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ABSTRACT
BayesianHierarchicalmodels has beenwidely used inmodern statistical application. Todealwith
the data having complex structures, we propose a generalized hierarchical normal linear (GHNL)
model which accommodates arbitrarily many levels, usual design matrices and ‘vanilla’ covari-
ancematrices. Objective hyperpriors can be employed for the GHNLmodel to express ignorance
ormatch frequentist properties, yet the commonobjective Bayesian approaches are infeasible or
fraught with danger in hierarchical modelling. To tackle this issue, [Berger, J., Sun, D., & Song, C.
(2020b). An objective prior for hyperparameters in normal hierarchical models. Journal of Multi-
variate Analysis, 178, 104606. https://doi.org/10.1016/j.jmva.2020.104606] proposed a particular
objective prior and investigated its properties comprehensively. Posterior propriety is important
for the choice of priors to guarantee the convergence of MCMC samplers. James Berger conjec-
tured that the resulting posterior is proper for a hierarchical normal model with arbitrarily many
levels, a rigorous proof of which was not given, however. In this paper, we complete this story
and provide an user-friendly guidance. One main contribution of this paper is to propose a new
technique for deriving an elaborate upper bound on the integrated likelihood, but also one uni-
fied approach to checking the posterior propriety for linear models. An efficient Gibbs sampling
method is also introduced and outperforms other sampling approaches considerably.
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1. Introduction

Bayesian hierarchical models (or multilevel models)
have been extensively used in the modern application,
including education (Raudenbush & Bryk, 1986), psy-
chology (Lindenberger & Pötter, 1998), clinical trials
(Xia et al., 2011), economics (Shimotsu, 2010) and
many other applied statistical fields. The fundamen-
tal idea of hierarchical modelling is to think of the
lowest-level units (smallest and most numerous) as
organized into a hierarchy of successively higher-level
units. For example, students are in classes, classes are in
schools, schools are in districts, districts are in states.
Accordingly, hierarchical models are naturally applica-
ble to the survey, observational or experimental data
involved with complicated nesting. However, the most
commonly used and fully discussed hierarchical mod-
els aremerely of two levels. Goldstein (2011) andBerger
et al. (2020b) have ever defined 3-level hierarchical
model and implemented statistical analysis on that.
The hierarchical model with more levels were usually
avoided by the researchers for the reason of analyti-
cal difficulty and intractable computation. To the best
of authors’ knowledge, a general hierarchical linear
model with arbitrary levels seems to have never been
defined or studied. In this paper, we will introduce the

definition of a generalized hierarchical normal linear
(GHNL) model and carry out an in-depth theoreti-
cal investigation of Bayesian inference for the GHNL
models.

In order to implement fully Bayesian analysis, pri-
ors are supposed to be specified on the hyperparameters
(parameters at higher levels of the hierarchical model).
Improper (objective) priors are often used to express
ignorance or to match frequentist properties (see the
review article, Consonni et al., 2018). When using
improper priors, an important issue whether the result-
ing posterior distributions are proper arises. As Hobert
and Casella (1996) stated, without proper precaution,
misuse of improper priors, sometimes unknowingly,
will result in practical difficulties, such as the non-
convergence of the Gibbs sampler. The enormous prac-
tical importance of posterior propriety motivates us to
explore it in the framework of GHNL modelling after-
wards. There is also a vast modern literature investigat-
ing the posterior propriety of improper priors applied
to a large variety of models, such as, Sun et al. (2001),
Speckman and Sun (2003), Berger et al. (2005) and
Michalak and Morris (2016).

A great deal of efforts have been devoted to the
development of objective hyperpriors in hierarchical
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modelling, such as, Daniels and Kass (1999), Ever-
son and Morris (2000), Gelman (2006), Gustafson
et al. (2006), Berger et al. (2005) and Berger et al.
(2020b). Formal objective Bayesian approaches, like the
Jeffreys-rule prior or reference prior are only feasible for
the simple hierarchical settings. For instance, the exact
Jeffreys-rule prior for covariance matrices at higher
level depends on the parameters from the lower level
of the model, leading to plenty of difficulties in formu-
lation and computation. Therefore, a common way is
to use less formal approaches, such as applying formal
objective priors from non-hierarchical models to hier-
archicalmodelling. Unfortunately, the non-hierarchical
Jefferys-rule prior and reference prior typically yield
improper posteriors in the hierarchical settings (cf.
Berger et al., 2005). Those who can recognize this
problem often use constant priors instead for higher
level variance components. However, the constant prior
is so diffuse that it requires twice as many observa-
tions as logically needed to achieve posterior propri-
ety (cf. Berger et al., 2005 and Berger et al., 2020b).
In other words, the extra observations required are
wasted on correcting the over-diffuse tail of the con-
stant prior. Themost powerful tool known for detecting
over-diffuse hyperpriors is by looking at the frequen-
tist notion of admissibility of resulting estimators (see
Berger et al., 2005 for discussions and references). Sen-
sible choices of objective hyperpriors are on the bound-
ary of admissibility, being as diffuse as possible without
leading to inadmissible estimators.

Berger et al. (2005) studied the propriety and admis-
sibility of a number of hyperprios, but no overall con-
clusionwas reached as to a specific prior to recommend.
The reasons are as follows: (a) the admissibility of the
leading candidate prior was unable to get proved; (b)
The proposed computationmethods were only efficient
for relatively low-dimensional covariance matrices and
remained quite challenging for the candidate priors; (c)
The hierarchical model discussed was merely of two
levels, the results are not adaptive to a general hierarchi-
calmodelwithmany levels. To address this issue, Berger
et al. (2020b) recommended a particular objective prior
for use in all normal hierarchical models. Consider the
following canonical form of 2-level hierarchical normal
model, suppose that, independently, yi ∼ Nk(θ i, Ik)
and θ i ∼ Nk(β ,V) for i = 1, . . . ,m, where Nk(·, ·)
denotes the k-dimensional normal distribution, the yi
are k × 1 observation vectors, the θ i are the k × 1 unob-
served mean vectors, β is a p × 1 ‘hypermean’ vec-
tor,V ∈ R

k×k is an unknown ‘hypercovariance’ matrix.
Berger et al. (2020b) proposed a particular combination
of independent priors on hyperparameters β and V as

π(β) ∝ 1
(1 + ‖β‖2)(k−1)/2 ,

π(V) ∝ 1
|V|1−1/(2k) ∏

1≤s<t≤k (vs − vt)
, (1)

where v1 > v2 > · · · > vk > 0 are the ordered eigen-
values of V . The recommendation (1) for hyperpriors
was justified by Berger et al. (2020b) from the aspects
of admissibility, ease of computation and performance.
Most importantly, prior (1) is adapted to being used
at any level in hierarchical modelling, which is not
true for other proposed objective priors as previously
mentioned.

Since it is hazardous to skip demonstrating propriety
at the risk ofmaking inference from improper posterior,
Berger et al. (2020b) has shown the posterior propri-
ety of a 3-level hierarchical model using prior (1), while
assuming square designmatrices for a technical reason.
Berger et al. (2020b) also conjectured that the posterior
is proper with the recommended prior being utilized at
all levels of a hierarchical normal model with arbitrar-
ily many levels, a rigorous proof of which was unable to
be provided, however. In this paper, we complete this
story and prove the posterior propriety for the GHNL
models in general situations. Besides, as pointed out
in Michalak and Morris (2016), researchers have been
finding it daunting and time-consuming to inspect pos-
terior propriety when using improper priors, except in
the simplest models. For this reason, we supply an user-
friendly guidance for checking posterior propriety to
practitioners in different practical situations.

In Section 2, we give an explicit definition of the
GHNL model which accommodates arbitrarily many
levels and usual design matrices. It is important to
note that we are considering the ‘vanilla’ covariance
matrix problem herein. We are not assuming any spe-
cial structures or sparsity for hypercovariance matrices.
The association between the GHNLmodel and a linear
mixed-effect model is also discussed. In Section 3, we
demonstrate that recommended prior yields a proper
posterior in the framework of GHNL modelling. In
addition, we exhibit a guidance for checking posterior
propriety. An efficient MCMC algorithm for sampling
from the posterior is introduced in Section 4. Section 5
provides some concluding remarks and further gener-
alizations

2. Generalized hierarchical normal linear
model

In this section, we will introduce the definition of a
GHNL model with (r + 1) levels, where r ≥ 1. The
association between the GHNL model and a linear
mixed-effectmodel will be demonstrated as well, which
brings an insight into the GHNLmodel. At last, the rec-
ommended prior on the hyperparameters of the GHNL
model will be presented and discussed. Firstly, we intro-
duce some notations to be used in themain body of this
paper.

Notations Let [k] = {1, 2, . . . , k} for a positive inte-
ger k; 1{·} stands for the indicator function; Nk(μ,�)
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represents the k-dimensional normal distribution with
mean μ and covariance �; Nk(μ,�) denotes a k-
dimensional normal random variable with meanμ and
covariance �; For a symmetric matrix A, A > (<)0
means that A is a positive (negative) definite matrix,
and A ≥ (≤)0 denotes that A is a non-negative (non-
positive) definite matrix.

2.1. Model structure

Berger et al. (2020b) proposed a 3-level hierarchical
model with the form:⎧⎪⎪⎨
⎪⎪⎩
Level 1 : yi = θ i + Nk(0, Ik), i ∈ [m];
Level 2 :
θ i = Ziβ + Nk(0,V),

β� = (β�
1 ,

. . . ,β�
s );

Level 3 : β j = η + Np(0,W), j ∈ [s].

(2)

where the yi are k × 1 observation vectors, the θ i
are the k × 1 unobserved mean vectors, η is a p ×
1 ‘hypermean’ vector, V ∈ R

k×k and W ∈ R
p×p are

unknown ‘hypercovariance’ matrices, and the Zi are
k × sp known matrices. At last, all the normal random
variables in model (2) are mutually independent. Based
on the 3-level hierarchical normal model, a more gen-
eral hierarchical model with (r + 1) levels (r ≥ 1) can
be constructed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Level 1 : yi0 = Z0i0θ1
+Nk0(0, Ik0),

i0 ∈ [m0],
θ�
1 = (θ�

11,
. . . , θ�

1m1
);

Level 2 : θ1i1 = Z1i1θ2
+Nk1(0,V1),

i1 ∈ [m1], θ�
2

= (θ�
21,

. . . , θ�
2m2

);
...

...
...

Level r :
θ r−1,ir−1

= Zr−1,ir−1θ r
+Nkr−1(0,Vr−1),

ir−1 ∈ [mr−1],
θ�
r = (θ�

r1,
. . . , θ�

rmr);

Level r + 1 : θ rir = Zrirη

+Nkr(0,Vr),
ir ∈ [mr].

(3)
Firstly, all the normal random variables noted in
the above model are mutually independent. Within
model (3), the output of level (j + 1) consists ofmj units
whose values are kj × 1 vectors for j = 0, 1, . . . , r. By
stacking the output units of level (j + 1) on top of one
another, we can obtain the outcome vector of level (j +
1) as θ j for j ∈ [r] and y = (

y�
1 , . . . , y

�
m0

)� for level 1,
then the θ j’s are (mjkj) × 1 vectors and y is a (m0k0) ×
1 vector. In fact, only the outcome of the lowest level can
be observed, the outcomes of higher levels are inacces-
sible and latent variables. Hence, the outcome variables
of interest are always situated at the lowest level of the
hierarchy. Different units in the same level share in
common input effects (intercept can be included) which
are exactly the outcome vectors from the upper level,
except that the input effect of level (r + 1) is η which

Table 1. Summary of certain important notations within
model (3) and j = 0, 1, . . . , r.

