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Spatio-temporal models of infectious disease with
high rates of asymptomatic transmission

Aminur Rahman ∗†, Angela Peace‡, Ramesh Kesawan§, Souparno Ghosh§

Abstract

The surprisingly mercurial Covid-19 pandemic has highlighted the need to
not only accelerate research on infectious disease, but to also study them us-
ing novel techniques and perspectives. A major contributor to the difficulty
of containing the current pandemic is due to the highly asymptomatic na-
ture of the disease. In this investigation, we develop a modeling framework
to study the spatio-temporal evolution of diseases with high rates of asymp-
tomatic transmission, and we apply this framework to a hypothetical country
with mathematically tractable geography; namely, square counties uniformly
organized into a rectangle. We first derive a model for the temporal dynam-
ics of susceptible, infected, and recovered populations, which is applied at the
county level. Next we use likelihood-based parameter estimation to derive
temporally varying disease transmission parameters on the state-wide level.
While these two methods give us some spatial structure and show the effects
of behavioral and policy changes, they miss the evolution of hot zones that
have caused significant difficulties in resource allocation during the current
pandemic. It is evident that the distribution of cases will not be stagnantly
based on the population density, as with many other diseases, but will con-
tinuously evolve. We model this as a diffusive process where the diffusivity is
spatially varying based on the population distribution, and temporally vary-
ing based on the current number of simulated asymptomatic cases. With this
final addition coupled to the SIR model with temporally varying transmission
parameters, we capture the evolution of “hot zones” in our hypothetical setup.
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1 Introduction

Similar phenomena often appear across many different branches of Science. Infec-
tious disease spreads within a population through probabilistic interactions, and it
has been shown that encounters between organisms may be modeled as finite-speed
Brownian-like motion [1]. Spatially discrete interactions between patches of popu-
lations have also been modeled [2] using a Susceptible, Infected, Recovered (SIR)
model within a patch. However, in addition to local Brownian-like motion and in-
teractions between population groups, humans travel long distances, which has its
own transport dynamics as shown by Brockmann et al. [3]. Similar to Statistical
Mechanics [4], these interactions appear random at the scale of a few agents, but
average out at the scale of an entire population.

Throughout the Covid-19 pandemic there was an emphasis on modeling the av-
eraged spread of infections at either the federal or state levels. However, it is evident
that in the beginning of the pandemic resources needed to be distributed to the ar-
eas that were going to be hit the hardest as it went from one hot zone to the next.
This would have required fast fine-grained spatio-temporal predictions. However, for
current spatio-temporal models [2], the computational expense would impede fast
predictions. Using statistical techniques may mitigate much of the computational
expense while still providing fine-grained predictions. Using Brownian motion, for
example, we have temporal dynamics that provide an averaged picture of the trans-
port, and spatial distributions, which can be represented using a probability density
function. Taking the product provides spatio-temporal dynamics within the system
without having to keep track of each molecule. Similarly, for infectious disease we
have temporal dynamics that can be informed by an SIR-type model, and spatial
distributions, which naturally has a probability density function associated with it.

A major issue with SARS CoV2 is the high rates of asymptomatic transmission.
This is due to its unusually long latency period and the likelihood of an asymptomatic
case. If a disease is highly symptomatic, we expect the carrier would know that they
have the disease thereby voluntarily limiting contact with others, and they may also
be unwell enough to involuntarily reduce contact with others. On the other hand,
with highly asymptomatic diseases, even if someone intends to limit contact if they
were to ever get infected, they may not even know that they were infected. This
creates an environment conducive to spatio-temporal transport rather than isolated
community spread.

Any complex phenomenon is difficult to model, and the complications present
in the spread of SARS CoV2 make the Covid-19 pandemic particularly challenging
to model [5, 6]. This manuscript presents new modeling techniques inspired by the
study of Statistical Mechanics, and provides preliminary results as motivation for
the use of these techniques on infectious disease, especially those with high rates
of asymptomatic transmission. The remainder of the paper is organized as follows:
starting in Sec. 2 we derive the SIR-like model for the county-level temporal dy-
namics. Next in Sec. 3 we conduct a likelihood-based parameter estimation of the
transmission parameters from the model in Sec. 2. This reveals how the evolu-
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tion landscape can change with behavioral or policy decisions such as masking and
lockdowns. Finally, section 4 captures the evolution of “hot zones”. We model the
redistribution of the simulated asymptomatic cases from the SIR model in Sec. 2 as
a diffusive process that is dependent on the population distribution and current num-
ber of asymptomatic cases in each county. In Sec. 5 we conclude with a discussion
on the modeling framework and promising avenues for future work.

