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ORIGINAL ARTICLE Open Access

A Routine Electroencephalography Monitoring System
for Automated Sports-Related Concussion Detection
Amirsalar Mansouri,1,* Patrick Ledwidge,2 Khalid Sayood,1 and Dennis L. Molfese3

Abstract
Cases of concussions in the United States keep increasing and are now up to 2 million to 3 million incidents per
year. Although concussions are recoverable and usually not life-threatening, the degree and rate of recovery may
vary depending on age, severity of the injury, and past concussion history. A subsequent concussion before full
recovery may lead to more-severe brain damage and poorer outcomes. Electroencephalography (EEG) record-
ings can identify brain dysfunctionality and abnormalities, such as after a concussion. Routine EEG monitoring
can be a convenient method for reducing unreported injuries and preventing long-term damage, especially
among groups with a greater risk of experiencing a concussion, such as athletes participating in contact sports.
Because of the relative availability of EEG compared to other brain-imaging techniques (e.g., functional magnetic
resonance imaging), the use of EEG monitoring is growing for various neurological disorders. In this longitudinal
study, EEG was analyzed from 4 football athletes before their athletic season and also within 7 days of concussion.
Compared to a control group of 4 additional athletes, a concussion was detected with up to 99.5% accuracy
using EEG recordings in the Theta-Alpha band. Classifiers that use data from only a subset of the EEG electrodes
providing reliable detection are also proposed. The most effective classifiers used EEG recordings from the Cen-

tral scalp region in the Beta band and over the Temporal scalp region using the Theta-Alpha band. This proof-of-
concept study and preliminary findings suggest that EEG monitoring may be used to identify a sports-related
concussion occurrence with a high level of accuracy and thus reduce the chance of unreported concussion.

Keywords: EEG; EEG monitoring; electrode networks; non-patient-specific; sports-related concussion; SVM

Introduction
Traumatic brain injury (TBI) is the fourth-most prev-
alent neurological disorder after stroke, Alzheimer’s
disease, and epilepsy.1 Approximately 80% of TBIs
are classified as mild TBI (mTBI), and persons who ex-

perience mTBI generally do not show any evidence
of impairments in the nervous system.2 Although the
terms mTBI and concussion are often used inter-
changeably, concussion is a subset of mTBI and char-
acterized by an absence of primary brain injury as
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identified in traditional computed tomography/
magnetic resonance imaging scans and more favorable
outcome.3,4 The three most common causes of concus-
sion are falls, motor vehicle accidents, and sports-
related injuries. Falls are more common in elderly
patients, and sports-related concussions (SRCs) are ob-
served with increasing frequency in youth and college-
age contact-sport athletes, such as boxing, football, ice
hockey, and soccer.5–9

Incidence of concussion injuries is *4 million per
year in the United States and >75 million around
the world.4,10,11 SRCs result in sequelae of symptoms
(e.g., headaches, dizziness, and difficulty concentrat-
ing), cognitive disruption, and imbalance that typically
resolve within 1–2 weeks in college-athletes.12–14 After
a concussion, athletes are advised to carefully return to
daily routines and activities under the supervision of
their health provider or a certified trainer to prevent
another concussion before full recovery from the previ-
ous incident. A TBI that occurs before the symptoms
associated with the previous concussive injury have
fully cleared is defined as second impact syndrome
(SIS). Although recovery from a concussion is usually
complete, it is believed that SIS can result in critical
brain injuries or diffuse cerebral swelling.4,15,16 Based
on the SRC data from the National Collegiate Athletic
Association (NCAA) Injury Surveillance Program dur-
ing the 2009–2010 to 2013–2014 academic years, inci-
dence of SRC among NCAA athletes is estimated to be
>10,000 per year, with 9.0% recurrent SRCs.17 Annual
reported SRC incidence among collegiate men’s foot-
ball players has been estimated to be *3500, including
5% recurrent concussions.17