Notation Meaning

r+ 1 Total number of levels
mj Number of the output units in level (j + 1)
kj Dimension of each output unit in level (j + 1)
d Dimension of the fixed effect η

is a d × 1 vector of fixed effects. In addition, the units
from the same level have the same variance compo-
nent. The variance component within level (j + 1) is
denoted by V j ∈ R

kj×kj for j ∈ [r] and accounts for the
magnitude of random variation within the correspond-
ing level. The covariance matrices V j are unobserved
for j ∈ [r]. The matrices Zjij are kj × (mj+1kj+1) matri-
ces and denote the matrices of observed covariates for
unit ij in level j, where j = 0, 1, . . . , r and ij ∈ [mj]. It
is natural to assume that there exist at least two units
in each level and the dimensions of all units and η are
no less than 1, mathematically, mj ≥ 2 and kj ≥ 1 for
j = 0, 1, . . . , r, and d ≥ 1. Table 1 summarizes several
important notations that will mainly affects the results
for the posterior propriety in Section 3.

The extensions fromBerger et al. (2020b)’smodel (2)
to model (3) are two-fold, model (3) accommodates
arbitrarily many levels and usual covariate matri-

ces. Further define that Zj =
{
Z�
j1, . . . ,Z

�
jmj

}�
for j =

0, 1, . . . , r. Then the Zj are (mjkj) × (mj+1kj+1) matri-
ces for j = 0, 1, . . . , (r − 1), Zr is a (mrkr) × d matrix,
and an alternative representation of the (r + 1)-level
hierarchical model to (3) is thereby given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Level 1 : (y|θ1) ∼ Nm0k0
(Z0θ1, Im0k0);

Level 2 : (θ1|θ2,V1) ∼
Nm1k1
(Z1θ2,
Im1 ⊗ V1);

...
...

...

Level r : (θ r−1|θ r,Vr−1) ∼
Nmr−1kr−1
(Zr−1θ r, Imr−1

⊗Vr−1);

Level r + 1 : (θ r|η,Vr) ∼
Nmrkr
(Zrη,
Imr ⊗ Vr)

.

(4)

Remark 2.1: If we assume that the covariance matrix
for the units from level 1 in model (3) is a positive def-
inite matrix �0 instead of the identity matrix, when
�0 is known, the two assumptions are actually equiv-

alent by taking reparameterization that y∗
i0 = �

− 1
2

0 yi0
and Z∗

i0 = �
− 1

2
0 Zi0 . Furthermore, for a technical rea-

son, �0 must be assumed as known throughout this
paper, and this reason will be explained in Section 5.
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2.2. Connectionwith the linearmixed-effect
model ( LMM )

The two-level hierarchical normal models are often
referred to as LMMs in many places. As for the GHNL
model (4), let� = {θ1, . . . , θ r} denote the set of unob-
served outcome vectors and V = {V1, . . . ,Vr} repre-
sent the set of unknown covariance matrices. If we take
the θ j’s as intermediate variables, then marginalizing
out over � yields

(y|η,V) ∼ Nm0k0(Xrη,�), (5)

where

� = Im0k0 +
r∑

t=1
Xt−1(Imt ⊗ V t)X�

t−1, and

Xj =
j∏

s=0
Zs, j = 0, 1, . . . , r, (6)

� is a (m0k0) × (m0k0)matrix and theXj are (m0k0) ×
(mj+1kj+1)matrices for j = 0, 1, . . . , r. Suppose that the
Zj are of full column ranks, then by Sylvester’s rank
inequality the Xj are also of full column ranks, j =
0, 1, . . . , r. In the rest of the paper, the Zj are assumed
to be of full column ranks for j = 0, 1, . . . , r.

If we consider a particular LMM as

y = Xrη + X0θ
∗
1 + · · · + Xr−1θ

∗
r + ε, (7)

where η is the fixed effect, the θ j’s are random effects
and independently distributed asNmjkj(0, Imj ⊗ V j) for
j ∈ [r], and ε denotes the vector of random errors and
is distributed as Nm0k0(0, Im0k0). By integrating out the
random effects, the marginal distribution of y condi-
tioning on (η,V) is identical to the distribution (5).
In one word, the GHNL is equivalent to a LMM in
the sense of the marginal distribution of observations
after integrating out intermediate outcome vectors or
random effects. The equivalence between the GHNL
models and the LMMs can be illustrated by an example
of mixed-effect ANOVA model as well.

Example 2.1 (Mixed-effect ANOVAmodel): Suppose
we can observe the scores of p courses for student (ijk)
as yijk for i = 1, . . . , s1, j = 1, . . . , s2 and k = 1, . . . , s3.
The observed data are within a hierarchy of three lev-
els: student (ijk) is nested within class (ij), class (ij) is
nested within school i. Thus, we have total s1 schools,
each school has s2 classes and each class has s3 students.
Consider a mixed-effect ANOVA model as

yijk = η + αi + β ij + εijk, (8)

where yijk, η, αi, β ij and εijk are all p × 1 vectors for i =
1, . . . , s1, j = 1, . . . , s2 and k = 1, . . . , s3, η denotes the
overall mean and is fixed effect, αi ∼ Np(0,Vα) is the
effect of school, β ij is distributed as Np(0,Vβ) and rep-
resents the effect of class, the student-level independent

random error is denoted by εijk and has distribution
Np(0,�0), �0 is a known matrix. At the same time,
αi, β ij and εijk are independently distributed. Conse-
quently, Vα , Vβ and �0 are the variance components
describing the school-level, class-level and student-
level variations, respectively. Due to the hierarchical
structure of the observations, we can naturally build a
hierarchical model as

yijk ∼ Np(β
∗
ij,�0), β∗

ij ∼ Np(α
∗
i ,Vβ) and

α∗
i ∼ Np(η,Vα) (9)

independently, for i = 1, . . . , s1, j = 1, . . . , s2 and k =
1, . . . , s3. Denote that

Y i =

⎛
⎜⎝
yi11 · · · yis21
...

. . .
...

yi1s3 · · · yis2s3

⎞
⎟⎠ ,

Ei =

⎛
⎜⎝

εi11 · · · εis21
...

. . .
...

εi1s3 · · · εis2s3

⎞
⎟⎠ ,

β i =

⎛
⎜⎝

β i1
...

β is2

⎞
⎟⎠ and

β∗
i =

⎛
⎜⎝

β∗
i1
...

β∗
is2

⎞
⎟⎠ ,

where Y i and Ei both are (s3p) × s2 matrix, and β i
and β∗

i both are (s2p) × 1 vector. Let yi = vec(Y i) and
εi = vec(Ei), where vec(A) denotes the column vector
obtained by stacking the columns of the matrix A on
top of one another. Define that

y =

⎛
⎜⎝
y1
...
ys1

⎞
⎟⎠ , ε =

⎛
⎜⎝

ε1
...

εs1

⎞
⎟⎠ , β =

⎛
⎜⎝

β1
...

βs1

⎞
⎟⎠ ,

β∗ =

⎛
⎜⎝

β∗
1
...

β∗
s1

⎞
⎟⎠ , α =

⎛
⎜⎝

α1
...

αs1

⎞
⎟⎠ , α∗ =

⎛
⎜⎝

α∗
1
...

α∗
s1

⎞
⎟⎠ .

Thus, y and ε are (m0p) × 1 vectors, β and β∗ are
(m1p) × 1 vectors, α and α∗ are (m2p) × 1 vectors,
where m0 = s1s2s3, m1 = s1s2 and m2 = s1. Then the
hierarchical normal model (9) can be expressed as a
GHNL model with the form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Level 1 : (y|β∗,�0) ∼ Nm0p
(Z0β

∗, Im0 ⊗ �0);

Level 2 : (β∗|α∗,Vβ) ∼ Nm1p
(Z1α

∗, Im1 ⊗ Vβ);

Level 3 : (α∗|η,Vα) ∼ Nm2p
(Z2η, Im2 ⊗ Vα),

(10)
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where

Z0 = diag{1s3 ⊗ Ip, . . . , 1s3 ⊗ Ip︸ ︷︷ ︸
s1s2

},

Z1 = diag{1s2 ⊗ Ip, . . . , 1s2 ⊗ Ip︸ ︷︷ ︸
s1

}, Z2 = 1s1 ⊗ Ip,

where 1q denotes the q × 1 vector with all elements
being one, and Z0, Z1, Z2 are (m0p) × (m1p), (m1p) ×
(m2p), (m2p) × pmatrices, respectively. Denote that

X0 � Z0,

X1 � diag{1s2s3 ⊗ Ip, . . . , 1s2s3 ⊗ Ip︸ ︷︷ ︸
s1

} = Z0Z1,

X2 � 1s1s2s3 ⊗ Ip = Z0Z1Z2,

and X0, X1, X2 are (m0p) × (m1p), (m0p) × (m2p),
(m0p) × p matrices, respectively. Thus, model (8) can
be summarized as

y = X2η + X1α + X0β + ε, (11)

where α ∼ Nm2p(0, Im2 ⊗ Vα), β ∼ Nm1p(0, Im1 ⊗
Vβ) and ε ∼ Nm0p(0, Im0 ⊗ �0), independently. By
integrating out (α,β) and (α∗,β∗), the marginal distri-
butions of y for model (11) andmodel (10) are identical
and of the form:

(y|η,Vα ,Vβ ,�0) ∼ Nm0p (X2η,
) ,


 = Im0 ⊗ �0 + X0(Im1 ⊗ Vβ)X�
0

+ X1(Im2 ⊗ Vα)X�
1 .

Example 2.1 provides a simple example to illustrates
how the hierarchical model and themixed-effect model
can be constructed based on the nested data, and the
equivalence between two models is also presented. In
Appendix 1, we define a special LMM which is a spe-
cial case of model (7) with mj = 1 for all j ∈ [r], and
the theoretical investigation of this special LMM is dis-
tinct from that of theGHNLM.This special LMMcould
be common in application, and we just want to provide
some theoretical results for those who have interests to
refer to. We will still focus on the GHNL model in the
following sections.

2.3. Priors on the hyperparameters

In order to implement fully Bayesian analysis, we
should specify hyperpriors on the parameters (η,V). It
follows the recommendation from Berger et al. (2020b)
that we can assume priors on (η,V) as:

π(η) ∝ 1
(1 + ‖η‖2)(d−1)/2 , η ∈ R

d, (12)

π(V j) ∝ 1
|V j|1−1/(2kj) ∏

s<t
(
ωjs − ωjt

) ,

V j > 0, j ∈ [r], (13)

where ωj1 > ωj2 > · · · > ωjkj > 0 are the decreas-
ingly ordered eigenvalues of V j, j ∈ [r]. Apart from
prior (12), common choices of prior on η include
the constant prior and conjugate prior. None of the
three priors will result in improper priors or difficul-
ties in computation. However, among the three priors,
prior (12) is the most perfect for all k from the per-
spective of admissibility. Besides, it refers to Berger
et al. (2005) that the prior (12) is a mixture-of-normal
prior of the hierarchical structure as

(η|λ) ∼ Nd(0, λId) and [λ] ∝ λ−1/2 exp
(

− 1
2λ

)
,

(14)
and those mixture-of-normal priors have shown great
success in shrinkage estimation particularly (cf. Four-
drinier et al., 1998) and robust Bayesian estimation gen-
erally (cf. Berger, 1980). Therefore, prior (12) was actu-
ally recommended by Berger et al. (2005) for default
use.

