminal loss of

more than 50%. Novel biomarkers can predict and differentiate

between CAD types in both the early and late stages, and may reduce

unnecessary invasive coronary angiography and thus enhance predic-

tive value.15 However, the detection sensitivity of these biomarkers

has been lower due to the use of large amounts of capturing and

labeled detecting antibodies, which may increase the risk of false posi-

tivity due to nonspecific binding with nontarget analytes, especially

for early CAD stage.16,17 In addition, patients may not have any symp-

toms in the early CAD stage reflective of nonobstructive CAD stage

(SP stage). Therefore, the prompt, economical, and accurate low-risk

diagnosis and prognosis for CAD in asymptomatic patients are crucial

to allow timely prevention and therapeutic treatments to improve

patients' quality of life prior to the event. Enhancing the early diagno-

sis of CAD and utilization of therapeutic approaches to prevent pro-

gression is crucial for the management and prevention of CAD.

Small Extracellular vesicles (sEVs) are small lipid-bilayer enveloped

assemblies with sizes ranging from 20 nm to several micrometers.18,19

sEVs are secreted by all cells in both normal and diseased tissues, and

can be further categorized based on their biogenesis, size, and bio-

physical properties, such as exosomes, apoptotic bodies, microvesi-

cles, ectosomes, and other vesicles.20–23 sEVs are found in most

biological fluids and contain a wide variety of cargo, such as proteins,

lipids, nucleic acids and metabolites.21,24,25 These cargoes are repre-

sentative of their cellular origin and reflective of the pathological con-

dition of the origin tissue and cells, which may serve as noninvasive

diagnostic biomarkers in biological fluids.26–28 Numerous studies have

reported the value of exploiting sEV in diagnostic and therapeutic

applications in the central nervous,29,30 cancer,31,32 and visceral organ

diseases.33,34 The cargoes of these sEVs reflect the molecular content

and pathology of their original cells.23 Therefore, sEVs isolated from

liquid and tissue biopsies can serve as potential biomarkers to follow

disease progression.35–39 Different diseases are expected to alter

either the sEV contents or the sorting and packaging process37,39 and

these alterations are expected to be detectable and be useful in diag-

nosis for evaluating disease activity and/or the response to therapy.40

Plasma as an important component of blood, has the characteristics of

representing systemic disease pathology.41 In the cardiovascular sys-

tem, sEVs are associated with endothelial cells, cardiac myocytes, vas-

cular cells, progenitor and stem cells, and play an essential role in the

development, injury and disease of the cardiovascular system.28,42

Thus, cardiovascular-derived plasma sEVs have great potential as

potential diagnostic biomarkers for CAD screening.

Surface-enhanced Raman scattering (SERS) is a commonly used

sensing technique in which inelastic light scattering by molecules is

greatly enhanced when the molecules are absorbed onto corrugated

metal surfaces (usually Au).43,44 The label-free, nondestructive and

noninvasive characteristics of SERS enable its biomedical application

to the diagnosis of diseases, such as neurodegenerative disorders,45

cancer,46,47 or diabetes.48 This innovative technique has also been

used to diagnose lung cancer by combing with exosomes by pattern

analysis of SERS data.49,50 Thus, SERS has the potential to differenti-

ate sEVs based on their different membrane lipid/protein contents

along with other various functional groups. However, the Raman sig-

natures of sEVs are expected to be highly complex due to the overlap-

ping. The common solution is to analyze the entire Raman spectra as

“fingerprint” input by leveraging the power of machine learning (ML).

The sEVs collected from patients with different stages of CAD have

“impact” on the entire Raman spectra (spectral shapes), although the

changes are usually small and very difficult to be detected. By ML

algorithms and large training data set, it is possible to detect common

“patterns” from the hundreds of Raman spectra with training data and

then the algorithm can perform prediction in blind tests. ML has been

extensively applied in analyzing spectroscopic signals for complex bio-

samples and has achieved satisfying results. Thus, by using ML

assisted analysis on a high-dimensional SERS database, valuable
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information is expected to be extracted for accurate estimation and

practical prediction of known CAD stages which when validated can

be used clinically as a diagnostic tool.

