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Abstract. We consider the Lorentz model in a slab with two mass reservoirs

at the boundaries. We show that, in a low density regime, there exists a

unique stationary solution for the microscopic dynamics which converges to

the stationary solution of the heat equation, namely to the linear profile of the

density. In the same regime the macroscopic current in the stationary state

is given by the Fick’s law, with the diffusion coefficient determined by the

Green-Kubo formula.
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1. Introduction

One of the most important and challenging problem in the rigorous approach to

non-equilibrium Statistical Mechanics is the characterization of stationary nonequi-

librium states exhibiting transport phenomena such as energy or mass transport,

which are macroscopically described by Fourier’s and Fick’s law respectively. A

simple microscopic model to validate the Fick’s Law is the Lorentz gas, namely a

system of non interacting light particles in a distribution of scatterers, in contact
1
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with two mass reservoirs. One expects that under a suitable space-time scaling (hy-

drodynamical limit) the stationary mass current is proportional to the gradient of

the density. However the rigorous proof of that is a difficult and still open problem.

In this paper we propose a contribution in this direction in a situation of low

density. The system we study is the following. Consider the two-dimensional strip

Λ = (0, L) × R. In the left and in the right of the boundaries, {0} × R and {L} ×
R respectively, there are two mass reservoirs constituted by free point particles

at equilibrium at different densities ρ1, ρ2. Inside the strip there is a random

distribution of hard disks of radius ε, distributed according to a Poisson law with

density µε. Here ε is a small scale parameter and we let it go to zero. In the mean

time µε is diverging in such a way that µεε → ∞ and µεε
2 → 0. Therefore the

scatterer configuration is dilute.

The light particles are flowing through the boundaries, from right with density

ρ2 and from left with density ρ1 They are not interacting among themselves, but

are elastically reflected by the obstacles. Their mean free paths vanish as ε → 0,

but not too quickly. More precisely they can vanish at most as ε1−δ, 0 < δ < 1, in

order to have a dilute configuration of scatterers.

We expect that there exists a stationary state for which

(1.1) J ≈ −D∇ρ

where J is the mass current, ρ is the mass density and D > 0 is the diffusion

coefficient. Formula (1.1) is the well known Fick’s law which we want to prove in

the present context.

We underline preliminary that our result holds in a low-density regime. This

means that we can use the linear Boltzmann equation as a bridge between our

original mechanical system and the diffusion equation. This basic idea has been

used in [ESY] [BGS-R] [BNP] to obtain the heat equation from a particle system

in different contexts. It works once having an explicit control of the error in the

kinetic limit, which suggests the scale of times for which the diffusive limit can be

achieved. As a consequence the diffusion coefficient D is given by the Green-Kubo

formula for the kinetic equation at hand (namely linear Quantum Boltzmann for

[ESY], linear Boltzmann for [BGS-R], linear Landau for [BNP]). In the present

paper we work in a stationary situation for which we face new problems which will

be discussed later on.

The idea of using the linear Boltzmann equation for the Lorentz gas in not new.

In [LS] the authors consider exactly our system but with two thermal reservoirs at

different temperatures at the boundaries. The aim was to study the energy flux in a

stationary regime. However, as pointed out in [LS], due to the energy conservation

of a single elastic collision, the energy is not diffused, there is no local equilibrium

and hence the local temperature is not defined. As a consequence the Fourier’s law

fails to hold, at least in the conventional sense.
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This is the reason why we consider here the mass transport, being the heat

equation for the mass density the unique hydrodynamical equation.

It may be worth to mention that, for a suitable stochastic dynamics, the Fourier’s

law can indeed be derived, see [KMP], [GKMP].

Concerning the Fick’s law we mention the papers [LS1], [LS2], for the self-

diffusion of a tagged particle in a gas at equilibrium.

Our paper is organized as follows. The starting point is the transition from the

mechanical system to the Boltzmann equation in a low density regime. We follow

the classical analysis due to Gallavotti [G], complemented by an explicit analysis

of the bad events preventing the Markovianity, in the same spirit of [DP], [DR] .

This is necessary to reach a diffusive behavior on a longer time scale as in [BGS-R],

[BNP].

Moreover we point out that our initial boundary value problem presents a new

feature due to the presence of the first exit (stopping) time. This difficulty is

handled by an extension procedure which essentially reduces our problem to the

corresponding one in the whole space.