The number of unreported SRCs is estimated to
be *30–50% of SRCs every year. The unreported
case rate among collegiate athletes is estimated to be
one third of total SRC cases.18–20 Unreported concus-
sive athletes are at a greater risk of SIS because of
the lack of clinical management of the initial injury.
Repeated concussions prolong post-concussion recov-
ery and can result in long-term brain damage and
perhaps more-severe neurological and cognitive im-
pairments. Such long-term effects can reduce quality
of life, resulting in an increase in emotional distress,
sleeping impairments, and depression.21

Although post-concussion symptoms usually resolve
within 7–10 days post-injury in 85% of cases,12,22 there
is growing evidence that neural alterations caused
by mTBI may persist for months after a concussion.23

Diagnosing concussions requires trained and certified

clinical expertise and the availability of experts to evalu-
ate concussions. Such skill requirements make such de-
tection techniques less accessible to large segments of
our population. An objective monitoring system may fa-
cilitate concussion detection in this critical window, to
minimize the number of unreported concussion inci-
dences, encourage injured athletes to seek proper med-
ical attention effectively, and prevent further damages.

Brain-imaging techniques, such as functional mag-
netic resonance imaging (fMRI), magnetoencephalog-
raphy (MEG), and diffusion tensor imaging, provide
brain biomarkers of cerebral alterations after TBI and
provide a higher spatial resolution compared to elec-
troencephalography (EEG). However, because access
to fMRI and MEG technology and training are not
widely available, and are time-consuming and rela-
tively costly,24–26 their clinical utility in concussion
monitoring may be limited. In contrast, EEG methods
are more accessible, more time- and cost-effective, and
have a history of clinical monitoring in sleep disorders
and epilepsy. These properties make EEG an attractive
application for concussion monitoring and detecting
possible concussions to facilitate clinical diagnosis.

Studies of brain activity in the frequency domain can
identify brain regions active during specific mental and
physical tasks. Simultaneous EEG-fMRI studies can
show positive or negative correlations of the frequency
characteristics of EEG signals with neurovascular pro-
cesses in specific regions.27 EEG power and network-
based approaches have been investigated in frequency
domain studies to distinguish between concussed and
control groups.28–35 These studies examined differences
in power in the EEG signal and active networks between
athletes with concussion and controls for distinct fre-
quencies and in particular regions of the brain. Most
EEG studies monitor resting-state EEG. However, ap-
proaches that monitor task-related EEG recordings
and elicit event-related brain potentials (ERPs), such
as those recorded during attention or working memory
tasks, can more accurately capture the neurocognitive
processing differences associated with concussion.36,37

A routine brain-monitoring system shortly after
concussion can provide information to help prevent
further damage to the brain of a concussed patient
by guiding treatment and management of concussion
symptoms before a player returns to activities that
pose a risk to brain functioning. Short-term monitoring
can objectively identify altered EEG dynamics and thus
minimize the potential for a recurrent concussion. In
the present study, EEG was recorded from college
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football athletes while completing a 2-back task of
working memory. Athletes participated before their
primary athletic season and again within 7 days after
concussion. Athletes who did not experience a concus-
sion served as matched controls and were also tested at
pre-season and within a similar time window as con-
cussion participants.

A routine EEG-monitoring system is proposed to
automatically detect any recent concussion based on
features from the working memory task recorded at
pre-season and post-injury. The goal of this approach
is to capture the connectivity and variation in network
coherency of brain signals in the frequency domain of
different brain regions before and after a concussion.
Networks are established based on pair-wise distance
measurements between electrodes. The distances are
calculated and extracted as coherency measurements
in different frequency bands using a variety of distance
metrics, including previously used metrics for detecting
and localizing seizures.38 The metrics investigated in-
clude some that combine measures of connectivity as
well as measures of power in the frequency bands
(the metrics are described in the Supplementary Mate-
rials). All coherencies in the frequency domain are
studied over different scalp regions of the brain to cap-
ture any significant spatial differences between regions
in classifying participants with a concussion and those
without concussion. By combining sessions of a partic-
ipant from before and after a possible concussion, the
classifier captures any functional alteration caused by
the concussion on the brain-activity networks and
uses this to differentiate between the presence or ab-
sence of a recent concussion.