In this study, we demonstrated a noninvasive, label-free SERS

technique to diagnose CAD by assessing and monitor progression of

the disease. To the best of our knowledge, direct, label-free in vitro

characterization of sEVs for the early CAD stage diagnosis through

SERS at a biomolecular level has not previously been demonstrated. A

Raman spectral library of plasma-derived sEVs from patients with vari-

ous degrees of CAD, including SP, NSTEMI, and STEMI CAD stages,

was developed. Plasma from patients without CAD was used as

healthy control (HC) group. We hypothesized that SERS data combin-

ing with ML algorithms can accurately classify the sEVs from different

CAD stages and be used to predict potential risks in CAD patients.

Firstly, we isolated and characterized sEVs from human plasma sam-

ples with various degrees of CAD and collected their SERS signals

(Figure 1a). Then, the SERS spectra of plasma-derived sEVs were

obtained by Raman microscopy and analyzed using five supervised

ML models (Figure 1b), including Quadratic Discriminant Analysis

(QDA), Support Vector Machine (SVM), K-Nearest Neighbor (KNN),

Artificial Neural network (ANN), and XGBoost (XGB). Then, 90% of

SERS data set of sEVs were used to train the models. The supervised

models classified the sEVs data into four clusters (one HC group and

three stages of CAD). The remaining 10% spectral data were used to

predict their CAD stages through the models. The five methods used

in this study are most common algorithms in ML for classification and

prediction. Each method represents a typical type of algorithms in ML

theory. All methods have predictive errors and statistical noises in the

data, especially for large data set or data set with sampling limitations.

Therefore, it is important to understand the performance difference

among these methods. Thus, we compared the diagnosis perfor-

mances of the five models and demonstrated robust classifications

F IGURE 1 Schematic illustration of ML-assisted sEV analysis for CAD diagnosis. (a) Isolation of sEVs from the human plasma of patients with
different CAD stages, including HC, SP, NSTEMI and STEMI stages, and collection of spectroscopic data of plasma-derived sEVs by SERS.
(b) Overview of ML-assisted plasma sEV classification and CAD diagnosis using sEVs SERS signal patterns. This illustration is created by
BioRender.com with an authorized license
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and high accurate diagnosis in plasma-derived sEVs for early-stage

CAD detection and CAD progression monitoring through the intro-

duction of ML algorithms.

2 | RESULTS AND DISCUSSION

2.1 | Plasma-derived sEV isolation and
characterizations

Plasma-derived sEVs were isolated from patient plasma using a stan-

dard procedure of ultracentrifugation as shown in Figure 2a. Ten sam-

ples from each group were used to evaluate plasma-derived sEV

features. The AFM images showed that the vesicle morphology of the

most vesicles was flattened sphere-like with nanoscale sizes

(Figure 2b), which was consistent with previous results.51 The vesicles

typically consisted of membrane vesicles of 50–200 nm in diameter

according to the results of nanoparticle tracking analysis (NTA)

(Figure 2c,d). The sEVs in the HC group had relatively smaller average

size (Figure 2c). Additionally, the average size of vesicles in NSTEMI

group was the largest among the four groups with significant differ-

ence (Figure 2c). The ranges of sEV concentration had wide distribu-

tion, and there was no significant difference among different groups

(Figure 2d). The markers of sEVs, the tetraspanin (CD63) and endoso-

mal pathway protein (Alix) were detected by Western blotting

(Figure 2e). Both Alix and CD63 were expressed in sEVs and Calnexin

(negative marker) was not detected. These results confirmed that the

recovered vesicles were sEVs. Taken together, the size and content of

typical sEV protein markers indicated that sEVs were successfully iso-

lated from the human plasma samples from different stages of CAD

patients.

2.2 | Averaged Raman spectra for four stages of
CAD and QDA classification

To provide an overview of the Raman spectra of four CAD stages, all

spectra after standard normal variate processing were simply aver-

aged and shown in Figure 3a. In the fingerprint region, spectra

showed Raman peaks appeared to originate from lipids and proteins

which are the major contributors to sEV surface. For example, the

vibrations contributed to symmetric ring breathing of tryptophan

appeared as a peak at 755 cm�1. A peak at 830 cm�1 was observed

corresponding to C O O vibration typical of phospholipids. Other

peaks such as 856 cm�1 (glycogen), 879 cm�1 (C C stretch proline

ring), 1005 cm�1 (phenylalanine), 1126 cm�1 (C C vibrations in lipid),

1244 cm�1 (amide III), 1450 cm�1 (CH2 bending vibration of proteins/

lipids), and 1668 cm�1 (amide I) were also observed.

