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Abstract. The aim of this article is to provide an introduction to picosecond laser ultrasonics, a 
means by which gigahertz-terahertz ultrasonic waves can be generated and detected by ultrashort 
light pulses. This method can be used to characterize materials with nanometre spatial resolution. 
With reference to key experiments, we first review the theoretical background for normal-
incidence optical detection in opaque single-layer isotropic thin films. The theory is extended to 
handle isotropic multilayer samples, and again compared to experiment. Then we review 
applications to anisotropic samples, including oblique-incidence optical probing, and treat the 
generation and detection of shear waves. Solids including metals and semiconductors are mainly 
discussed, although liquids are briefly mentioned. 
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1. Introduction 
 
Picosecond laser ultrasonics, or picosecond ultrasonics, is the study of materials using 
high frequency acoustic pulses generated and detected by ultrashort optical pulses 
typically < 1 ps in duration.[1-5] When such an optical pulse, known as a pump pulse, 
is incident on the surface of a solid, some optical energy is absorbed and converted to 
heat. In the simplest models one assumes that the process of conversion to heat is 
instantaneous and occurs within a depth approximately equal to the optical absorption 
depth. In reality nonequilibrium electron heating and relaxation processes will delay the 
heat generation, and diffusion processes will spatially blur the excitation region. The 
production of heat in a solid results in a lattice temperature rise, and this leads to a 
thermal stress that can propagate in three dimensions. We shall concentrate on the 
acoustic propagation normal to the surface, because it is in this direction in an isotropic 
solid that the frequency of the generated acoustic pulse is highest and the wavelength 
smallest. If the optical spot size (typically a few microns) is much larger than the optical 
absorption depth (~10-50 nm for example), the generated acoustic pulse can be 
accurately modelled as a superposition of longitudinal plane waves travelling normal to 
the surface. Acoustic frequencies are usually in the 10-1000 GHz range. Because of the 
correspondingly small acoustic wavelength, down to the nanometer range, picosecond 
laser ultrasonics is ideal for investigating thin films and nanostructures. 

Sub-surface structures or inhomogeneous regions under the surface, typically at nm 
to m depths, can reflect the acoustic pulse back to the surface. This is shown 
schematically in Fig. 1 for the example of an opaque thin film on a substrate. We can 
detect the return of the acoustic pulse to the surface by illuminating the sample with a 
second ultrashort light pulse, known as a probe pulse, focused to the same point on the 
sample. A set of measurements of the probe beam reflectivity or phase change is 
obtained by changing the time delay between the pump and probe pulses in an optical 
delay line, thus avoiding the need for an ultrafast photodetector. This is known as the 
optical pump and probe technique. Noise reduction is achieved by chopping the pump 
beam and using lock-in detection. We shall deal separately with the acoustic generation 
and detection processes without going into any details of the experimental apparatus. 

The purpose of this article is to provide a summary of the fundamentals of generation 
and detection of longitudinal acoustic pulses in picosecond laser ultrasonics. It should 
serve as an introduction to the subject for those interested in this field. After considering 
the theory of acoustic generation through the thermoelastic effect in an opaque isotropic 
solid in the absence of diffusion processes, we briefly review the effect of electron and 
thermal diffusion processes and other generation mechanisms on the generated acoustic 
pulses. We then present the theory of optical detection using a normally-incident probe 
beam, including the detection of both optical reflectivity and phase changes. Different 
contributions to the acoustic echoes are explained and elucidated using the example of 
thermoelastically generated acoustic pulses in the absence of diffusion processes. 
Finally, advances in oblique-incidence detection techniques and the generation of 
picosecond shear waves are briefly reviewed. 
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2. Basic theory of laser picosecond ultrasonics 
 
2.1 Theory of picosecond strain generation and propagation 
 
Thermal stress 
 
When an ultrashort optical pulse is absorbed at a free surface it produces a thermal 
stress. To calculate the strain pulse shape we first need to know the effect of thermal 
stress on the stress-strain relation.[6] We shall assume an infinitely wide illumination of 
a solid by an infinitely short optical pulse. This is a one-dimensional problem in which 
acoustic diffraction effects do not occur. We shall also at first neglect the effect of any 
electron or thermal diffusion processes. The thermal expansion tensor 𝛼  of a solid 
(expressed as a 33 matrix) is defined by 𝜂 = 𝛼 ∆𝑇, where 𝜂  is the strain tensor, 
here describing a mechanical equilibrium situation, and ∆𝑇is the position-dependent 
change in temperature compared to a reference temperature before the optical pulse 
arrival. For small displacements, the strain tensor is given by 𝜂 = 𝜕𝑢 /𝜕𝑥  +

𝜕𝑢 /𝜕𝑥 /2, where 𝑢  is the displacement vector and 𝑥  is the position vector. If a 
material undergoes an instantaneous change of temperature at time 𝑡 = 0, it will expand 
at a rate governed by the speed of sound. The relation between the stress tensor 𝜎  and 
strain 𝜂  in the presence of a thermal stress 𝜎 ′ is given by[7] 
 
 𝜎 = 𝑐 + 𝜎 ′,        (1) 
 
where 𝑐  is the elastic constant tensor, and the summation is understood to be over 
repeated subscripts. When the solid has expanded (at time 𝑡 = ∞ in the case of no 
thermal diffusion), 𝜎 = 0  and 𝜂 = 𝛼 ∆𝑇 . So, from Eq. (1), 𝜎 ′ = −𝑐 𝛼 ∆𝑇 ,  
where ∆𝑇 is a function of 𝑥, 𝑦, and 𝑧 in general. For isotropic solids, we define 
 
 𝜎 = 2𝜇𝜂 + 𝜆𝜂 𝛿 ,       (2) 
 
where 𝜆 and 𝜇 are elastic constants known as the Lamé constants, and 𝛿 = 1  when 

 
 
Fig. 1: Sequence of events in picosecond laser ultrasonics.  
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𝑖 = 𝑗 but 𝛿 = 0 otherwise. So  
 
 𝜎 ′ = − 2𝜇𝛼 + 𝜆𝛼 𝛿 𝛥𝑇. 
 
This can be seen by comparison with Eq. (2). Alternatively, Eq. (2) implies that 𝑐 =

2𝜇𝛿 𝛿 + 𝜆𝛿 𝛿 . However, for isotropic solids, 𝛼 = 𝛼𝛿 , where 𝛼  is the 
coefficient of linear thermal expansion. So  
 
 𝜎 ′ = −(2𝜇 + 3𝜆)𝛼𝛿 𝛥𝑇. 
 
Alternatively, in terms of the bulk modulus 𝐵, Poisson’s ratio 𝜈, and Young’s modulus 
𝑌, where the definitions 
 

𝐵 =
( )

 , 𝜈 =
( )

 , 𝑌 =
( )

( )
   

 
apply, we may write (2𝜇 + 3𝜆) = 3𝐵. Therefore, for isotropic solids, 
 
 𝜎 ′ = −3𝐵𝛼𝛿 𝛥𝑇. 
 
The generated thermal stress is hydrostatic and compressive for positive 𝛼 and 𝛥𝑇. 
 
 
Generation of longitudinal waves with picosecond optical pulses in isotropic materials 
 
We assume that 𝛥𝑇 = 𝛥𝑇(𝑧, 𝑡) is a function of depth 𝑧 and time 𝑡 only, where 𝑧 = 0 
corresponds to the flat sample surface and +z is directed into the material. 𝛥𝑇(𝑧, 𝑡) is 
assumed to be zero for 𝑡 < 0, and 𝛥𝑇 = 𝛥𝑇(𝑧) to be independent of time for 𝑡 > 0 (in 
the absence of thermal diffusion). Also, because of this one-dimensional model, the 
only non-zero tensor component of the strain is 𝜂 . For an isotropic solid, 
 
 𝜎 = (2𝜇 + 𝜆)𝜂 − 3𝐵𝛼𝛥𝑇(𝑧).      (3) 
 
Also, 𝜎 = 𝜎 = 𝜆𝜂 − 3𝐵𝛼𝛥𝑇(𝑧) . The components 𝜎  and 𝜎  are present to 
prevent lateral contraction (i.e., to make 𝜂 = 𝜂 = 0). Equation (3) can be rewritten 
as 
 

 𝜎 = 3 𝐵𝜂 − 3𝐵𝛼𝛥𝑇(𝑧) = 𝜌 𝑣 𝜂 − 3𝐵𝛼𝛥𝑇(𝑧),   (4) 

 
where 𝑣  is the longitudinal sound velocity and 𝜌  is the density. The elastic wave 
equation for zero body forces, expressed in terms of the 𝑧-directed displacement 𝑢 , 
where 𝜂 = 𝜕𝑢 /𝜕𝑧, is given by 
 

 = 𝜌  ,        (5) 

 
 𝑢 (𝑧, 𝑡) = ∫ 𝜂 (𝑧 , 𝑡)𝑑𝑧′.       (6) 
          

To solve the elastic wave equation we need to know the form of 𝛥𝑇(𝑧) . For 
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ultrashort pulse optical absorption at the surface of a homogeneous isotropic solid,  
 

 𝛥𝑇(𝑧) =
( )

𝑒
 

 for 𝑡 > 0, 𝛥𝑇(𝑧, 𝑡) = 0 for 𝑡 < 0, 

 
where 𝑅 is the optical intensity reflection coefficient, 𝑄 is the incident optical pulse 
energy, 𝐴 is the area over which the energy 𝑄 is distributed (assumed to be a uniform 
distribution), 𝐶 is the heat capacity per unit volume, and 𝜁  is the optical absorption 
depth of the pump light.  

For the boundary condition, there should be no stretching perpendicular to the 
surface at the surface itself, since there cannot be any restoring force there. Therefore, 
𝜎 = 0  at 𝑧 = 0 . From Eq. (4) this means that at any time 𝑡 > 0 , for 𝑧 = 0  the 
relation 𝜂 = 𝜂  should hold, where 
 

  𝜂 =
( )

 . 

 
For the initial conditions, 𝜂 = 0 , 𝜕𝜂 /𝜕𝑡 = 0 , and 𝑢 = 0  for all 𝑧  for 𝑡 < 0 . 
Using Eqs. (4)-(6), the wave equation for uz can be written as 
 

 = 𝑣 + 𝑒
 

 . 

 
The general solution is given by 
 

 𝑢 = 𝑓(𝑧 − 𝑣 𝑡) + 𝑔(𝑧 + 𝑣 𝑡) − 𝜁 𝜂 𝑒
 

 . 
 

In order to find 𝑓 and 𝑔, we extend the functions 𝑓 and 𝑔 to apply also to the 𝑧 <
0 region in such a way as to satisfy the boundary condition. This can be done by 
assuming that we have an even function for displacement at all times. This is equivalent 
to converting our problem into a more symmetrical form by the addition of an 
imaginary identical material in front of the surface. For 𝑧 > 0, 
 

 𝑢 = 𝑓(𝑧 − 𝑣 𝑡) + 𝑔(𝑧 + 𝑣 𝑡) − 𝜁 𝜂 𝑒
 

 , 
 
and, for 𝑧 < 0 (in front of the material surface), 
 

 𝑢 = 𝑓(|𝑧| − 𝑣 𝑡) + 𝑔(|𝑧| + 𝑣 𝑡) − 𝜁 𝜂 𝑒
 

| |

 

   = 𝑓(−𝑧 − 𝑣 𝑡) + 𝑔(−𝑧 + 𝑣 𝑡) − 𝜁 𝜂 𝑒
 

 . 
 
To be consistent (i.e., to have a single solution for all positive and negative 𝑧) the 
functions representing propagation in the same direction should be chosen to be 
identical. (Because the waves travelling in the same direction join up smoothly at 𝑧 = 0 
as there is no longer an interface there in this new problem). So 𝑓(𝑧 − 𝑣 𝑡) =
𝑔(−𝑧 + 𝑣 𝑡)  and 𝑔(𝑧 + 𝑣 𝑡) = 𝑓(−𝑧 − 𝑣 𝑡)  for all 𝑧  and 𝑡  from the above two 
equations. Therefore 
 

 𝑢 = 𝑓(𝑧 − 𝑣 𝑡) + 𝑓(−𝑧 − 𝑣 𝑡) − 𝜁 𝜂 𝑒
 

| |

 (valid for 𝑧 > 0 or 𝑧 < 0), 
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and   
 

 = 𝑓 (𝑧 − 𝑣 𝑡) − 𝑓 (−𝑧 − 𝑣 𝑡) + 𝜂 𝑒
 

| |

 sgn(𝑧) ,  

 
where sgn(𝑧) = 1 for 𝑧 > 0, −1 for 𝑧 < 0, 0 for 𝑧 = 0. 

Now we can use the initial condition 𝜕𝑢 𝜕𝑧⁄ | = 0: from the above equation, 

𝑓 (𝑧) − 𝑓 (−𝑧) = −𝜂 𝑒
 

| |

 sgn(𝑧). In general the equation 𝐹(𝑧) − 𝐹(−𝑧) = 𝐺(𝑧),  
where 𝐺(𝑧)  is an odd function, can be solved uniquely with 𝐹(𝑧) = −𝐹(−𝑧) =
𝐺(𝑧)/2 : 
 

 𝑓 (𝑧) = − 𝑒
 

| |

 sgn(𝑧) . 

 
With this choice of 𝑓 (𝑧)  the boundary condition, 𝜂 | = 𝜕𝑢 𝜕𝑧⁄ | = 𝜂 , is 
automatically satisfied. (It should be because we chose to extend the problem to both 
positive and negative values of 𝑧 in order to satisfy the boundary condition.) 
Combining equations we obtain, for all 𝑧: 
 

 𝜂 = 𝜂 𝑒
 

 sgn(𝑧) + 𝑒
 

sgn(−𝑧 − 𝑣 𝑡) − 𝑒
 

| |

 sgn(𝑧 −

𝑣 𝑡)  . 