As for prior (13) on the unknown covariance matri-
ces V j, j ∈ [r], consider the transformation from V j to

j = diag

(
ωj1, . . . ,ωjkj

)
and the orthogonalmatrix�j

of corresponding eigenvectors, the Jacobian is∣∣∣∣∣ ∂ V j

∂
(

j,�j

)
∣∣∣∣∣ =

∏
s<t

(
ωjs − ωjt

)
. (15)

Consequently, the prior (13) on V j becomes the prior
density of (
j,�j) as

π(
j,�j) ∝ 1
|
j|1−1/(2kj)

(16)

with respect to Lebesgue measure on
(
ωj1, . . . ,ωjkj

)
and the invariant Haar measure over the space{
� : ��� = Ikj

}
. Note that the prior on
j is improper

and, independently, the prior on �j is constant. Use
of a uniform prior for �j ranging over a compact
space is natural and non-controversial and has no influ-
ence on the eigenvalues. The term

∏
s<t

(
ωjs − ωjt

)
is

eliminated after changing variables for prior (13). In
contrast, the commonly used priors on the covariance
matrix, such as inverse Wishart, Jeffreys-rule and con-
stant priors, contain the term

∏
s<t

(
ωjs − ωjt

)
in the

transformed space. This special term gives low mass
to close eigenvalues and hence effectively force the
eigenvalues apart. It is contrary to the common intu-
ition which would suggest that one should chooses a
prior that pushes the eigenvalues closer together. As a
result, prior (13) is essentially neutral as to expansion
or shrinkage of the eigenvalues.

In the context of 2-level hierarchical normal model,
Theorem 1 fromBerger et al. (2020b) has demonstrated
that the combination of priors (12) and (13) on (η,V)
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is on the boundary of admissibility, being as diffuse
as possible without yielding inadmissible estimators.
Furthermore, it is shown that the generalization that
allows covariates at all levels of the hierarchical model
will not affect the result of admissibility (cf. Berger
et al., 2020b). Nonetheless, the admissibility of the
recommended prior for the (r + 1)-level hierarchical
model with r ≥ 2 is not clear. Generally speaking, this is
a very difficult question to answer, andwemainly justify
the recommendation of hyperpriors from the angles of
posterior propriety and computation afterwards in the
framework of the GHNL model.

3. Posterior propriety

Berger et al. (2020b) has shown that the resulting pos-
terior of the recommended prior is proper for the 3-
level hierarchical model (2), but under a narrow set of
assumptions. They also conjectured the posterior pro-
priety for a hierarchical model with any number of
levels, a rigorous of which was not given yet. In this
section, we will comprehensively investigate the condi-
tions for the posterior propriety of theGHNLmodel (4)
using the recommended prior in more general situa-
tions. The dimension of η affects the investigation of
posterior propriety considerably, and two cases d ≥ 2
or d = 1 will be discussed separately.

Based on (5) and (14), by integrating out η, we can
obtain the marginal distribution of y conditioning on
(V , λ) as

(y|V , λ) ∼ Nm0k0

(
0,� + λXrX�

r

)
. (17)

The posterior propriety of the GHNL model (4)
employing priors (13) and (14) is defined as

m(y) =
∫

f (y|V , λ)π(λ)

r∏
s=1

π(V s) dλ
r∏

t=1
dV t < ∞,

(18)
where m(y) denotes the marginal density of the obser-
vation vector. Next, we display some definitions and
additional notations which are frequently used in this
section.

More Notations Let card(A) denote the cardinality
of the set A; For 0 < I1, I2 ≤ ∞, denote that I1 � I2
if there exist constants 0 < C1 ≤ C2 such that C1I2 ≤
I1 ≤ C2I2; For a symmetric matrix A ∈ R

n×n, λi(A)

represents the ith largest eigenvalue of A, namely,
λ1(A) ≥ · · · ≥ λn(A); Let λmax(A) and λmin(A) denote
the maximum and minimum eigenvalues of an arbi-
trary symmetric matrix A;

Definition: For convenience, let ωr+1,1 � λ, mr+1 �
d and kr+1 � 1; Define a function of an arbitrary non-
empty set E as F(E) � {D |D ⊂ E, D �= ∅}, such that
F(E) denotes the set of all non-empty subsets of E; For

anyR ∈ F([r + 1]), letH(R) �
{
(j, l) | j ∈ R, l ∈ [kj]

}
;

Further define the composition of F and H as

S(R) � (F ◦ H)(R) = {D |D ⊂ H(R), D �= ∅}

for any R ∈ F([r + 1]); Define that

cjl,s = 1{mj(l−1)<s≤mjl}, (19)

for j ∈ [r + 1], l ∈ [kj] and s ∈ [m0k0].

3.1. Two key lemmas

Before we formally investigate the posterior propriety,
we first introduce two important lemmas which domi-
nate in the process of proving themain theorems in this
paper.

Lemma 3.1: Assume that theAj are pj × pj positive def-
inite matrices, j ∈ [r]. Let Xj be n × pj matrices of full
column ranks, j ∈ [r]. Define that

H =
r∑

j=1
XjAjX�

j . (20)

Then

(a) λmax(H) ≤ C1
∑r

j=1 λmax(Aj), where C1 =
maxj∈[r] λmax(X�

j Xj).
(b) Also,

|H| ≥
(
C2

r

)n
∣∣∣∣∣∣

r∑
j=1

Dj

∣∣∣∣∣∣ , (21)

where C2 = minj∈[r] λmin(X�
j Xj) > 0. For any j ∈

[r],Dj = diag(aj1, . . . , ajn), where ajk = λk
(
Aj
)
for

k ∈ [pj] and ajk = 0 for pj < k ≤ n.

Lemma 3.1 mainly demonstrates two inequalities
with respect to the summation of a series of quadratic
forms which have matrical inputs. Since Xi’s have full
column rank and Aj’s are positive definite, then n ≥ pj
and rank

(
XjAjX�

j

)
= pj. It is worthwhile to note that

the non-zero diagonal elements of Dj are the decreas-
ingly ordered eigenvalues of Aj in the lower bound of
|H|, and this relationwill deeply influence the last result
when we derive the sufficient condition for posterior
propriety afterwards. Besides, we can never find a con-
stant C∗ > 0 such that |H|+ ≤ C∗

∣∣∣∑r
j=1Dj

∣∣∣+, where|M|+ denotes the product of all non-zero eigenval-
ues of M. The proof of Lemma 3.1 can be found in
Appendix A.2.

Lemma 3.2: Assume a positive integer k. SupposeM is
a subset of F([k]) with cardinality n and let C1, . . . ,Cn
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denote the sequence of all the elements withinM. Define
an integral

I =
∫

�

1[∏k
j=1 λ

aj
j

][∏n
i=1(1 + ∑

r∈Ci
λr)bi

] dλ,

where aj j = 1, 2, . . . , k, and bi, i = 1, 2, . . . , n, are real
constants, λ = (λ1, . . . , λk)� ∈ � ≡ [0,∞]k. Then the
integral I is finite if and only if (iff) the following two
conditions are both satisfied

(a) aj < 1, j ∈ [k];
(b) Inequalities ∑

j∈D
aj +

∑
i∈GD

bi > card(D) (22)

for all D ∈ F([k]) hold, where GD = {
i |D⋂

Ci
�= ∅, i ∈ [n]}.

Here, Lemma 3.2 (b) may not be straightforward
enough, we will use the following example to elaborate
on how Lemma 3.2 can be employed.

Example 3.1: Consider integral

I0 =
∫

�

1[∏3
j=1 λ

aj
j

]
(1 + λ1)

b1

(1 + λ1 + λ2)
b2

(1 + λ2 + λ3)
b3

dλ1 dλ2 dλ3,

where a1, a2, a3, b1, b2, b3 are all real con-
stants. Similar to Lemma 3.2, we can define M =
{{1} , {1, 2} , {2, 3}}. Then I0 < ∞ iff all the following
inequalities hold: (a) aj < 1, j ∈ [3]; (b)

For D = {1} , a1 + b1 + b2 > 1;

For D = {2} , a2 + b2 + b3 > 1;

For D = {3} , a3 + b3 > 1;

For D = {1, 2} , a1 + a2 + b1 + b2 + b3 > 2;

For D = {1, 3} , a1 + a3 + b1 + b2 + b3 > 2;

For D = {2, 3} , a2 + a3 + b2 + b3 > 2;

For D = {1, 2, 3} , a1 + a2 + a3 + b1 + b2 + b3 > 3.

Note that, no matter how M is defined, we always
need to check all the inequalities corresponding to all
D ∈ F([k]). Even though some inequalities could be
trivial after being written down, for the sake of assur-
ance, we would better take all non-empty subsets of
[k] into account in the early stage. Lemma 3.2 plays a
crucial role in obtaining the follow-up theorems, and
detailed proof of Lemma 3.2 sees Appendix A.2.

3.2. Conditions for the posterior to be proper
when d ≥ 2

In this subsection, the case d ≥ 2 is mainly considered.

Theorem 3.1: Consider the GHNL model (4) with pri-
ors (12) and (13) on η and V i ∈ V , respectively. When
d ≥ 2, a sufficient condition for the posterior propriety is
given by

m0k0∑
s=1

1{∑
(j,l)∈D cjl,s>0

} >
∑

(j,l)∈D

1
kj
, (23)

for any D ∈ S([r + 1]).

Proof: It follows (17) that the integrated likelihood of
(V , λ) after marginalizing out (θ1, . . . , θ r, η) is given by

L(V , λ; y) ∝ 1
|� + λXrX�

r |1/2

× exp
{
−1
2
y�

(
� + λXrX�

r

)−1
y
}
(24)

By dropping the exponent term involving y (since it is
less than one), we have

L(V , λ; y) <
1

|� + λXrX�
r |1/2

By applying Lemma 3.1 (b), we can further bound the
integrated likelihood as

L(V , λ; y) ≤ C1

|M1|1/2
(25)

where C1 is a positive constant that only depends on
Xj’s and

M1 = Im0k0 +
r+1∑
j=1

Dj and

Dj =
(


j ⊗ Imj

Oqj

)
(m0k0)×(m0k0)

, (26)

where 
j are the diagonal matrices of the decreas-
ingly ordered eigenvalues of V j for j ∈ [r] and 
r+1 =(
ωr+1,1

)
,Oqj are qj × qj zeromatrices and qj = m0k0 −

mjkj for j ∈ [r + 1]. Since 
r+1 = (ωr+1,1), then 
r+1
is a degenerate matrix as scalar λ and the prior on λ

becomes

π(
r+1) ∝ 1
|
r+1|1−1/(2kr+1)

exp
{
−1
2
tr
(

−1

r+1
)}

.

(27)
Combining (16), (18), (27) and (25), we have

m(y) ≤
∫ C1 exp

{− tr
(

−1

r+1
)
/2

}∏r+1
j=1 1{ωj1>···>ωjkj>0

}
|M1|1/2

∏r+1
j=1

∣∣
j
∣∣1− 1

2kj

×
⎡
⎣ r∏

j=1
d
j d�j

⎤
⎦ d
r+1
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<

∫
C1

|M1|1/2
∏r+1

j=1
∣∣
j

∣∣1− 1
2kj

r+1∏
j=1

d
j � I0

The definition of cjl,s in (19) yields

|M1| =
m0k0∏
s=1

⎛
⎝1 +

r+1∑
j=1

kj∑
l=1

cjl,sωjl

⎞
⎠ .