2 County-wise epidemic temporal dynamics

Let us first derive an SIR-type model of viral transmission of a highly asymptomatic
disease. Consider dividing the population into subpopulations of susceptible individ-
uals S, latently infected individuals who aren’t yet infectious L, infectious individuals
who are asympotimatic IA and symptomatic IS, and recovered individuals with tem-
porary immunity R. The base model has the following structure:

dS

dt
= −βASIA︸ ︷︷ ︸

asymptomatic

transmission

−βSSIS︸ ︷︷ ︸
symptomatic

transmission

+ ηR︸︷︷︸
immunity

loss

(1a)

dL

dt
= βASIA︸ ︷︷ ︸

asymptomatic

transmission

+ βSS
I
S︸ ︷︷ ︸

symptomatic

transmission

− εL︸︷︷︸
latent get

infectious

(1b)

dIA
dt

= ρεL︸︷︷︸
latent get

asym. infectious

− γAIA︸ ︷︷ ︸
recovery

− µAIA︸ ︷︷ ︸
disease induced

mortality

(1c)

dIS
dt

= (1− ρ)εL︸ ︷︷ ︸
latent get

sym. infectious

− γSIS︸︷︷︸
recovery

− µSIS︸︷︷︸
disease induced

mortality

(1d)

dR

dt
= γAIA + γSIS︸ ︷︷ ︸

recovery

− ηR︸︷︷︸
immunity loss

(1e)

where βA and βS are the asymptomatic and symptomatic transmission rates re-
spectively, ε−1 is the incubation period, ρ is the percentage of cases that are asymp-
tomatic, γA and γS are the asymptomatic and symptomatic recovery rates, µA and
µS are the disease induced mortality rates for asymptomatic and symptomatic cases,
and η is the waning rate of the temporary immunity gained from recovery.

While the disease discussed in this investigation is hypothetical, we will, whenever
possible, use features of the Covid-19 pandemic to inform parameters and modeling
strategies. The results however, are intended to be proof-of-concept demonstrations
of this hypothetical disease and not predictors of Covid-19 dynamics.

We often think of infectious disease parameters as stagnant – a property of the dis-
ease itself. However, the environment in which it spreads can have a significant effect
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on these parameters as we have noticed with the current pandemic. Consequently,
specifying time-varying parameters make the model more flexible and perhaps more
realistic. However, we do not have sufficiently resolved observational information that
would enable us to infer the evolution of the said parameters. Hence, we need to fix
some of these parameters and infer about the dynamics of the rest. In the current
study, we assume disease recovery rates (γs and γa) and percentage of asymptomatic
cases (ρ) are constants. As such, we specify γs = 1/25.2 and γa = 1/22.6 [7], and
ρ = 0.25 [7, 8]. The asymptomatic mortality parameter µA is set to zero, and the
symptomatic mortality paramter is set to µS = 0.005γS [9]. Further, we let the rate
leaving the latent class be ε = 1/5.8 [10]. Finally, the time-varying transmission
parameters βS and βA = ρβS/(1 − ρ) are estimated using the functional regression
technique described in Section 3.

Consider a fictional country, let us call it Ω, where all the counties are uniform
squares organized into a rectangular grid of 42 × 74 forming 48 contiguous states
running sequentially down the columns. We shall use data from usafacts.org [11]
for the population and initial conditions for each county. The county-wise and state-
wide population distribution of Ω is shown in Fig. 1(a) and (b), respectively. In the
heat maps the data for the states are taken in alphabetical order from left to right
with each county represented down the column. So the Ω state that uses data from
California will take up multiple columns, whereas the equivalent of Rhode Island
will only take up three rows of a column. As a more concrete example, we can see
California in deep red towards the left of the heat map, Fig. 1 (b), with its 58
counties and Texas towards the right with, in the words of Beto O’Rourke, “all 254
counties”.