The transition from the mechanical system to the linear Boltzmann regime is

presented in Section 5.

However we are interested in a stationary problem. This is handled, more con-

veniently, in terms of a Neumann series to overcome problems connected with the

exchange of the limits t → ∞, ε → 0. To the best of our knowledge this is a new

tool. This analysis is presented in Section 3. The basic idea is that the explicit

solution of the heat equation and the control of the time dependent problem allow

us to characterize the stationary solution of the linear Boltzmann equation and this

turns out to be the basic tool to obtain the stationary solution of the mechanical

system which is the basic object of our investigation.

Finally the transition from Boltzmann to the diffusion equation is classical and

ruled out by the Hilbert expansion method which is presented in Section 4. This

step is discussed in detail, not only for completeness, but also because we need an

apparently new analysis in L∞, for the time dependent problem (needed for the

control of the Neumann series) and a L2 analysis for the stationary problem.

2. The model and main results

Let Λ ⊂ R2 be the strip (0, L)× R. We consider a Poisson distribution of fixed

hard disks (scatterers) of radius ε in Λ and denote by c1, . . . , cN ∈ Λ their centers.

This means that, given µ > 0, the probability density of finding N obstacles in a

bounded measurable set A ⊂ Λ is

(2.1) P( dcN ) = e−µ|A|
µN

N !
dc1 . . . dcN
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where |A| = measA and cN = (c1, . . . , cN ).

A particle in Λ moves freely up to the first instant of contact with an obstacle.

Then it is elastically reflected and so on. Since the modulus of the velocity of the

test particle is constant, we assume it to be equal to one, so that the phase space

of our system is Λ× S1.

We rescale the intensity µ of the obstacles as

µε = ε−1ηεµ,

where, from now on, µ > 0 is fixed and ηε is slowly diverging as ε → 0. More

precisely we make the following assumption.

Assumption 1. As ε→ 0, ηε diverges in such a way that

(2.2) ε
1
2 η6
ε → 0.

The behaviour (2.2) is dictated mostly by the recollision estimates in Section

5.3.

We denote by Pε the probability density (2.1) with µ replaced by µε. Eε will be

the expectation with respect to the measure Pε restricted on those configurations

of the obstacles whose centers do not belong to the disk of center x and radius ε.

For a given configuration of obstacles cN , we denote by T−tcN (x, v) the (backward)

flow with initial datum (x, v) ∈ Λ×S1 and define t−τ , τ = τ(x, v, t, cN ), as the first

(backward) hitting time with the boundary. We use the notation τ = 0 to indicate

the event such that the trajectory T−scN (x, v), s ∈ [0, t], never hits the boundary.

For any t ≥ 0 the one-particle correlation function reads

(2.3) fε(x, v, t) = Eε[fB(T−(t−τ)
cN (x, v))χ(τ > 0)] + Eε[f0(T−tcN (x, v))χ(τ = 0)],

where f0 ∈ L∞(Λ× S1) and the boundary value fB is defined by

fB(x, v) :=


ρ1M(v) if x ∈ {0} × R, v1 > 0,

ρ2M(v) if x ∈ {L} × R, v1 < 0,

with M(v) the density of the uniform distribution on S1 and ρ1, ρ2 > 0. Here v1

denotes the horizontal component of the velocity v. Without loss of generality we

assume ρ2 > ρ1. Since M(v) = 1
2π , from now on we will absorb it in the definition

of the boundary values ρ1, ρ2. Therefore we set

(2.4) fB(x, v) :=


ρ1 if x ∈ {0} × R, v1 > 0,

ρ2 if x ∈ {L} × R, v1 < 0.
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Remark. Here we allow overlapping of scatterers, namely the Poisson measure is

that of a free gas. It would also be possible to consider the Poisson measure re-

stricted to non-overlapping configurations, namely the Gibbs measure for a systems

of hard disks in the plane. However the two measures are asymptotically equivalent

and the result does hold also in the last case.

Note also that the dynamics T tcN is well defined only almost everywhere with

respect to Pε.

We are interested in the stationary solutions fSε of the above problem. More

precisely for any t ≥ 0 fSε (x, v) solves

(2.5) fSε (x, v) = Eε[fB(T−(t−τ)
cN (x, v))χ(τ > 0)] + Eε[fSε (T−tcN (x, v))χ(τ = 0)].