 
Unlike the displacement 𝑢 , this is an odd function of 𝑧. We only require the solution 
for 𝑧 > 0 :[1, 8] 
 

 𝜂 = 𝜂 𝑒
 

− 𝑒
 

+ 𝑒
 

| |

 sgn(𝑧 − 𝑣 𝑡)  .   (7) 

 
The strain consists of a constant first term and a propagating second term. The reflection 
coefficient for the strain at the surface is −1 . Because of this, the propagating 
component is bipolar, as shown in Fig. 2 (a). It consists of two decaying exponentials of 
decay length 𝜁  stitched together with opposite signs. The time it takes for the strain to 
reach a significant strength is ~𝜁 /𝑣 , the sound propagation time across 𝜁 . After the 
propagating strain component has left the near-surface region, corresponding to a time  
≳ 5𝜁 /𝑣  [see Fig. 2 (a)], a constant and spatially exponentially decaying strain is 
evident near the surface owing to the thermal expansion there. 

The wavelength of this strain pulse is of the order of 2𝜋𝜁 . (The frequency of the 
maximum strain amplitude is 𝑓 = 𝑣 /(2𝜋𝜁 ), as explained below.) To find the stress 
𝜎  we substitute for 𝜂  in Eq. (4). For 𝑧 > 0,  
 

 𝜎 = − 𝑒
 

+ 𝑒
 

| |

 sgn(𝑧 − 𝑣 𝑡) . 

 
In contrast to the strain, there is no stress left near the surface of the solid after the stress 
pulse has had time to propagate away from the surface (i.e. a long way compared to 𝜁 ). 
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Otherwise the form of the stress and strain is identical. Just after the arrival of the 
optical pulse the longitudinal stress is.𝜎 (𝑧, 0) = −𝜌 𝑣 𝜂  exp (− z 𝜁⁄ ). If 𝛼 > 0 
and  ∆𝑇 > 0 this stress is compressive, and so is the leading edge of the strain pulse. 

If we take the origin of the spatial coordinates at the centre of the strain pulse when 
the strain is far from the sample surface, then the temporal Fourier transform of this 
propagating strain component is given by  
 

 ∫ 𝜂 (𝑧, 𝑡)𝑒 𝑑𝑡 = 𝜂
⁄

 , 

 
where 𝜔  is the acoustic angular frequency and 𝜏 = 𝜁 /𝑣  is the sound propagation 
time across the optical absorption depth 𝜁 . For 𝜁 = 10 nm and 𝑣 = 5 km s-1, as is 
typical for metals, the modulus of the frequency spectrum has a peak at 𝑓 =
𝑣 (2𝜋𝜁 )⁄ ~80 GHz, corresponding to an acoustic wavelength of about 60 nm. Figure 
2 (b) shows the calculated modulus of the ultrasonic frequency spectrum for chromium 
using blue light, in which case 𝑣 = 6.65  km s-1, 𝜁 = 13.5  nm and 𝑓 =
𝑣 (2𝜋𝜁 )⁄ ~80 GHz.[9]  
  The more general problem of thermoelastic strain generation at the surface of opaque 
anisotropic medium has been discussed in terms of temporal Fourier transforms and 
spatial Laplace transforms including the residue theorem.[10] 
 

 
 
Diffusion Process and Other Strain Generation Mechanisms 
 
If diffusion processes are taken into account, the generated strain pulse is broadened for 
two reasons: (i) the generation process is spread out over time; (ii) the generation 
process is spread out over space. In metals one needs to take into account the effects of 
both thermal and electron diffusion.[1, 2, 5, 9-13] Figure 3 shows the effect of including 
diffusion processes in the calculation of the strain pulse shape for chromium when 
pumped with ultrashort light pulses at a central wavelength of 415 nm.[9] The result of 
including both diffusion processes is a broadened strain pulse with a peak in the 

 
 
Fig. 2: (a) Plot of the longitudinal strain 𝜂 (𝑧) in an isotropic solid of optical 
absorption length 𝜁  and longitudinal sound velocity 𝑣  at different times after the 
arrival at 𝑡 = 0 of an ultrashort optical pulse at the surface (for 𝜂 > 0). (b) Plot of 
the calculated normalized modulus of the frequency spectrum of an acoustic pulse 
excited in chromium by an ultrashort blue light pulse of wavelength 415 nm with 
𝜁 = 13.5 nm. The effects of diffusion are ignored in the calculation. 
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frequency spectrum reduced to 50 GHz. 
In semiconductors one needs to take into account both thermal and carrier 

diffusion.[1, 14-16]. Moreover, the strain produced in semiconductors by excitation 
with an ultrashort light pulse depends strongly on the carrier density as well as on the 
temperature change. In this case, Eq. (4) must be modified to include the electronic 
stress contribution arising from the excited carriers, because, in general, the carrier 
lifetime will not be negligible compared to the acoustic pulse durations involved:[1]  
 

 𝜎 = 𝜌 𝑣 𝜂 − 3𝐵𝛼𝛥𝑇(𝑧) + ∑ 𝐤 𝑁𝐤𝐤  

 
where 𝜕𝐸𝐤 𝜕𝜂⁄  is the deformation potential and 𝑁𝐤 is the carrier density for a carrier 
of energy 𝐸𝐤 and wave vector k. This extra term can be understood through arguments 
based on statistical mechanics, and it is often a good approximation to replace it by 
−𝐵𝑁𝜕𝐸 𝜕𝑝⁄ , where 𝐸  is the band gap and 𝑁  is the total excited carrier density. 
(This is analogous to the formula for the pressure 𝑝 = ∑ 𝑝 (−𝑑𝐸 /𝑑𝑉) according to 
the canonical distribution for a series of energy levels 𝐸 with occupation probability 𝑝  
for a system of volume 𝑉.) In the case of GaAs (100) excited at a wavelength of 375 
nm, for example, the strain generated by the electronic stress is 6 times larger than the 
strain generated by the thermoelastic stress, but of the same sign.[11] In experiments on 
Si (100) a dominant strain was generated by the electronic stress and was observed to 
have the opposite sign to the thermal expansion, as evidenced by a hollow appearing in 
the surface on irradiation with ultrashort light pulses of wavelength 630 nm.[17] 
 

 
In piezoelectric materials there is a strong contribution from the generation of time-

dependent electric fields. This contribution may completely dominate the generated 
strain and observed optical reflectance changes. [18-23] 
 
Acoustic generation in more complicated sample structures 
 
In multilayer or more complicated sample geometries, the optical absorption 
characteristics of the sample need to be worked out to calculate the generated strain.[8, 

 
 
Fig. 3: Plot of the calculated strain as a function of time for chromium when excited 
with ultrashort light pulses at 415 nm wavelength, showing the effect of diffusion 
processes. Green: no diffusion, blue: with thermal diffusion only, red: including both 
thermal and electron diffusion.  
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24] As with single-layer samples this will in general depend on the wavelength, angle of 
incidence, state of polarization and pulse duration of the optical beam. In addition, any 
diffusion effects need to be taken into account to determine the time dependent strain 
distribution. If the symmetry of the strain generation is broken by crystal anisotropy or 
by complicated three-dimensional sample geometries, it may be necessary to solve the 
relevant equations by numerical methods and to consider the excitation of both 
longitudinal and shear acoustic waves.[21, 25]  

The sample may also contain elements that are transparent. One particular example is 
a sample consisting of a thin transparent film on an opaque substrate. Another very 
similar example is a thick opaque metal film on a transparent substrate with the optical 
illumination from the transparent substrate side. Instead of the bipolar strain pulse shape 
one obtains a unipolar pulse shape in the transparent material. The strain pulse shape in 
the opaque material can be either unipolar or bipolar, depending on acoustic impedances 
(𝜌  𝑣  ) of the materials used.[26, 27] The growth of transparent thin films can be 
monitored by picosecond laser ultrasonics, as was shown for the case of ice films.[28] 

In semiconductor superlattices or heterostructures, or other partially transparent 
multilayers, optical transfer matrix methods can be used to determine the generated 
strain distribution, although this may rely on the assumption of effective optical 
constants in very thin layers and can also depend on the shape of the carrier 
wavefunctions.[16, 18-20, 22, 29-37] 
 
 
2.2 Basic theory of optical detection of picosecond strain pulses 
 
Absorption in isotropic solids 
 
Consider the case of optical incidence on a sample with an optical probe pulse. First 
consider a linear, homogeneous, isotropic and lossless medium, for which 𝐃 = 𝜀𝜀 𝐄, 
𝐁 = 𝜇0𝐇  and 𝐏 = 𝜀0𝜒 𝐄 = 𝜀0(𝜀 − 1)𝐄 , where 𝐏 , 𝐄  and 𝐃  are the polarization, 
electric field and electric displacement vectors, 𝐁 and 𝐇 are the magnetic flux density 
and the magnetic field strength vectors, and𝜀 = 1 + 𝜒 is the relative permittivity, 𝜀0 is 
the permittivity of free space, 𝜒 is the electric susceptibility, and 𝜇0 is the permeability 
of free space.  The Maxwell’s equations are 
 
 ∇𝐄 = 0, 
 ∇𝐇 = 0, 
 ∇ × 𝐄 = −𝜇0 ∂𝐇/ ∂𝑡, 
 ∇ × 𝐇 = 𝜀𝜀 ∂𝐄/ ∂𝑡. 
 
We find ∇2𝐄 = (1/𝑣2) ∂2𝐄/ ∂𝑡2, and similarly for 𝐇. All components of 𝐄 and 𝐇 
obey the same wave equation. Here the optical propagation velocity is 𝑣 =
1 (𝜀𝜀0𝜇0) /⁄ = 𝑐/𝑛, where 𝑛 = 𝜀 /  is the refractive index of the medium, and 𝑐 is 
the speed of light in vacuum. For sinusoidally varying fields that are monochromatic, 𝐄, 
𝐇 ∝ 𝑒 , where 𝜔  is the optical angular frequency. So, from the wave equation 
above,  
 
 𝛻 𝑈 + 𝑘 𝑈 = 0, 
 
where 𝑈  is any component of 𝐄  or 𝐇  and 𝑘 = 𝜔 𝑣⁄ = 𝜔𝑛 𝑐⁄ = 𝑘𝑛 , 𝑘  being the 
free-space wave number. The refractive index 𝑛 is in general a frequency dependent 
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quantity. 
We can include the absorption of electromagnetic waves if 𝜒 = 𝜒 + 𝑖𝜒′′:  

 
 𝑘 = 𝜔(𝜀𝜀 𝜇 ) / = 𝑘(1 + 𝜒) ⁄ = 𝑘(1 + 𝜒 + 𝑖𝜒′′) ⁄ = 𝑘𝑛, 
 
where 𝑛 = √𝜀 = 𝑛(𝜔) = 𝑛 + 𝑖𝜅 is the complex refractive index. For a plane wave, 
𝑈 ∝ 𝑒 ( ) = 𝑒 [ ( ) ] = 𝑒 ( )𝑒 . Energy absorption depends on 
𝑈 ∝ 𝑒 = 𝑒 / . So 𝜁 = 1/(2𝑘𝜅) = 𝜆/(4𝜋𝜅) , where 𝜁  is here the optical 
absorption depth for the probe light.  
 
Reflectance change for a wave reflected from a medium with a perturbed refractive 
index profile 
 
This section follows and extends the method described by Thomsen et al.[1] First 
consider the case of normal incidence of a plane-polarized, monochromatic 
electromagnetic wave on a plane surface of a lossy medium, as summarized in Fig. 4. 
The stipulation of a monochromatic beam is at odds with the use of an ultrashort light 
pulse, but it is generally a good assumption for the > 100 fs optical pulse durations 
typically used to ignore the slight spread (< 20 nm) in wavelength at visible or near-
visible wavelengths. We assume that E is polarized in the x direction, where z is the 
coordinate in the depth direction. The boundary conditions for 𝐄 and 𝐇 (i.e., parallel 
components continuous) and the Maxwell equation, 𝜕𝐻 𝜕𝑧⁄ = 𝑖𝜔𝜀𝜀 𝐸 , lead to the 
standard Fresnel equations shown in Fig. 4 for the reflectance 𝑟  and transmittance 𝑡  
at normal incidence. (These will be in fact derived later on in Section 3.) 

 
 

Now consider the case of a small, 𝑧-dependent variation in permittivity ∆𝜀(𝑧) ≪ 𝜀. 
In addition to arising from the presence of propagating and static strain, in general this 
modulation can be caused by the diffusion and relaxation of nonequilibrium electron 

 
 
Fig. 4: Diagram to show the electric fields for a plane linearly-polarized 
monochromatic electromagnetic wave normally incident on a linear lossy medium. 
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and hole distributions or by thermal diffusion. Here, however, we restrict our attention 
to perturbations involving (propagating) strain. The wave equation for normal optical 
incidence becomes 
 

 
( )

= −𝑘 [𝜀 + ∆𝜀(𝑧)]𝐸 (𝑧). 

 
Let us first solve this equation for the case of a spatial 𝛿 -function variation in 
permittivity: ∆𝜀(𝑧) = 𝐹𝛿(𝑧 − 𝑧 ). This corresponds to the strain pulse being at a depth 
𝑧  below the sample surface, as shown in Fig. 5. In the figure the electric field incident 
(inside the medium) on the strain pulse is defined so that 𝐸 = 𝐸  and 𝑡 𝐸( ) =
𝐸  𝑒    , allowing the boundary conditions at  𝑧 = 𝑧  to be applied with ease. 
 