Therefore,

I0 �
∫ ∏r+1

j=1 d
j∏r+1
j=1

∣∣
j
∣∣1− 1

2kj
∏m0k0

s=1(
1 + ∑r+1

j=1
∑kj

l=1 cjl,sωjl

) 1
2

,

which is finite iff

∑
(j,l)∈D

(
1 − 1

2kj

)
+ 1

2

m0k0∑
s=1

1{∑
(j,l)∈D cjl,s>0

} > card(D)

(28)
for any D ∈ S([r + 1]) by employing Lemma 3.2. It’s
obvious that the inequality (28) is equivalent to that
in (23). Proved. �

Applying Lemma 3.1 yields the upper bound on
the integrated likelihood function of hyperparameters
as C0|M1|− 1

2 , M1 is a (m0k0) × (m0k0) matrix and
defined in (26). Therefore, the special notation cjl,s can
be understood as the indicator of whether eigenvalue
ωjl appears in the sth diagonal element of M1 for j ∈
[r + 1], l ∈ [kj] and s ∈ [m0k0]. At the same time, the
left-hand side of inequality (23) actually stands for the
cardinality of set

{
s | ∃ (j, l) ∈ D, suchthat cjl,s > 0

}
for

any D ∈ S([r + 1]).
The cardinality of S([r + 1]) is 2

∑
j∈[r+1] kj − 1,

which means that the total number of the inequalities
to be checked in (23) is exponential with r and the
dimensions kj. It has to be admitted that thiswill impose
considerably heavy computational burden in common
practice by applying Theorem 3.1 directly. Neverthe-
less, the researchers have no need to be anxious about
the heavy computational burden, due that most of the
inequalities in Theorem 3.1 are trivial. To conclude this
point, we have the following corollary.

Corollary 3.1: Recursively define that

R1 = {
j |mj ≤ r + 1, j ∈ [r + 1]

}
;

R2 = {
j |mj ≤ card(R1), j ∈ R1

}
;

...

Rp = {
j |mj ≤ card(Rp−1), j ∈ Rp−1

}
,

where p is the smallest positive integer i such that{
j |mj > card(Ri), j ∈ Ri

} = ∅. We call the levels within

Rp as kernel levels and denote Rp by Rker. The inequal-
ity (23) holds for any D ∈ S([r + 1]) iff the inequal-
ity (23) holds for any D ∈ S (Rker). Consequently, if
Rker = ∅, then the posterior is always proper.

Proof: Let Rc1 = [r + 1] − R1, thus,mj > r + 1 for j ∈
Rc1 by the definition of R1. For any D ∈ S([r + 1]), if
there exists j∗ ∈ Rc1 such that (j

∗, l) ∈ D for any l ∈ [k∗
j ],

then

m0k0∑
s=1

1{∑
(j,l)∈D cjl,s>0

} ≥ max
(j,l)∈D

mj > r + 1

= max
D∈S([r+1])

∑
(j,l)∈D

1
kj
,

which is a trivial one. As a result, inequality (23) holds
for any D ∈ S([r + 1]) iff inequality (23) holds for any
D ∈ S(R1). Since

max
D∈S(Ri)

∑
(j,l)∈D

1
kj

= card(Ri),

it can be recursively shown that inequality (23) holds
for any D ∈ S([r + 1]) iff inequality (23) holds for any
D ∈ S(Ri) and i ∈ [p], where p is the smallest positive
integer i such that Ri − Ri+1 = ∅. Proved. �

By using the technique of extracting kernel lev-
els, we dramatically narrow down the checking region
for posterior propriety; Since we should only check
the inequalities for the levels within Rker, substan-
tially reducing the number of inequalities to be
checked from 2

∑
j∈[r+1] kj − 1 to 2

∑
j∈Rker kj − 1. More-

over, Corollary 3.1 also indicates two interesting con-
clusions depicted as follows:

(a) First, it reveals the mechanism how three roles,
number of levels, numbers of units in levels and
dimensions of levels, affect the posterior propri-
ety simultaneously. Roughly speaking, in the con-
text of GHNL, the more levels with fewer units
having lower dimensions, the less likely the pos-
terior is to be proper. For example, if mr−2 =
mr−1 = mr = 2 and kr−2 = kr−1 = kr = 1, for
D = {

(j, l) | j = r − 2, r − 1, r, l = 1
}
, we have

2 =
m0k0∑
s=1

1{∑
(j,l)∈D cjl,s>0

} <
∑

(j,l)∈D

1
kj

= 3, (29)

therefore, the posterior propriety can hardly be
guaranteed by Theorem 3.1. Conversely, if the
units in each level are adequate enough such that
the set of kernel levels is empty, i.e., Rker = ∅, then
the posterior is always proper. As a consequence,
more attention should be focused on the levels with
small number of units, namely, the kernel levels.
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(b) Second, the recommended prior for use at any level
in hierarchical modelling is further justified from
the aspect of posterior propriety and ease of imple-
mentation. For instance, if we switch the prior on
V j, j ∈ [r] from (13) to

π(V j) ∝ 1
|V j|1−a ∏

1≤s<t≤kj
(
ωjs − ωjt

) ,
V j > 0, j ∈ [r], (30)

where 0 < a ≤ 1 (a has to be larger than zero by
Lemma (3.2)). Then the condition in Theorem 3.1
becomes

m0k0∑
s=1

1{∑
(j,l)∈D cjl,s>0

} > 2a ∗ card(D),

D ∈ S([r + 1]). (31)

On one hand, when a is greater than but close
to zero (denoted by a � 0), all the inequalities
in (31) always hold. Thus, the posterior will be
always proper. However, it is impractical to decide
how small is small for a and find such a fixed
value that fits all levels; On the other hand, when
a � 1, which denotes that a is less than and close
to 1, then 2a ∗ card(D) >

∑
(j,l)∈D

1
kj , concluding

that inequality (31) is harder to get reached than
inequality (23), especially for large dimensions kj’s.
Therefore, the posterior using prior (30) is rather
unlikely to be proper than using prior (13). Similar
to Corollary 3.1, we can recursively define that

R∗
1 = {

j |mj ≤ 2a ∗ card (E0) , j ∈ [r + 1]
}
;

R∗
2 = {

j |mj ≤ 2a ∗ card(E∗
1), j ∈ R∗

1
}
;

...

R∗
p∗ =

{
j |mj ≤ 2a ∗ card(E∗

p∗−1), j ∈ R∗
p∗−1

}
,

where E0 = H([r + 1]) and E∗
i = H(R∗

i ) for i ∈[
p∗] and p∗ is the smallest positive integer
l such that

{
j |mj > 2a ∗ card(E∗

l ), j ∈ R∗
l
} = ∅.

Then the posterior using prior (30) instead is
proper if (31) holds for any D ∈ S

(
R∗
p∗
)
. When

a � 1, card
(
R∗
p∗
)
will be remarkably larger than

card(Rker) for large values of kj’s, imposing a dra-
matically heavier burden of checking inequalities
than that for prior (13). Above all, one sensible
choice for a is that let a be inversely proportional
to kj for level j, which takes both practical and
theoretical considerations into account.

The upper bound on
∑

(j,l)∈D
1
kj as card (Ri) for D ∈

S(Ri), leads to an effective way to extract kernel lev-
els as presented in Corollary 3.1, but this upper bound

is still too rough. Next, an elaborate upper bound on∑
(j,l)∈D

1
kj is demonstrated and a sufficient condition

of clean form for posterior propriety is derived then.

Theorem 3.2: Consider the GHNL model (4) with pri-
ors (12) and (13) on η and V i ∈ V , respectively. Denote
that m∗ = minj∈[r+1]mj = minj∈Rker mj, when d ≥ 2,
the posterior is always proper if

∑
j∈Rker

1
kj

< m∗. (32)

Proof: For D ∈ S([r + 1]), define that

L(D) =
m0k0∑
s=1

1{∑
(j,l)∈D cjl,s>0

}, and

R(D) = {
j | (j, l) ∈ D

}
. (33)

It follows fromCorollary 3.1 that we only need to prove

∑
(j,l)∈D

1
kj

< L(D), ∀D ∈ S (Rker) .

Also, for any D belonging to S (Rker), we have

∑
(j,l)∈D

1
kj

=
∑

j∈R(D)

1
kj

kj∑
l=1

1{(j,l)∈D}

≤
⎛
⎝ ∑

j∈R(D)

1
kj

⎞
⎠ max

j∈R(D)

kj∑
l=1

1{(j,l)∈D}. (34)

Distinct eigenvalues from the same level (≤ rth) never
occur in the same row of matrix M1. Mathematically,
cjl1,scjl2,s = 0, for 1 ≤ l1 < l2 ≤ kj, j ∈ [r], s ∈ [m0k0].
Thus, for any j ∈ [r],

kj∑
l=1

1{(j,l)∈D} ≤ 1
mj

L(D), (35)

which is also true for j = r+ 1 since kr+1 = 1. It is obvi-
ous that minj∈[r+1]mj = minj∈Rker mj by the definition
of Rker, and that is denoted by m∗. Combining (35)
with (34) yields

∑
(j,l)∈D

1
kj

≤
⎛
⎝ ∑

j∈R(D)

1
kj

⎞
⎠ L(D)

minj∈R(D) mj

≤ 1
m∗

⎛
⎝ ∑

j∈Rker

1
kj

⎞
⎠ L(D) < L(D). (36)

Proved. �

According to the proof procedure of Theorem 3.2,
it can be deduced that

∑
j∈[r+1]

1
kj < m∗ is also suffi-

cient for posterior propriety. Obviously, the condition



10 C. LIN ET AL.

in Theorem 3.2 is easier to be satisfied. Theorem 3.2
reveals that for fixed m∗, the posterior is more likely
to be proper for higher dimensions of the units in the
kernel levels. Theorem 3.2 also provides the researchers
with a powerful tool to check the posterior propriety
quickly.

Remark 3.1: Consider the model (4) with r = 1,
namely, a two-level hierarchical model. When d ≥ 2,
we have m∗ = min {d,m1} ≥ 2. Then the posterior
using the recommended prior is always proper for k1 ≥
2 referring to Theorem 3.2.

Example 3.2 (Continue with Example 2.1): Consider
the GHNL modelling of the mixed-effect ANOVA
as (10), which is a 3-level hierarchicalmodelwith r = 2,
m0 = s1s2s3, m1 = s1s2, m2 = s1, m3 = p, k0 = k1 =
k2 = p and k3 = 1. It is natural to assume that we have
at least two schools, each school has at least two classes
and each class has at least two students, namely, s1 ≥ 2,
s2 ≥ 2 and s3 ≥ 2. If (a) p>2 and s1 ≥ 2 or (b) p ≥ 2
and s1 > 2 holds, it can be readily derived that the set
of kernel levels is empty. Thus, the posterior is always
proper according to Corollary 3.1. When s1 = p = 2,
the set of kernel levels is R2 = {2, 3}, since 1

k2 + 1
k3 < 2,

then the posterior is proper by applyingTheorem3.2. In
conclusion, the posterior using the recommended prior
is always proper when p ≥ 2.

In Berger et al. (2020b)’s work, for a technical rea-
son, they assumed k = sp for 3-level hierarchical nor-
mal model (2) such that the design matrices for units
within level 2 and 3 are square matrices. They even-
tually reached a conclusion that the posterior employ-
ing the recommended prior in model (2) is always
proper for k = sp and p ≥ 2 (p is the dimension of
hypermean in model (2)). However, the assumption
that the design matrices for the units at high levels are
square matrices appears to be unnatural and hard to be
interpreted in practice. Nevertheless, we still general-
ize Berger et al. (2020b)’s result to the GHNL model in
the following so as to draw a consistent conclusion with
theirs.

Corollary 3.2: Consider the GHNL model (4) with pri-
ors (12) and (13) on η and V i ∈ V , respectively. Assume
that d ≥ 2 and kj = mj+1kj+1, j ∈ [r], then the posterior
is always proper.