When we closely look at each individual spectrum as shown in

Figure S1, the variations in spectra were significantly notable not only

across the four CAD stages but even within the same CAD stage. The

large variations are expected, because in spectroscopic measurement,

the obtained data is semiquantitative, which means that analyzing

only based on a single pathology-related Raman spectroscopic peak is

unlikely to be reliable and not suitable for diagnosis or classification of

the disease status. The solution for better understanding of the data

is to apply ML methods to extract the diagnosis or classification infor-

mation based on the entire spectral pattern.

The first method we applied is discrimination analysis, which has

been widely used to classify and predict Raman spectra of various bio-

logical and biomedical samples.52 In this study, we chose QDA

method since the classification (decision) boundaries of QDA can be

learned quadratically and flexibly compared to another often used

method, linear discrimination analysis (LDA). The PCA plot colored by

QDA classification results is shown in Figure 3b, where each colored

dot represents a spectrum. It clearly shows the capabilities to separate

different sEV subpopulations based on the SERS spectra; however,

overlaps are still observed. The overall classification accuracy per-

formed by cross-validation is 80.26% with a sensitivity of 96.28% and

a specificity of 74.37%. The sensitivity and specificity were calculated

by counting HC group as negative and other three CAD stages

together as positive. The heat map (Figure 3c) summarizes the predic-

tion possibility (range 0–1) by QDA for the HC group and three stages

of CAD. Red color indicates the highest possibility (1), while blue color

indicates the lowest possibility (0). By supervised QDA, the heat map

shows most predictions fall in the correct stages, but mispredictions

and swings between two stages (yellow color, �0.5) are still observed.

To draw each receiver operating characteristic (ROC) curve, we

counted the representation stage as a positive response, and the

other three stages as the negative response for the calculation of Sen-

sitivityacc and Specificityacc. As an example, in the ROC curve of HC,

the Sensitivityacc and Specificityacc are calculated as results of HC

response against other three stages (SP, NSTEMI, and STEMI)

responses. Area under the curve (AUC) of ROC is the indicator of the

goodness of fit for the model, and a value of 1 indicates a perfect fit

and a value near 0.5 indicates that the model cannot discriminate

among the stages. The AUC results by QDA for each stage range from

0.9366 to 0.9824, indicating the QDA method shows good fitting

results (Figure 3d). Furthermore, due to possible overfitting by the

cross-validation method, we also verified the QDA model by randomly

splitting data into training and testing sets. In each round, 90% of data

(total 697 spectra) was used as a training set, and the remaining 10%

of data (total 78 spectra) was used as a testing set. Only the training

set was used to train the model, and the testing set was used for blind

prediction. A total of 50 rounds were performed to evaluate the loss

and accuracy change of the testing set. As shown in Figure 3e, we

found the averaged overall accuracy of QDA is 79.9% ± 3.9%, with a

minimum of 71.8% at round 10th and a maximum of 89.7% at round

12th, which is consistent with the cross-validation results.

2.3 | KNN, ANN, SVM, and XGB classifications and
predictions

Besides QDA, we also implemented four other ML algorithms, includ-

ing KNN, ANN, SVM, and XGB, to classify and predict CAD stages
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and compare the classification performances. Each method has its

own advantages and weaknesses.53 QDA method allows nonlinear fit-

ting through data and the relationship between data and data inter-

pretation could be established practically. KNN method depends on

the nearby adjacent samples rather than the algorithm of discriminat-

ing the class domain for classification, which may be more suitable for

dense overlapped data sets among multiple classes. ANN has more

tolerance to noise and missing data, and is good at handling high-

dimensional data sets, but may have difficulty with data interpretation

and algorithm structure understanding. SVM is also durable to noise

and has advantage in handling a small set of data and overfitting

issues. XGB is fast, but ideally requires nonoverlapped data set and an

inappropriate training set may lead to distorting the decisions.