 
 
 

Integrating the above equation, and using the notation 𝐸 = 𝐸, 
 
  

𝜕 𝐸

𝜕𝑧
𝑑𝑧 = −𝑘 𝜀 𝐸(𝑧)𝑑𝑧 − 𝑘 𝐹 𝛿(𝑧 − 𝑧 )𝐸(𝑧)𝑑𝑧, 

  
𝜕𝐸

𝜕𝑧
−

𝜕𝐸

𝜕𝑧
= −𝑘 𝜀 𝐸(𝑧)𝑑𝑧 − 𝑘 𝐹𝐸(𝑧 ), 

 
where 𝑧 + 0 and 𝑧 − 0 refer to distances just greater and less than 𝑧 . The first term 
on the right hand side tends to zero. For the larger 𝑧  side of 𝑧  (i.e., the + side), 
𝐸(𝑧′) = 𝐸2 ≈ 𝐸0 for the case of a small reflection coefficient 𝑟′ ≪ 1 from the strain 

 
 
Fig. 5: Diagram to show the electric fields for a plane linearly-polarized 
monochromatic electromagnetic wave normally incident on a linear lossy medium 
containing a strain pulse at position 𝑧 = 𝑧  with a relative permittivity perturbation 
𝐹𝛿(𝑧 − 𝑧 ). 
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pulse (valid if 𝐹 ≪ 1/𝑘, as shown below). Since 𝑟′ ≪ 1, we do not need to take into 
account the multiple optical reflections between the strain pulse and the sample surface. 
For the smaller 𝑧 side of 𝑧  (i.e., the − side), 𝐸(𝑧′) = 𝐸0 + 𝐸1 ≈ 𝐸0. Therefore 
 

 −
( )

= −𝐹𝑘 𝐸 ,  

 
where the quantities 𝐸 , 𝐸  and 𝐸  are defined in Fig. 5. This simplifies to 
 

𝑖𝑘 𝐸 − 𝑖𝑘1𝐸0 + 𝑖𝑘1𝐸1 = −𝑘2𝐹𝐸0. 
 
Let 𝐸 𝐸⁄ = 𝑟′  and 𝐸 𝐸⁄ = 𝑡′ . Therefore 1 − 𝑟 − 𝑡 = −𝑖𝐹𝑘 /𝑘 . Also, 𝐸  is 
continuous at 𝑧 = 𝑧 , so 𝐸 + 𝐸 = 𝐸  at 𝑧 = 𝑧 . This leads to the relations 
 
 1 + 𝑟 = 𝑡′, and 𝑟 = 𝑖𝐹𝑘 /(2𝑘 ). 
 
This is the amplitude reflection coefficient for the electric field from the perturbation 
∆𝜀 = 𝐹𝛿(𝑧 − 𝑧 ). If the optical absorption in the material is small (i.e. 𝜅 ≪ 𝑛), so that 
𝑘 ≈ 𝑛𝑘, this expression for 𝑟  simplifies to 𝑟 = 𝑖𝐹𝜋/(𝑛𝜆). Clearly short wavelengths 
are reflected better from the discontinuity than long wavelengths. The total reflected 
electric field from the surface of the material containing the perturbation ∆𝜀 is therefore 
given, in the case of general absorption, by 
 

  𝑟𝐸( ) = 𝑟 + 𝑒 𝐸( ),     (8) 

 
where the Fresnel equations determine the reflection and transmission coefficients: 
 

  𝑟 = =  , 𝑡 = =  , 𝑡 = =
( )

 . 

 
Knowing the response to a -function distribution in permittivity allows us to calculate 
the reflection coefficient, for a general distribution ∆𝜀(𝑧), from an integral of such 
contributions: 
 

 𝑟 = 𝑟 + 𝑡 𝑡 ∫ ∆𝜀(𝑧′) 𝑒 𝑑𝑧 = 𝑟 + 𝛿𝑟, 

 
where 𝛿𝑟 is the change in 𝑟. In an isotropic solid we can relate ∆𝜀 to the changes in 
the refractive index induced by the propagating strain as follows: 
 

 𝜀 = (𝑛 + 𝑖𝜅)  ⇒  ∆𝜀(𝑧, 𝑡) = ∆(𝑛) ≅ 2𝑛∆𝑛 = 2(𝑛 + 𝑖𝜅) + 𝑖 𝜂(𝑧, 𝑡), 

 
where have abbreviated 𝜂 = 𝜂 and the quantities 𝑑𝑛 𝑑𝜂⁄  and 𝑑𝜅 𝑑𝜂⁄  are 
photoelastic constants (that are in general wavelength dependent)[8,38]. At this point 
we have introduced a time dependence into the permittivity distribution (assumed here 
to vary slowly on the time scale of an optical period, a reasonable assumption since 
𝑣 ≪ 𝑐/𝑛, where 𝑐/𝑛 is the velocity of light in the solid). The equation for 𝑟 can be 
expressed as a relative change in reflectance 𝛿𝑟, where 𝛿𝑟 = 𝑟 − 𝑟 : 
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( )

= ∫ ∆𝜀(𝑧 , 𝑡)𝑒 𝑑𝑧 = ∫ ∆𝑛(𝑧 , 𝑡)𝑒 𝑑𝑧  

 = + 𝑖 ∫ 𝜂(𝑧 , 𝑡)𝑒 𝑑𝑧 ,    (9) 

 
The reflectivity change of the solid, a real quantity, is given by 
 
 𝛿𝑅 = 𝑅 − 𝑅 = |𝑟 + 𝛿𝑟| − |𝑟 | ≅ 2Re(𝑟 ∗𝛿𝑟), 
 
where the unperturbed reflectivity is denoted by 𝑅 = 𝑟 𝑟 ∗ = |𝑟 |  (* being the 
complex conjugate). This approximate relation holds provided that |𝛿𝑟| ≪ |𝑟 | . This 
is generally a good approximation in picosecond laser ultrasonics. In case of 
measurements on the chromium and nickel films probed at the wavelength 830 nm far 
from interband transitions [9], for example, the photoelastic constants 𝑑𝑛 𝑑𝜂⁄  and 
𝑑𝜅 𝑑𝜂⁄  as well as the optical constants 𝑛 and 𝜅 are less than or around ~5, and the 
amplitude of the strain is less than 10 . Thus |𝛿𝑟 𝑟 |⁄  is on the order of 10  in this 
case. 
  Incidentally, we can relate the relative change in reflectivity 𝛿𝑅/𝑅  to 𝛿𝑟 𝑟⁄  as 
follows: 
 

 = 2Re
∗

∗
= 2Re .       (10) 

 
Equation (9) can be simplified to the form 
 
 𝛿𝑅(𝑡) = ∫ 𝑓(𝑧) 𝜂(𝑧, 𝑡)𝑑𝑧,       (11) 
 
where  
 

 𝑓(𝑧) = 𝑓 sin − 𝜓 + cos − 𝜓 𝑒
 

 . 

 

Here, 𝑓 = 8
( )

/

[( ) ]
 and tan 𝜓 =

( )
 . 

 
Equation (11) for the reflectance agrees with that originally derived by Thomsen et 
al.[1]. Equation (9) is a compact form that retains the phase information.[8] The form of 
𝑓(𝑧), known as the sensitivity function, is an exponentially decaying sinusoid in space. 
This leads on integration to a temporally localized echo in 𝛿𝑅(𝑡).  
 
Temporal form of the echoes 
 
To understand what sort of echo shapes arise, consider a strain pulse returning to a free 
surface. The strain must have the following form: 
 

 𝜂(𝑧, 𝑡) = 𝜂 𝑡 + − 𝜂 𝑡 − , 

 
where 𝜂 (𝑡) is the temporal form of the incident strain pulse when far away from the 
surface. The minus sign in the second term arises because of the strain inversion on 
reflection at the free surface (see Fig. 2). At time 𝑡 = 0 the strain profile in the solid is 
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given by 𝜂(𝑧, 0) = 𝜂 − 𝜂 . The time 𝑡 = 0 corresponds to the moment the 

strain pulse arrives at the sample surface (at 𝑧 = 0). At this moment the leading part of 
the strain pulse has been reflected from the surface and has suffered a sign change. The 
trailing part of the strain pulse has yet to be reflected from the surface at this time. 

Now consider the example of a normalized version of the bipolar strain pulse we 
considered previously, generated thermoelastically. Let us characterize the temporal 
dependence of the strain pulse as that corresponding to a time well before it reaches the 
vacuum-solid interface: 
 

 𝜂 (𝑠) = sgn(𝑠)𝑒
 

| |

 .      (12) 
 

Figure 6 shows this strain pulse at times well before (𝑡 ≪ − ) and well after (𝑡 ≫

− ) its reflection at the free surface. By use of Eqs. (9) and (10) we can calculate the 

resulting relative reflectivity change. The result is 
 

 
( )

= Re
( )( )

 𝜅 𝑒
| |

+ 𝑖𝑛𝑒 | |𝑒
| |

 (13) 

 
where 𝜅 = 𝜅 𝜆/𝜆 , and the refractive index for the pump light of wavelength 𝜆  is 
given by 𝑛 + 𝑖𝜅 .  

The reflectivity change consists of the sum of two terms originating from the terms in 
the round brackets in Eq. (13). The first term, which we call the transient term, has in 
fact the same time dependence as the time-domain integral of 𝜂 (𝑡). This will be 
discussed later on. The second term, which we call the oscillating term, is a damped 
oscillation with frequency 𝑓 = 2𝑛𝑣 /𝜆 and decay time 𝜏 = 𝜁/𝑣 , quantities that are 
independent of the form of the strain pulse. The temporal variation is symmetric about 
𝑡 = 0, a consequence of the antisymmetric form chosen for 𝜂 (𝑡). An example of a 
typical reflectivity change is shown in Fig. 7, in which the two terms are also shown 
separately. The ratio of the transient and oscillating terms depends on the optical 
constants. Sometimes the oscillations are very heavily damped, as for example in the 
case of chromium when probing in the near infrared region.[9] 
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Fig. 7: A typical echo shape plotted as the relative change in reflectivity as a 
function of normalized time 𝑣 𝑡 𝜁⁄  for the bipolar strain pulse of Eq. (12) being 
reflected from the free surface of an isotropic solid. The total contribution is 
separated into an oscillating term and a transient term. In this simulation 𝑛 + 𝑖𝜅 =
1.5 + 0.2𝑖 , 𝑛 + 𝑖𝜅 = 2 + 𝑖 , 𝜆 = 830  nm, 𝜆 = 415  nm, 𝑑𝑛 𝑑𝜂⁄ + 𝑖𝑑𝜅 𝑑𝜂⁄ =
1 + 𝑖. The spatial decay constant 𝜁  of the strain pulse is 𝜅 𝜅⁄ = 5 times smaller 
than the penetration depth 𝜁 of the probe light. 

 
 
Fig. 6: Plot of a bipolar strain pulse before and after reflection from the free surface 
of an isotropic solid. The red regions represent compressive strain and the blue 
regions represent tensile strain. The strain is inverted on reflection. The penetration 
of the probe light is also shown. 
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The origin of the oscillating term can be understood by reference to Fig. 8. The light 

reflected from the moving strain pulse interferes with the light reflected from the 
surface of the solid, and this interference varies with time, producing beats. The period 
of oscillation is determined by the time corresponding to a 2𝜋 change in the phase 
difference Δ𝜓 = 2𝑘𝑛𝑧 + 𝜃  between these two light beams, where 𝜃  is a constant 
phase. The condition 2𝑘𝑛𝑧 = 2𝜋 yields 𝑓 = 2𝑛𝑣 /𝜆 when we set 𝑧 = 𝑣 𝑡. In fact this 
frequency is the same frequency that occurs in experiments involving the Brillouin 
scattering of light (from thermally excited phonons) at normal optical incidence for 
illumination and detection.[39] For example, when probing chromium with light at 
wavelength 830 nm for which 𝑛 = 3.3,  𝑓 = 54 GHz.[9]  
 

 
 

We can interpret the process on the quantum level as a photon being scattered by a 
phonon,[40] as shown in Fig. 8 for the case of a strain pulse moving away from the light 
beam. Applying energy and momentum (𝐤-vector) conservation to the photon [wave 
number 𝑘( )] scattering process in which a phonon (wave number 𝐾) is created, we 
obtain, respectively, 
 
 𝑐 𝑘( ) = 𝑐 𝑘( ) + 𝑣 |𝐾|, 
 𝑘( ) = 𝑘( ) + 𝐾 
 
where 𝑐 = 𝑐/𝑛 is the velocity of light in the solid, 𝑐 is the velocity of light in vacuum, 
and we have assumed a linear dispersion relation for both the phonons and photons 
(angular frequency 𝑐 𝑘( )  for photons and 𝑣 𝐾  for phonons). These are reasonable 
assumptions in general for the experimental conditions in picosecond laser ultrasonics. 