Proof: Since mj ≥ 2, j ∈ [r + 1], then m∗ ≥ 2. It
remains to show that

∑
j∈Rker

1
kj < 2 by Theorem 3.2.

By utilizing the condition that kj = mj+1kj+1 for j ∈ [r]
and kr+1 = 1, we have kj = ∏r+1

s=j+1ms ≥ 2r+1−j for j ∈
[r]. Thus,∑
j∈Rker

1
kj

≤
∑

j∈[r+1]

1
kj

≤
∑

j∈[r+1]

1
2r+1−j = 2 − 1

2r
< 2,

which completes the proof. �

Above all, a general procedure for checking the pos-
terior propriety of the GHNLmodels (4) employing the
recommended prior for d ≥ 2 can be summarized as
follows:

Guidance for checking the posterior propriety
when d ≥ 2:

(a) If the design matrices for each unit in each level
are square matrices, then the posterior is proper,
otherwise, turn to (b);

(b) Derive the set of kernel levels, Rker, if Rker = ∅ or
inequality (32) holds, the the posterior is proper, if
neither, turn to (c);

(c) Check inequality (23) for all D belonging to
S (Rker), if that always holds, the the posterior is
proper, if not, the posterior propriety can hardly be
guaranteed.

3.3. Conditions for the posterior to be proper
when d = 1

It is quite common that the dimension of the fixed effect
η is only one in practice. However, when d = 1, note
that

1 = mr+1 =
m0k0∑
s=1

1{∑
(j,l)∈D cjl,s>0

}

=
∑

(j,l)∈D

1
kj

= 1
kr+1

= 1

for D = {(r + 1, 1)}, resulting in the failure of the suf-
ficient condition in Theorem 3.1. Therefore, in this
subsection, we mainly reinvestigate the conditions for
the the posterior to be proper for d = 1.

Theorem 3.3: Consider the GHNL model (4) with con-
stant prior on η and prior (13) on V j ∈ V . When d = 1,
the posterior is proper if

m0k0∑
s=1

1{∑
(j,l)∈D cjl,s>0

} > 1{∃j∈[r], (j,1)∈D} +
∑

(j,l)∈D

1
kj
(37)

holds for all D ∈ S([r]).

Proof: When d = 1, vector η will degenerate into a
scalar η, hence the prior (12) on η becomes a constant
prior on η. Based on (5), by integrating out over η, we
can get the upper bound on the integrated likelihood of
V after dropping the exponential term (less than one)

L(V) <
1

|�| 12 ∣∣X�
r �−1Xr

∣∣ 12 .
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Since
∣∣X�

r �−1Xr
∣∣ ≥ X�

r Xrλmin
(
�−1) = X�

r Xrλmax
(�)−1, using Lemma 3.1 (a) and (b), we have

L(V) < C0 |�|− 1
2

⎛
⎝1 +

r∑
j=1

ωj1

⎞
⎠

1
2

≤ C1

⎛
⎝1 +

r∑
j=1

ωj1

⎞
⎠

1
2

|M2|− 1
2 ,

where C0 and C1 are constants that are independent of
the 
j for j ∈ [r], M2 = Im0k0 + ∑r

j=1Dj and the Dj’s
are defined in (26). Similar to the proof of Theorem 3.1,
we can derive the upper bound onm(y) as

m(y) ≤
∫ C1

(
1 + ∑r

j=1 ωj1

) 1
2

|M2|1/2
∏r

j=1
∣∣
j

∣∣1− 1
2kj

r∏
j=1

d
j � I1

It follows from the definition of cjl,s in (19) that

|M2| =
m0k0∏
s=1

⎛
⎝1 +

r∑
j=1

kj∑
l=1

cjl,sωjl

⎞
⎠ .

Thus,

I0 �
∫ (

1 + ∑r
j=1 ωj1

) 1
2 ∏r

j=1 d
j∏r
j=1

∣∣
j
∣∣1− 1

2kj
∏m0k0

s=1(
1 + ∑r

j=1
∑kj

l=1 cjl,sωjl

) 1
2

,

which is finite iff

∑
(j,l)∈D

(
1 − 1

2kj

)
+ 1

2

m0k0∑
s=1

1{∑
(j,l)∈D cjl,s>0

}

− 1
2
1{∃j∈[r], (j,1)∈D} > card(D) (38)

for any D ∈ S([r]) by employing Lemma 3.2. It’s obvi-
ous that the inequality (38) is equivalent to that in (37).
Proved. �

Resembling the interpretation of Theorem 3.1, the
left-hand side of inequality (37) actually denotes the
cardinality of set

{
s | ∃ (j, l) ∈ D, suchthat cjl,s > 0

}
for

any D ∈ S([r]). To reduce the burden of checking
inequalities, we have the following Corollary.

Corollary 3.3: Recursively define that

R̃1 = {
j |mj ≤ r + 1, j ∈ [r]

}
;

R̃2 = {
j |mj ≤ card(R̃1) + 1, j ∈ R̃1

}
;

...

R̃q = {
j |mj ≤ card(R̃p−1) + 1, j ∈ R̃p−1

}
,

where q is the smallest positive integer i such that{
j |mj > card(R̃i) + 1, j ∈ R̃i

} = ∅. We call the levels
within R̃q as kernel levels and denote R̃q by R̃ker.The
inequality (37) holds for anyD ∈ S([r]) iff the inequality
(37) holds for any D ∈ S

(
R̃ker

)
. Consequently, if R̃ker =

∅, then the resulting posterior is always proper.

In the process of extracting kernel levels, the
thresholds of mj to split up levels are increased by
one in Corollary 3.3, when compared with that in
Corollary 3.1, and this is because the upper bound
on the right-hand side of inequality (37) is increased
by one than that of inequality (23). Except for this
point, the proof of Corollary 3.1 is same as that of
Corollary 3.3. For good measure, a simple tool to check
the posterior propriety is shown as follows, which is a
counterpart of Theorem 3.2 for d = 1.

Theorem 3.4: Consider the GHNL model (4) with con-
stant prior on η and prior (13) on V j ∈ V . When d = 1,
the posterior is always proper if∑

j∈R̃ker

1
kj

< m∗ − 1, (39)

where m∗ = minj∈[r]mj and R̃ker is the derived set of
kernel levels.

Proof: For anyD ∈ S([r]), defineL(D) andR(D) in the
same way as that in (33). According to Corollary (3.3),
it suffices to show that

L(D) >
∑

(j,l)∈D

1
kj

+ 1

for any D ∈ S
(
R̃ker

)
. Similar to (36), we have

∑
(j,l)∈D

1
kj

≤ 1
m∗

⎛
⎝ ∑

j∈R(D)

1
kj

⎞
⎠ L(D)

≤ 1
m∗

⎛
⎝ ∑

j∈R̃ker

1
kj

⎞
⎠ L(D) < L(D) − L(D)

m∗ ,

for any D ∈ S
(
R̃ker

)
. Since L(D) ≥ m∗ always holds,

then the proof is completed. �

Remark 3.2: In model (4), when r = 1 and d = 1,
suppose m1 ≥ 2 and k1 ≥ 2, the posterior using the
recommended prior is always proper by applying
Theorem 3.4.

Remark 3.3: If all kj’s are equal to one, the sufficient
condition in Theorem 3.3 can be simplified as

card(D) < max
j∈D

mj − 1,

where D ∈ F([r]). By employing the technique of
extracting kernel levels, Theorem 3.4 is equivalent to
Theorem 3.3, rather than a mere sufficient condition.
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Example 3.3 (Continue with Example 2.1): Consider
model (10) with assuming that s1 ≥ 2, s2 ≥ 2 and
s3 ≥ 2, if p = 1, we have k0 = k1 = k2 = k3 = m3 = 1.
When s1 > 2, we can easily derive the set of kernel lev-
els as empty set. Thus, the posterior is always proper by
Corollary 3.3. If s1 = 2, inequality (37) fails, the poste-
rior propriety can hardly be guaranteed. Consequently,
when p = 1, the posterior using the recommended
prior is always proper for s1 > 2.

Next, we generalize (Berger et al., 2020b)’s result to
the GHNL models for d = 1, assuming that the design
matrices Zjij ’s for units are square matrices.

Corollary 3.4: When d = 1, consider the same model
and prior as Theorem 3.3. Suppose mj ≥ 3 and kj =
mj+1kj+1, j ∈ [r], then the posterior is always proper.

Proof: It follows fromTheorem 3.4 that we should only
present ∑

j∈[r]

1
kj

< m∗ − 1.

According to the conditions that kj = mj+1kj+1, j ∈ [r]
andmr+1 = kr+1 = 1, we have kj = ∏r

s=j+1ms, j ∈ [r].
Thus,

∑
j∈[r]

1
kj

≤
∑
j∈[r]

1
3r−j = 3

2

(
1 − 1

3r

)
<

3
2

< 2 ≤ m∗ − 1

Proved. �

Summing up the theoretical results above, a general
procedure for checking the posterior propriety of the
GHNL models (4) employing the recommended prior
for d = 1 can be depicted as follows.

Guidance for checking the posterior propriety
when d = 1:

(a) If the design matrices for each unit in each level
are square matrices and mj ≥ 3, j ∈ [r], then the
posterior is proper, otherwise, turn to (b);

(b) Derive the set of kernel levels R̃ker, if R̃ker = ∅ or
inequality (39) holds, then the posterior is proper,
if neither, turn to (c);

(c) Check inequality (37) for all D belonging to
S
(
R̃ker

)
, if that always holds, then the posterior is

proper, if not, the posterior propriety can hardly be
guaranteed.

4. Computation

In this section, we consider the MCMC sampling from
the posterior arising from the model in Section 2. For
the GHNLmodel (4) with prior (14) and (13) on η and

V , respectively, the joint posterior of (�,V , η, λ) can be
written as

π
(
�,V , η, λ|y) ∝ f (y|θ1)

r−1∏
j=1

f (θ j|θ j+1,V j)f (θ r|η,Vr)

×
r∏

s=1
π(V s)π(η|λ)π(λ) (40)

Sampling (�,V , η, λ) from the posterior density (40)
can be handled by Gibbs sampling method. The main
difficulty of the computation is to sample the covariance
matrices V j’s efficiently.

4.1. Gibbs sampling for input effects

The full conditionals of the input effects (�, η) can be
derived from the joint posterior (40) and are illustrated
as follows.

(a) Conditioning on θ2 andV1, the posterior distribu-
tion of θ1 is

(θ1 | θ2,V1; y) ∼ Nm1k1

(
θ̃1, Ṽ1

)
, (41)

where

Ṽ1 =
(
Z�
0 �−1Z0 + Im1 ⊗ V−1

1

)−1
,

θ̃1 = Ṽ1

[
Z�
0 �−1y + (

Im1 ⊗ V−1
1

)
Z1θ2

]
;

(b) The full conditional posteriors of θ j, j = 2, . . . , r
have the forms:

(θ j | θ j−1, θ j+1,V j−1,V j) ∼ Nmjkj

(
θ̃ j, Ṽ j

)
, (42)

where

Ṽ j =
[
Z�
j−1

(
Imj−1 ⊗ V−1

j−1

)
Zj−1

+ Imj ⊗ V−1
j

]−1
,

θ̃ j = Ṽ j

[
Z�
j−1

(
Imj−1 ⊗ V−1

j−1

)
θ j−1

+
(
Imj ⊗ V−1

j

)
Zjθ j+1

]
,

and θ r+1 � η.
(c) By using (14), the full conditional of η can be

derived as

(η | θ r, λ,Vr) ∼ Nd
(
η̃, Ṽη

)
, (43)

where

Ṽη =
[
Z�
r
(
Imr ⊗ V−1

r
)
Zr + λ−1Id

]−1
,

η̃ = ṼηZ�
r
(
Imr ⊗ V−1

r
)
θ r.

