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ABSTRACT
The Lomax distribution is an important member in the distribution family. In this paper, we
systematically develop an objective Bayesian analysis of data from a Lomax distribution. Non-
informative priors, including probability matching priors, the maximal data information (MDI)
prior, Jeffreys prior and reference priors, are derived. The propriety of the posterior under each
prior is subsequently validated. It is revealed that the MDI prior and one of the reference priors
yield improper posteriors, and the other reference prior is a second-order probability matching
prior. A simulation study is conducted to assess the frequentist performance of the proposed
Bayesian approach. Finally, this approach along with the bootstrap method is applied to a real
data set.

ARTICLE HISTORY
Received 9 November 2021
Revised 6 August 2022
Accepted 2 October 2022

KEYWORDS
Lomax model; probability
matching priors; MDI prior;
Jeffreys prior; reference
priors; posterior propriety

2000MATHEMATICS
SUBJECT
CLASSIFICATIONS
62F15; 62N05

1. Motivation

A random variable is said to be distributed as a Lomax distribution if its density function has the following form:

f (x;α,β) = α

β

(
1 + x

β

)−(α+1)
, x > 0, (1)

where α > 0 is the shape parameter and β > 0 is the scale parameter. The distribution is originally introduced in
Lomax (1954) for the analysis of business failure data. Since then, the Lomax model has been widely applied in
many other fields. For example, Atkinson and Harrison (1978) utilized the Lomax distribution to model personal
wealth data; Bain and Engelhardt (1992) found that the Lomax distribution provided a good model for biomedical
problems, such as survival time following a heart transplant; Holland et al. (2006) applied the Lomax distribution
to model the distribution of the sizes of computer files on servers; and Marshall and Olkin (2007) showed that
the Lomax distribution can be applied as a lifetime distribution. For some extensions of the Lomax distribution,
one is referred to Nayak (1987), Roy and Gupta (1996), Nadarajah (2005), Lemonte and Cordeiro (2013), Kang
et al. (2021) among others.

For the Lomax model (1), there is no closed-form expression for the classical maximum likelihood estimator
(MLE). More importantly, as pointed out by Deville (2016), the MLE does not exist if the sample coefficient of
variation CVn < 1, which was also analyzed in detail in Chakraborty (2019). In addition, a simulation study indi-
cates that the probability of CVn < 1 is not negligible. For example, when (α,β) = (3, 1) and n = 20, the empirical
probability of CVn < 1 is as high as 0.25. In this sense, the MLE method is not applicable under these cases.

Thus, it is natural to consider Bayesian estimation for the parameters (α,β) inmodel (1). In a Bayesian paradigm,
the specification of a prior distribution is one of themost important problems.We first consider the following vague
prior for θ = (α,β), that is,

πG(θ) ∝ 1
β

ατ−1 e−α , (2)

where τ > 0 is a hyperparameter. That is to say, the ‘marginal’ prior for α is a gamma distribution. It is shown
that the posterior distribution of πG(θ | X) is proper for any n ≥ 1 (see the Appendix for proofs), where X =
(X1,X2, . . . ,Xn) is the sample. To assess the sensitivity of the corresponding Bayesian estimation with respect to
the hyperparameter τ , we conduct a sensitivity analysis here.

The values of (α,β) are set as (2, 1.5), and τ is set as 1, 5 and 9, respectively. The empirical square root of the
mean squared error (

√
MSE) and coverage probability (CP) of the Bayesian estimation with respect to the sample
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Figure 1. Square root of the mean squared error and coverage probability of the Bayesian estimation of α based on the gamma
priors πG with τ = 1 (circle), τ = 5 (cross), and τ = 9 (diamond). Panel (a) is for the square root of mean squared error, and panel
(b) for is the coverage probability.

size n are shown in Figure 1. It can be observed that the performance of the MSE and CP based on the prior
πG is very sensitive to the choice of the hyperparameter τ , which makes it difficult to specify πG in applications.
Obviously, if one is interested inmaking an optimal decision based on his/her beliefs, such a (subjective) prior could
be appropriate.