 
 
Fig. 8: Schematic diagram showing the origin of the oscillating component for time 
𝑡 > 0 . Because the strain pulse is moving, the interference between the light 
reflected from the surface and the light reflected from the strain pulse varies with 
time, leading to beats. The phase difference between the probe light reflected from 
the surface and from the strain pulse isΔ𝜓 = 2𝑘𝑛𝑧 + 𝜃, where 𝜃 is a constant phase 
that depends on the amplitude reflection coefficients of the probe light from the 
surface and from the strain pulse. The inset shows a schematic diagram of the photon 
and phonon dispersion relations with the transitions marked (that conserve energy 𝐸 
and wavenumber 𝑘) for the case of a retreating strain pulse. 
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These conservation relations can be satisfied when 𝑘( ) is oppositely directly to 𝑘( ). 
Simple algebra leads to 
 
 𝑘( ) = − 𝑘( )        (14) 

 
 𝐾 = 2𝑘( ) ≅ 2𝑘( )       (15) 

 
Equation (14) tells us that the optical angular frequency is slightly downshifted to 
𝜔 = 𝑐 𝑘( ) (𝑐 − 𝑣 ) (𝑐 + 𝑣 )⁄  on reflection from the strain pulse propagating away 
from the surface. This is none other than the Doppler shift of light reflected from a 
moving mirror, or Stokes Brillouin scattering. When this light is combined with the 
light reflected from the sample surface, and the reflectivity 𝑅 is calculated, the result is 
the modulation of 𝑅  at an angular beat frequency 𝜔 = 2𝜋𝑓 = 2𝑘𝑣 𝑐/(𝑐 + 𝑣 ) ≅
2𝑘𝑛𝑣 , equal to the difference of the two frequencies 𝜔 = 𝑐𝑘(𝑐 − 𝑣 ) (𝑐 + 𝑣 )⁄  and 
𝑐𝑘. (We obtain a measure of 𝛿𝑅(𝑡) at a photodetector in practice.) This angular beat 
frequency of course corresponds to the frequency 𝑓  that we derived above through a 
consideration of the phase difference Δ𝜓. Equation (8) also predicts this Doppler shift 
when we substitute 𝑧 = 𝑣 t. For the case of a strain pulse moving towards the incident 
light beam, similar equations to the above apply except that a phonon propagating 
towards the surface is annihilated and the optical frequency is upshifted. This 
corresponds to anti-Stokes Brillouin scattering. The condition of Eq. (15) can also be 
expressed as 𝜆 𝑛⁄ ≅ 2𝛬, where 𝛬 is the acoustic wavelength and 𝜆 𝑛⁄  is the optical 
wavelength in the solid. This condition corresponds to that for Bragg scattering (from 
an acoustic grating of period 𝛬). 

The term 𝑒 = 𝑒 = 𝑒 𝑒 /  in Eq. (9) also makes it clear that the 
extra damping 𝑒 / =𝑒 /  of the optical beam while inside the solid is responsible 
for the finite duration 𝜏 = 𝜁/𝑣  of the oscillating component of the echo 𝛿𝑅(𝑡). (In 
scattering theory language this damping broadens the photon wave vector distribution of 
the incident light, allowing the above conservation relation ∆𝑘 = −𝐾 to be satisfied for 
phonon frequencies other than 2𝑛𝑘.) This serves to broaden the frequency spectrum of 
this oscillating component of 𝛿𝑅(𝑡). For large ζ, that is, for a transparent material, the 
frequency spectrum of this component becomes very narrow, and many oscillations are 
seen.[26,41] This will be discussed in more detail below. 

An important parameter that determines the echo shape is the phase of the oscillating 
component of 𝛿𝑅(𝑡) at 𝑡 = 0. This is determined by the form of the strain pulse and by 
the optical constants of the material. In the present case there is a discontinuity in the 
gradient of 𝛿𝑅(𝑡) at 𝑡 = 0 owing to the discontinuity in the strain pulse in the form of 
Eq. (12). 

Before continuing it is useful to quickly review the assumptions used in the theory of 
optical detection so far: 
 
1. The solid is optically and acoustically isotropic. 
2. The optical and acoustic beams are considered as infinitely wide plane waves 

travelling in the 𝑧 direction. 
3. The perturbation of the refractive index is very small. 
4. Acoustic and optical dispersion and acoustic losses are neglected. 
5. The acoustic frequency is much smaller than the optical frequency (a result of 𝑣 ≪

𝑐). 
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6. The optical and acoustic propagation are governed by linear equations. 
7. The optical probe light does not significantly perturb the strain pulse (e.g. by 

significantly changing its frequency spectrum through the scattering process). 
8. The finite optical bandwidth of the probe light pulse is small enough so that the 

optical constants in Eq. (9) can be assumed to take on unique values. 
9. The optical pulse duration is long enough for the different components of the 

reflected light to interfere coherently. 
  
The relaxation of any of these assumptions leads, of course, to more interesting physics. 
 
Frequency spectrum of the echoes 
 
By taking the temporal Fourier transform (FT) of 𝛿𝑅(𝑡) for an echo we may determine 
its frequency spectrum. Quickly stated, the FT of the transient component of the echo is 
a measure of the frequency spectrum in the strain pulse (or, more precisely, its integral), 
whereas the FT of the oscillating component is heavily influenced by the dominant 
frequency 𝑓 = 2𝑛𝑣 /𝜆 and the decay time 𝜏 = 𝜁/𝑣  (that determines the spectrum 
width). Figure 9 (a) shows an example of the modulus of the frequency spectra of the 
calculated total echo [∝ 𝛿𝑅(𝑡)] in Fig. 7. 
 

 
 
 

Compared to an equivalent spectrum of the strain shown in Fig. 9 (c), the echo 
spectrum is much narrower. This narrowing in fact increases as the probe beam optical 
absorption depth 𝜁 increases. The exact form of the spectrum is very sensitive to the 
values of the optical constants chosen. In Fig. 9 (b) the spectrum is shown when the 

 
 
Fig. 9: (a) Plot of the calculated normalized modulus of the frequency spectrum for 
the reflectivity change 𝛿𝑅(𝑡) for the parameters stated in the caption of Fig. 7. (b) 
The same but with 𝑑𝑛 𝑑𝜂⁄ + 𝑖𝑑𝜅 𝑑𝜂⁄ = 1 − 𝑖 instead of 1 + 𝑖. The scales in (b) and 
(a) are the same. (c) The normalized modulus of the frequency spectrum for the 
strain. 
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photoelastic constants are chosen as 𝑑𝑛 𝑑𝜂⁄ + 𝑖𝑑𝜅 𝑑𝜂⁄ = 1 − 𝑖 instead of 1 + 𝑖. This 
has the effect of producing a dip in the spectrum as well as extending the spectrum to 
lower frequencies. When making measurements with different solids one should 
therefore take care to check what effect the optical detection process has on the 
observed spectrum of 𝛿𝑅(𝑡). 
 
Optical phase changes 
 
Detection in picosecond laser ultrasonics is not limited to reflectivity changes. Equation 
(9) has both real and imaginary parts. Let us consider the physical significance of the 
imaginary part. To do this we write 𝑟 = 𝑟 exp (𝑖𝜙 ), where 𝑟  is the probe amplitude 
reflectance in the absence of the pump pulses, 𝑟 = |𝑟 | , and 𝜙 = arg (𝑟 ) . It is 
convenient to define 𝑟 = 𝑟 (1 + 𝜌)exp [𝑖(𝜙 + 𝛿𝜙)], where 𝜌 (≪ 1) is the relative 
change in the real part of the reflectance and  𝛿𝜙 (≪ 1) is the change in optical phase. 
A Taylor expansion gives 
 
 𝑟 = 𝑟 𝑒 (1 + 𝜌 + 𝑖𝛿𝜙 + ⋯ ) ≅ 𝑟 + 𝑟 (𝜌 + 𝑖𝛿𝜙). 
 
Therefore 
 

 ≅ 𝜌 + 𝑖𝛿𝜙. 

 
In fact both quantities 𝜌(𝑡) and 𝛿𝜙(𝑡) are of physical interest and can be measured. A 
good way to measure them in picosecond laser ultrasonics is to use optical 
interferometry,[42-44] although the first measurements that were sensitive to 𝛿𝜙 were 
done using probe beam deflection.[2] These measurements showed that a second 
detection mechanism, independent of the photoelastic effect, was at work: when the 
strain pulse is reflected from a free surface, the surface moves, producing a change in 
the phase of the optical probe beam. This motion of the surface results in a bump in the 
surface, as illustrated in stage 4 of Fig. 1. The induced optical phase change  𝛿𝜙  
associated with this surface motion is given, for the case of normal optical incidence 
from a vacuum, by 
 

 𝛿𝜙 =
( , )

= 2𝑘𝑢(0, 𝑡), 

 
where 𝑢(0, 𝑡) = 𝑢 (0, 𝑡) is the surface displacement (at 𝑧 = 0) in the +𝑧 direction (i.e. 
into the solid). We must therefore revise Eq. (9) and write 
 

 
( )

= ∫ 𝜂(𝑧 , 𝑡)𝑒 𝑑𝑧 + 2𝑖𝑘𝑢(𝑡),    (16) 

 
where we have defined 𝑢(0, 𝑡) = 𝑢(𝑡) for brevity. The extra term 2𝑖𝑘𝑢(𝑡) in Eq. (16) 
is purely imaginary, and so does not affect Eq. (11) for 𝛿𝑅(𝑡). To understand the time 
dependence of 𝑢(𝑡), consider again a general strain pulse in the form 
 

 𝜂(𝑧, 𝑡) = 𝜂 𝑡 + − 𝜂 𝑡 − .      (17) 

 
From the definition of the surface displacement u as 
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 𝑢(𝑡) = − ∫ 𝜂(𝑧 , 𝑡)𝑑𝑧′,          (18) 
 
one may substitute Eq. (17) into equation (18): 
 

 𝑢 (𝑡) = 𝑣 ∫ 𝜂 (𝑡′)𝑑𝑡′ − 𝑣 ∫ 𝜂 (𝑡′)𝑑𝑡′. 
 

Making use of the identity ∫ 𝑓(𝑥)𝑑𝑥
( )

( )
= 𝑏 (𝑡)𝑓 𝑏(𝑡) − 𝑎 (𝑡)𝑓(𝑎(𝑡)), we obtain 

 

 
( )

= −2𝑣 𝜂 (𝑡).           (19) 

 
Equation (19) shows that 𝑢(𝑡) is proportional to the temporal integral of the strain 
pulse shape when far from the surface. Alternatively, 𝑑(𝛿𝜙 )/𝑑𝑡 is proportional to 
𝜂 (𝑡). 
 
 

 
 
 

Consider now the shape of echoes in picosecond laser ultrasonics when both 
quantities 𝜌(𝑡)  and 𝛿𝜙(𝑡) are measured. This is routinely done in experiments on 
metals, semiconductors and dielectrics.[8, 9, 15, 16] The quantity 𝜌 has the same time 
dependence as 𝛿𝑅 , as is obvious from its definition that implies 𝜌 = 𝛿𝑅/(2𝑅 ) . 
However, the behaviour of 𝛿𝜙(𝑡) is different. 

 
 
Fig. 10: Typical echo shapes for 𝜌 and 𝛿𝜙 plotted as a function of normalized time 
𝑣 𝑡/𝜁 for the bipolar strain pulse of Eq. (12) being reflected from the free surface of 
an isotropic solid. The separate contributions to 𝛿𝜙 are also shown: 𝛿𝜙  from the 
surface displacement and 𝛿𝜙  from the photoelastic effect. In this simulation 𝑛 +
𝑖𝜅 = 1.5 + 0.2𝑖 , 𝑛 + 𝑖𝜅 = 2 + 𝑖 , 𝜆 = 830  nm, 𝜆 = 415  nm, and 𝑑𝑛 𝑑𝜂⁄ +
𝑖𝑑𝜅 𝑑𝜂⁄ = 1 + 𝑖 . The spatial decay constant 𝜁  of the strain pulse is 𝜅 𝜅⁄ = 5 
times smaller than the penetration depth 𝜁 of the probe light. 



21 

Let us return to the bipolar strain pulse of Eq. (12). From Eq. (9), the total relative 
change in amplitude reflectance is given by 
 

 
( )

= 𝜌 + 𝑖𝛿𝜙 =
( )( )

𝜅 𝑒
 

| |

+ 𝑖𝑛𝑒 | |𝑒
 

| |

+ 2𝑖𝑘𝑢(𝑡). 

           (20) 
 
Figure 10 shows the corresponding variations 𝜌(𝑡) and 𝛿𝜙(𝑡) for the same optical 
constants as used in Fig. 7. The phase change is made up of two contributions: 𝛿𝜙 =
2𝑘𝑢 , the surface displacement contribution, and 𝛿𝜙 , a photoelastic contribution 
arising from the imaginary part of the first term in Eq. (16). These two contributions 
𝛿𝜙  and 𝛿𝜙 , the total phase change 𝛿𝜙 = 𝛿𝜙 + 𝛿𝜙 , as well as 𝜌 are shown on the 
same scale in Fig. 10. The time dependence of 𝜌 is the same as that of 𝛿𝑅/𝑅  (since 
they differ only by a factor of 2). The time dependence of the photoelastic contribution 
𝛿𝜙  is analogous to that of 𝜌 , in that it contains an oscillating contribution and a 
transient contribution. These two contributions are shown in Fig. 11. As for the case of 
𝜌  or 𝛿𝑅/𝑅 , the transient contribution shows the same temporal variation as the 
integral of the strain 𝑢(𝑡) (apart from a possible difference in sign). The oscillating 
component of 𝜌 is 𝜋/2 out of phase with the oscillating component of 𝛿𝜙. This is 
evident from Eq. (20) since these components arise from the real and imaginary parts in 
this equation. 
 