Input effects θ j ∈ � and η can be readily sampled
from their conditionals during the Gibbs sampling pro-
cedure, as their full conditional posterior distributions
are all standard distributions.
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4.2. Gibbs sampling for variance components

The variance components which include V j’s and λ

can be updated from their full conditionals, and these
conditionals have densities as follows.

(a) Given η, the conditional posterior density of λ is

π(λ|η) ∝ λ− d+1
2 exp

{
−1 + ‖η‖2

2λ

}
, (44)

which is actually an inverse gamma distribution as
IG

(
d−1
2 , 1+‖η‖2

2

)
.

(b) For j ∈ [r], define that tj = mj
2 + 1 − 1

2kj , the
marginal posterior density of V j given (θ j, θ j+1) is

π
(
V j|θ j, θ j+1

) ∝ 1∣∣V j
∣∣tj ∏

1≤s<t≤kj
(
ωjs − ωjt

)
× etr

{
−1
2
V−1
j Hj

}
, (45)

where etr(A) denotes exp(tr(A)) for a square
matrix A, and

Hj � Hj(θ j, θ j+1)

=
mj∑
i=1

(θ ji − Zjiθ j+1)(θ ji − Zjiθ j+1)
�.

The updating of λ can be simply carried out by sam-
pling froman inverse gammadistribution. The full con-
ditional posteriors of V j, (45) are actually distributed
as a recently proposed class of prior distributions by
Berger et al. (2020a) for the covariance matrix, which
is called the shrinkage Inverse Wishart (SIW) distribu-
tions. The new class SIW(a,H) for a k × k covariance
matrixW has the density as

πSIW(W | a,H) ∝ etr
(− 1

2W
−1H

)
|W|a ∏i<j

(
νi − νj

) , (46)

where ν1 > ν2 > · · · > νk > 0 are the ordered eigen-
values of W, a is a real constant and H is a k × k
non-negative definite matrix. Thus, the V j are dis-
tributed as SIW

(
tj,Hj

)
, j ∈ [r]. To sample the covari-

ance matrices from the full conditional posteriors, the
previously suggested methods include the Metropolis-
Hastings algorithm (cf. Berger et al., 2005) and Hit-
and-run method (cf. Yang & Berger, 1994). The two
methods both generate full candidate matrices by uti-
lizing full-parameter proposal distributions, resulting
in that they only work for moderate dimensions of
the covariance matrices. To tackle this issue, Berger
et al. (2020a) proposed a powerful Gibbs method for
efficiently sampling the covariance matrices from their
conditional densities and this new method works for
higher dimensions k. The audience can refer to Berger
et al. (2020a) or Appendix 3 for details of this Gibbs

sampling method. According to the simulation results
of Berger et al. (2020a), the new Gibbs method outper-
forms the Metropolis-Hastings and Hit-and-run meth-
ods for moderate dimensions and work for k up to 100,
while the other two algorithms break down in much
lower dimensions.

In the framework of 2-level HNLM, Berger et al.
(2020b) compared the numerical performance, from
the mean square error (MSE) perspective, of a dozen
of objective hyperpriors, which are the product of
three objective hyperpriors for the hypermean and four
objective hyperpriors for the hypercovariance matrix.
Priors on the hypermean include constant prior, con-
jugate prior and the recommended prior (12). Priors
on the hypercovariance matrix include constant prior,
hierarchical Jefferys prior, hierarchical reference prior
and the recommended prior (13). Their simulation
results has shown that the recommended combina-
tion of hyperpriors dominates all the others in terms
of Bayes risk, and the constant prior on the hyperco-
variance performs the worst. However, neither of the
two remaining choices for hypercovariance is compu-
tationally easy. Considering the 4-level HNLM, Song
et al. (2020) performed numerical experiment to com-
pare the recommended prior with constant prior for
the hypercovariance matrices, and the other two pri-
ors were canceled due to intractable computation. Also,
Song et al. (2020)’s result presented the domination
of the recommended hyperpriors over other priors.
In conclusion, both Berger et al. (2020b) and Song
et al. (2020) have provided strong numerical evidence
of the superiority of the recommended hyperpriors for
use in GHNLM, since 2-level and 4-level HNLMs both
are specific GHNLM.

5. Discussions

We have proposed a generalized hierarchical normal
linearmodel applicable to the nested data with complex
structures. The GHNL model proves to be equivalent
to a LMMmodel, while the GHNL model is more nat-
ural for researchers to model nested data from scratch,
especially when incorporating covariates at high levels.
Like generalizations to the simple normal linear model,
the GHNL can be generalized to the hierarchical model
with generalized liner model in the first level, and thus
discrete observations can be handled. Besides, the first
level (or even higher levels) of the GHNLmodel can be
also extended to the setting of semiparametric regres-
sion models, such as, single index model and partially
linear model. The technique of modelling and inves-
tigation in this paper can be applied to the linear part
of the models mentioned above. The statistical analysis
could be complicated and such explorations are beyond
the scope of this paper, however.

Berger et al. (2020b) put an end to the endless
search for the appropriate hyperpriors in hierarchical
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modelling and investigated properties comprehensively
to justify the recommendation. Nonetheless, when it
came to the propriety of the resulting posterior, they
only suspected that that is true for use at any level for
a general hierarchical normal model, the conditions for
which was not given. To complete the story, we have
studied the conditions for the posterior to be proper
in more general situations than Berger et al. (2020b),
when employing the recommended prior for theGHNL
model. Theorems 3.1 and 3.3 demonstrate the main
result, and Corollaries 3.1 and 3.3 reduce the compu-
tational burdens by defining kernel sets for d ≥ 2 and
d = 1, respectively. In addition, Theorems 3.2 and 3.4
provide powerful tools of simple forms for checking
propriety of posterior for d ≥ 2 and d = 1, separately.
The user-friendly guidance for checking posterior pro-
priety is eventually supplied. Note that our results only
present sufficient conditions, necessary conditions have
never been discussed. The reason is because the deriva-
tion of the lower bound on the integrated likelihood
of hyperparameters is intractable. Moreover, it is not
worthwhile to investigate necessary conditions, as the
derived upper bounds are tight enough such that the
corresponding sufficient conditions are very modest,
according to the remarks and examples in Section 3. At
last, an efficient and powerful Gibbs sampling method
for sampling from the posterior is introduced, over-
coming the bottleneck of computation that the previ-
ously proposed sampling method only work for low
dimensions or moderate dimensions inefficiently. The
numerical evidence supporting the superiority of the
recommended prior for hierarchical models was pre-
sented in Berger et al. (2020b) and Song et al. (2020).

Though we have made much progress in the hier-
archical linear modelling, a major obstacle to applying
our results is that the variance component for the first
level is supposed to be known, which can hardly be sat-
isfied in practice. If we assume an unknown covariance
matrix �0 for the first level and specify prior (13) on
it, the exponential term within the likelihood can not
be dropped simply any longer when deriving the upper
bound, otherwise, the resulting integral will be always
infinite. The upper bound on the exponential termwith
respect to the eigenvalues of covariancematrices is very
tricky to be obtained, and the condition for the inte-
grability of the resulting integral remains to be further
studied. Thus, the GHNLmodelling with unknown�0
can be taken as a sequential study of this paper.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

Funding

The research was supported by the National Natural Science
Foundation of China [grant number 11671146].

References

Berger, J. (1980). A robust generalized Bayes estimator and
confidence region for a multivariate normal mean. Annals
of Statistics, 8(4), 716–761. https://doi.org/10.1214/aos/
1176345068

Berger, J., Strawderman, W., & Tang, D. (2005). Poste-
rior propriety and admissibility of hyperpriors in normal
hierarchical models. Annals of Statistics, 33(2), 606–646.
https://doi.org/10.1214/009053605000000075

Berger, J., Sun, D., & Song, C. (2020a). Bayesian analysis of
the covariance matrix of a multivariate normal distribu-
tion with a new class of priors. Annals of Statistics, 48(4),
2381–2403. https://doi.org/10.1214/19-AOS1891

Berger, J., Sun, D., & Song, C. (2020b). An objective
prior for hyperparameters in normal hierarchical mod-
els. Journal of Multivariate Analysis, 178(2020), 1–13.
https://doi.org/10.1016/j.jmva.2020.104606

Consonni, G., Fouskakis, D., Liseo, B., & Ntzoufras, I.
(2018). Prior distributions for objective Bayesian analysis.
BayesianAnalysis, 13(2), 627–679. https://doi.org/10.1214/
18-BA1103

Daniels, M. J., & Kass, R. E. (1999). Nonconjugate Bayesian
estimation of covariance matrices and its use in hierarchi-
cal models. Journal of the American Statistical Association.,
94(448), 1254–1263. https://doi.org/10.1080/01621459.19
99.10473878

Everson, P. J., &Morris, C. N. (2000). Inference for multivari-
ate normal hierarchical models. Journal of the Royal Statis-
tical Society: Series B, 62(2), 399–412. https://doi.org/10.11
11/rssb.2000.62.issue-2

Fourdrinier, D., Strawderman, W. E., & Wells, M. T. (1998).
On the construction of Bayes minimax estimators. Annals
of Statistics, 26(2), 660–671. https://doi.org/10.1214/aos/
1028144853

Gelman, A. (2006). Prior distributions for variance param-
eters in hierarchical models. Bayesian Analysis, 1(3),
515–534. https://doi.org/10.1214/06-BA117A

Goldstein, H. (2011). Multilevel statistical models (Vol. 922).
John Wiley & Sons.

Gustafson, P., Hossain, S., & Macnab, Y. C. (2006). Con-
servative prior distributions for variance parameters in
hierarchical models. Canadian Journal of Statistics, 34(3),
377–390. https://doi.org/10.1002/cjs.v34:3

Hobert, J. P., & Casella, G. (1996). The effect of improper pri-
ors onGibbs sampling in hierarchical linearmixedmodels.
Journal of the American Statistical Association, 91(436),
1461–1473. https://doi.org/10.1080/01621459.1996.1047
6714

Hoff, P. D. (2009b). Simulation of the matrix Bingham-
Von Mises-Fisher distribution, with applications to mul-
tivariate and relational data. Journal of Computational
and Graphical Statistics, 18(2), 438–456. https://doi.org/
10.1198/jcgs.2009.07177

Horn, R. A., & Johnson, C. R. (2012). Matrix analysis. Cam-
bridge university press.