The main result of the present paper can be summarized in the following theorem.

Theorem 2.1. For ε sufficiently small there exists a unique L∞ stationary solution

fSε for the microscopic dynamics (i.e. satisfying (2.5)). Moreover, as ε→ 0

(2.6) fSε → %S ,

where %S is the stationary solution of the heat equation with the following boundary

conditions

(2.7)


%S(x) = ρ1, x ∈ {0} × R,

%S(x) = ρ2, x ∈ {L} × R.

The convergence is in L2((0, L)× S1).

Some remarks on the above Theorem are in order. The boundary conditions of

the problem depend on the space variable only through the horizontal component.

As a consequence, the stationary solution fSε of the microscopic problem, as well

as the stationary solution %S of the heat equation, inherits the same feature. This

justifies the convergence in L2((0, L) × S1) instead of in L2(Λ × S1). The explicit

expression for the stationary solution %S reads

(2.8) %S(x) =
ρ1(L− x1) + ρ2x1

L
,

where x1 is the horizontal component of the space variable x. We note that in

order to prove Theorem 2.1 it is enough to assume that ε
1
2 η5
ε → 0. The stronger

Assumption 1 is needed to prove Theorem 2.2 below.

Next we discuss the Fick’s law by introducing the stationary mass flux

(2.9) JSε (x) = ηε

∫
S1

v fSε (x, v) dv,
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and the stationary mass density

(2.10) %Sε (x) =

∫
S1

fSε (x, v) dv.

Note that JSε is the total amount of mass flowing through a unit area in a unit time

interval. Although in a stationary problem there is no typical time scale, the factor

ηε appearing in the definition of JSε , is reminiscent of the time scaling necessary to

obtain a diffusive limit.

Theorem 2.2 (Fick’s law). We have

(2.11) JSε +D∇x%Sε → 0

as ε → 0. The convergence is in D′(0, L) and D > 0 is given by the Green-Kubo

formula (see (3.12) below). Moreover

(2.12) JS = lim
ε→0

JSε (x),

where the convergence is in L2(0, L) and

(2.13) JS = −D∇%S = −D ρ2 − ρ1

L
,

where %S is the linear profile (2.8).

Observe that, as expected by physical arguments, the stationary flux JS does not

depend on the space variable. Furthermore the diffusion coefficient D is determined

by the behavior of the system at equilibrium and in particular it is equal to the

diffusion coefficient for the time dependent problem.

Remark (The scaling). We have formulated our result in macroscopic variables

x, t. Another point of view is to argue in terms of microscopic variables.

Let us set our problem in these variables denoted by (q, t′). This means that the

radius of the disks is unitary while the strip, seen in micro-variables, is (0, ε−1L)×R.

To deal with a low density situation, we rescale the density as ηεεµ, µ > 0 where

ηε is gently diverging. Note that in the usual Boltzmann-Grad limit ηε = 1. At

times of order ε−1, one particle has an average number of collisions of order ηε. At

larger times, namely of order ηεε
−1, we expect a diffusive behavior. Actually this

emerges from the linear Boltzmann equation (see equation (3.10) and Proposition

3.2 below) which is derived from the microscopic dynamics through the scaling

x = εq and t = εη−1
ε t′.

In this paper we consider a two dimensional case but our techniques apply in

higher dimensions as well since in this case the pathological events are less likely.

Moreover we consider the easier geometrical setting. However we believe that there

are no serious obstructions to extend our results to more general geometries.
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3. Proofs

In this section we prove Theorems 2.1 and 2.2, postponing the technical details

to the next sections. In order to prove Theorem 2.1 our strategy is the following.

We introduce the stationary linear Boltzmann equation

(3.1)


(
v · ∇x

)
hSε (x, v) = ηε LhSε (x, v),

hSε (x, v) = ρ1, x ∈ {0} × R, v1 > 0,

hSε (x, v) = ρ2, x ∈ {L} × R, v1 < 0,

where L is the linear Boltzmann operator defined as

(3.2) Lf(v) = µ

∫ 1

−1

dρ
[
f(v′)− f(v)

]
, f ∈ L1(S1)

with

(3.3) v′ = v − 2(n · v)n

and n = n(ρ) the outward normal to the hard disk (see Figure 1). Here ρ is the

impact parameter, namely ρ = sinα with α the angle of incidence.