Based on the above motivation, we propose an objective Bayesian analysis for the Lomax model in this paper,
particularly when there is little prior information on the parameters. As we know, one of themost appealing features
of the objective Bayesian analysis is to use noninformative priors. In the work of Ferreira et al. (2016, 2020), Jeffreys
prior and independent Jeffreys prior (i.e., one of the reference priors) were considered. In this paper, we propose a
more systematic and deeper analysis based on an extensive class of objective priors including probability matching
priors, the maximal data information (MDI) prior, Jeffreys prior and reference priors.

The remainder of this paper is organized as follows. In Section 2, noninformative priors, including probability
matching priors, the MDI prior, Jeffreys prior and reference priors are derived. Moreover, the posterior propriety
under each prior is validated. In Section 3, a simulation study is conducted to evaluate the frequentist properties of
Bayesian estimates based on the noninformative priors. In Section 4, the proposed Bayesian approach is applied to
analyze a real data set. Some concluding remarks are given in Section 5.

2. Noninformative priors and their properties

In this section, we derive some important noninformative priors for the parameters (α,β), which contain
probability matching priors, the MDI prior, Jeffreys prior and reference priors.

2.1. Probabilitymatching priors

The rationale behind a probability matching prior is that a noninformative prior should provide inferences that are
similar to those obtained from a frequentist perspective, such as in terms of credible versus confidence intervals.
In this perspective, a probability matching prior is a prior such that the posterior coverage probability of Bayesian
credible interval matches the corresponding frequentist coverage probability (Consonni et al., 2018).
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Given a prior π(·) for the parameters (φ,ϕ), suppose that φ is the parameter of interest, and φ(1−γ )(π(·),X) is
the (1 − γ )th percentile of the marginal posterior distribution of φ. Then, π(·) is called a second-order probability
matching prior if

P
(
φ ≤ φ(1−γ )(π(·),X)

)
= 1 − γ + o

(
n−1)

holds for all γ ∈ (0, 1), see Datta and Mukerjee (2004) for more details.
For the parameters α and β in the Lomax model (1), we have the following theorem.

Theorem 2.1: (a) When α is the parameter of interest and β is the nuisance parameter, the second-order probability
matching prior has the form of

πM1(θ) ∝ F1(α) · G1(β), (3)

where F1(α) ∝ exp{− ∫
(c1+3)α+2c1+3

α(α+1) dα}, G1(β) ∝ βc1 , and c1 is an arbitrary constant.
(b) When β is the parameter of interest and α is the nuisance parameter, the second-order probability matching prior

is given by

πM2(θ) ∝ F2(α) · G2(β), (4)

where F2(α) ∝ exp{− ∫
(c2+3)α2+3(c2+2)α+2c2+2

α2(α+2) dα}, G2(β) ∝ βc2 , and c2 is an arbitrary constant.

2.2. TheMDI prior

Lindley (1956) applied the Shannon entropy to develop an information theoretic analysis of the structure of Bayesian
modelling. This prompted the works on the definition of the least informative prior distribution based on some
definitions of the amount of information. Zellner (1977) proposed an important noninformative prior, which is
called theMDI prior. Zellner (1977) proved that using this prior could emphasize the information in the likelihood
function. Therefore, the information in the prior is weak compared with that in the data (Ramos et al., 2018).

For the Lomax model (1), we have the following result, the proofs of which are deferred to the Appendix.

Theorem 2.2: (a) The MDI prior for the parameters θ = (α,β) is given by

πM(θ) ∝ α

β e
1
α

. (5)

(b) For any n ≥ 1, the posterior distribution under πM(θ) is improper.