 
 
 

Equations (16) and (19) suggest that it should be possible to experimentally derive 
the shape of the strain pulse 𝜂 (𝑡)  from 𝑑(𝛿𝜙)/𝑑𝑡  provided that the photoelastic 

 
 
Fig. 11: Echo shape for the photoelastic contribution 𝛿𝜙  to the optical phase 
change 𝛿𝜙 as a function of normalized time 𝑣 𝑡/𝜁 for the bipolar strain pulse of Eq. 
(12) being reflected from the free surface of an isotropic solid. The total contribution 
is separated into an oscillating term and a transient term. In this simulation 𝑛 + 𝑖𝜅 =
1.5 + 0.2𝑖 , 𝑛 + 𝑖𝜅 = 2 + 𝑖 , 𝜆 = 830  nm, 𝜆 = 415  nm, and 𝑑𝑛 𝑑𝜂⁄ +
𝑖𝑑𝜅 𝑑𝜂⁄ = 1 + 𝑖 . The spatial decay constant 𝜁  of the strain pulse is 𝜅 𝜅⁄ = 5 
times smaller than the penetration depth 𝜁 of the probe light. 
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contribution to the phase change is very small. This was in fact done using a beam 
deflection detection method essentially sensitive to the surface displacement 
variation.[2] A better method for actually separating the photoelastic and surface 
displacement contributions using oblique probe light incidence was also theoretically 
and experimentally demonstrated for isotropic solids.[45, 46]  
 
Echo for a 𝛿-function strain pulse 
 
Much can be gleaned about the physics of echoes by returning to the -function strain 
pulse that we originally considered in Section 2.2 for the detection process: 𝜂(𝑧, 𝑡) =
𝛿(𝑡 + 𝑧 𝑣⁄ ) − 𝛿(𝑡 − 𝑧 𝑣⁄ ). Unipolar strain pulses similar to this do crop up in practice, 
both in experiments on thin transparent films on opaque substrates and in experiments 
on semiconductor quantum wells.[16, 26] From Eqs. (16) and (17) we obtain 
 

 
( )

= sgn(𝑡)𝑒 | | + 2𝑖𝑘𝑣 sgn(𝑡) = 𝐷(𝑡),   (21) 

 
where 𝐷(𝑡) is introduced for brevity. The real and imaginary parts of this function 
𝐷(𝑡), i.e. 𝜌 and 𝛿𝜙, are plotted vs. time in Fig. 12 together with the two contributions 
to 𝛿𝜙 from the surface displacement (𝛿𝜙 ) and from the photoelastic effect (𝛿𝜙 ). 
Because the strain pulse is now symmetric in time, the form of 𝜌 is antisymmetric in 
time, and likewise for 𝛿𝜙 . As in the example of a bipolar strain pulse, there are both 
oscillating and transient terms in 𝜌 and 𝛿𝜙 (although these are not shown separately 
here). This will be explained in further detail below. As before, the component 𝛿𝜙  
mirrors the surface displacement variation 𝑢(𝑡). The surface in this case moves inwards 
as the tensile strain pulse is reflected to a compressive strain pulse, leading to a sudden 
positive jump in 𝛿𝜙 . According to the present theory the surface remains displaced up 
to 𝑡 = +∞. [In practice the surface will relax on a time scale (~𝐷/𝑣 ) depending on 
the lateral propagation of surface acoustic waves (of velocity 𝑣 ) across the spot 
diameter (of dimension 𝐷)]. 
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The presence of the transient photoelastic contributions to 𝜌 and 𝛿𝜙 for this case 

can be better understood by considering the time derivative of Eq. (21): 
 

 
( )

= 𝑒 | | + 4𝑖𝑘𝑣 𝛿(𝑡) + 𝛿(𝑡) = 𝐷′(𝑡). (22) 

 
The first term in Eq. (22) is the photoelastic oscillation term. The second term arises 
from the surface displacement. The third term has the same time dependence as the 
surface displacement term but is photoelastic in origin. This is the transient term. 

To understand how this third term is related to the transient contributions to 𝜌, 𝛿𝜙 or 
𝛿𝑅 (see Figs. 7 and 11), one should bear in mind that the detection mechanism is linear. 
Therefore, once the functions 𝐷(𝑡) and 𝐷′(𝑡) are known, the corresponding variations 
for any shape of strain pulse 𝜂 (𝑡) can be determined using a convolution operation: 
 

 
( )

= ∫ 𝐷(𝜏)𝜂 (𝑡 − 𝜏)𝑑𝜏, 

 

 
( )

= ∫ 𝐷′(𝜏)𝜂 (𝑡 − 𝜏)𝑑𝜏. 

 
The convolution of the strain pulse 𝜂 (𝑡) with the -function in the third term in Eq. 
(22) will produce the same function 𝜂 (𝑡) (apart from a multiplicative constant). On 
integration we will therefore obtain a transient contribution to 𝜌 and 𝛿𝜙 proportional 
to the temporal integral of the strain.  

This analysis can also give us some insight into the physical meaning of the 
sensitivity function 𝑓(𝑧) introduced by Thomsen et al., as defined in Eq. (11). If we 
introduce our 𝛿 -function strain pulse 𝜂(𝑧, 𝑡) = 𝛿(𝑡 + 𝑧 𝑣⁄ ) − 𝛿(𝑡 − 𝑧 𝑣⁄ )  into this 
equation, we find 

 
 
Fig. 12: Typical echo shapes for 𝜌 and 𝛿𝜙 plotted as a function of normalized time 
𝑣 𝑡/𝜁  for the -function strain pulse being reflected from the free surface of an 
isotropic solid. The separate contributions to 𝛿𝜙  are also shown: 𝛿𝜙  from the 
surface displacement and 𝛿𝜙  from the photoelastic effect. In this simulation 𝑛 +
𝑖𝜅 = 1.5 + 0.2𝑖, 𝜆 = 830 nm, and 𝑑𝑛 𝑑𝜂⁄ + 𝑖𝑑𝜅 𝑑𝜂⁄ = 1 + 𝑖. 
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 𝛿𝑅(𝑡) = 𝑣 𝑓(𝑣 |𝑡|)sgn(𝑡)/ 
 
This implies that 
 
 Re(𝐷(𝑡)) = 𝑓(𝑣 |𝑡|)sgn(𝑡).     (23) 

 
Equation (23) tells us that the response Re(𝐷(𝑡))  to a 𝛿  -function strain pulse is 
proportional to two sensitivity functions 𝑓(𝑧) placed back to back in an antisymmetric 
fashion, with 𝑧 replaced by 𝑣 |𝑡|. This gives a satisfying physical interpretation of the 
sensitivity function. 
 
Amplitude-phase plots of echoes 
 
Since a full measurement of an echo requires both amplitude and phase measurements, 
one way of viewing an echo would be to plot the amplitude against the phase. Figure 13 
(a) shows a plot of 𝜌  vs. 𝛿𝜙  (i.e. with the surface displacement contribution 
removed). The centre of the spiral corresponds to the points 𝑡 = ±∞, whereas the free 
end of the spiral corresponds to the point 𝑡 = 0. The vertical and horizontal scales are 
the same, owing to the 𝜋/2 phase difference between the oscillating components of 𝜌 
and 𝛿𝜙 . (The transient components of 𝜌 and 𝛿𝜙  are relatively small.) The rainbow 
colour is added to convey a measure of |𝑡|.  
 

 
 

Figure 13(b) shows a plot of 𝜌 vs. 𝛿𝜙 . The effect of including the displacement 
term is to displace the end of the spiral. The shape of the curve at large |𝑡| is not altered 
because the displacement contribution dies out quickly with increasing |𝑡|.  

Figure 14 shows similar plots for the -function pulse. The curves are more 
complicated because the echo shapes are no longer an even function in time and 
because of the abrupt changes at 𝑡 = 0. 

 
 
Fig. 13: Echo shapes represented as amplitude-phase plots for a bipolar strain pulse: 
(a) 𝜌 vs. the photoelastic contribution 𝛿𝜙  to the optical phase change. (b) 𝜌 vs. 
𝛿𝜙 In this simulation 𝑛 + 𝑖𝜅 = 1.5 + 0.2𝑖, 𝑛 + 𝑖𝜅 = 2 + 𝑖, 𝜆 = 830 nm, 𝜆 =
415 nm, and 𝑑𝑛 𝑑𝜂⁄ + 𝑖𝑑𝜅 𝑑𝜂⁄ = 1 + 𝑖. The spatial decay constant 𝜁  of the strain 
pulse is 𝜅 𝜅⁄ = 5 times smaller than the penetration depth 𝜁 of the probe light. 
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These plots are possibly the best way to appreciate an echo in picosecond laser 
ultrasonics at a single glance, although if viewed for too long the psychedelic spirals 
may jar the nerves. 

 
 

 
 
Fig. 14: Echo shapes represented as amplitude-phase plots for a 𝛿-function strain 
pulse: (a) 𝜌  vs. the photoelastic contribution 𝛿𝜙  to the optical phase change. 
(b) 𝜌 vs. 𝛿𝜙 In this simulation 𝑛 + 𝑖𝜅 = 1.5 + 0.2𝑖, 𝜆 = 830 nm, and 𝑑𝑛 𝑑𝜂⁄ +
𝑖𝑑𝜅 𝑑𝜂⁄ = 1 + 𝑖. 
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3. Optical detection in perturbed multilayers and photonic crystals 
 
Electromagnetic wave equation 
 
The reflection of light from multilayer thin film structures is an important problem for a 
variety of applications. When using such samples in picosecond laser ultrasonics we 
may need to account for the inhomogeneous modulation of the permittivity over several 
layers along the stacking direction induced by a propagating strain pulse. Many 
commercially and physically important samples such as semiconductor heterostructures 
or multilayer metal stacks are partially transparent at visible or near-visible optical 
wavelengths when film thicknesses are in the nanometre to micron range.  

For one- or two-layer structures, simple techniques have been developed to deal with 
the problem of multiple optical reflections when calculating the modulation in 
reflectance or transmittance.[26, 47, 48]. For samples with more layers, a general 
theoretical approach based on Green’s functions has been developed, allowing the 
calculation of both reflectance and transmittance changes at normal optical 
incidence.[20] An outline of this approach is given here. 
 

 
  

Figure 15 shows the sample geometry in the unperturbed state, consisting of 𝑁 
parallel layers on a substrate. The medium in front of the sample is a transparent 
isotropic material rather than a vacuum. All materials are considered to be optically and 
acoustically isotropic. We also assume that the total thickness of the sample is much 
shorter than the spatial length of the incident optical pulse in the 𝑧 direction (typically 
~30 m for a 100 fs optical pulse). This implies that the light always interferes 
coherently. 

The problem is to find the change in reflectance or transmittance of this structure 
when it contains an arbitrary distribution of longitudinal strain in the stacking (𝑧) 
direction. There may also be strain in the incident medium or in the substrate, but not at 
𝑧 = ±∞ . With the linear approximation 𝐃 = 𝜀 ε(r)𝐄 , we start by invoking the 
Maxwell’s equations for 𝐄 and 𝐁 in an medium with an inhomogeneous quasistatic 

 
 
Fig. 15: A general multilayer structure consisting of 𝑁 layers on a substrate. Each 
layer is considered to be optically isotropic before perturbation. We define 𝑧 = 0. 
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variation in the complex permittivity:  
 

 ε0∇∙(ε(r)E)=0,  

 ∇ ∙ B = 0, 
 ∇ × E=-𝜕B/𝜕𝑡,  
 ∇ × B = ε μ ε(r) ∂E/ ∂𝑡,  
 
where ε(r)  is the 33 complex relative permittivity tensor which is a function of 
position 𝐫. ε(r) is 𝜔 dependent in general. Combining these equations leads to 
 

 ∇ × (∇ × E) = ∇(∇ ∙ E) − ∇ 𝐄 = − (∇ × 𝐁) = −ε μ ε(r)
𝐄
 ,  

 
or 
 

 (∇ − grad div)𝐄(𝐫, 𝑡) = μ 𝐃(𝐫, 𝑡). 

 
Under the assumption of incidence with monochromatic light at frequency 𝜔, we can 
omit the common term 𝑒  and simplify using the equation relating 𝐃 and 𝐄:  
 
 ∇ − grad div + 𝑘 ε(r) 𝐄(𝐫) = 0,     (24) 
 
where, as usual, 𝑘 = 𝜔 ε μ  is the vacuum wave number.  

The 1D geometry of this multilayer problem allows further simplification. Writing 
𝐄(𝐫) = 𝐄(𝑧) for the case of normal incidence, and remembering that ε is a 33 tensor 
that depends in this case only on a single spatial coordinate (𝑧), 
 

 
∂ ∂𝑧⁄ 0 0

0 ∂ ∂𝑧⁄ 0
0 0 0

+ 𝑘 ε(z) 𝐄(𝑧) = 0.   (25) 

 
To go further we must again consider the photoelastic effect.  
 
Perturbation of the permittivity tensor 
 
The relative permittivity tensor component of interest, 𝜀 , can be divided into an 
unperturbed part 𝜀  (or homogeneous part) and a perturbed part 𝜀  (or 
inhomogeneous part). The unperturbed part is illustrated in Fig. 15. The perturbed part 
depends partly on the photoelastic effect. Let us take a look at the general equations 
describing this effect[38,49]: 
 
 ∆𝜀 = 𝑃 𝜂 ,         (26) 
 
where 𝑃  is a photoelastic constant tensor and 𝜂  is the strain tensor. Bear in mind 
that both refractive index and extinction coefficient can be modified by strain, so 𝑃  
is a complex quantity. In abbreviated notation ( 1 = 𝑥𝑥, 2 = 𝑦𝑦, 3 = 𝑧𝑧, 4 = 𝑦𝑧 =
𝑧𝑦, 5 = 𝑧𝑥 = 𝑥𝑧, 6 = 𝑥𝑦 = 𝑦𝑥), ∆𝜀 = 𝑃 𝜂 . For an isotropic solid, this equation can 
be written as[38] 
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, 

 
where 𝑃 = (𝑃 − 𝑃 )/2. In our case of longitudinal strain propagating in the 𝑧 
direction, 𝜂 = 𝜂  is the only non-zero strain component. So for our geometry of 
normal incidence and 𝑥-polarized light, ∆𝜀 = ∆𝜀 = 𝑃 𝜂 = 𝑃 𝜂 = 𝑃 𝜂. In fact 
 

 𝜀̃ = 𝜂

𝑃 0 0
0 𝑃 0
0 0 𝑃

 

 
defines the photoelastic perturbation to 𝜀̃. The longitudinal strain distribution evidently 
does not induce off-diagonal components in 𝜀̃, so Eq. (25) reduces to two independent 
and equivalent wave equations for 𝑥- and 𝑦- polarized light. Without loss of generality 
we only require a solution for 𝐸 (𝑧), depending on 𝜀  only. (This corresponds to the 
incident light being polarized in the 𝑥 direction.) 