(a) (b)

Figure 1: Population distribution of Ω. (a) County-wise populations. (b) State-wide
populations. The colormap, with color bars on the bottom, for the heat maps are on
a log-scale for improved visibility.

Using a representative value of βS = 0.02 we may simulate the SIR model for self-
contained counties; i.e., it is assumed that there there is no interaction between the
counties. Heat maps for the simulation of the number of symptomatically infected
individuals, IS, are produced by solving (1) through the standard MATLAB Runge-
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Kutta [12, 13] solver ode45. The heat maps are shown in Fig. 2(a - d) with the
initial condition in (a) calculated at the 100 day mark from the usafacts.org data
set [11]. Fig. 2(b - d) show the solutions to the SIR model (1) at day 110, 130,
and 300. The colormap for the heat maps are on a log-scale to highlight the large
differences in disease proliferation between counties, which is also what has been
observed for the current pandemic. The daily totals for the entirety of Ω is shown
in Fig. 2(e) where we observe an initial logistic-like growth eventually decaying to
a steady-state.

In addition to the predicted evolution of a disease, epidemiologists often estimate
a basic reproduction number, R0. With our SIR modeling setup, we can compute
the R0 using the “next generation matrix approach” of Diekmann and co-workers
[14]:

R0 =

(
βaρ

γa + µa

+
βs(1− ρ)

γs + µs

)
N (2)

where N is the normalized population of the region of interest. Once we estimate
the temporal evolution of the transmission parameters βS and βA in Sec. 3, we can
estimate the R0, and investigate how it too evolves over time.

3 State-wide likelihood-based parameter estima-

tion

With an SIR-type population model and accurately estimated parameters, we would
be able to describe the averaged effects of the virus on a community. Standard
SIR-type models, like System (1) can be spatially expanded using spatially discrete
patches each with coupled systems of ordinary differential equations (ODEs) [15].
However, if we use a full patch modeling approach the dimension of the system can
be extremely large as the number of patches is increased, and the populations are
further divided into subpopulation compartments within each patch. Additionally,
the size of parameter space will also increase as the model dimension increase leading
to computational instability, or even intractability.

Thus, to reduce computational complexity some disease specific epidemiological
characteristics could be used as auxiliary information. For instance, it is observed
that SARS-CoV2 symptomatically infects individuals with some probability that
is dependent on age, number of encounters with infected individuals, respiratory
health, population density, and proximity to an infection “hot zone”. We hypoth-
esize that this individual-level probability manifests itself as a spatial continuum
through a spatial stochastic process. Let Ψ(x, y) be the joint probability density
function (pdf) for a finite collection of random variables operating in space. Ap-
plying the pdf locally (near a “hot zone”) to an averaged symptomatically infected
population yields a spatial distribution of the most vulnerable individuals; that is,
u(x, y; t) = Ψ(x, y)Is(t). Observe that, for a given t, the formulation of u(x, y; t) is
reminiscent of intensity function driving a non-homogeneous spatial point process in

5
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(d)(c)

(b)(a)

(e)

Figure 2: Simulation of the SIR model (1) with initial condition (a) taken from the
100 day mark. (b) - (d) simulated heat maps at the 110, 130, and 300 day marks.
The colormap, with color bars on the bottom, for the heat maps are on a log-scale.
(e) Daily case totals for Ω showing logistic-like growth for the first few weeks, and
then a decline to a steady-state.
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the sense that
∫
(x,y)∈A u(x, y, t)dxdy = Is(t)[16]. In other words, at time t, the spa-

tial process Ψ(., .) redistributes Is(t) over a bounded spatial domain A. Of course,
these “hot zones” expand and/or move over time, and for long time dynamics of
a pandemic we may need to introduce non-separability of space and time in Ψ(.),
that is, u(x, y; t) = Ψt(x, y)Is(t) where Ψt(.) can be constructed using non-separable
space-time covariance matrices [17, 18]. However, even with the short time localized
distribution, we may presumably be able to quickly implement policies that miti-
gates an epidemic or prevents a pandemic and send resources to necessary locations
to save as many lives as possible.