2.3. Jeffreys prior

Jeffreys prior is probably the most popular noninformative prior method among practitioners. According to Jef-
freys (1961), Jeffreys prior is proportional to the square root of the determinant of the Fisher information matrix.
Besides being parametrization invariant, Jeffreys prior enjoysmany optimality properties in the absence of nuisance
parameters. It maximizes the asymptotic divergence between the prior and the posterior under several different
metrics. However, Jeffreys prior also has some potential drawbacks. Particularly, in the multidimensional case, its
use may lead to incoherence and paradoxes. See Consonni et al. (2018) for more discussions.

For the Lomax model (1), Jeffreys prior for the parameters θ = (α,β) has the following form:

πJ(θ) ∝ 1
β(α + 1)

√
α(α + 2)

. (6)

And it was shown in Ferreira et al. (2020) that, for any n ≥ 1, the posterior distribution under πJ(θ) is proper.
By Theorem 2.1, we have

Theorem 2.3: Regardless of whether α is the parameter of interest or β is the parameter of interest, πJ(θ) is always
not a second-order probability matching prior.
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2.4. Reference priors

Reference analysis uses information-theoretical concepts to precisely define the objective prior, which should be
maximally dominated by the data, in the sense of maximizing the missing information on the parameters (Berger
et al., 2009). The original formulation of reference priors was introduced in Bernardo (1979), which was largely
informal. Berger and Bernardo (1992) gave more precise definitions of the sequential reference process in contin-
uous multiparameter problems. In addition, a rigorous general definition of reference priors was formally given in
Berger et al. (2009) for one block of parameters.

As we know, reference priors separate the parameters into different ordering groups of interest. For the ordering
group {β ,α}, it was shown in Ferreira et al. (2020) that the reference prior is

πR1(θ) ∝ 1
αβ

. (7)

Furthermore, for any n ≥ 1, the posterior distribution under the reference prior πR1(θ) is improper.
For the ordering group (α,β), we have

Theorem 2.4: (a) The reference prior under the ordering group {α,β} is given by

πR2(θ) ∝ 1
βα(α + 1)

. (8)

(b) For n = 1, the posterior distribution under the reference prior πR2(θ) is improper; while for n ≥ 2, the posterior
under πR2(θ) is proper.

(c) The prior πR2(θ) is a second-order probability matching prior while πR1(θ) is not.

The proofs of Theorem 2.4 are also deferred to the Appendix. It follows from Theorems 2.2–2.4 that that only
Jeffreys prior πJ and the reference prior πR2 enable posterior inferences. However, πR2 is a second-order probability
matching prior while πJ is not. In this sense, πR2 is recommended for potential users. In fact, this is also verified in
the following numercial studies.

3. Simulation study

To evaluate the frequentist performance of the Bayesian estimation based on πJ and πR2 , we simulate data from the
Lomax model (1) with different true values of the parameters α and β and different sample sizes n. Then, posterior
samples are drawn from the joint posterior distribution of α and β by using the random-walkMetropolis algorithm
in Roberts et al. (1997). For each chain, the sample size is 50,000 after 5000 burn-in samples. By choosing samples
with jump of 10, a final chain of 5000 values is obtained. In order to make the estimation more robust, we take the
posterior median as the Bayesian estimator for each parameter. The process is replicated 5000 times. Thus, we can
obtain estimated mean squared errors and coverage probabilities of credible intervals (CIs).

The empirical results of the MSE and CP for the 95% CIs are listed in Table 1, where the estimated probabilities
that the sample coefficient of variationCVn is less than 1 are also associated. FromTable 1, the following observations
can be found:

• As is expected, the MSEs of the Bayesian estimators decrease as the sample size increases. Meanwhile, the CPs
of the 95% CIs approach the nominal level of 0.95.

• The larger the value of α is, the higher the probability P(CVn < 1). For each parameter, the larger the true value
is, the larger the corresponding MSE.

• According to both the MSE and CP, the performance of the Bayesian estimators under the reference prior πR2 is
much better than that under Jeffreys prior πJ . In fact, this is because πR2 is a second-order probability matching
prior while πJ is not.