Figure 1. Elastic reflection

Since the boundary conditions depend on the space variable only through the

horizontal component, the stationary solution hSε inherits the same feature, as well

as fSε and %S .

The strategy of the proof consists of two steps. First we prove that there exists

a unique hSε which converges, as ε → 0, to %S given by (2.8). See Proposition 3.3

below. Secondly we show that there exists a unique fSε asymptotically equivalent
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to hSε . See Proposition 3.6 below. This result is achieved by showing that the

memory effects of the mechanical system, preventing the Markovianity, are indeed

negligible.

Let hε be the solution of the problem

(3.4)



(
∂t + v · ∇x

)
hε(x, v, t) = ηε Lhε(x, v, t),

hε(x, v, 0) = f0(x, v), f0 ∈ L∞(Λ× S1),

hε(x, v, t) = ρ1, x ∈ {0} × R, v1 > 0, t ≥ 0,

hε(x, v, t) = ρ2, x ∈ {L} × R, v1 < 0, t ≥ 0.

Then hε has the following explicit representation

hε(x, v, t) =
∑
N≥0

(µεε)
N
∫ t

0

dt1 . . .

∫ tN−1

0

dtN

∫ 1

−1

dρ1 . . .

∫ 1

−1

dρN χ(τ < tN )χ(τ > 0) e−2µεε (t−τ) fB(γ−(t−τ)(x, v))+

+
∑
N≥0

e−2µεε t (µεε)
N
∫ t

0

dt1 . . .

∫ tN−1

0

dtN

∫ 1

−1

dρ1 . . .

∫ 1

−1

dρN χ(τ = 0) f0(γ−t(x, v)),

(3.5)

with fB defined in (2.4). Given x, v, t1 . . . tN , ρ1 . . . ρN , γ−t(x, v) denotes the tra-

jectory whose position and velocity are

(x− v(t− t1)− v1(t1 − t2) · · · − vN tN , vN ).

The transitions v → v1 → v2 · · · → vN are obtained by means of a scatter-

ing with an hard disk with impact parameter ρi via (3.3). As before t − τ ,

τ = τ(x, v, t1 . . . , tN , ρ1 . . . ρN ), is the first (backward) hitting time with the bound-

ary. We remind that µεε = µηε.

In formula (3.5) hε(t) results as the sum of two contributions, one due to the

backward trajectories hitting the boundary and the other one due to the trajectories

which never leave Λ. Therefore we set

hε(x, v, t) = houtε (x, v, t) + hinε (x, v, t),
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where houtε and hinε are respectively the first and the second sum on the right hand

side of (3.5). Observe that houtε solves

(3.6)



(
∂t + v · ∇x

)
houtε (x, v, t) = ηε Lhoutε (x, v, t),

houtε (x, v, 0) = 0, x ∈ Λ,

houtε (x, v, t) = ρ1, x ∈ {0} × R, v1 > 0, t ≥ 0,

houtε (x, v, t) = ρ2, x ∈ {L} × R, v1 < 0, t ≥ 0.

We denote by S0
ε (t) the Markov semigroup associated to the second sum, namely

(S0
ε (t)`)(x, v) =

∑
N≥0

e−2µεε t (µεε)
N
∫ t

0

dt1 . . .

∫ tN−1

0

dtN

∫ 1

−1

dρ1 . . .

∫ 1

−1

dρN χ(τ = 0) `(γ−t(x, v)),

with ` ∈ L∞(Λ× S1). In particular

hinε (t) = S0
ε (t)f0.

We observe that hSε , solution of (3.1), satisfies, for t0 > 0

hSε = houtε (t0) + S0
ε (t0)hSε ,

so that we can formally express hSε as the Neumann series

(3.7) hSε =
∑
n≥0

(S0
ε (t0))nhoutε (t0).

Remark. Note that hSε is a fixed point of the map f0 → hε(t0) solution to (3.4).

Hence hSε belongs to a periodic orbit, of period t0, of the flow f0 → hε(t). But

this orbit consists of a single point because the Neumann series, being convergent,

identifies a single element. This implies that hSε is constant with respect to the flow

(3.4) and hence stationary.