Methods
Data preparation
The data reported hereinafter come from a larger study
investigating the influence of concussion on cognitive,
electrophysiological, oculomotor, and vestibular out-
comes in college athletes.36,37,39 The present study
involves 6 collegiate American football athletes who
participated before their athletic season and again
after an in-season concussion, in addition to 6 age-
matched teammates as control athletes. All concussions
were diagnosed by a board-certified team physician and
self-reported concussion history reviewed by a clinical
vestibular audiologist. After experiencing a concussion,
participants attended the second session within 7 days
post-injury. Control participants attended their second
data-collection session within a matching time win-

dow. Previous studies suggested that concussion recov-
ery time varies between 5 and 14 days on average.12,22

Others have reported a significant reduction of EEG
measures after the seventh post-concussion day.23

Therefore, this study analyzed data of athletes who
were tested before their athletic season and again
within 7 days post-concussion (mean = 3.25 and stan-
dard deviation [SD] = 2.5 days post-injury). All proce-
dures were approved by the host institutional review
board before data collection. Data-collection sessions
were held across three consecutive seasons from the
2012–2013 to 2014–2015 seasons.

Although at the time of recruitment control partici-
pants in the study were matched a priori, 2 concussion
participants were excluded from the present analysis, 1
participant because of poor EEG quality and the other
because of post-concussion follow-up >7 days. In addi-
tion, 2 control participants were discarded as the con-
trol group’s outlier to have balanced distribution of
sample size, resulting in a final data set that included
8 participants (4 concussions, 4 controls). Table 1 con-
tains group-level demographic information such as age,
concussion history, time gap between their sessions,
and 2-back performance. The majority of the sample
was White and Not Hispanic (87.5%). One participant
in the concussion group reported a history of learning
disability. Relative to controls, participants in the con-
cussion group tended to be slightly older and the time

Table 1. Group Comparison of Participants

Group

Concussion (n = 4) Control (n = 4)

Agea 20.69 (1.04) 19.25 (0.74)
Days between sessionsb 46.25 (14.97) 155 (94.32)
Concussion historyc 4 2
Baseline

Match Accd 0.80 (0.11) 0.80 (0.10)
Match RTe 647.20 (169.15) 769.72 (41.77)
Non-match Accf 0.92 (0.04) 0.93 (0.08)
Non-match RTg 655.29 (119.57) 781.36 (57.43)

Follow-up
Match Acc 0.83 (0.06) 0.90 (0.07)
Match RT 589.46 (128.37) 657.82 (125.66)
Non-match Acc 0.93 (0.05) 0.96 (0.04)
Non-match RT 594.40 (83.55) 762.18 (80.80)

aThe age of the participant at first testing session.
bDays between the first and second testing sessions.
cNumber of participants who reported a history of concussion, exclud-

ing the in-season concussions experienced for the concussion group.
dResponse accuracy on match trials.
eAverage response to match trials.
fResponse accuracy on non-match trials.
gAverage response time non-match trials.
Acc, accuracy; RT, response time.
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between sessions shorter; however, these differences
were not statistically significant ( p > 0.05). Details
about the demographic information of participants
are provided in Supplementary Table S1 (Supplemen-
tary Materials).