4. Real data analysis

Now we apply the proposed Bayesian approach to analyze a sample of computer file sizes (in bytes) for 269
files with the *.ini extension on a Windows-based personal computer. The data are available on the website
http://web.uvic.ca/∼dgiles/downloads/data. The data were also analyzed by Holland et al. (2006) and Ferreira
et al. (2016), where the Lomax distribution was shown to appropriately fit this data.

http://web.uvic.ca/dgiles/downloads/data
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Table 1. Empirical MSEs and CPs (within parentheses) of Bayesian estimators based on the
priors πJ and πR2 .

n 20 50 80 100 150

α = 3,β = 1
P(CVn < 1) 0.250 0.076 0.025 0.013 0.002

πJ α 4.445 (0.983) 7.601 (0.974) 6.743 (0.961) 5.532 (0.959) 3.414 (0.948)
β 1.021 (0.984) 1.442 (0.972) 1.254 (0.958) 1.007 (0.955) 0.654 (0.950)

πR2 α 3.023 (0.977) 5.957 (0.972) 5.528 (0.959) 4.646 (0.957) 2.965 (0.952)
β 0.685 (0.980) 1.128 (0.969) 1.027 (0.958) 0.844 (0.956) 0.567 (0.951)

α = 2,β = 1.5
P(CVn < 1) 0.146 0.021 0.003 0.001 0.000

πJ α 3.864 (0.978) 3.312 (0.958) 2.085 (0.938) 1.495 (0.942) 0.565 (0.941)
β 5.006 (0.979) 3.930 (0.956) 2.412 (0.939) 1.689 (0.938) 0.653 (0.943)

πR2 α 2.538 (0.971) 2.516 (0.960) 1.733 (0.942) 1.272 (0.946) 0.505 (0.944)
β 3.277 (0.975) 3.080 (0.959) 2.007 (0.943) 1.431 (0.942) 0.582 (0.947)

α = 1.5,β = 2
P(CVn < 1) 0.082 0.005 0.000 0.000 0.000

πJ α 2.898 (0.975) 1.405 (0.947) 0.660 (0.939) 0.346 (0.946) 0.154 (0.946)
β 14.218 (0.966) 6.280 (0.947) 3.015 (0.943) 1.456 (0.944) 0.639 (0.946)

πR2 α 1.927 (0.972) 1.113 (0.951) 0.572 (0.942) 0.304 (0.947) 0.143 (0.947)
β 9.361 (0.971) 4.926 (0.952) 2.593 (0.942) 1.280 (0.948) 0.590 (0.949)

Table 2. Summary of the parametric bootstrap and the
Bayesian estimates.

Method Parameter Estimator SD 95% CI

Bootstrap α 0.504 0.047 (0.422, 0.606)
β 132.654 27.649 (86.717, 194.908)

πJ α 0.497 0.043 (0.420, 0.587)
β 128.406 24.125 (89.679, 182.416)

πR2 α 0.495 0.043 (0.419, 0.586)
β 127.067 23.545 (89.755, 180.693)

For comparison purposes, the parametric bootstrap and the Bayesian approaches based on the Jeffreys prior πJ
and the reference prior πR2 are included here. The parametric bootstrap is based on the MLE since the sample
coefficient of variation CVn is greater than 1 here. The estimator along with the corresponding standard deviation
(SD) and 95% confidence/credible interval (CI) for α and β are listed in Table 2. It can be seen from Table 2 that the
Bayesian estimates of β are much more accurate than those of the parametric bootstrap according to the SD and
the width of the CI. In addition, the performances of the two Bayesian estimates are close to each other, although
the prior πR2 behaves slightly better than πJ . To conclude, it is noted that our results are close to those in Ferreira
et al. (2016) with respect to Jeffreys prior.