We may equivalently express the perturbation in terms of the refractive index 𝑛 =

𝜀 : 
 

 ∆𝑛 = 𝜂 = + 𝑖 𝜂 = 𝜂. 

 
The quantity 𝑑𝑛 𝑑𝜂⁄  in this equation is of course the same as the one that arose in Eqs. 
(9) and (16). The photoelastic effect occurs in each of the 𝑁 + 2  regions in the 
multilayer sample; the contribution to the perturbed part, 𝜀 , of the 𝑥𝑥 component of 
the permittivity tensor is given by 
 

 𝜀 = 𝑃
( )

𝜂(𝑧) in the 𝑛-th layer. 
 
In addition, we should also consider the motion of the interfaces due to the strain. At 
any point in the sample the displacement is 
 
 𝑢(𝑧) = − ∫ 𝜂(𝑧 )𝑑𝑧′. 
 
We can represent the interface motions (at 𝑧 = 𝑧 ) by effective changes in the 
permittivity in the region of the interfaces. The changes themselves are large, but their 
regions of application are restricted to tiny slices close to the interfaces, because the 
interface displacements are in general very small (e.g., ~1 pm) compared to the layer 
thicknesses. Let us denote the associated change in the xx component of the permittivity 
tensor 𝜀  by 𝜀 , where 
 
 𝜀 =
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𝜀( ) − 𝜀( )   for  𝑢(𝑧 ) > 0,  𝑧  < 𝑧 <  𝑧  +  𝑢(𝑧 ),

𝜀( ) − 𝜀( )   for  𝑢(𝑧 ) < 0,  𝑧 +  𝑢(𝑧 )  < 𝑧 <  𝑧  ,
0                     elsewhere.                                   

 

  (27) 
 
These perturbations are shown schematically in Fig. 16 for the case in which 𝜀  is a 
real quantity. The perturbation 𝜀 (𝑧) appears as a top hat shape. In the example shown, 
𝑢(𝑧 ) is positive, leading to 𝜀 = 𝜀( ) − 𝜀( ) > 0. We must deal with the combined 
perturbation 𝜀 = 𝜀 + 𝜀 . 

 
 
Solution of the wave equation 
 
We proceed by solving the wave equation corresponding to Eq. (25) with 𝜀 (𝑧) =
𝜀 (𝑧): 
 

 + 𝑘 𝜀 (𝑧) 𝐸 (𝑧) = 0,      (28) 

 
where 𝐸  is the solution for 𝐸  in the absence of strain. This can be done very 
straightforwardly by considering the boundary conditions at each interface and using a 
transfer matrix method.[8, 50, 51] We briefly review this method here. The solution for 
𝐸  in the 𝑛th layer has the form 
 
 𝑎 𝑒 + 𝑏 𝑒 , 

 
 
Fig. 16: Schematic diagram of the dielectric constant distributions in the presence of 
a longitudinal strain pulse in layers 1 and 2. The vertical dashed line in layer 2 shows 
the perturbed interface position. The top graph show the unperturbed distribution of 
the relative permittivity 𝜀 . The middle graph shows the change in permittivity 𝜀  
caused by the photoelastic effect. The bottom plot shows the change in permittivity 
𝜀  caused by the interface motion. Here 𝜀 = 𝜀 + 𝜀 . The values here are 
assumed to be real, and the magnitude of 𝜀  is greatly exaggerated. 
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where 𝑍 = 𝑧 − 𝑧  (𝑛 ≥ 1) , 𝑍 = 𝑧 , 𝑧_0 = 0 , and 𝑘 = √𝜀( )𝑘 . The electric 
field amplitudes 𝑎  and 𝑏  can be determined by the following procedure. The 
boundary conditions on 𝐄  and 𝐇  (= 𝛁 × 𝐄 (𝑖𝜔𝜇⁄ ))  at the first interface ( 𝑧 = 0 ) 
require continuity of the parallel components of these vectors. These conditions lead to 
the matrix equation 
 

 
1 1
𝑘 −𝑘

𝑎
𝑏 =

1 1
𝑘 −𝑘

𝑎
𝑏 , 

 
or, in compact form, 𝐌 𝐚 = 𝐌 𝐚 . The Fresnel equations for reflection at normal 
incidence immediately follow (see Figs. 4 and 5). At 𝑧 = 𝑧  the appropriate relation is 
𝐌 𝐐 𝐚 = 𝐌 𝐚 , where 
 

 𝐌 =
1 1

𝑘 −𝑘
, 𝐐 = 𝑒 0

0 𝑒
. 

 
The matrix 𝐐  accounts for the thickness 𝑑  of the 𝑛th layer (where 𝑛 ≥ 1). In order 
to calculate the matrix 𝐌  that relates the fields incident on the sample to those 
transmitted to the substrate, that is 𝐚 = 𝐌𝐚 , we iterate these equations to obtain 
 
 𝐌 = 𝐌 ∑ 𝐌 𝐐 𝐌  𝐌 . 
 
The reflectance of the whole structure is then simply given by 𝑟 = 𝑏 𝑎⁄ = 𝑀 /𝑀 . 
Furthermore, by stopping the above series at a given layer n, we may determine the 
electric field amplitudes 𝑎  and 𝑏  for every layer, and hence determine 𝐸 (𝑧). 
 From Eq. (25), the x component of the electric field can be obtained from 
 

 + 𝑘 𝜀 (𝑧) + 𝜀 (𝑧) 𝐸(𝑧) = 0.    (29) 

 
To do this, we define a Green’s function 𝐺(𝑧, 𝑧′) as follows: 
 

 + 𝑘 𝜀 (𝑧) 𝐺(𝑧, 𝑧′) = −𝛿(𝑧 − 𝑧 ).     (30) 

 
The form for 𝐺 will be given shortly. First let us express the solution of Eq. (29) in 
terms of 𝐺:  
 
 𝐸(𝑧) = 𝐸 (𝑧) + 𝑘 ∫ 𝐺(𝑧, 𝑧 )𝜀 (𝑧 )𝐸(𝑧 )𝑑𝑧   

           ≅ 𝐸 (𝑧) + 𝑘 ∫ 𝐺(𝑧, 𝑧 )𝜀 (𝑧 )𝐸 (𝑧 )𝑑𝑧′,    (31) 
 
where the approximation 𝐸 (𝑧′) ≅  𝐸(𝑧′)  in the integral holds for first-order 
perturbation theory. This relation can be verified by applying the operator (𝜕 𝜕𝑧⁄ ) +
𝑘 𝜀 (𝑧) to both sides of Eq. (31) and making use of Eqs. (28) and (30). (Note that this 
operator does not act on the terms in the integral depending only on 𝑧′.) Equation (31) 
implies that 𝐺(𝑧, 𝑧′) governs the response at 𝑧 caused by a localized disturbance (i.e. a 
𝛿-function change in permittivity) at 𝑧′. 

The Green’s function can be found by considering its limiting properties at z =
z′ and 𝑧 = ±∞, and by realising that 𝐺 obeys the same boundary conditions as an 
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electric field at the interfaces. The details are given in Ref. [8]. The result for the region 
of interest is 
 

 𝐺(𝑧, 𝑧 ) = 𝑒 𝐸 (𝑧 ) for 𝑧 > 𝑧, 𝑧 < 0, 

 
where 𝑘 = √𝜀( )𝑘  is the wave number in medium 0. (It can be shown that the 
reciprocity relation 𝐺(𝑧, 𝑧′) =  𝐺(𝑧′, 𝑧) holds, and this helps in deriving 𝐺.[8]) The 
next step is to substitute for 𝐺 in Eq. (31) at a point 𝑧 < 0, including both contributions 
to 𝜀 . We obtain 
 

 𝐸(𝑧) = 𝑎 𝑒 + 𝑏 𝑒 + ∫ 𝑃
( )

𝜂(𝑧 ) 𝑎 𝑒 + 𝑏 𝑒 𝑑𝑧′ 

               + ∑ ∫ 𝑃
( )

𝜂(𝑧 + 𝑧 ) 𝑎 𝑒 + 𝑏 𝑒 𝑑𝑧′ 

               +∑ (𝑎 + 𝑏 ) 𝜀( ) − 𝜀( ) 𝑢(𝑧 ) . 
 
The relative reflectance change is therefore given by 
 

 = ∫ 𝑃
( )

𝜂(𝑧 ) 𝑎 𝑒 + 𝑏 𝑒 𝑑𝑧′ 

          + ∑ ∫ 𝑃
( )

𝜂(𝑧 + 𝑧 ) 𝑎 𝑒 + 𝑏 𝑒 𝑑𝑧′ 

          +∑ (𝑎 + 𝑏 ) 𝜀( ) − 𝜀( ) 𝑢(𝑧 ) ,   
 (32) 
 
where 𝑟 = 𝑏 /𝑎  is the reflectance of the whole structure, and the point 𝑧 (< 0) is to 
the left of all strain perturbations. The first term in Eq. (32) accounts for the photoelastic 
effect in the incident medium (𝑛 = 0), the second term accounts for the photoelastic 
effect in the multilayer and substrate, and the third term accounts for the interface 
motion. This relation is equivalent to the formula quoted by Perrin et al.[42] 

In the simple case of a sample consisting of an incident medium (0) and a substrate 
(1), Eq. (32) reduces to Eq. (16). Another way to see this is to substitute a 𝛿-function 
change in permittivity at a point 𝑧 > 0 in Eq. (31), so that 𝜀 = 𝛿(𝑧 − 𝑧 ). The 
result is 
 

 𝐸(𝑧) − 𝐸 (𝑧) = 𝑘 𝐸 (𝑧 )𝐺(𝑧, 𝑧 ) = 𝐸 (𝑧 )𝑒 . 

 
As expected, 𝐺(𝑧, 𝑧 )  governs the response at 𝑧 to a local change in permittivity at 
𝑧 . We also know that 𝐸(𝑧) − 𝐸 (𝑧) = 𝑒 𝛿𝑏 , where 𝛿𝑏  is the change in the 
reflected electric field amplitude 𝑏  due to the perturbation for a point 𝑧 to the left of 
all perturbations. By reference to Fig. 9, 𝐸 (𝑧 ) = 𝑡 𝑎 𝑒 =

𝑡 �̃� 𝑎 𝑒 𝑘 /𝑘 , where use has been made of the Fresnel equations. Using the 
relation 𝑟 − 𝑟 = 𝛿𝑏 /𝑎 , and setting 𝑧 = 𝑧′ as the position for the perturbation, we 
obtain Eq. (8) when F=1, as expected. Incidentally, the relation 
𝐸 (𝑧 ) = 𝑡 𝑎 𝑒 = 2𝑘 𝑎 𝑒 (𝑘 + 𝑘 ) shows that for this simple case of two 
media, 
 

 𝐺(𝑧, 𝑧 ) = 𝑒 ( ) for 𝑧 > 𝑧, 𝑧 < 0. 
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The same general theoretical method can also be applied to calculate the modulation 

in transmission through a multilayer.[8] 
 
Light modulation in a transparent-metal photonic crystal 
 
An interesting example of the application of the above theory is the ultrafast generation 
of sound in a photonic crystal. We present here some preliminary results on a particular 
type of 1D photonic crystal in the form of a ‘transparent-metal’ structure.[52] It consists 
of a symmetric periodic structure with four unit cells, with each unit cell composed of a 
silver layer (15 nm thick) sandwiched between two identical dielectric TiO2 layers (32 
nm thick) , as shown in Fig. 17 (a). (A thin 1 nm layer of Ti was used at the Ag-TiO2 
interface to prevent oxidation.[53]) 
 

 
 

Figure 17 (b) shows the calculated optical reflection and transmission spectra. In spite 
of the total thickness of Ag in the sample being 120 nm, the sample has a surprisingly 
high transmission in a band around 400 to 700 nm, hence the naming as a transparent-
metal structure. The experimental transmission spectrum was measured, and found to be 
nearly identical to that calculated.  

Picosecond laser ultrasonics experiments were carried out using 200 fs pump light 
pulses of wavelength 800 nm.[54] The pump light is absorbed in the Ag films, and leads 
to a transient strain distribution in the sample. This transient distribution can be 
calculated using the transfer matrix method considered above for the optical absorption 
of the pump light together with a stress generation and propagation theory similar to 
that described in Section 2.[8] Figure 18 shows a simulation of the strain distribution 50 
ps and 100 ps after the arrival of the pump pulse at normal incidence from the top of the 
sample, taking optical and mechanical constants from the literature. The ultrasonic 
attenuation in the TiO2 films (varying quadratically with the acoustic frequency) is also 
taken into account. The shape of the strain pulse changes rapidly with time inside the 
films owing to multiple acoustic reflections. 