Unfiltered EEG was recorded from a 256-channel
Ag/AgCl electrode array using NetStation software
(version 4.4.2; Electrical Geodesics Inc. [EGI], Eugene,
OR) while participants completed a 2-back task of vi-
sual working memory. Details regarding the 2-back
task and EEG/ERP processing parameters are reported
elsewhere.36 In brief, participants viewed individual
presentations of uppercase English letters on a com-
puter screen and were instructed to use two different
buttons to indicate whether the current letter matched
or mismatched the letter presented two letters previ-
ously. There were a total of 100 trial presentations,
half of which were matches and the other half were
mismatches. Data were manually reviewed for the
final validation of the pre-processing steps. Trials in
which the majority of the electrodes had faulty sig-
nals attributable to muscle or eye movements, along
with high variance attributable to high potential shifts
(>50 to 150 lV), were removed from the data set.

Network-based features extraction
To build a balanced data set for each participant and re-
duce the number of faulty segments, the 50 trials with
the lowest SD within a session were chosen for further
analysis. The number of accurate segments for par-
ticipants was between 77 and 97 (average = 85.75;
SD = 6.299802) segments from 100 total trials in a ses-
sion (50 matched and 50 unmatched). On average, 12.5
segments were removed as faulty segments, and 73.25
segments remained in the data set after removing the
faulty segments. Therefore, to standardize the number
of segments we used in this study, 50 segments per par-
ticipant were chosen from the acceptable segments. To
obtain the frequency domain representation of the EEG
signal, a Tukey window was first applied.40 Frequency
components were computed using the fast Fourier
transform (FFT) applied to the windowed data. FFT
components were partitioned into the Delta (0.5–
4.0 Hz), Theta (4–8 Hz), Alpha (8–14 Hz), and Beta
(14–30 Hz) frequency bands. In addition to these fre-
quency bands, combinations of these frequency bands
were also defined to increase the resolution of the fre-
quency bands and investigate the use of wider fre-
quency ranges in the classifier. Combined bands were
defined as Delta-Theta (0.5–8.0 Hz), Theta-Alpha (4–

14 Hz), and Alpha-Beta (8–30 Hz). The All band was
defined to be the entire spectrum (0.5–30.0 Hz).

Pair-wise distance between the FFT components in a
frequency band from different electrodes was calcu-
lated and used to develop indicators for the status of
neural networks based on scalp recordings. If the dis-
tance between two channels is low (or they have strong
coherence), it indicates neural communication between
those electrode locations. Thus, the pair-wise distances
between electrodes provided a measure of the brain-
network dynamics. Previous studies generally focused
on changes in the power of the signals in different
bands. Studies using graph-theory–based coherence
measures also have been studied with occasionally con-
tradictory results.41 In addition to Euclidean (Euclid),
cosine (Cos), and correlation coefficient (Corr) dis-
tance metrics, a combination of distance metrics and
the power of frequency coefficients in channels are
used to obtain three combined features: Po3Euclid2,
Po3cos2, and Po3Corr2. These combined metrics were
previously used for detecting seizures.38,42 Each feature
provides a different view of brain-network interactions.

To capture the overall characteristics of a network of
electrodes, two other features are defined: AllFeat and
AllFeatwPo. AllFeat(A,B) is the combination of all the
different measures of pair-wise distance between two
channels A and B in a particular frequency band, and
AllFeatwPo(A,B) is a similar extracted feature to All-
Feat(A,B) along with the average power of the signal
from each electrode in a specific frequency band. All
described features are computed for different sets of
electrodes as representors of different scalp regions of
the brain to study the performance of the proposed
model in scalp regions. Sets of electrodes chosen are il-
lustrated in Figure 1, and their corresponding elec-
trodes are described in Supplementary Table S2.
Detailed equations and calculations of features are
described in the Supplementary Materials.

Pair-wise distances of electrodes for each trial were
calculated using the defined metrics. Pair-wise dis-
tances are representations of networks of electrodes
and the synchronicity in each frequency band. A partic-
ipant data set in a scalp region with N electrodes and
a frequency band of interest forms a rank 3 tensor
feature, with 50 (2N x N) feature matrices. The data
sets for athletes who experienced a concussion before
their second sessions are labeled ‘‘Concussed,’’ and
those who did not experience a concussion were labeled
‘‘Control.’’ Figure 2 depicts the steps for generating the
feature data sets for a participant. The classifier used
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was a linear support vector machine (SVM), which was
trained for each frequency band in all defined re-
gions, separately for each of the feature metrics. To
build a non-participant-specific model, 1 participant
at a time was excluded from the training data for
testing, whereas the rest were used for training the clas-
sifier model, also known as the leave-one-out cross-
validation.