Customarily, the transmission rate parameters βA, βS in (1a) are assumed to be
constant. However, in reality, they can change under external forcing (for example:
policy intervention). Hence, we propose to statistically estimate a temporal evolution
of βA and βS, explicitly taking into account a policy intervention event - the imple-
mentation of mask mandates in several US states. In estimating β, we only focus on
(1a) because the time series of susceptible population can be observed and therefore
an empirical model can be formulated1. However, fitting a statistical model with
the parameterization in (1a) is problematic because βA and βS are not identifiable
individually. Hence, we reparameterize the statistical model in the following way:

Let Sj(t) be the susceptible population of state j at day t. Since the observed
time series is at daily resolution, we define Yj(t) := Sj(t) − Sj(t − 1), t = 1, 2, .., T
as a discrete approximation of the LHS of (1a). We now model the time series Yj(t)
using the functional predictors S∗j (t− 1), that quantifies the latent population level
evolution of the susceptible individuals and a binary vector Zj,t that takes the value
1 (0) if mask mandate was (was not) in effect at time t in the jth state. Although
Z is time indexed, it difficult to envision it as a function. Hence given a time point,
we simply view Z.,t as fixed predictor available to us at that time point.

Observe that, for the jth state, we view Yj(t) as a random response function
dependent on two predictor functions and therefore can be statistically modeled using
the function-on-function regression techniques. Formally, we write the regression
model as follows,

Yj(t) = f0(t) + S∗j (t− 1)β(t) + Zj,tf1(t) + bj(t) + εj(t), (3)

where f0(t) is the population level functional intercept term, β(t) is the slope function
modeling the concurrent association between S∗(t − 1) and Y (t) and therefore can
be viewed as the composition of βA and βS in (1a), f1(t) quantifies the association
between mask mandate and Y (t) at the population, bj(t) is the state-specific random
fluctuations from the f0(t), and εj(t) are pure noise.

To ensure smoothness bj(t) is modeled as a zero mean Gaussian process with an
AR(1) covariance function, εj(t) are assumed to be independent N (0, σ2

ε) with bj(t)
and εi (t) are mutually independent across j. Furthermore, since model S∗j (t− 1)

1The trajectory of L in (1b) is guided by unobserved latent processes and therefore observational
models cannot be specified.
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in the RHS of (3) is a latent process, we propose the following process level specifi-
caiton of S∗ process Sj,obs(t) = µS (t) + bj,S (t) + εsj(t), with S∗j (.) = µS (.) + bj,SµS(.)
and εsj(.) is again a pure noise process. µS(.) the population-level mean of the S∗

process and bj,S(.) is the state-specific deviation from the population mean of the
S∗ process.The regression coefficient functions are modeled using cubic B-splines
with 30 interior knots. Thus, denoting χ(t) = {χ1(t), · · · , χ30(t)}′ as a sequence of
B-spline basis functions evaluated at t, then β(t) = χ(t)′θ with θ = (θ1, · · · , θ30)′ be-
ing the vector of coefficients. Similarly, state-specific intercept curves bi(t), are also
approximated using cubic B-spline basis functions as bj(t) =

∑30
k=1 ujkχk(t), where

ui = (ui1, · · · , ui30)′ are the coefficient vectors.
In order to estimate a policy-specific β curve, we can either introduce an interac-

tion term (Z × S∗) in the RHS of (3) or we can fit two separate models for Y series
separately, i.e

Y
(1)
j (t) = f

(1)
0 (t) + S

∗(1)
j (t− 1)β(1)(t) + b

(1)
j (t) + ε

(1)
j (t) (4)

Y
(2)
j (t) = f

(2)
0 (t) + S

∗(2)
j (t− 1)β(2)(t) + b

(2)
j (t) + ε

(2)
j (t) (5)

where Y
(1)
j (.) is the series associated with Z = 0 and Y

(1)
j (.) is the series associated

with Z = 1. Evidently, coefficient curves β(1)(t) and β(2)(t) will capture the differ-
ential impact of policy intervention. Since (3) can handle unequally sampled time
series [19], we have used, separately, models of Y series to extract the policy-specific
coefficient curves. The fitting procedure was carried out using the R package fcr. All
of the estimated β values can be found in the supplemental materials located in the
file Complete_result_beta.csv.