We now establish existence and uniqueness of hSε by showing that the Neumann

series (3.7) converges. In order to do it we need to extend the action of the semi-

group S0
ε (t) to the space L∞(R2 × S1), namely

S0
ε (t)`0(x, v) = χΛ(x)

∑
N≥0

e−2µεε t (µεε)
N
∫ t

0

dt1 . . .

∫ tN−1

0

dtN

∫ 1

−1

dρ1 . . .

∫ 1

−1

dρN χ(τ = 0) `0(γ−t(x, v)),

(3.8)

for any `0(x, v) ∈ L∞(R2 × S1). Here χΛ is the characteristic function of Λ.

Proposition 3.1. There exists ε0 > 0 such that for any ε < ε0 and for any

`0 ∈ L∞(R2 × S1) we have

(3.9) ||S0
ε (ηε)`0||∞ ≤ α ||`0||∞, α < 1.
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As a consequence there exists a unique stationary solution hSε ∈ L∞(Λ× S1) satis-

fying (3.1).

To prove Proposition 3.1 we have first to exploit the diffusive limit of the linear

Boltzmann equation in a L∞ setting and in the whole space. We introduce h̃ε :

R2 × S1 × [0, T ] → R+ the solution of the following rescaled linear Boltzmann

equation

(3.10)


(
∂t + ηε v · ∇x

)
h̃ε = η2

ε Lh̃ε

h̃ε(x, v, 0) = %0(x),

with %0 is a smooth function of the variable x only (local equilibrium).

We can prove

Proposition 3.2. Let h̃ε be the solution of (3.10), with an initial datum %0 ∈
C∞0 (R2). Then, as ε→ 0, h̃ε converges to the solution of the heat equation

(3.11)


∂t%−D∆% = 0

%(x, 0) = %0(x),

where D is given by the Green-Kubo formula

(3.12) D =
1

4π

∫
S1

dv v ·
(
− L

)−1
v.

The convergence is in L∞([0, T ];L∞(R2 × S1)).

We postpone the proof of Proposition (3.2) to Section 4.1. The proof relies on the

Hilbert expansion and, to make it work, we need smoothness of the initial datum

%0.

Proof of Proposition 3.1. We can rewrite (3.8) as

S0
ε (t)`0(x, v) = χΛ(x)

∑
N≥0

e−2µεε t (µεε)
N
∫ t

0

dt1 . . .

∫ tN−1

0

dtN

∫ 1

−1

dρ1 . . .

∫ 1

−1

dρN χ(τ = 0) `0(γ−t(x, v))χΛ(γ−tv (x)),

where γ−tv (x) = x − v(t − t1) − v1(t1 − t2) · · · − vN tN is the first component of

γ−t(x, v). Note that the insertion of χΛ(γ−tv (x)) is due to the constraint χ(τ = 0).

Therefore

S0
ε (t)`0 ≤ ||`0||∞

∑
N≥0

e−2µεε t (µεε)
N
∫ t

0

dt1 . . .

∫ tN−1

0

dtN

∫ 1

−1

dρ1 . . .

∫ 1

−1

dρN χΛ(γ−tv (x)).



DERIVATION OF THE FICK’S LAW. 11

We denote by χδΛ a mollified version of χΛ, namely χδΛ ∈ C∞0 (R2), χδΛ(x) ≤ 1,

χδΛ ≥ χΛ and supp(χδΛ) ⊂ (−δ, L+ δ)× R. Therefore

S0
ε (t)`0 ≤ ||`0||∞

∑
N≥0

e−2µεε t (µεε)
N
∫ t

0

dt1 . . .

∫ tN−1

0

dtN

∫ 1

−1

dρ1 . . .

∫ 1

−1

dρN χ
δ
Λ(γ−tv (x)).

(3.13)

The series on the right hand side of (3.13) defines a function F which solves (∂t + v · ∇x)F (x, v, t) = ηεLF (x, v, t),

F (x, v, 0) = χδΛ(x).

Moreover, defining Gε(x, v, t) := F (x, v, ηεt) then Gε solves (3.10) with initial da-

tum %0 = χδΛ. By virtue of Proposition 3.2

‖Gε(1)− %δ(1)‖∞ ≤ ω(ε)

where %δ(t) is the solution of (3.11) with initial datum χδΛ. Here and in the sequel

ω(ε) denotes a positive function vanishing with ε. On the other hand

%δ(x, 1) =

∫
R2

dy
1

4πD
e−
|x−y|2

4D χδΛ(y) =

∫ L+δ

−δ
dy1

1√
4πD

e−
|x1−y1|

2

4D < 1.