Membership of each trial of the isolated testing data
set was predicted by fitting the extracted features of the
trial to the trained classifier model. Based on the pre-

dicted class of trials and the group membership of
the isolated participant (Concussion or Control), accu-
racy of the trained model was calculated by the number
of correctly labeled segments from the 50 isolated trials
of the testing data sets (Fig. 3). This process repeats for
each participant as the isolated test data set, and the
classifier is modeled with the other 7 participants.

Results
Concussion and control groups did not differ in 2-back
accuracy or response time at baseline (t(6) < 1.91,

FIG. 1. Sets of electrodes mapped on the scalp regions. Associated electrodes of a selected area are
highlighted in blue.
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p > 0.05; see Table 1). At follow-up, the concussion
group responded more quickly to non-match trials
than the control group (t(6) = 2.887, p = 0.028); how-
ever, this failed to survive Bonferroni’s correction. To
examine the change in 2-back performance from base-
line to follow-up session, difference scores between the
two sessions were calculated for each participant on the
accuracy and response-time metrics. The two groups
did not differ in their change in performance between
the two sessions (t(6) < 1.47, p > 0.05).

Model results were analyzed first by comparing the
performance of the classifier models in different fre-
quency bands to identify the frequency bands that de-
livered the best performance in classifying concussed
and control athletes. We then used signals from clus-
ters of electrodes to determine whether a subset of elec-
trodes was sufficient to provide accurate classification.
In practical terms, if only a subset of the electrodes

could provide accurate detection of a concussion, this
could reduce the cost of automated monitoring.

Figure 4 illustrates the average performance of con-
cussed, control, and total average (average of all partic-
ipants) in each frequency band using the pair-wise
distances of electrodes in the All region. Using the sig-
nals in the Theta-Alpha band results in the best perfor-
mance and shows consistent performance in both the
Concussed and Control groups, with a median accu-
racy of 96.3%. The Theta-Alpha band contains the low-
est variance range of performances for all features, of
which the first- to third-quartile performances are all
above 90% (Fig. 4).

To determine how well the classifier performed
when only a subset of electrodes representing different
scalp regions was used, the performance of the classifier
in each region was compared using the features
extracted from the Theta-Alpha band. The Theta-

FIG. 2. Feature extraction steps and data-set generation procedures. One-thousand-millisecond EEG
segments are pre-processed and transferred into the frequency domain. The features are extracted in a
frequency band of interest using the defined feature metrics to generate a (N x N) matrix of the pair-wise
coherency of electrodes. N is the number of electrodes in a cluster of electrodes. The (N x N) extracted
features from the first and second sessions are stacked together to build a (2N x N) segment of a
participant’s features, of which the first Nth rows are extracted features of the first EEG session and the
second Nth from the second session. These steps are iterated for all 50 segments of the first and second
sessions. Fifty segments of each session were used to generate the final data-set for a participant, which
generates a rank 3 tensor with 50 segments of (2N x N) extracted features from both sessions. EEG,
electroencephalography.
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FIG. 3. Classifier model. Extracted features of a participant are excluded for training the classifier model as
the test data set. After training the SVM classifier using extracted features of the other 7 participants, the
model is evaluated on the isolated testing dataset (i.e., participant). Model performance reports the
accuracy of the modeled classifier on predicting the correct label of the 50 segments of the test data set.
SVM, support vector machine.