Lindenberger, U., & Pötter, U. (1998). The complex nature of
unique and shared effects in hierarchical linear regression:
Implications for developmental psychology. Psychological
Methods, 3(2), 218–230. https://doi.org/10.1037/1082-989
X.3.2.218

Michalak, S. E., & Morris, C. N. (2016). Posterior propri-
ety for hierarchical models with log-Likelihoods that have
norm bounds. Bayesian Analysis, 11(2), 545–571. https://
doi.org/10.1214/15-BA962

Raudenbush, S., & Bryk, A. S. (1986). A hierarchical model
for studying school effects. Sociology of Education, 59(1),
1–17. https://doi.org/10.2307/2112482

https://doi.org/10.1214/aos/1176345068
https://doi.org/10.1214/009053605000000075
https://doi.org/10.1214/19-AOS1891
https://doi.org/10.1016/j.jmva.2020.104606
https://doi.org/10.1214/18-BA1103
https://doi.org/10.1080/01621459.1999.10473878
https://doi.org/10.1111/rssb.2000.62.issue-2
https://doi.org/10.1214/aos/1028144853
https://doi.org/10.1214/06-BA117A
https://doi.org/10.1002/cjs.v34:3
https://doi.org/10.1080/01621459.1996.10476714
https://doi.org/10.1198/jcgs.2009.07177
https://doi.org/10.1037/1082-989X.3.2.218
https://doi.org/10.1214/15-BA962
https://doi.org/10.2307/2112482


STATISTICAL THEORY AND RELATED FIELDS 15

Shimotsu, K. (2010). Exact local Whittle estimation of frac-
tional integration with unknown mean and time trend.
Econometric Theory, 26(2), 501–540. https://doi.org/
10.1017/S0266466609100075

Song, C., Sun, D., Fan, K., & Mu, R. (2020). Posterior propri-
ety of an objective prior in a 4-Level normal hierarchical
model. Mathematical Problems in Engineering, 2020.
https://doi.org/10.1155/2020/8236934

Speckman, P. L., & Sun, D. (2003). Fully Bayesian spline
smoothing and intrinsic autoregressive priors. Biometrika,
90(2), 289–302. https://doi.org/10.1093/biomet/90.2.289

Sun, D., Tsutakawa, R. K., & He, Z. (2001). Propri-
ety of posteriors with improper priors in hierarchi-
cal linear mixed models. Statistica Sinica, 11(1), 77–95.
http://www.jstor.org/stable/24306811

Xia, A., Ma, H., & Carlin, B. P. (2011). Bayesian hierarchi-
cal modeling for detecting safety signals in clinical trials.
Journal of Biopharmaceutical Statistics, 21(5), 1006–1029.
https://doi.org/10.1080/10543406.2010.520181

Yang, R., & Berger, J. (1994). Estimation of a covari-
ance matrix using the reference prior. Annals of Statis-
tics, 22(3), 1195–1211. https://doi.org/10.1214/aos/117632
5625

Appendices

Appendix 1. A special LMM

Consider a special LMM of the form:

y = Xβ + Z1u1 + · · · + Zrur + ε, (A1)

where y denotes the observations and is a n × 1 vector, β is
the vector of fixed effects and is a p × 1 vector. For i ∈ [r], the
ui’s are qi × 1 vectors and represent the vectors of random
effects, and ui’s are assumed to be independently distributed
as Nqi(0,W i), where the W i’s are qi × qi positive definite
matrices and unknown.X is an × pmatrix, theZi’s aren × qi
matrices, and X and Zi’s are known design matrices. ε is the
vector of random errors and distributed as Nn(0,�), � is a
n × n positive definite matrix and given.

It follows from Berger et al. (2020b) that we can assume
independent priors on (β ,W1, . . . ,Wr) as

π(β) ∝ 1
(1 + ‖β‖2)(p−1)/2 , β ∈ R

p,

π(W j) ∝ 1
|W j|1−1/(2qj) ∏

1≤s<t≤qj
(
νjs − νjt

) ,
W j > 0, j ∈ [r], (A2)

where νj1 > νj2 > · · · > νjqj > 0 are the ordered eigenvalues
of W j, j ∈ [r]. The prior on β has a hierarchical structure of
the form

(β|τ) ∼ Nd(0, τ Id) and [τ ] ∝ τ−1/2 exp
(

− 1
2τ

)
.

The posterior propriety results for the special LMM (A1) is
displayed as follows. Firstly, let τ � ν01 and q0 = 1. Denote
the index set of the variance scale or the eigenvalues of the
covariance matrices by F = {

(j, l) | j = 0, 1, . . . , r, l ∈ [qj]
}
,

and T = {D |D ⊆ F,D �= ∅} represents the set of the non-
empty subsets ofF. Define that cjl,s = 1{l=s} for j ∈ [r], l ∈ [qj]
and s ∈ [n].

Theorem A.1: Consider linear mixed effect model (A1) with
prior (A2) on (β ,W1, . . . ,Wr), assume p> 1, then the poste-
rior is proper if

n∑
s=1

1{
1{(0,1)∈D}1{s≤p}+

∑
j�=0,(j,l)∈D cjl,s>0

} >
∑

(j,l)∈D

1
qj

(A3)

holds for any D ∈ T .

The proof of TheoremA.1 is similar to that of Theorem3.1
and is omitted here.

Fact A.1: When p> 1, (A3) holds for any D ∈ T iff∑
j∈[r]

1
qj

< 1 and p > 1 +
∑
j∈[r]

min(p, qj)
qj

. (A4)

Proof: For any D ∈ T and (0, 1) /∈ D, (A3) is equivalent to
n∑

s=1
1{∑

(j,l)∈D cjl,s>0
} >

∑
(j,l)∈D

1
qj
. (A5)

It can be deduced that inequality (A5) holds for any D ∈ T
and (0, 1) /∈ D iff

L >
∑
j∈[r]

min(L, qj)
qj

, for L ∈ [n], (A6)

which is equivalent to
∑

j∈[r]
1
qj < 1 since qj ≥ 1 for j ∈ [r].

Inequality (A3) holds for any D ∈ T with (0, 1) ∈ D iff

L > 1 +
∑
j∈[r]

min(L, qj)
qj

, for L = p, . . . , n. (A7)

Under the condition that
∑

j∈[r]
1
qj < 1, (A7) is equivalent to

p > 1 +
∑
j∈[r]

min(p, qj)
qj

.

Proved. �

Corollary A.1: Consider model (A1) with prior (A2) on
parameters, the posterior is proper if one of the following con-
dition holds,

(a) p> 1+ r and
∑

j∈[r]
1
qj < 1;

(b) p> 1 and
∑

j∈[r]
1
qj < 1 − 1

p

Proof: Since∑
j∈[r]

min(p, qj)
qj

≤ r and
∑
j∈[r]

min(p, qj)
qj

≤ p
∑
j∈[r]

1
qj
,

(a) and (b) follows from Fact A.1 directly. �

Remark A.1: Consider model (A1) with r = 1, the poste-
rior using prior (A2) is prior if either (a) p ≥ 2, q1 ≥ 3 or
(b) p ≥ 3, q1 ≥ 2 holds. If p = 1, the posterior propriety can
hardly be satisfied, the reason of which is two-fold. First,
inequality (A3) fails forD = {(0, 1)}. Second, if we follow the
thread of deriving the condition in Theorem 3.3, a sufficient
condition can be derived as

n∑
s=1

1{∑
(j,l)∈D cjl,s>0

} > 1{∃j∈[r], (j,1)∈D} +
∑

(j,l)∈D

1
qj
, (A8)

for anyD ∈ T with (0, 1) /∈ D. However, inequality (A8) does
not hold for D = {

(j, 1)
}
, j ∈ [r].

https://doi.org/10.1017/S0266466609100075
https://doi.org/10.1155/2020/8236934
https://doi.org/10.1093/biomet/90.2.289
http://www.jstor.org/stable/24306811
https://doi.org/10.1080/10543406.2010.520181
https://doi.org/10.1214/aos/1176325625
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Appendix 2. Proof of lemmas in Section 3.1

Lemma A.1: min–max theorem, cf. Horn & Johnson, 2012:
For a n × n symmetric matrix A and a non-zero n × 1 vector
x, the Rayleigh quotient for A and x can be defined as

R(A, x) = 〈Ax, x〉
〈x, x〉 ,

where 〈·, ·〉 denotes the Euclidean inner product. Then

λk(A) = max
U

{
min
x

{R(A, x) | x ∈ U,

‖x‖ �= 0}
∣∣∣ dim(U) = k

}
, k ∈ [n] (A9)

where U denotes the linear subspace of Rn. Especially,

λmax(A) = max
x

{R(A, x) | ‖x‖ �= 0} and

λmin = min
x

(A) {R(A, x) | ‖x‖ �= 0} . (A10)

Lemma A.2: For n × n symmetric matrices Aj, j ∈ [r], we
have

(a) λmax

(∑r
j=1 Aj

)
≤ ∑r

j=1 λmax
(
Aj
)
;

(b) Suppose Aj ≥ 0, j ∈ [r], then

λk

⎛
⎝ r∑

j=1
Aj

⎞
⎠ ≥ 1

r

r∑
j=1

λk
(
Aj
)
, k ∈ [n].

Proof: For (a), given a n × 1 non-zero vector x, by (A10),

R

⎛
⎝ r∑

j=1
Aj, x

⎞
⎠ =

r∑
j=1

R(Aj, x) ≤
r∑

j=1
max
xj �=0

R(Aj, xj)

=
r∑

j=1
λmax

(
Aj
)

(A11)

the proof for (a) is completed by using (A10) again.
For (b), it suffices to prove that for any j ∈ [r]

λk

⎛
⎝ r∑

j=1
Aj

⎞
⎠ ≥ λk

(
Aj
)
, i ∈ [n]. (A12)

Since Al ≥ 0, l ∈ [r], for any j ∈ [r], x ∈ R
n and x �= 0,

R

( r∑
l=1

Al, x

)
=

r∑
l=1

R(Al, x) ≥ R(Aj, x)

Minimize the both sides of the inequality above over
{x | x ∈ U, x �= 0}first, then take themaximumover {U |U ⊆
R
n, dim(U) = k}, (A12) can be easily obtained by using

Lemma A.1. Proved �

A.1 Proof of Lemma 3.1

For (a), by Lemma A.2 (a), it suffices to prove that
λmax(XjAjX�

j ) ≤ C1λmax(Aj), j ∈ [r]. For any j ∈ [r], apply-
ing (A10), yields

0 < λmax(XjAjX�
j ) = R

(
XjAjX�

j , x
∗
)

= max
x �=0

R
(
XjAjX�

j , x
)
.

It is obvious that X�
j x

∗ �= 0, otherwise, it will result in

R
(
XjAjX�

j , x
∗
)

= 0, which contradicts. In addition, since

〈
X�
j x

∗,X�
j x

∗
〉
≤ λmax

(
X�
j Xj

)
〈x∗, x∗〉 ≤ C1 〈x∗, x∗〉, we

have

R
(
XjAjX�

j , x
∗
)

≤ C1R
(
Aj,X�

j x
∗
)

≤ C1 max
{
R
(
Aj, z

) ∣∣ z ∈ R
pj , z �= 0

}
= C1λmax(Aj).

Therefore, we have proved part (a).
For (b), we only need to prove that

λk(H) ≥ C2

r

r∑
j=1

ajk, k ∈ [n].

It follows from Lemma A.2 (b) that for any k ∈ [n]

λk(H) ≥ 1
r

r∑
j=1

λk(XjAjX�
j ).

Since rank(XjAjX�
j ) = rank(Aj), thenλk(XjAjX�

j ) = 0, pj <

k ≤ n. Thus, it remains to show that

λk(XjAjX�
j ) ≥ C2λk(Aj), j ∈ [r], k ∈ [pj]. (A13)

Firstly, for any j ∈ [r], we introduce a linear transformation
Lj : R

n �→ R
pj defined asLj(ν) = X�

j ν, ν ∈ R
n. The kernel

space ofLj are denoted by Ker(Lj) = {
ν ∈ R

n : Lj(ν) = 0
}
.

Since Xj is of full column rank pj ≤ n, then the dimen-
sion of the complementary space of Ker(Lj) is pj, i.e.,
dim

(
Ker(Lj)

⊥) = pj. Thus, the mapping Lj : Ker(Lj)
⊥ �→

R
pj is a one-to-one mapping. For any U ⊆ R

pj with
dim(U) = k, k ∈ [pj], define that

L∗
j (U) =

{
ν ∈ Ker(Lj)

⊥ : Lj(ν) = x, x ∈ U
}
.