Same as QDA, the raw Raman data was preprocessed and per-

formed by PCA initially. Fifteen PCs were chosen (Figure S2) as the

new input variables to the models. Then to compare the classification

accuracies from different methods, the model parameters also need to

be estimated properly since those parameters will significantly affect

the efficiency of the classification. Thus, obtaining the best possible

set of parameters is critical, both from the computing cost and com-

puting accuracy. Among these four classification methods, all of them

have parameters that need to be determined. For ANN, the input is

15 PCs, and the output is the 4-classification group. To avoid overfit-

ting or underfitting, an ANN structure with two hidden layers was

chosen. The first hidden layer was set to have 10 neurons, and the

second hidden layer was set to have 6 neurons. For XGB, 5000 deci-

sion trees were chosen. For SVM, the radial basis function kernel was

chosen. In KNN, the best accuracy was obtained when K = 1 after

experimenting K = 1–30. For all methods, 90% of the full data set

was randomly split for training while the remaining 10% was used for

testing. The process was also repeated for 50 rounds. Figure 3e shows

the prediction accuracies for all the five classification methods used in

this study. Results demonstrated that the SVM provided the highest

and most robust prediction accuracy of 92.3% with a SD of 3.4%

among all five methods. XGB provides a low prediction accuracy of

82.6%, but still better than previously used QDA method (79.9%).

Among the 50 round tests of ANN, although the averaged prediction

accuracy of ANN is 86.4%, there were 3 rounds of prediction accuracy

below 70%, indicating ANN may lack stability due to a randomly cho-

sen training set. The averaged confusion matrix from the 50 round

tests is also shown in Table S1. For early CAD prediction (SP stage),

QDA, SVM, and ANN had the prediction accuracy of 88.7%, 85.9%,

and 86.4%, respectively, much higher than the other two methods,

which indicates these ML algorithms may work better for early CAD

detection. For the most severe stage (STEMI) prediction, all five algo-

rithms have similar performance. QDA, SVM, KNN, ANN, and XGB

had the prediction accuracy of 84.7%, 88.5%, 86.8%, 89.1%, and

84.2%, respectively. For HC group prediction, SVM and KNN have

higher prediction accuracies of 95.7% and 91.6% over other three

algorithms. Through Table S2, we found SVM has the overall best per-

formance over other four algorithms for prediction of all stages.

Table 1 shows the averaged confusion matrix of sensitivity and speci-

ficity from the 50 round tests. SVM method also had the highest sen-

sitivity (97.2%) and specificity (95.8%) among all the methods used in

this study, since major classification errors occurred within the disease

groups (SP to be misclassified as NSTEMI and NSTEMI to be

F IGURE 2 Isolation and characterizations of sEV from human plasma. (a) Scheme of isolation procedure of sEVs from human plasma. (b) AFM
images of sEVs. (c, d) The size and concentration of sEVs by NTA test (n = 11, *p < 0.05). (e) Western blot analysis of biomarker proteins on sEVs
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misclassified as SP). QDA shows the lowest specificity (74.8%) among

the five methods.

2.4 | SVM as the best ML method in this study

The PCA plot colored by SVM classification results is shown in

Figure 4a, where each colored dot represents a spectrum. The heat

map (Figure 4b) summarizes the prediction possibility (range 0–1) by

SVM for the HC group and three stages of CAD. Red color indicates

the highest possibility (1) while the blue color indicates the lowest

possibility (0). The heat map shows almost all predictions fall in the

correct stages with a few swings between two stages (yellow color,

�0.5). The AUC results by SVM for each stage range from 0.9888 to

0.9967, indicating the SVM method shows excellent fitting results in

Figure 4c, Figure 4d,e shows the decision boundaries of SVM pro-

jected in the 2D PCA plot, PC1 vs PC2, and PC2 vs PC3, respectively.

2.5 | Challenges and future directions

sEVs serve as a mediator of intercellular communication between

cells, and can be used as a noninvasive indicator of disease,54–56

which is the strategy applied in this study to diagnose CAD status via

detecting and analyzing SERS signals from sEVs. However, although

as a promising clinical approach, the application of our study still faces

several challenges. The first limitation is related to the major Raman

signals that are mostly derived from sEV surface molecules

(e.g., membrane proteins, lipids).49,57,58 Thus, SERS signals may be

influenced by various membrane molecules.59 In order to identify

F IGURE 3 Raman spectra
and QDA analysis. (a) Averaged
Raman spectra for four stages of
CAD (HC, SP, NSTEMI, STEMI);
(b) The PCA plot colored by QDA
classification results of the total
775 Raman spectra from four
stages of CAD. (c) Heat map of
the prediction possibility (range