FIG. 4. Frequency bands performances. Box plots contain the average performance of modeled classifiers
on concussed, control groups, and the total average (average of both groups) in each frequency band using
all the defined metrics using the set of electrodes in the All region. Accuracies are in the range of [0 to 1].
Red, blue, and gray boxes are the average performance of the classifiers tested on the concussion, control,
and both groups, respectively.
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Alpha band had previously been identified as the most
discriminative frequency band. Figure 5 demonstrates
the performance of the classifiers using each set of elec-
trodes over scalp regions for each group of participants.
Clearly, using all the electrodes results in the best per-
formance, with a total median accuracy of 96.25%
across all participants for all features. However, looking
at the performance of the classifier using a restricted set
of electrodes can identify the scalp region with elec-
trodes that are most responsive to the occurrence of a
recent concussion. Using the electrodes from the Fron-
tal, L-Frontal, R-Frontal, Parietal, and Occipital regions
results in the poorest performance. Using electrodes
from the Temporal, Left, and Central regions gives us
the best overall performances, with 94.12%, 92.8%,
and 90.12% median average accuracy, respectively.

The Theta-Alpha band and the Temporal region
were selected as the best frequency band and region,
on average, over all the defined feature metrics. To
compare the performance of the distance metric on
which to best capture the effect of changes caused by
concussion, the top 10 results for each metric were
compared. Supplementary Table S3 (Supplementary

Materials) contains the 10 modeled classifiers with
best performances for each modeled classifier using
the different feature metrics, using the defined subsets
of electrodes and using the partitioned signal in differ-
ent frequency bands. These results are shown in graph-
ical form in Figure 6.

Three metrics (AllFeat, Corr, and Cos) show the best
performance, with 96.87%, 96.37%, and 96.87% me-
dian accuracies, respectively. Among these three fea-
tures, the median accuracy using AllFeat for both
Concussed and Control groups is 96.75%. Although
the median of the average performances for classifying
both groups for Cos and Corr metrics are equal and
close (0.5% lower) to the AllFeat model, respectively,
the differences between the classification accuracies
for the Concussed or Control groups using Cos and
Corr metrics are slightly greater than the AllFeat met-
ric. As mentioned before, the difference of median ac-
curacies for the Concussed and Control groups using
the AllFeat metric is 0 (96.75% [Concussed] – 96.75%
[Control]). For the Cos metric, this difference is 1
(97.5% [Concussed] – 96.5% [Control]) and for the
Corr metric it is 1.25 (97.5% [Concussed] – 96.25%

FIG. 5. Performances of clusters of electrodes in the Theta-Alpha frequency band. Performances of
classifiers trained on all the defined feature metrics individually in the Theta-Alpha frequency band are
illustrated for groups of electrodes. Accuracies are in the range of [0 to 1]. Red, blue, and gray boxes are the
average performance of the classifiers tested on the concussion, control, and both groups, respectively.
R-Frontal, right frontal; L-Frontal, left frontal; R-Temporal, right temporal; L-Temporal, left temporal;
R-Central, right central; L-Central, left central.
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[Control]). Having a classifier with a balanced perfor-
mance across both categories is preferred.

By looking at the overall performance of the classifier
using frequency bands across each region separately,
the scalp regions that contain distinguishable changes
resulting from concussion can be investigated. The
classifier operating in the Theta-Alpha band performs
better than the other bands in the top 10 results across
all metrics models (Supplementary Table S3). The clas-
sifier also works well in the Beta band in the Central re-
gion, which is among the four highest accuracy results
in each metric category except for the Euclid and the
Po3Euclid3 metrics. Supplementary Figure S1 demon-
strates the overall performance of frequency bands in
different regions using all the feature metrics. Although
the classifier operating on the data from the Theta-
Alpha band in the Temporal region shows the best per-
formance, the classifier model from the Beta band in
the Central region also has a noticeably high accuracy,
with a median accuracy of 93.9%.