Recall, the β curves obtained using functional regression does not directly yield
βA and βS that we need to compute R0 in (2). Hence, a post-hoc estimate of
the curves associated with these two parameters are generated using the formula
β(t) = w × βA(t) + (1 − w) × βS(t) where w is dependent on the proportion of
asymptomatic cases in the population with a further constraint that population mean
of βA curve associated with the regime Z = 1 will be dominated by the population
mean of βA curve associated with the regime Z = 0 [20].

Now that we have obtained the time-evolving transmission parameters βA and βS
for each state, we have another way to analyze the spatio-temporal dynamics of the
disease. In Sec. 2 the redistribution function Ψ was unity as the dynamics within the
separate patches (counties) were the same. With the varying β’s we have some non-
trivial redistribution u(x, y, t) = Ψ(x, y, t)Is(t) that is implicitly dependent on βA
and βS. First let us run our SIR model (1) with the new beta’s on a state-wide level.
The state-wide heat maps for the number of symptomatically infected individuals,
IS, are shown in Fig. 3 with the initial condition in (a) calculated at the 100 day
mark from the usafacts.org data set [11]. Fig. 2(b - d) show the solutions to the
SIR model (1) with the varying β values at day 110, 130, and 300. The colormap
for the heat maps are on a log-scale to highlight the large differences in disease
proliferation between states, which is also what has been observed for the current
pandemic. In the heat maps the data for the states are taken in alphabetical order
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(d)(c)

(b)(a)

Figure 3: Simulation of the SIR model (1) with state-wise temporally evolving βA
and βS with initial condition (a) taken from the 100 day mark. (b) - (d) simulated
heat maps at the 110, 130, and 300 day marks. The colormap for the heat maps are
on a log-scale.
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from left to right with each county represented down the column. So the Ω state
that uses data from California will take up multiple columns whereas the equivalent
of Rhode Island will only take up three rows of a column.

While this is compelling, there is a lot of variance within individual states. Al-
though the β values are state-wide we can downscale to the county level. This down-
scaling can be done in many different ways by modifying the redistribution function
Ψ. For simplicity let us redistribute the state-wide results by taking the product with
the population distribution. This yields the county-wise number of symptomatically
infected individuals, IS, which is shown in Fig. 4. As before, the initial condition in
(a) is calculated at the 100 day mark from the usafacts.org data set [11]. Fig. 2(b
- d) show the solutions to the SIR model (1) with the varying β values at day 110,
130, and 300. The colormap, with color bars on the bottom, for the heat maps are on
a log-scale to highlight the large differences in disease proliferation between states,
which is also what has been observed for the current pandemic. Even with this very

(d)(c)

(b)(a)

Figure 4: Simulation of the SIR model (1) with state-wise temporally evolving βA
and βS with a county-wise downscaling through a simple product with the population
distribution. The initial condition (a) is taken from the 100 day mark. (b) - (d)
simulated heat maps at the 110, 130, and 300 day marks. The colormap, with color
bars on the bottom, for the heat maps are on a log-scale.

simple down-scaling we see a lot more structure in the heat maps. This intensity
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structure is precisely what could help policy makers dictate location-specific policy
and send resources where they are predicted to be needed the most.

As mentioned in Sec. 2, epidemiologists often estimate a basic reproduction
number, R0, to indicate the overall course of a disease, and it is often used to inform
policy decisions. Now, that we have the β values, we have the tools to calculate the
spatio-temporally evolving R0. We present a heat map of the R0 in Fig. 5. The
48 states of Ω are organized in alphabetical order from 1 to 48 (increasing ordinate
direction). The abscissa is marked from day 93 to day 560 corresponding to tick
marks 0 to 467. Finally, the colormap, with the color bar on the right, is on a linear
scale from 0 to 3. Notice that the basic reproduction number is similar to that of the
current pandemic even though the calculation was done for a hypothetical country.
We also observe that as the pandemic carries on, the R0 increases, but then there
is a sudden decrease. This would be due to policy changes in the various states of
Ω, which to compare with our real-world situation, is most likely due to increased
masking and locking down.