5. Concluding remarks

In this paper, objective Bayesian methods are developed to make inferences on the parameters of a Lomax distri-
bution. Compared with the work in the literature, our contribution lies in the following points. First, we consider
a larger class of noninformative priors, which includes probability matching priors, the MDI prior and both of ref-
erence priors. Second, it is revealed that one of reference priors is a second-order probability matching prior while
Jeffreys prior is not. Third, we clarify that theMLE does not exist if the sample coefficient of variation CVn < 1, and
also consider the probability of such phenomenon in the simulation study. As a result, it is feasible to use objective
Bayesian analysis for the Lomax distribution in practice.
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α

β

)n n∏
i=1

(
1 + xi

β

)−(α+1)
.

Denote xm = min{x1, x2, . . . , xn}, then we have

∫ +∞

0

∫ +∞

0
πG(α,β | x1, . . . , xn) dβ dα ≤

∫ +∞

0
αn+τ−1e−α

∫ +∞

0
β−(n+1)

(
1 + xm

β

)−n(α+1)
dβ dα

∝
∫ +∞

0
αn+τ−1e−αB(nα, n) dα

∝
∫ +∞

0
αn+τ−1e−α 1

nα(nα + 1) · · · (nα + n − 1)
dα,
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where B(a, b) is the Beta function. Let

g1(α) = αn+τ−1e−α

nα(nα + 1) · · · (nα + n − 1)
.

Then, it can be seen that

g1(α) = O
(
αn+τ−2) , α → 0,

g1(α) = O
(
ατ−1e−α

)
, α → +∞.

Thus,
∫ +∞
0 g1(α) dα < ∞ for any n ≥ 1. Consequently, the posterior distribution of πG is proper. �

Proof of Theorem 2.1: According to Peers (1965), the second-order probability matching prior πM1(θ) satisfies the following
partial differential equation:

∂

∂α

{
α(α + 1)πM1(α,β)

}
+ ∂

∂β

{
β(α + 2)πM1(α,β)

}
= 0,

the solution of which is given by formula (3). Similarly, the second-order probability matching prior πM2(θ) is such that

∂

∂α

{
α

3
2 (α + 2)

1
2 πM2(α,β)

}
+ ∂

∂β

{
α− 1

2 β(α + 1)(α + 2)
1
2 πM2(α,β)

}
= 0,

and the solution of this equation is given by formula (4). �

Proof of Theorem 2.2: (a) In the light of Zellner (1977), the MDI prior for θ = (α,β) has the following form:

πM(α,β) ∝ exp {H(α,β)} ,
where H(α,β) = E[log f (X)], and f (x) is the density function of the Lomax distribution. Note that

H(α,β) =
∫ +∞

0
log

{
α

β

(
1 + x

β

)−(α+1)
}

· α

β

(
1 + x

β

)−(α+1)
dx = log

(
α

β

)
− α + 1

α
.

It follows that the MDI prior is

πM(θ) ∝ exp
{
log

(
α

β

)
− α + 1

α

}
∝ α

βe
1
α

.

(b) The joint posterior density of (α,β) based on πM is

πM(α,β | x1, . . . , xn) ∝ πM(θ) · L(x1, . . . , xn | α,β)

= 1

βe
1
α

(
α

β

)n n∏
i=1

(
1 + xi

β

)−(α+1)
.

Denote xM = max{x1, x2, . . . , xn}. Then, we have∫ +∞

0

∫ +∞

0
πM(α,β | x1, . . . , xn) dβ dα

≥
∫ +∞

0
αne−

1
α

∫ +∞

0
β−(n+1)

(
1 + xM

β

)−n(α+1)
dβ dα

∝
∫ +∞

0
αne−

1
α B(nα, n) dα

∝
∫ +∞

0
αne−

1
α

1
nα(nα + 1) · · · (nα + n − 1)

dα.

Let

g2(α) = αne−
1
α

1
nα(nα + 1) · · · (nα + n − 1)

.