Supplementary Table S4 contains the overall perfor-
mance of modeled classifiers trained in each of the
eight frequency bands, each of the eight feature metrics,

and over the 14 electrode clusters separately (896 mod-
els). The three best models are developed using the All-
feat metric in the Theta-Alpha band in the All, and
Temporal, and in Beta band among the Central region,
with an area under the curve (AUC) of 0.9986, 0.9895,
and 0.9786, respectively. The receiver operating charac-
teristic (ROC) of the three models with best perfor-
mance are illustrated in Figure 7.

Discussion
The structure of the brain changes continuously across
the human life span, and the functional connections
within the brain may change as well.43 Any neurophys-
iological alteration in the brain caused by disorders,
such as stroke, dementia, or the experience of a concus-
sion, is believed to change the way the different regions
of the brain communicate, which, in turn, is a broad
manifestation of neuronal communication in the
brain. These abnormal and atypical alterations of the
development of functional connectivity in the brain
are rapid compared to the natural alterations in brain
plasticity. These distortions are more significant if
they are compared within a patient before and after

FIG. 6. Top 10 performances of feature metrics. Average accuracies of the top 10 models with the best
performances for each feature metric, regardless of the frequency band and subset of electrodes for
training the model, are illustrated for participants in concussion and control groups and overall
performance of models for both groups (total average). Accuracies are in the range of [0 to 1]. Red, blue,
and gray boxes are the average performance of the classifiers tested on the concussion, control, and both
groups, respectively.
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an incident. In this study, alteration in the brain net-
work was investigated in the frequency domain to cap-
ture the effect of concussion on networks in different
regions of the brain.

Previous studies reported differences in the power in
different frequency bands of the EEG signal in con-
cussed groups compared to controls; however, none
of these studies focused on differences in the same
patient before and after a concussion. For example,
Thompson and colleagues reported significantly re-
duced power in the Delta to Beta bands in concussed
athletes compared to a control group.30 More specifi-
cally, power in the Alpha and Beta bands was reduced
more in frontal regions, and Theta power was de-
creased in the parietal regions. Teel and colleagues29

also showed that there was a significant reduction in
Theta and Beta powers in the concussed group com-
pared to controls within 8 days of injury, and Gosselin
and colleagues33 reported a significant increase in Delta
power and reduction in Alpha power among concussed
athletes. Considering the different conditions of the tri-

als in these studies, they all showed a reduction in
power in the Theta, Alpha, and Beta bands.

The results from the present pilot study suggest that
classifiers that use changes in the brain of the same par-
ticipant using features that include the power in the fre-
quency bands result in lower accuracy than features
that do not take into account the power in the fre-
quency bands. It should be noted that unlike the
work cited above, the current work did not use the dif-
ference in power between the two states. Instead, the
average power was used to weight the pair-wise dis-
tance; the more power in the band, the more important
the pair-wise distance. Our results seem to indicate that
power weighting tends to hide the effect of the pair-
wise distance and thus reduces the classifier perfor-
mance. However, in accordance with findings from
previous studies, the signal in the Theta, Alpha, and
Beta bands was more discriminative between con-
cussed and control groups. The best frequency bands
for use in classification, described in the Results sec-
tion, are the Theta-Alpha and Beta Bands using the

FIG. 7. ROC of models with best performances. ROC curves of the three best models are developed using
the Allfeat metric in the Theta-Alpha band in the All (blue), Temporal (red), and Beta band among the
Central region (yellow). The AUC of each ROC is provided in the legends. AUC, area under the curve; ROC,
receiver operating characteristic.
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AllFeat feature. The AllFeat feature represents the co-
herency in the region, albeit without considering
the signal power. Our results indicate differences in
the pre- and post-concussion network connectivity at
the Temporal and Central electrode sites.

Past studies in network coherence using graph-based
approaches after concussion provided seemingly con-
tradictory results. For instance, Cao and Slobounov34

reported a significant decrease in frontocentral con-
nectivity and a significant increase in parieto-occipital
connectivity among concussed athletes, and Virji-
Babul and colleagues35 found reduced parieto-occipital
connectivity and increased connectivity on the right
pre-frontal cortex in the concussed group relative to
the control group.