Figure 5: Heat map of the basic reproduction number, R0. The 48 states of Ω are
organized in alphabetical order from 1 to 48 (increasing ordinate direction). The
abscissa is marked from day 93 to day 560 corresponding to tick marks 0 to 467.
Finally, the colormap, with the color bar on the right, is on a linear scale from 0 to
3, which while calculated for a proof-of-concept toy model, is on par with that of the
R0 of Covid-19.
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4 Diffusion-driven redistribution between counties

In Sec. 2 we simulated spatio-temporal behavior in a purely dynamical manner
by considering the individual counties as uniform and non-interacting, then Sec. 3
considered non-uniformity in the form of temporally varying state-wide transmission
parameters, βA and βS. One major issue of the current pandemic was the speed at
which it spread across the world, effectively catching us by surprise. We hypothesize
that the speed of the spread was due to the significantly high rate of asymptomatic
transmission compared to other similar diseases, which indicates the importance
of considering interaction between locations. Indeed we observed Covid-19 quickly
spreading from one “hot zone” to another, however we only small indications of such
hot zones in the simulations of the previous two sections.

Suppose that highly asymptomatic diseases do not significantly reduce travel
between locations since individuals may not even know they are carriers. This is
conducive to close interactions with other individuals thereby transmitting the dis-
ease even without the presence of symptoms. Although there are many transport-
dynamics models such as that of Brockmann et al. [3], we notice that long distance
travel reduced significantly and even halted once Covid-19 accelerated. However, the
hot zones kept evolving, which indicates many short distance interactions spatially
propagating through the population, similar to Brownian-like motion. Therefore,
let us model the redistribution of asymptomatic individuals as a diffusive process,
which will then implicitly (through the SIR model (1)) redistribute symptomatic
individuals.

If we consider IA(t) in (1) as the “stationary” proliferation of asymptomatic
infections and Ψ(x, y, t = 0) as the standard population-wise distribution, then
u(x, y, t) = Ψ(x, y, t)IA(t) is the redistributed proliferation. Now we suppose the
redistribution is diffusion-driven; i.e., u(x, y, t) satisfies the diffusion equation

∂u

∂t
= ∇ · (D(x, y)∇u) ; u(x, y, 0) = Ψ(x, y, 0)IA(0), (6)

where D(x, y) is the diffusivity, which is proportional to the population, and the
proliferation is driven by the SIR model (1). We set the diffusivity to be proportional
to the population since the disease spreads faster in populations of higher densities;
i.e., we expect the disease from a particular hot zone to spread to nearby places, but
also eventually to far away places with a preference towards locations of high density.
Further, since we observed that Covid-19 started to spread from a particular hot zone
once enough individuals were infected, and therefore we use a piecewise diffusivity

D(x, y) =

{
P (x, y)/max(P ) if u(x, y) > u∗,

0 otherwise;

where P (x, y) is the count-wise population and u∗ is the threshold for diffusivity.
While we model the redistribution as one physical process, it need not be a

physical process at all, but rather a mathematical construct which implicitly houses
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the physical information of the system, in a possibly convoluted manner, such as
with Schrodinger’s equation.

Since we need to solve a partial differential equation (PDE) coupled to a system
of ordinary differential equations (ODEs) with spatio-temporally varying param-
eters calculated through a statistical model, while also potentially hamstrung by
geographic and data analytic considerations, the numerical methods could become
quite complex. In the interest of simplicity, we solve the SIR model (1) with ode45,
as done in Sec. 2, over a single day, and with single day temporal discretization we
solve the PDE (6) using the Forward in Time Centered in Space method (FTCS). We
acknowledge that there are convergence and accuracy considerations, and that the
numerics could be made far more sophisticated, and we leave that to a future study.
To guarantee convergence we take care to satisfy the Courant–Friedrichs–Lewy (CFL)
condition [21] by scaling the county-wise population by the population of the largest
county to produce the diffusivity D(x, y). Even with the heavily simplified numerics,
some of the simulations took several hours to run on an Early 2015 Macbook Pro.