It is obvious that L∗
j (U) ⊆ Ker(Lj)

⊥ and dim
(
L∗
j (U)

)
=

k. For any U ⊆ R
pj with dim(U) = k and any x ∈ U, there

exists one and only one ν ∈ L∗
j (U) such thatLj(ν) = x. Since

〈x, x〉 = ν�(X�
j Xj)ν ≥ C2 〈ν, ν〉, we have

R
(
XjAjX�

j , ν
)

≥ C2R
(
Aj, x

)
. (A14)

It refers to the Lemma A.1 that

λk(XjAjX�
j ) = max

V

{
min
v

{
R(XjAjX�

j , ν) | ν ∈ V , ‖ν‖ �= 0
}

∣∣∣V ⊆ Ker(Lj)
⊥, dim(V) = k

}
, (A15)

for k ∈ [pj]. Minimize the both sides of the inequality (A14)
over {x | x ∈ U, x �= 0} first, then take the maximum over{
U |U ⊆ R

pj , dim(U) = k
}
, (A13) can be easily obtained by

using Lemma A.1 and (A15). Proved.

A.2 Proof of Lemma 3.2

The Domain of the integral can be divided into

�0 = {λ | 0 ≤ λj ≤ 1, j ∈ [k]},
�D = {λ | λj > 1, j ∈ D and 0 ≤ λi ≤ 1, i ∈ [k]/D},
D ∈ F([k])

i.e., � =
(⋃

D∈F([k]) �D

)⋃
�0. Thus, the integral I is finite

iff the integrals over �0 and �D for each D ∈ F([k]) are
finite.
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Denote the integrand as F(λ), then∫
�0

F(λ) dλ �
∫

�0

1∏k
j=1 λ

aj
j
dλ,

which is finite iff condition (a) is satisfied.
To verify condition (b), we only need to justify the fol-

lowing statement. Also, we assume condition (a) is always
satisfied hereafter.

Fact A.2: For all D ∈ F([k]) with card(D) = L, 1 ≤ L ≤ k,
the integrals

∫
�D

F(λ) dλ are finite iff inequalities∑
j∈E

aj +
∑
i∈GE

bi > card(E) (A16)

hold for all E ∈ F([k]) with card(E) ≤ L and GE = {
i |E⋂

Ci �= ∅, i ∈ [n]}. Under the condition above,∫
�D(t)

GD(λ)

(∏
r∈D

dλr

)

� exp

⎧⎨
⎩− log t

⎛
⎝∑

j∈D
aj +

∑
i∈GD

bi − card(D)

⎞
⎠
⎫⎬
⎭ (A17)

always holds, where

�D(t) = {
λ | λj ≥ t, j ∈ D and 0 ≤ λi ≤ 1, i ∈ [k]/D

}
,

GD(λ) = 1[∏
j∈D λ

aj
j

][∏
i∈GD

(1 + ∑
r∈Ci

λr)bi
] .

The reason why formula (A17) is required is that it plays
a important role in verifying condition (A16).

Proof: We prove the result by the technique of mathemati-
cal induction. First, we assume that the statement in Fact A.2
is true for L = l, 1 ≤ l ≤ (k − 1). With this assumption, we
must show that the statement is true for its successor, L =
(l + 1). Write an arbitrary set D ∈ F([k]) with cardinal-
ity (l + 1) as

{
j1, . . . , jl+1

}
, where 1 ≤ j1 < · · · < jl+1 ≤ k.

Denote that D−ji = D/
[{ji}], i = 1, . . . , (l + 1).

Step 1:We first prove that
∫
�D

F(λ) dλ is finite iff inequal-
ities (A16) hold for L = (l + 1).

Region �D can be divided into


1 = {
λ|λj ≥ λj1 > 1, j ∈ D−j1 and

0 ≤ λi ≤ 1, i ∈ [k]/D}
...


l+1 = {
λ|λj ≥ λjl+1 > 1, j ∈ D−jl+1

and 0 ≤ λi ≤ 1, i ∈ [k]/D} .
Therefore, integral

∫
�D

F(λ) dλ is finite iff
∫

i

F(λ) dλ < ∞
for any i = 1, . . . , (l + 1). For i = 1, . . . , (l + 1), we have∫


i

F(λ) dλ �
∫


i

1∏
s�∈D λ

as
s

(
1
λji

)aji+
∑

r∈Hi br
GD−ji

(λ) dλ,

where Hi = {
r |Cr

⋂
Dji = ∅ and ji ∈ Cr , r ∈ [n]

}
, and it’s

easy to see that GD = GD−ji

⋃Hi and GD−ji

⋂Hi = ∅. Since
∫


i

GD−ji
(λ)

⎛
⎝ ∏

r∈D−ji

dλr

⎞
⎠

�
∫

�D−ji
(λji )

GD−ji
(λ)

⎛
⎝ ∏

r∈D−ji

dλr

⎞
⎠ , (A18)

∫
�D−ji

F(λ) dλ �
∫

�D−ji

1∏
s�∈D−ji

λ
as
s
GD−ji

(λ) dλ (A19)

and the RHS (Right-Hand Side) of (A19) and (A18) are finite
simultaneously under condition (a). Hence, The LHS (Left-
Hand Side) of (A18) is finite iff

∫
�D−ji

F(λ) dλ is finite.
Furthermore, by assumption and (A17), we have

∫

i

GD−ji
(λ)

⎛
⎝ ∏

r∈D−ji

dλr

⎞
⎠

� exp

⎧⎪⎨
⎪⎩− log λji

⎛
⎜⎝ ∑

j∈D−ji

aj +
∑

r∈GD−ji

br − l

⎞
⎟⎠
⎫⎪⎬
⎪⎭ .

Thus, under condition (a) and assumption, we have

∫

i

F(λ) dλ �
∫ ∞

1

(
1
λji

)∑
j∈D aj+

∑
r∈GD br−l

dλji ,

the RHS of which is finite iff
∑

j∈D aj +
∑

r∈GD
br > 1 + l =

card(D).
In conclusion,

∫
�D

F(λ) dλ is finite iff
∑

j∈D aj +
∑

r∈GD

br > card(D) and
∫
�D−ji

F(λ) dλ is finite for any i ∈ [l + 1].
Since D is arbitrary and card(D−ji) = l, we have accom-
plished the goal of Step 1.

Step 2:Next, we prove that formula (A17) holds forDwith
cardinality (l + 1).

Region �D(t) can be divided into

�
(1)
D (t) = {

λ|λj ≥ λj1 ≥ t, j ∈ D−j1 and

0 ≤ λi ≤ 1, i ∈ [k]/D}
...

�
(l+1)
D (t) = {

λ|λj ≥ λjl+1 ≥ t, j ∈ D−jl+1 and

0 ≤ λi ≤ 1, i ∈ [k]/D} .

Similar to the proof of Step 1, we can prove that for i =
1, . . . , (l + 1),

∫
�

(i)
D (t)

GD(λ)

(∏
r∈D

dλr

)

�
∫ ∞

t

(
1
λji

)∑
j∈D aj+

∑
r∈GD br−l

dλji

= exp

⎧⎨
⎩− log t

⎛
⎝∑

j∈D
aj +

∑
r∈GD

br − card(D)

⎞
⎠
⎫⎬
⎭ .

Therefore, we get Step 2 proved.
Step 3: We need to present that the statement is true for

L = 1 to complete the proof, on the basis of mathematical
induction.

Denote that D = {r}, r = 1, . . . , k, then

∫
�D

F(λ) dλ �
∫ ∞

1

(
1
λr

)ar+
∑

i∈GD bi
dλr ,
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which is finite iff
∑

j∈D aj +
∑

i∈GD
bi > 1 = card(D), under

which,∫
�D(t)

GD(λ)

(∏
i∈D

dλi

)

�
∫ ∞

t

(
1
λr

)ar+
∑

i∈GD bi
dλr

= exp

⎧⎨
⎩− log t

⎛
⎝∑

j∈D
aj +

∑
i∈GD

bi − card(D)

⎞
⎠
⎫⎬
⎭ ,

which accomplish the proof of Fact A.2. �

Appendix 3. Gibbs sampling from the SIW
distributions

As for the SIW distribution (46), we first consider the change
of variables fromW to� = diag {ν1, . . . , νk} and the orthog-
onal matrix O of corresponding eigenvectors, the Jacobian is∣∣∣∣ ∂ W

∂ (�,O)

∣∣∣∣ =
∏
i<j

(
νi − νj

)
. (A20)

According to (A20) andLemma4 inBerger et al. (2020a), (46)
can be transformed to

π(�,O) ∝ 1
|�|a etr

(
−1
2
�−1O′HO

)
. (A21)

Gibbs sampling of � We first sample � given (O,H) from

π(� |O,H) ∝ 1∏k
i=1 νai

etr
(

−1
2
�−1O′HO

)

=
k∏

i=1

1
νai

etr
(

− ci
νi

)
,

where ci is the ith diagonal element of O′HO/2, i ∈
[k]. Therefore, we can sample νi independently from
IG (a − 1, ci).

Gibbs sampling of O Given (�,H), the marginal density
of O has the form:

π(O | �,H) ∝ etr
(

−1
2
HO�−1O′

)
.

Let H = LUL�, where LL� = Ik and U = diag (u1, . . . , uk)
is the diagonal matrix of corresponding eigenvalues with

u1 ≥ · · · ≥ uk. Define G = L�O, since the invariant right
Haar measure is invariant to the orthonormal transforma-
tion, the conditional density of G is

π(G |�,H) ∝ etr
(

−1
2
UG�−1G′

)
. (A22)

The updating ofG from (A22) can be implemented by apply-
ing a Gibbs update to two randomly selected columns (cf.
Hoff, 2009b) or rows (cf. Berger et al., 2020a). The two
ways are essentially equivalentwhen rank(H) = k, but Berger
et al. (2020a)’s method is considerably faster if rank(H) < k.
Without any loss, assume that the two randomly selected
rows are the first and second rows. The updated value of G

can be written asGnew = diag
(
�, Ik−2

) ( Gold
12

Gold
−12

)
, whereGold

12

denotes the first two rows of the old value of G which is Gold,
Gold

−12 is the remaining k−2 rows of Gold and

� = Dε�0 =
(

ε1 0
0 ε2

)(
cosφ − sinφ

sinφ cosφ

)
,

φ ∈ (−π
2 ,

π
2 ] and εi = ±1 for i = 1, 2. Let U1 = diag(u1,

u2), the full conditional density of φ has the form:

π(φ |Gold,�,H) ∝ etr
{
−1
2
U1�0Gold

12 �−1
(
Gold
12

)�
��

0

}
Write

Gold
12 �−1

(
Gold
12

)� =
(
cos θ − sin θ

sin θ cos θ

)(
s1 0
0 s2

)

×
(

cos θ sin θ

− sin θ cos θ

)
where θ ∈ (−π

2 ,
π
2 ] and s1 > s2. Then the conditional density

of φ can be rewritten as

π(φ |Gold,�,H) ∝ exp
{−c0 cos2(φ + θ)

}
,

where c0 = 1
2 (s1 − s2)(u1 − u2) ≥ 0. Define α = cos2(φ +

θ), then the full conditional density of α has the form:

π(α |Gold,�,H) ∝ exp {−c0α} α− 1
2 (1 − α)−

1
2 ,

α ∈ [0, 1].

Simulating α ∈ [0, 1] can proceed with a rejection sampler by
setting the proposal distribution as Beta

( 1
2 ,

1
2
)
.
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