Therefore for ε small enough

||S0
ε (ηε)`0||∞ ≤ ||`0||∞||S0

ε (ηε)χ
δ
Λ||∞

≤ ||`0||∞(‖Gε(1)− %δ(1)‖∞ + ||%δ(1)||∞)

≤ ||`0||∞(ω(ε) + ||%δ(1)||∞) < α||`0||∞, α < 1.

We are using (3.13) for t = ηε.

Finally, since α < 1, by (3.7) we get

||hSε ||∞ ≤
1

(1− α)
||houtε (ηε)||∞ ≤

1

(1− α)
ρ2.

�

As we will discuss later on, we find convenient to obtain the stationary solution

hSε via the Neumann series (3.7) rather than as the limit of hε(t) as t → ∞. For

further details see Remark 3.7.

Remark (L∞ vs. L2). The control of the Neumann series (3.7) in a L∞ setting

seems quite natural. This is provided by the bound (3.9). It basically means that for

a time ηε the probability of a backward trajectory to fall out of Λ is strictly positive.

To prove rigorously this rather intuitive fact, we use Proposition 3.2 and explicit

properties of the solution of the heat equation. The price we pay is to develop an

L∞ Hilbert expansion analysis (see Section 4.1) which is, however, interesting in

itself. On the other hand the use of the well known L2 version of Proposition 3.2
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requires a L2 control of the Neumann series which seems harder, weaker and less

natural.

The last step is the proof of the convergence of hSε to the stationary solution of

the diffusion problem

(3.14)


∂t%−D∆% = 0

%(x, t) = ρ1, x ∈ {0} × R, t ≥ 0

%(x, t) = ρ2, x ∈ {L} × R, t ≥ 0,

with the diffusion coefficient D given by the Green-Kubo formula (3.12). We remind

that the stationary solution %S to the problem (3.14) has the following explicit

expression

(3.15) %S(x) =
ρ1(L− x1) + ρ2x1

L
,

where x = (x1, x2).

By using again the Hilbert expansion technique (this time in L2) we can prove

Proposition 3.3. Let hSε ∈ L∞((0, L) × S1) be the solution to the problem (3.1).

Then

(3.16) hSε → %S

as ε→ 0, where %S(x) is given by (3.15). The convergence is in L2((0, L)× S1).

The proof is postponed to Section 4.2.

This concludes our analysis of the Markov part of the proof.

Recalling the expression (2.3) for the one-particle correlation function fε, we

introduce a decomposition analogous to the one used for hε(t), namely

(3.17) foutε (x, v, t) := Eε[fB(T−(t−τ)
cN (x, v))χ(τ > 0)]

and

(3.18) f inε (x, v, t) := Eε[f0(T−tcN (x, v))χ(τ = 0)],

so that

fε(x, v, t) = foutε (x, v, t) + f inε (x, v, t).

Here foutε is the contribution due to the trajectories that do leave Λ at times smaller

than t, while f inε is the contribution due to the trajectories that stay internal to Λ.

We introduce the flow F 0
ε (t) such that

(F 0
ε (t)`)(x, v) = Eε[`(T−tcN (x, v))χ(τ = 0)], ` ∈ L∞(Λ× S1)

and remark that F 0
ε is just the dynamics ”inside” Λ. In particular f inε (t) = F 0

ε (t)f0.
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To detect the stationary solution fSε for the microscopic dynamics we proceed

as for the Boltzmann evolution (see (2.5)) by setting, for t0 > 0,

fSε = foutε (t0) + F 0
ε (t0)fSε

and we can formally express the stationary solution as the Neumann series

(3.19) fSε =
∑
n≥0

(F 0
ε (t0))nfoutε (t0).

To show the convergence of the series (3.19) and hence existence of fSε we first need

the following two Propositions.

Proposition 3.4. Let T > 0. For any t ∈ (0, T ]

(3.20) ‖foutε (t)− houtε (t)‖L∞(Λ×S1) ≤ Cε
1
2 η3

ε t
2,

where houtε solves (3.6).