We illustrate the numerical scheme in Fig. 6. We plot subsequent progression
of the scheme from (a, b) the 100 day mark to (e, f) the 102 day mark. The
left hand column (a, c, e) represent the stationary proliferation with the standard
distribution based on population, and the right hand column (b, d, f) are the post-
diffusion distributions. From (a) to (b) we observe the majority of the diffusion
coming from counties with a large number of cases. Once it diffuses, the disease
continues to proliferate ((b) to (c)). Then it diffuses more, then proliferates, and
the process continues. Of course, this is due to the discretization, and analytically
the proliferation and redistribution would happen at the same time in a coupled
manner.

Similar to those of the previous sections, we present the simulation the symp-
tomatic cases by solving (6) coupled with (1) using the β values of Sec. 3 in Fig.
7. The initial condition (a) is taken from the 100 day mark, and then (b) - (d)
are simulated at the 110, 120, 130 day marks. The colormap, with color bars on
the bottom, for the heat maps are on a log-scale to highlight the large differences
in disease proliferation between counties. It was necessary to shorten the prediction
window because of computational expenditure, which a more sophisticated numeri-
cal scheme, as acknowledged in the previous paragraph, would rectify. Despite these
limitations, we see the hot zones more clearly in the heat maps.

Although the asymptomatic cases were presented in Fig. 6, it is perhaps more
compelling to get the full picture of the evolution of asymptomatic cases, and hence
present the evolution in Fig. 8. Just like in Fig. 7 we solve the PDE redistribution
model (6) coupled with the SIR model (1) with state-wise temporally evolving βA
and βS. Once again, the initial condition is taken from the 100 day mark from the
usafacts.org data set [11]. The 110, 120, and 130 day marks are simulated in (b)
- (d). The colormap, with color bars on the bottom, for the heat maps are on a
log-scale to highlight the large differences in disease proliferation between counties,
which will make the hot zones clearer. Here we see a quite compelling illustration of
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Illustration of the numerical scheme to solve the PDE redistribution model
(6) coupled with the SIR model (1) using FTCS and Runge-Kutta. (a) - (f) Sub-
sequent progression of the scheme through three timesteps: (a, b) 100 day mark,
(c, d) 101 day mark, (e, f) 102 day mark. The heat maps in (a, c, e) are of the
stationary proliferation with the standard distribution based on population, and (b,
d, f) are post-diffusion distributions. Since there was no way to accurately track
asymptomatic cases, all of the heat maps are simulated. The colormap is linear for
the purposes of the demonstration.
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(d)(c)

(b)(a)

Figure 7: Simulation of the symptomatic cases by solving the PDE redistribution
model (6) coupled with the SIR model (1) with state-wise temporally evolving βA and
βS. The initial condition (a) is taken from the 100 day mark. (b) - (d) simulated
heat maps at the 110, 120, and 130 day marks. The colormap, with color bars on
the bottom, for the heat maps are on a log-scale.
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(d)(c)

(b)(a)

Figure 8: Simulation of asymptomatic cases by solving the PDE redistribution model
(6) coupled with the SIR model (1) with state-wise temporally evolving βA and βS.
(a) - (d) simulated heat maps at the 100, 110, 120, and 130 day marks. The
colormap, with color bars on the bottom, for the heat maps are on a log-scale.
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the hot zones, and even their evolution. Hypothetically, if there is a disease where
the symptomatic cases lag behind the asymptomatic cases, and we do not have an
accurate way of tracking asympotmatic cases, a model such as the one presented
here could indicate where resources may be necessary before a hot zone arises and
the healthcare system becomes overloaded.

It should be noted that in Fig. 8 the case numbers may seem unrealistic, but the
reader is reminded that this is simply a proof-of-concept toy model to demonstrate
that such a modelling framework can predict and hopefully help mitigate a disaster
when applied to a real-world situation.

5 Discussion and Future Work

Although infectious disease has been studied for centuries, and at an especially ac-
celerated rate in modern times, the current Covid-19 pandemic has revealed that
there is still a lot we do not know about infectious disease. In particular, the highly
asymptomatic nature of the disease caught the world by surprise. Our globalized
society creates an environment conducive to the swift spread of diseases over long
distances. The ability for the disease to cause an unbearable load on local medical
infrastructure, and then move unpredictably to another hot zone, created problems
of resource allocation. Even when the resources were available to release the pres-
sure on our infrastructure, they did not always get to where it was needed. It is
evident that more spatio-temporal models for infectious disease will be necessary in
the future.