0–1) by QDA for four stages of
CAD. (d) ROC curves for each
representation stage and their
AUC values. (e) Prediction
accuracy of test sets performed in
QDA, SVM, KNN, ANN, and XGB
in 50 test rounds by randomly
splitting 90% of data into a
training set and 10% into a
test set

6 of 11 HUANG ET AL.



protein signatures existing in both surface and interior of sEV, we will

analyze sEV cargoes using other advanced technologies such as prote-

omics.60 The second challenge is the patient number involved in this

study. One solution is to expand the obtained Raman library;

however, another issue may come out that the measurements

between different batches of patient samples obtained from national

wide may vary largely due to uncertain uniformity among different

SERS methods and system errors coming from different Raman

TABLE 1 Averaged confusion matrix of sensitivity and specificity from the 50 round tests

Predicted class

Model Sample comparison Positive Negative Sensitivity Specificity

QDA SP + NSTEMI + STEMI vs HC Positive 51.8 1.9 96.5% 74.8%

Negative 6.0 17.8

SVM SP + NSTEMI + STEMI vs HC Positive 52.2 1.5 97.2% 95.8%

Negative 1.0 22.8

KNN SP + NSTEMI + STEMI vs HC Positive 50.5 3.2 94.0% 91.6%

Negative 2.0 21.8

ANN SP + NSTEMI + STEMI vs HC Positive 51.0 2.7 95.0% 88.7%

Negative 2.7 21.1

XGB SP + NSTEMI + STEMI vs HC Positive 49.0 4.7 91.2% 82.4%

Negative 4.2 19.6

F IGURE 4 SVM analysis. (a) A PCA plot colored by SVM classification results of the total 775 Raman spectra from four stages of CAD.
(b) Heat map of the prediction possibility (range 0–1) by SVM for four stages of CAD. (c) ROC curves for each representation stage and their AUC
values. (d) Decision boundaries of SVM projected in 2D PCA plot (PC1 vs PC2). (e) Decision boundaries of SVM projected in the 2D PCA plot

(PC2 vs PC3). (Black: HC; Red: SP; Green: STEMI; Blue: NSTEMI)
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instruments.44 Thus, it has to optimize the calibration condition before

each test to improve the precision of detection and analysis. The third

challenge is that the isolated plasma sEVs may contain a variety of

sEVs derived from other organs and cells that are not related to the

CAD.34,61 Therefore, our future study will focus on expanding the

sample number and types of sEV samples to improve the robustness

and reliability of our approach, such as detection of sEVs from heart

tissues with different CAD stages.

3 | CONCLUSIONS

In summary, we successfully isolated sEVs from the human plasma

samples from four stages of CAD patients, that is, HC, SP, NSTEMI,

and STEMI. SERS measurements in conjunction with five ML algo-

rithms were then applied for the classification and prediction of the

sEV samples. The overall accuracy was 79.9%, 92.3%, 88.5%, 86.4%,

and 82.6% for QDA, SVM, KNN, ANN, and XGB, respectively. Among

these five approaches, SVM shows the best prediction results on both

early CAD detection (86.4%) and overall prediction (92.3%). SVM also

possesses the highest sensitivity (97.69%) and specificity (95.7%).

Thus, our study demonstrates a promising strategy for noninvasive,

safe, and high accurate diagnosis for early CAD detection.

4 | MATERIALS AND METHODS

4.1 | sEV isolation and characterizations

Deidentified human plasma samples were donated by the Nebraska

Cardiovascular Biobank and Registry (IRB approved protocol

133-14-EP). The human plasma was obtained from patients at the

time of cardiac catheterization and immediately stored at �80�C for

further use. Samples were obtained from patients who presented with

chest pain and a positive stress test, and those who presented with a

NSTEMI or a STEMI. Patients who had nonobstructive CAD

(i.e., <50% lesions) at catheterization were defined as stable CAD

patients (SP). The bank ID, Gender, Age, Race of each patient is

recorded in Table S2. sEVs were isolated from patient plasma with

three CAD stages, and the number of patients is 15 (SP stage),

15 (NSTEMI stage), and 17 (STEMI stage), respectively. The control

samples (HC stage) were from 17 patients that had no signs of CAD.