 
 
Fig. 17: (a) Diagram of the ‘transparent-metal’ photonic crystal sample. (b) 
Calculated reflection and transmission spectra of this sample. 

(a) 
(b) 
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Figure 19 shows typical results for the reflectivity 𝛿𝑅(𝑡)  using probe pulses of 
duration 200 fs and wavelength 430 nm. Also shown is a theoretical simulation based 
on Eq. (31), using optimized photoelastic constants and other constants from the 
literature.[54] 
 

 
 
Fig. 18: Calculated strain distribution in the ‘transparent-metal’ sample 50 ps and 
100 ps after arrival of a 800 nm pump optical pulse from the top side of the sample at 
normal incidence. SUB means substrate. 
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Detailed analysis of the relative contributions to the signal shows that the high 
frequency oscillations in the signal are photoelastic in origin, whereas the lower 
frequency background signal arises from the interface displacements. 

The idea of modulating a photonic crystal with picosecond ultrasonic waves may be 
of interest for the development of ultrafast acousto-optic modulators. It has also been 
studied, for example, in opal structures.[55,56]  The problem one faces is how to 
achieve an efficient optical modulation. As can be seen from the vertical scale in Fig. 19, 
the typical amplitude 𝛿𝑅(𝑡)~10  is too small for useful applications. We found that 
matters are not much improved at other probe wavelengths in the range 390-430 nm 
investigated. However, it may be possible in the future to generate very high frequency 
ultrasonic waves electrically with much higher amplitudes,[57] thus facilitating the 
design of such high frequency acousto-optic modulators. 

 
 
Fig. 19: Plot of the measured change in reflectivity as a function of delay time for 
the ‘transparent-metal’ sample using 800 nm pump optical pulses and 430 nm probe 
pulses. The optical pulses are incident on the top side of the sample at normal 
incidence. The theoretical predictions according to Eq. (35) are also shown by the 
dotted line. 
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4. Detection at oblique optical incidence 
 
The wave equation 
 
So far we have only dealt with normally-incident probe light, but in many experiments 
it is very useful to be able to work at a general angle of incidence. This presents 
advantages such as the ability to probe anisotropic materials effectively, to measure 
shear strain pulses, or to allow the separation of photoelastic and displacement 
contributions to the detected signals. The aim in this section is to analyse the case of 
oblique optical incidence in picosecond laser ultrasonics.[21, 24, 45, 58] 
 Our starting point is again the Maxwell equations, discussed in Section 2. We 
first consider an isotropic solid with a plane interface with a vacuum. With oblique 
optical incidence, Eq. (24) for the spatially dependent part of the electric field is 
generalized to 
 

 
𝛻 0 0
0 𝛻 0
0 0 𝛻

−

∂ ∂𝑥⁄ ∂ ∂𝑥𝜕𝑦⁄ ∂ ∂𝑥𝜕𝑧⁄

∂ ∂y𝜕𝑥⁄ ∂ ∂𝑦⁄ ∂ ∂y𝜕𝑧⁄

∂ ∂z𝜕𝑥⁄ ∂ ∂z𝜕𝑦⁄ ∂ ∂𝑧⁄

+ 𝑘 ε(z) 𝐄(𝐫) = 0. 

           (33) 
 
where 𝜀̃(𝑧) = 𝜀  is the 33 complex relative permittivity tensor and 𝑘 = 𝜔 ε μ  is 
the vacuum wave number. Since the unperturbed solid is isotropic, and since 
perturbations in 𝜀̃ do not break the lateral symmetry, we may without loss of generality 
always choose the directions of 𝑥 and 𝑦 so that 𝑘 = 0, 𝜕 𝜕𝑦⁄ = ∂ 𝜕𝑦⁄ = 0, and 
𝐄 = 𝐄(𝑧)exp (𝑖𝑘 𝑥) . Here the value of 𝑘  is imposed by the optical incidence 
conditions and is a known quantity. The wave equation then simplifies to 
 
 [𝐿(𝑘 ) + 𝑘 𝜀̃(𝑧)]𝐄(𝑧) = 0,       (34) 
where 

 𝐿(𝑘 ) =

∂ ∂𝑧⁄ 0 −𝑖𝑘 ∂ 𝜕𝑧⁄

0 ∂ ∂𝑧⁄ − 𝑘 0

−𝑖𝑘 ∂ 𝜕𝑧⁄ 0 −𝑘

. 

 
Solution for the unperturbed case 
 
Consider first the unperturbed solution to Eq. (34) at the plane boundary of a vacuum 
and an isotropic solid. In this case, 
 

 𝜀 (𝑧) = 𝜀 (𝑧) = 𝜀 (𝑧) = 𝜀 (𝑧) =
1 (𝑧 < 0)

𝜀 (𝑧 > 0)
 , 

 𝜀 (𝑧) = 0 for 𝑖 ≠ 𝑗. 
 
This geometry is sketched in Fig. 20 (a). Since there is no spatial dependence of 
𝜀 (𝑧) = 𝜀  in the region 𝑧 > 0 , let us define 𝐄(𝑧) = 𝐄 (𝑧) = 𝐄 exp (𝑖𝑘 𝑧)  in this 
unperturbed case. Equation (34) has a solution for 𝑘  provided that 
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𝜀𝑘 − 𝑘 0 𝑘 𝑘

0 𝜀𝑘 − 𝑘 − 𝑘 0

𝑘 𝑘 0 𝜀𝑘 − 𝑘

= 0.  

 
This is a fourth order equation in 𝑘  with four solutions, shown schematically in Fig. 
20 (b). (The values of 𝑘  are complex quantities in general for complex 𝜀 .) The 
𝑧 component of these wave vectors are labelled by 𝑘 , where 𝑗 = 1, ⋯ ,4 . So, in 
general (i.e. in the air or in the dielectric), 
 
 𝐄 = ∑ 𝑎 𝐞 exp (𝑖𝑘 𝑧 + 𝑖𝑘 𝑥).       (35) 
 
The reason why 𝑘  is not indexed is that the boundary conditions require that 𝑘  is a 
conserved quantity. 
 

 
 
The general solutions for 𝑘  are given in the vacuum (medium 0), by 
 
 𝑘 ( ) = 𝑘 ( ) = 𝑘 , 𝑘 ( ) = 𝑘 ( ) = −𝑘 , 
 
and in the dielectric (medium 1), by 
 
 𝑘 ( ) = 𝑘 ( ) = 𝑘 , 𝑘 ( ) = 𝑘 ( ) = −𝑘 , 
 

where 𝑘 = 𝑘 − 𝑘  and 𝑘 = 𝜀𝑘 − 𝑘 . We see immediately that the choice of 

𝑘  has constrained the angle of optical incidence 𝜃 in the vacuum to tan 𝜃 = 𝑘 /𝑘′. 
Each of these values of 𝑘 , when substituted in Eq. (33), give the associated electric 
polarizations in Eq. (35). The result is 
 

 
 
Fig. 20: (a) Geometry for optical incidence on an isotropic solid with a plane 
interface from a vacuum. (b) The general solution of the wave equation for this 
problem has four wave vectors. The horizontal component 𝑘 , parallel to the 
interface, is a conserved quantity. 
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 𝐞
( )

=
0
1
0

, 𝐞
( )

=
𝑘′
0

−𝑘
, 𝐞

( )
= 𝐞

( )
, 𝐞

( )
=

−𝑘′
0

−𝑘
,  

 𝐞
( )

=
0
1
0

, 𝐞
( )

=
√

𝑘′′
0

−𝑘
, 𝐞

( )
= 𝐞

( )
, 𝐞

( )
=

√

−𝑘′′
0

−𝑘
.  

 
Solving for the electric fields in the two media is now a matter of applying the boundary 
conditions on the fields. These can conveniently be expressed in matrix form 
 
 

⎝

⎜
⎜
⎜
⎜
⎛

𝑒
( )

𝑒
( )

𝑒
( )

𝑒
( )

𝑒
( )

𝑒
( )

𝑒
( )

𝑒
( )

𝑘
( )

𝑒
( )

− 𝑘
( )

𝑒
( )

− 𝑘
( )

𝑒
( )

− 𝑘
( )

𝑒
( )

−

     𝑘
( )

𝑒
( )

     𝑘
( )

𝑒
( )

     𝑘
( )

𝑒
( )

     𝑘
( )

𝑒
( )

𝑘
( )

𝑒
( )

𝑘
( )

𝑒
( )

𝑘
( )

𝑒
( )

𝑘
( )

𝑒
( )

⎠

⎟
⎟
⎟
⎟
⎞

⎝

⎜⎜
⎛

𝑎
( )

𝑎
( )

𝑎
( )

𝑎
( )

⎠

⎟⎟
⎞

 

 =

⎝

⎜
⎜
⎜
⎜
⎛

𝑒
( )

𝑒
( )

𝑒
( )

𝑒
( )

𝑒
( )

𝑒
( )

𝑒
( )

𝑒
( )

𝑘
( )

𝑒
( )

− 𝑘
( )

𝑒
( )

− 𝑘
( )

𝑒
( )

− 𝑘
( )

𝑒
( )

−

     𝑘
( )

𝑒
( )

     𝑘
( )

𝑒
( )

     𝑘
( )

𝑒
( )

     𝑘
( )

𝑒
( )

𝑘
( )

𝑒
( )

𝑘
( )

𝑒
( )

𝑘
( )

𝑒
( )

𝑘
( )

𝑒
( )

⎠

⎟
⎟
⎟
⎟
⎞

⎝

⎜⎜
⎛

𝑎
( )

𝑎
( )

𝑎
( )

𝑎
( )

⎠

⎟⎟
⎞

, 

 
where, from top to bottom, the continuity of 𝐸  , 𝐸 , 𝐷  (equivalent to 𝐵 ) and 𝐵  
have been used at 𝑧 = 0. A short form of this equation is 𝐀 𝐚𝟎 = 𝐀 𝐚 . Setting 𝐚𝟎 =
(𝑎 , 𝑎 , 𝑎 𝑟 , 𝑎 𝑟 ) and 𝐚 = (𝑎 𝑡 , 𝑎 𝑡 , 0, 0), where 𝑎  is the s-polarized component 
of the incident electric field and 𝑎  is the p-polarized component, the relation 𝐚𝟎 =

𝐀 𝟏𝐀 𝐚  allows us to solve for the amplitude reflection coefficients 𝑟 , 𝑟  and 
transmission coefficients 𝑡 , 𝑡 : 
 

 𝑟 =  ,  

 

 𝑟 =  ,  

 

 𝑡 =  ,  

 

 𝑡 =
√

 .  

 
As a by-product of our efforts we have succeeded in deriving the Fresnel equations for 
oblique reflection from a medium with a complex permittivity. 

Obtaining the total fields from Eq. (35) is now straightforward as all the 𝐞 and 𝐚 
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vectors are known. Setting 𝑎 = 1 and 𝑎 = 0, for s-polarization we find 
 

 𝐄0(𝑧) =

⎩
⎪
⎨

⎪
⎧ 𝑒 + 𝑟 𝑒

0
1
0

  for 𝑧 < 0,

𝑡 𝑒
0
1
0

   for 𝑧 > 0,

      (36) 

 
whereas setting 𝑎 = 0 and 𝑎 = 1 for p-polarization, 
 

 𝐄0(𝑧) =

⎩
⎪
⎨

⎪
⎧

𝑘
0

−𝑘
+ 𝑟

−𝑘′
0

−𝑘
  for 𝑧 < 0,

𝑡
√

𝑘′′
0

−𝑘
  for 𝑧 > 0.

    (37) 

 
 
Solution for the perturbed case 
 
The equation (33) to be solved is 
 
 𝐿(𝑘 ) + 𝑘 𝜀̃ (𝑧) + 𝜀̃ (𝑧) 𝐄(𝑧) = 0, 
 
where, as in Section 2, we have again split 𝜀̃(𝑧) into homogeneous and inhomogeneous 
parts. This equation can be solved with the help of a 33 Green’s matrix 𝐺(𝑧, 𝑧′) that 
satisfies 
 
 [𝐿(𝑘 ) + 𝑘 𝜀̃ (𝑧)]𝐺(𝑧, 𝑧′) = −𝐈𝛿(𝑧 − 𝑧 ),     (38) 
 
together with the above solutions for 𝐄 (𝑧) to the equation 
 
 [𝐿(𝑘 ) + 𝑘 𝜀̃ (𝑧)]𝐄 (𝑧) = 0, 
 
where 𝐈 is the 33 identity matrix. 

The perturbation to the permittivity can be written 𝜀̃ = 𝜀̃ + 𝜀̃ , where 𝜀̃  is 
caused by the photoelastic effect and 𝜀̃  by the displacement of the surface. From Eq. 
(26), we have 
 

 𝜀̃ (𝑧) = 𝜂(𝑧)

𝑃 0 0
0 𝑃 0
0 0 𝑃

 

 
where, as before, 𝜂  is the longitudinal component of strain ( 𝜂 = 𝜂 , all other 
components being zero). From Eq. (27), we have, for the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 components 
of 𝜀̃ , 
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 𝜀̃ =
(1 − 𝜀)𝐈    for 𝑢 > 0, 0 < 𝑧 <  𝑢,
(𝜀 − 1)𝐈    for 𝑢 < 0, 𝑢 < 𝑧 <  0,

0  elsewhere.                             