Then, it can be seen that g2(α) → 1
nn as α → +∞. Thus,

∫ +∞
0 g2(α) dα = ∞ for any n ≥ 1. Consequently, the posterior

distribution πM(α,β | x1, . . . , xn) is improper. �

Proof of Theorem 2.4: (a) Let S be the inverse of the Fisher information matrix I. Then, up to a constant,

S =
(

α2(α + 1)2 αβ(α + 1)(α + 2)
αβ(α + 1)(α + 2) β2α−1(α + 1)2(α + 2)

)
.

Following the notations in Bernardo (1979), it holds that

h1 = 1
α2(α + 1)2

, h2 = α

β2(α + 2)
.
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Now we select compact set series
l = [c1l, d1l] × [c2l, d2l] for (α,β), l = 1, 2, . . ., such that c1l, c2l → 0, and d1l, d2l → +∞ as
l → ∞. Then,

π l
2(β | α) = |h2|1/21[c2l ,d2l](β)∫ d2l

c2l
|h2|1/2 dβ

:= k1
β
1[c2l ,d2l](β),

where 1[a,b](·) refers to the indicator function on the interval [a, b], and k1 = log(d2l) − log(c2l) is a constant. Note that h1 is
independent of β . It follows that

El1
(
log |h1| | α

) =
∫ d2l

c2l
log |h1| · k1

β
dβ = log |h1|.

Subsequently,

π l
1(α,β) = π l

2(β | α) · exp { 1
2E

l
1
(
log |h1| | α

)}
1[c1l ,d1l](α)∫ d1l

c1l exp
{ 1
2E

l
1
(
log |h1| | α

)}
dα

= π l
2(β | α) · |h1| 12 · 1[c1l ,d1l](α)∫ d1l

c1l
|h1| 12 dα

:= k2
βα(α + 1)

1[c1l ,d1l](α)1[c2l ,d2l](β),

where k2 = k1 · (log d1l
d1l+1 − log c1l

c1l+1 )
−1 is a constant.

Let (α∗,β∗) be an inner point of 
l. Then, the reference prior under the ordering group {α,β} is given by

πR2(θ) = lim
l→∞

π l
1(α,β)

π l
1(α

∗,β∗)
∝ 1

βα(α + 1)
.

(b) Let πR2(α,β | x1, . . . , xn) be the posterior density based on the prior πR2(θ). Then,

πR2(α,β | x1, . . . , xn) ∝ 1
βα(α + 1)

(
α

β

)n n∏
i=1

(
1 + xi

β

)−(α+1)
. (A1)

When n ≥ 2, we have ∫ +∞

0

∫ +∞

0
πR2(α,β | x1, . . . , xn) dβ dα

∝
∫ +∞

0

∫ +∞

0

1
βα(α + 1)

(
α

β

)n n∏
i=1

(
1 + xi

β

)−(α+1)
dβ dα

≤
∫ +∞

0

αn−1

α + 1
B(nα, n) dα

∝
∫ +∞

0

αn−1

α + 1
· 1
nα(nα + 1) · · · (nα + n − 1)

dα.

Denote

g3(α) = αn−1

α + 1
· 1
nα(nα + 1) · · · (nα + n − 1)

.

Then, g3(α) = O(αn−2) as α → 0, and g3(α) = O(α−2) as α → +∞. It follows that
∫ +∞
0 g3(α) dα < ∞ for n ≥ 2, which

implies that the posterior is proper for n ≥ 2.
When n = 1, it follows from (A1) that

πR2(α,β | x1, . . . , xn) ∝ 1
β2(α + 1)

(
1 + x1

β

)−(α+1)
.

Note that ∫ +∞

0

∫ +∞

0

1
β2(α + 1)

(
1 + x1

β

)−(α+1)
dβ dα ∝

∫ +∞

0

1
α(α + 1)

dα = ∞.

Thus, we have ∫ +∞

0

∫ +∞

0
πR2(α,β | x1, . . . , xn) dβ dα = ∞,

which shows that πR2(α,β | x1, . . . , xn) is improper for n = 1.
(c) The result follows from Theorem 2.1. �
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