There are a limited number of studies focusing
on automated classifiers for concussion. Cao and col-
leagues28 used an SVM and obtained 77.1% accuracy
for classifying asymptomatic participants at day 30
post-injury. Wickramaratne and colleagues44 used a
deep learning approach for classifying concussed groups.
They proposed a long short-term memory model with
92.86% accuracy for classifying participants who suf-
fered at least two concussions previously. These two
studies examined concussion and the matched normal
sessions individually. The proposed approach in this
article looked for alteration with the occurrence of a
concussion in a participant by taking into account
brain-region networks from pre- and post-injury ses-
sions of the participant. SVM classifiers generated in
the Theta-Alpha frequency band classified concussed
and control groups with 99.5% accuracy. Using a sub-
set of the electrodes in specific regions still resulted in
reliable classifiers with 97.25% and 96.75% accuracies
using the Beta band in the Central area and Theta-
Alpha band in the Temporal region, respectively.

Previous studies examined the concussion and the
normal groups separately to identify markers for con-
cussion. The proposed model uses alterations in the
EEG network attributable to the occurrence of a con-
cussion in a participant as a marker of concussion.
Comparing pre- and post-sessions within 7 days results
in an accurate classifier, which is essential for helping
to detect concussion. Regular weekly or biweekly
EEG monitoring may help prevent the likelihood of
unreported concussions and SIS by identifying recent
abnormal brain activity using the proposed approach.
The proposed model can be a helpful aid to report po-
tential concussion incidents for further investigation by
certified technicians or neurologists for final diagnosis.

When recording from surface electrodes, particu-
larly those within close proximity, it is always possible
that volume conduction artifacts may influence coher-
ence metrics, such as the pair-wise distance between
FFT components used in the present study. Our use
of an average reference, rather than ear or mastoid ref-
erence, in part was used to mitigate volume conduction
effects.45 Although we are unable to eliminate the
potential for volume conduction effects, their contribu-
tions to our modeled data are assumed to be relatively
constant between participants (and groups), particu-
larly given our sample’s homogeneity in age and sex,
such that our model results, which discriminated be-
tween concussion and control groups, are unlikely to
be biased by volume conduction effects.

The major limitation of this study is its small sample
size. Although the research design was unique in exam-
ining longitudinal EEG changes from before to after
concussion compared to a control group, a replication
in a larger sample and including different sexes is war-
ranted before generalizing these findings. Although
previous studies like Zuckerman and colleagues46

reported no difference in sex-based acute response to
concussive injuries, studies on sex and age differences
on concussive injuries are limited. Additionally, the
lack of systematic routine monitoring hinders the
obtaining of a larger data set that contains data from
both pre-season and post-injury sessions of partici-
pants. Future studies require a collaborative data col-
lection, with a larger initial participant sample size.

Conclusion
Long-term brain damage may be observed in adults
who have participated in contact sports with a higher
risk of concussion incidents, such as football, boxing,
and soccer. Recurrence of concussions and especially
recurrence of them before a full recovery from a previ-
ous concussion may lead to prolonged recovery times
and severe long-term brain damage. In this pilot
study, a regular EEG-monitoring technique is pro-
posed, which can identify persons who have recently
experienced a concussion with an accuracy of 99.5%.
Although the difference between a concussed and nor-
mal brain can be captured months or years post-injury,
it is important to identify the injury as early as possible
to manage the injury and prevent any premature return
to contact sport with the risk of another concussion in-
cident before recovery. Future research with a larger
sample size is encouraged in order to establish the clin-
ical utility of SVM classifiers for routine concussion
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monitoring. A weekly to biweekly routine monitoring,
using a relatively inexpensive and portable modality
such as EEG, may facilitate the diagnosing and moni-
toring of a recent concussion as early as possible to pre-
vent severe and long-term damage to the brain.
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