In this investigation, we progress through three types of spatio-temporal models
for highly asymptomatic diseases. We first derive an SIR-like model (1) with fixed
parameter values in Sec. 2. The model is applied at the county-wise level where
all the counties are assumed to be uniform and non-interacting, which reveals some
spatial structure, but misses more subtle structure, such as hot zones. Then in Sec.
3 we derive the state-wide spatio-temporal evolution of the transmission parameters,
βA and βS, through likelihood based estimation. The variance in the transmission
shows the effect of behavioral and policy changes, such as masking and lockdowns.
This is particularly revealing in the evolution of the basic reproduction number, R0,
(2) in Fig. 5. Finally, in Sec. 4 we derive a complete (including interactions between
regions) spatio-temporal model by coupling a PDE governing redistribution (6) to
the SIR model (1) with the state-wide spatio-temporally varying transmission pa-
rameters. This is where we see hot zones appearing and evolving, which strengthens
the modeling framework as a proof-of-concept.

We foresee many more future projects arising from the modeling framework pre-
sented here. For example, notice that even at the state level population density is
the strongest indicator of disease proliferation, regardless of clearly beneficial policy
implementation such as masking. So does masking not work? There is an abundance
of articles that show masking is effective (e.g., [22, 23, 24]). One way to see this is by
comparing predicted results for no mitigation policies versus the location by location
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differences in the actual case counts due to the implemented mitigation techniques in
those areas. While, this was not included in the manuscript, it shows the importance
of spatio-temporal models for disease transmission, and as more data is produced and
more sophisticated models are derived, the possibility for such comparisons becomes
very promising.

Moreover, the numerical methods in Sec. 4 can be improved significantly. We pro-
pose a future study with rigorous numerical analysis on solving the coupled PDE-SIR
model. Most importantly, the SIR ODE system and the PDE should be discretized
together. Runge-Kutta can still be used to integrate the ODE and Crank-Nicolson
[25] can be used to integrate the PDE, which should be done in unison over one
timestep. Crank-Nicolson was avoided (in favor of FTCS) due to the 2-dimensional
nature of the problem. While the matrix equation can certainly be written down,
the pentadiagonal system would be impossible to solve in any practical sense even
for a highly optimized algorithm such as that of Strassen [26]. We would need to
employ an alternating-direction implicit method, similar to that of Peaceman and
Rachford Jr. [27], in order to avoid being hamstrung by the computational expense.
Even then, the computational complexity would be quite high, and we foresee the
need to parallelize several of the processes to run on a supercomputing cluster.

A major test for the modeling framework will be its performance when applied to
real-world geographical constraints. At any other time the data for such a problem
would not be available. The unique circumstances of the current pandemic provides
us with multiple years of epidemiological data. By carefully constructing numerical
methods for the highly non-uniform grid formed by the counties of the United States,
we would have direct comparisons between the simulations and the data. Section 4
also only considers the diffusion of asymptomatic cases, but there are other factors
that could affect the deviation of the distribution of cases from that of the standard
population-wise distribution. In future studies, we need not be beholden to a physical
process, but rather use the redistribution Ψ as a mathematical construct similar to
the way Schrodinger’s equation is used in Quantum Mechanics.

Finally, it is not unlikely that the ebb and flow of such a complex system is
chaotic, especially as the pandemic has carried on for so long and the virus has
mutated several times. As with the weather, due to errors in measurement (no matter
how small) we can only hope to reproduce the qualitative long term behavior rather
than precise long term predictions. However, we may be able to reliably forecast
a week or a month ahead, which is effective for weather-related preparations, and
it may be effective for infectious disease as well. Further, the manuscript does not
consider mutations or vaccination, but as we are currently observing, this pandemic is
uniquely complex due to the rate at which SARS CoV2 mutates, which occasionally
evades vaccination. We foresee the inclusion of mutations and vaccinations in future
studies as an important step in understanding the spatio-temporal evolution of a
highly contagious disease.
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