  

 
(This represents the top hat distribution of Fig. 16 at the surface, which is drawn for the 
case of 𝑢 > 0 at the 1-2 interface.) With identical reasoning to that leading to Eq. (31), 
we may write 
 
 𝐄(𝑧) ≅ 𝐄 (𝑧) + 𝑘 ∫ 𝐺(𝑧, 𝑧 )𝜀̃ (𝑧 )𝐄 (𝑧 )𝑑𝑧   

        ≅ 𝐄 (𝑧) + 𝑘 ∫ 𝐺(𝑧, 𝑧 )𝜀̃ (𝑧 )𝐄 (𝑧 )𝑑𝑧 + 𝑘 (1 −

𝜀)𝑢𝐺(𝑧, −0)𝐄 (+0),          
  (39) 
 
where the last term in Eq. (39) has been specifically written for the case of outward 
motion (𝑢 < 0) in which part of medium 1 penetrates into the region of medium 0. The 
values for 𝑧  just greater and less than zero ( 𝑧 = +0  and z = −0 ) should be 
distinguished because of discontinuities in the field 𝐸  and in the Green’s function 𝐺 
at the interface, a problem that does not arise for normal incidence: the choice of 
𝐄 (+0) ensures the continuity in the z component of 𝐄  at 𝑧 = 0 because medium 1 is 
present at this point if 𝑢 < 0; in addition, the choice of 𝐺(𝑧, −0) is a result of 𝐺(𝑧, 𝑧 ) 
being integrated over 𝑧′ in medium 0, as it should be for 𝑢 < 0 (since the integral 
should be evaluated with 𝐺  obtained under the same conditions as the unperturbed 
problem for which 𝑢 = 0). In the case 𝑢 > 0 one should use 𝐄 (−0) and 𝐺(𝑧, +0) 
instead. It turns out, however, that 𝐺(𝑧, +0)𝐄 (−0)  =  𝐺(𝑧, −0)𝐄 (+0) and thus 
Eq. (39) can be used for any 𝑢  regardless of its polarity. 

The required Green’s matrices are given by  
 
 𝐺(𝑧, 𝑧 ; 𝑘 ) = 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎛

𝑖𝑘 𝑘

𝑘 (𝑘 + 𝜀𝑘 )
0

𝑖𝑘 𝑘

𝑘 (𝑘 + 𝜀𝑘 )

0
𝑖

𝑘 + 𝑘
0

𝑖𝑘 𝑘

𝑘 (𝑘 + 𝜀𝑘 )
0

𝑖𝑘

𝑘 (𝑘 + 𝜀𝑘 )⎠

⎟
⎟
⎟
⎞

𝑒    for  z < 0, 𝑧 > 0,         

 
 

⎝

⎜
⎜
⎜
⎛

𝑖𝑘 (𝑘 − 𝜀𝑘 )

2𝑘 (𝑘 + 𝜀𝑘 )
0

−𝑖𝑘 (𝑘 − 𝜀𝑘 )

2𝑘 (𝑘 + 𝜀𝑘 )

0
𝑖(𝑘 − 𝑘 )

2𝑘 (𝑘 + 𝑘 )
0

𝑖𝑘 (𝑘 − 𝜀𝑘 )

2𝑘 (𝑘 + 𝜀𝑘 )
0

−𝑖𝑘 (𝑘 − 𝜀𝑘 )

2𝑘 𝑘 (𝑘 + 𝜀𝑘 )⎠

⎟
⎟
⎟
⎞

𝑒 ( ) +                       

       

⎝

⎜
⎜
⎜
⎛

𝑖𝑘

2𝑘
0

𝑖𝑘

2𝑘
sgn(𝑧 − 𝑧)

0
𝑖

2𝑘
0

𝑖𝑘

2𝑘
sgn(𝑧 − 𝑧) 0

𝑖𝑘

2𝑘 𝑘 ⎠

⎟
⎟
⎟
⎞

𝑒 | | −
0 0 0
0 0 0
0 0 1

𝛿(𝑧′ − 𝑧)

𝑘
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           for 𝑧 < 0, 𝑧 < 0. 
 
These ranges of 𝑧 and 𝑧  suffice to solve the problem in hand. These Green’s matrices 
are also discussed in Refs. [24] and [59]. The reciprocity relation 𝐺(𝑧, 𝑧 ; 𝑘 ) =
𝐺 (𝑧 , 𝑧; −𝑘 ) can be shown to hold, where 𝑇 means the transpose of the matrix.  

The next step is to substitute for 𝐺 into Eq. (39) at a point 𝑧 < 0. The result for s-
polarization, including time dependence, is 
 

 
( )

=
( )( )

∫ 𝜂(𝑧 , 𝑡)𝑒 𝑑𝑧′ + 2𝑖𝑘 𝑢(𝑡) 

       = ∫ 𝜂(𝑧 , 𝑡)𝑒 𝑑𝑧′ + 2𝑖𝑘 𝑢(𝑡),   

 (40) 
 
and the result for p-polarization is 
 

 
( )

=
( )

∫ 𝜂(𝑧 , 𝑡)𝑒 𝑑𝑧′ + 2𝑖𝑘 𝑢(𝑡),  (41) 

 

where the components of 𝑘 , 𝑘 = 𝑘 − 𝑘  and 𝑘 = 𝜀𝑘 − 𝑘 , are determined 

by 𝑘 , 𝜀 and 𝑘 = 𝜔/𝑐. Equations (40) and (41) can be shown to be valid for either 
sign of 𝑢 . At normal incidence, for which 𝑘 = 0, 𝑘 = 𝑘 , and 𝑘 = 𝑘√𝜀 , both of 
these equations reduce to 
 

 
( )

= ∫ 𝜂(𝑧 , 𝑡)𝑒 √ 𝑑𝑧′ + 2𝑖𝑘𝑢(𝑡) 

 
Given that 𝑃 = 2𝑛𝑑𝑛/𝑑𝜂, this agrees with Eq. (9). The equation for 𝛿𝑟 𝑟⁄  involves 
both photoelastic constants 𝑃  and 𝑃  because 𝐄  has both 𝑥  and 𝑧 components, 
whereas the equation for 𝛿𝑟 𝑟⁄ , involves only 𝑃  because in this case 𝐄 has only a 𝑦 
component. Both equations have the same integral term as Eq. (9), but the difference 
lies in the complex prefactor and the wave number in the exponential that affect the 
time dependence of the observed signals (i.e. 𝜌 or 𝛿𝜙). The response to a strain pulse 
being reflected from the free surface inside the solid is thus qualitatively similar to the 
case for normal incidence. The frequency of the oscillations in the oscillatory term is, 
however, reduced to the value 𝑓 = 2𝑛𝑣 𝑐𝑜𝑠𝜃/𝜆 , where 𝜃  is the angle of optical 
incidence. 

Experiments on isotropic solids with oblique probe incidence allow us extra degrees 
of freedom. It has been suggested, for example, that by measuring both 𝛿𝑟 𝑟⁄  
and𝛿𝑟 𝑟⁄  one should be able to experimentally separate the photoelastic and surface 
displacement contributions.[45] The suggested method has been implemented as a 
interferometric setup to observe the surface displacement directly without 
contamination by the photoelastic effect.[46] Resolving the surface displacement 
contribution ∝ 𝑢(𝑡) has the advantage of directly probing the shape (i.e. the integral) of 
the strain pulse in the solid. This allows ultrafast diffusion processes to be investigated 
accurately. Another useful application is in the tomographic reconstruction of 
picosecond acoustic strain propagation by scanning the angle of probe incidence 𝜃, in 
which a modified oblique-incidence theory is used to account for incidence from a 
medium with a relative permittivity different from unity.[60]  
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Detection of off-diagonal perturbations to the permittivity tensor 
 
For arbitrarily cut anisotropic materials the allowed acoustic modes for a general 
propagation direction have in general both longitudinal and shear strain components. It 
is possible to generate these shear components as a consequence of the broken 
symmetry. The thermal expansion tensor does not have to be anisotropic for this to 
occur. If shear components are present one has to deal with off-diagonal elements in the 
perturbed permittivity tensor. Without going into great detail we will briefly review this 
problem with relation to picosecond shear pulse detection.[21, 58] A general treatment 
of transient light scattering including shear strain detection has been given in Ref. [24] 
based on Green’s functions. Another theoretical description of shear strain detection 
using a Jones matrix formalism has been given in Ref. [61].   

Consider as an example an anisotropic opaque substrate coated with a transparent 
isotropic film. This facilitates the analysis of the photoelastic detection process in the 
isotropic film, which supports only pure shear or pure longitudinal modes (as opposed 
to quasilongitudinal or quasishear modes of mixed polarization). In general, a 𝑧 -
propagating strain pulse in the isotropic film (originating from optical excitation of the 
opaque substrate) may have non-zero shear strain components 𝜂 = 2𝜂  and 𝜂 =

2𝜂 , and a longitudinal component 𝜂 = 𝜂 . These can modulate the relative 
permittivity tensor of the film according to the photoelastic effect through ∆𝜀 = 𝑃 𝜂  
[see discussion after Eq. (26)], an equation that now includes off-diagonal components. 
With the same notation as Section 2 and 3, and taking the photoelastic tensor for an 
isotropic solid,[38] 
 

 𝜀̃ =

𝑃 𝜂 0 𝑃 𝜂
0 𝑃 𝜂 𝑃 𝜂

𝑃 𝜂 𝑃 𝜂 𝑃 𝜂
 

        =

𝑃 𝜂 0 0
0 𝑃 𝜂 0
0 0 𝑃 𝜂

+ 𝑃

0 0 𝜂
0 0 𝜂
𝜂 𝜂 0

,   (42) 

 
where we have used 𝜀 = 𝜀 , 𝜀 = 2𝜀  etc., and 𝑃 , 𝑃 , and 𝑃 = (𝑃 − 𝑃 )/2 
are the photoelastic tensor components for an isotropic material (as explained in Section 
2). Since the coupling of 𝜀̃ to shear strain 𝜂  or 𝜂 ,  [the second term in Eq. (42) ] is 
off-diagonal and involves the suffix 𝑧, it will only couple to the 𝑧 component of the 
probe light electric field [as can be seen from Eq. (34)]. Therefore, p-polarized probe 
light must be involved (either in incidence or in reflection) to detect shear waves in 
isotropic materials under oblique incidence conditions. 

We can use Eq. (39) to calculate the perturbed electric fields corresponding to the 
shear strain assuming, as before, that the x axis lies within the plane of incidence. For s-
polarization, we obtain 
 

 𝐄(𝑧) ≅ 𝐄 (𝑧) −
( )( )

 
−𝑘′

0
−𝑘

∫ 𝜂 (𝑧 )𝑒 𝑑𝑧 , (43) 

 
Whereas for p-polarization, we obtain 
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 𝐄(𝑧) ≅ 𝐄 (𝑧) −
( )( )

0
1
0

∫ 𝜂 (𝑧 )𝑒 𝑑𝑧 ,  (44) 

 
where Eqs. (36) and (37) for 𝑧 < 0 respectively determine 𝐄 (𝑧) in Eqs. (43) and (44). 
These equations imply the following,: (i) only 𝜂  shear strain can be detected; (ii) the 
strain 𝜂  scatters s-polarized to p-polarized light and vice versa, as shown in Fig. 21; 
(iii) a first order change in 𝑅 (𝛿𝑅 ∝ 𝜂 ) can be obtained only by allowing the incident 
and reflected light to interfere (otherwise 𝛿𝑅 ∝ 𝜂 ). This interference is 
straightforward to arrange by mixing a portion of the incident probe light with the 
scattered light. In the case of plane shear waves reflecting at normal incidence from a 
free surface in an isotropic medium, there is no normal surface displacement, and so we 
do not have to contend with the contribution due to 𝜀̃  in this case. 
 

 
 
The analysis for optical strain detection in an anisotropic substrate is more complex. In 
general the shear strain can perturb both the diagonal and off-diagonal components of 
the permittivity tensor. Therefore there are no strict conditions on the choice of 
polarization for the probe light for the detection of shear strain in this case. For 
anisotropic media, an extra contribution to the perturbation of the permittivity arises 
because of induced local rotations of the solid that accompany any strain. This rotation 
contribution must also be taken into account in the theory. In addition, acoustic mode 
conversion at the interface needs to be accounted for. A general analysis method 
incorporating all these effects has been discussed using the Green’s function for an 
arbitrary anisotropic multilayer system.[24]  

The detection of shear strain was experimentally verified in a variety of systems.[21, 
62] Shear strain arising from 3D propagation effects has also been detected.[25, 63] 
Shear strain wave propagation in liquids has also been studied, following on from 
similar experiments for longitudinal waves in mercury.[64, 65] One can expect more 
interesting developments in this field. 
 
4. Conclusions 
 
In conclusion, this paper reviews the fundamentals of the generation and detection of 
picosecond strain pulses in solids. We explained in detail the shape of the acoustic 
echoes in both amplitude and phase for generation at the free surface of an opaque 

 
 
Fig. 21: Schematic diagram showing how a shear strain 𝜂 = 2𝜂  couples s-
polarized light to p-polarized light and vice versa. This example shows a shear pulse 
returning to the surface of a thin film on a substrate. 
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isotropic solid and for detection with normally-incident optical probe pulses. We 
extended the detection theory to isotropic multilayers using a Green’s function method, 
and applied this approach to a photonic crystal. The detection theory was further 
extended to handle probe light at oblique incidence, and this theory was applied to the 
detection of shear waves. Not everything could be covered in this article. For example, 
one area of rapid development is the field of nonlinear picosecond laser ultrasonics, 
involving the generation and detection of picosecond acoustic solitons or shock waves 
in crystalline solids using ultrashort light pulses.[66-70] Work in picosecond laser 
ultrasonics is progressing rapidly, and we can look forward to fascinating developments 
in this field. 
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