Among all sEV samples, 13 HC samples, 6 SP samples, 13 NSTEMI

samples, and 8 STEMI samples were chosen for SERS test, and other

samples not used in SERS test were applied for NTA. The human

plasma was first centrifuged at 300 �g for 5 min, 1000 � g for 20 min

and then at 10,000 � g for 30 min sequentially. The supernatant was

then filtered with a 0.22 μm filer, and ultracentrifuged (Sorval X + 80

Ultracentrifuge, Thermo Fisher) at 100,000 g for 70 min. Subse-

quently, the sEV pellet was washed with PBS and ultracentrifuged at

100,000 � g for 70 min. The collected sEVs were reconstituted in

PBS buffer and then preserved at �80�C. For SERS analysis, parts of

exosomes were resuspended in phosphate buffer (PB) (0.1 M,

pH = 7.4). The size and concentration of the final sEVs were exam-

ined by NTA using a NanoSight (NS300) measurement. The exosome

morphology was evaluated as previously described by using atomic

force microscopy (AFM, Bruker).62

4.2 | Western blot

The markers (CD63 and Alix) of the isolated sEVs were correspond-

ingly detected by Western blotting as reported previously.62,63 The

sEVs were lysed using the Mammalian Cell Lysis kit (Sigma–Aldrich)

and quantified using Pierce™ BCA Protein Assay Kit (Thermo Fisher

Scientific, 23227). The samples were preheated at 60�C for 15 min.

Proteins were electrophoresed in an SDS-polyacrylamide gel followed

by transferring to PVDF membranes. The membranes were blocked

with 5% BSA in TBS-Tween 20 and were then probed with antibodies

specific for CD63 (1:1000, ab216130, Abcam), Alix antibody (1:1000,

Proteintech), and calnexin (1:1000, Proteintech, negative biomarker

for sEVs) overnight at 4�C. After three washes in TBS-tween 20, mem-

branes were incubated with the secondary antibody (Thermo Scien-

tific) for 1 h and washed again. For visualization, blots were exposed

to SuperSignal West Dura Extended Duration substrate and measured

by the FluorChem R system (ProteinSimple).

4.3 | SERS measurements

The sEV samples were immediately measured within 12 hours

after taking from �80�C. Gold-coated glass slides (Ti/Au

40 nm/100 nm, Deposition Research Lab Inc.) were used for better

suppression of fluorescence background and surface plasmonic

enhancement for SERS. Five microliters of each sEV samples was

dropped onto the gold slide and then measured immediately

before drying at room temperature. Raman spectra were recorded

using a commercial micro-Raman microscope (Renishaw InVia

Reflection) with 633-nm diode laser excitation. The laser power

was set to 10 mW. The laser beam was focused on the 5 μl droplet

by using a 50� microscope objective with a numerical aperture of

0.75 (Leica n PLAN EPI 50�/0.75). The laser spot is estimated to

be 1 μm in diameter. In the experiment, due to the sample avail-

ability, the sample size was experimentally boosted by automated

measuring at different spots of the sEV droplet in 4 � 5 grid. Each

Raman spectrum obtained for following analyzes was recorded

with an exposure time of 1 s and accumulated by 10 times. The

Raman data set is shown in Figure S3. Since the measurement was

automated and conducted on the sEV droplets by mapping pro-

gram, spectra with high background levels (high PBS peak and high

background level) were obtained and then should be removed from

the data set (Figure S4) to minizine the buffer influence on the fol-

lowing machine learning analysis. Thus, the total number of Raman

spectra obtained is 775, including 238 from 13 HC samples,

120 from 6 SP samples, 257 from 13 NSTEMI samples, and

160 from 8 STEMI samples.
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4.4 | Data preprocessing and classification
methods

Data preprocessing of the raw Raman spectra included baseline cor-

rection and normalization. Baseline correction was performed by Van-

couver Raman algorithm with five-point boxcar smoothing and a five-

order polynomial fit. After baseline correction, the spectra were nor-

malized using the standard normal variate technique, which can

remove multiplicative error and preserve each preprocessed spectrum

having same contribution to the following classification analysis.

4.5 | ML and classification methods

Classification analysis was adopted to identify the CAD stage based

on SERS measurements. Raman spectra were processed to reduce

dimensionality, and then input to classifiers for CAD stage prediction.

Cross-validation (CV) was adopted for robust model training and vali-

dation. The diagnostic capability of the classification models, charac-

terized by sensitivity and specificity, was analyzed with Receiver

Operating Characteristics (ROC).64

• Dimensionality reduction. Since the preprocessed spectra were of

high dimensionality, classification analysis on these data directly

can be computationally expensive. Principal component analysis

(PCA),65 as a widely used method for dimensionality reduction and

feature extraction, was adopted to extract crucial information, that

is, features, from the spectra data. For a n�p data matrix,

X¼ x1, x2,…, xp½ �, xi ¼ x1i , x2i,…, xni½ �T , i¼1,…, p, ð1Þ

a row vector in X belongs to Rp. PCA uses singular value decomposi-

tion (SVD)66 to extract l principal components (PCs) from X, with l < p.

Each PC consists of element

tkj ¼ xj1, xj2,…, xjp
� � �wk , j¼1, 2,…, n, k¼1, 2,…, l, ð2Þ

where wk is the weights extracted by SVD that map each row of with

X to a PC. The extracted PCs are ranked based on the percentage of

data variance they explain. For example, the 1st PC explains the high-

est percentage of data variance among all the PCs; the 2nd PC

explains the 2nd largest percentage of data variance, so on and so

forth. These PCs are then the features to be used in subsequent clas-

sification analysis. In this study, R software was used for PCA

implementation.

• Feature selection. The PCA reduces the high dimensionality of the

Raman spectra (1008 independent variables from 648 cm�1 to

1747 cm�1) to a few PCs. To determine the optimal number of

PCs for following machine learning models, Quadratic Discriminant

Analysis (QDA) was performed with leave-one-out cross-validation

method.67 QDA is a classic type of binary classifier, which assumes

normally distributed classes with unequal covariance. The two clas-

ses respectively follow F0 ¼N μ0,Σ0ð Þ and F1 ¼N μ1,Σ1ð Þ. For a fea-

ture vector tj ¼ tj1, tj2,…, tjl
� �

, QDA predicts the likelihood ratio of

the two classes,

Lj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π Σ1j jp �1

exp �1
2

tj�μ1
� �TΣ1 tj�μ1

� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π Σ0j jp �1

exp �1
2

tj�μ0
� �TΣ1 tj�μ0

� �� � , j¼1, 2,…, n ð3Þ

Given a threshold of discrimination, T, if Lj < T, the tj is assigned

class 0. Otherwise, it is assigned class 1. As shown in Figure S4, we

compared the QDA classification accuracy for varying number of top

PCs, and 15 PCs were chosen (accounts for almost 91.2% of varia-

tions in the data) for a good balance between high accuracy and small

number of features. Thus, these 15 PCs are used in all following ML

models.

• Classification analysis. Four other supervised learning classification

methods, SVM, KNN, ANN and XGB were also performed by R soft-

ware on these 15 PCs which served as input variables. The 90% SERS

data set of sEVs were used to train the models. The remaining 10%

spectral data were used to predict the CAD stages through the models.

• Analysis of diagnostic capability. To gain insights into the diagnostic

capability of the proposed method, we adopted receiver operating

characteristic (ROC) curves to analyze the classifiers' sensitivity and

specificity. The conventional ROC is a graphic representation of

the diagnostic capability for a binary classification model. It visual-

izes the model's true positive rate (TPR) against the false positive

rate (FPR) as the discriminant threshold varies.

TPR: rate of correctly predicting class 1 (TPR = sensitivity);

FPR: rate of falsely predicting class 1 (FPR = 1 � specificity);

TPR¼ TP
TPþFN

;FPR¼ FP
FPþTN

ð4Þ

For a complete ROC curve, the area under curve (AUC) represents

the capability of accurately predicting the positive cases, which is the

larger the better. In our study, there are four classes. To enable the analy-

sis with ROC curves, we counted the representation stage as positive

response and other three stages as the negative response for calculation

of Sensitivityacc and Specificityacc in ROC curves. However, in other condi-

tions, Sensitivity and Specificity for the five ML models were calculated by

counting HC group as negative and other three CAD stages as positive.

4.6 | Statistical analysis

The mean size of small extracellular vesicles is expressed as means

± SD. The statistical differences among multiple groups were analyzed

HUANG ET AL. 9 of 11



by ANOVA. The p values are shown in the figures as *p < 0.05, which

are considered to be statistically significant.
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