Proposition 3.5. For every `0 ∈ L∞(Λ× S1)

(3.21) ||
(
F 0
ε (t)− S0

ε (t)
)
`0||∞ ≤ C||`0||∞ ε

1
2 η3
εt

2, ∀t ∈ [0, T ].

The proof of the above two Propositions is postponed to Section 5. As a corollary

we can prove

Proposition 3.6. For ε sufficiently small there exists a unique stationary solution

fSε ∈ L∞(Λ× S1) satisfying (2.5). Moreover

(3.22) ‖hSε − fSε ‖∞ ≤ Cε
1
2 η5
ε .

Proof. We prove the existence and uniqueness of the stationary solution by showing

that the Neumann series (3.19) converges, namely

(3.23) ||F 0
ε (ηε)f0||∞ ≤ α′ ||f0||∞, α′ < 1.

This implies

||fSε ||∞ ≤
1

(1− α′)
||foutε (ηε)||∞ ≤

1

(1− α′)
ρ2, α′ < 1.

In fact, since

||F 0
ε (ηε)f0||∞ ≤ ||

(
F 0
ε (ηε)− S0

ε (ηε)
)
f0||∞ + ||S0

ε (ηε)f0||∞,

thanks to Propositions 3.1 and 3.5 we get

||F 0
ε (ηε)f0||∞ ≤ ||f0||∞Cε

1
2 η5
ε + ||S0

ε (ηε)f0||∞

≤ (Cε
1
2 η5
ε + α)||f0||∞ ≤ α′||f0||∞,

(3.24)

with α′ < 1, for ε sufficiently small (remind that ε
1
2 η5
ε → 0 as ε → 0). This

guarantees the existence and uniqueness of the microscopic stationary solution fSε .
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In order to prove (3.22) we compare the two Neumann series representing fSε
and hSε ,

‖fSε − hSε ‖∞ = ‖
∑
n≥0

(
(F 0
ε (ηε))

nfoutε (ηε)− (S0
ε (ηε))

nhoutε (ηε)
)
‖∞

≤
∑
n≥0

‖(F 0
ε (ηε))

n(foutε (ηε)− houtε (ηε))‖∞

+
∑
n≥0

‖
(
(F 0
ε (ηε))

n − (S0
ε (ηε))

n
)
houtε (ηε)‖∞.

(3.25)

By (3.24), using Proposition 3.4, the first sum on the right hand side of (3.25) is

bounded by

1

1− α′
‖foutε (ηε)− houtε (ηε)‖∞ ≤ Cε

1
2 η5
ε .

As regard to the second sum on the right hand side of (3.25) we have∑
n≥0

‖
(
(F 0
ε (ηε))

n − (S0
ε (ηε))

n
)
houtε (ηε)‖∞

≤
∑
n≥0

n−1∑
k=0

‖(F 0
ε (ηε))

n−k−1
(
F 0
ε (ηε)− S0

ε (ηε)
)
(S0
ε (ηε))

khoutε (ηε)‖∞

≤
∑
k,`≥0

‖(F 0
ε (ηε))

`
(
F 0
ε (ηε)− S0

ε (ηε)
)
(S0
ε (ηε))

khoutε (ηε)‖∞

≤ C ‖houtε (ηε)‖∞ε
1
2 η5
ε ,

by virtue of (3.9), (3.24) and (3.21). This concludes the proof of Proposition 3.6.

�

At this point the proof of Theorem 2.1 follows from Propositions 3.3 and 3.6.

Remark 3.7. One could try to characterize hSε and fSε in terms of the long (macro-

scopic) time asymptotics of hε(t) and fε(t). The trick of expressing both stationary

states by means of Neumann series avoids the problem of controlling the convergence

rates, as t→∞, with respect to the scale parameter ε.

We conclude by proving Theorem 2.2 which actually is a Corollary of the previous

analysis.

Proof of Theorem 2.2. By standard computations (see e.g. Section 4.2) we have

hSε = %S +
1

ηε
h(1) +

1

ηε
Rηε ,

where

h(1)(v) = L−1(v · ∇x%S) =
ρ2 − ρ1

L
L−1(v1)
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and, as we shall see in Section 4.2, Rηε = O( 1√
ηε

) in L2((0, L) × S1). Therefore,

since
∫
S1
v%Sdv = 0,

(3.26) ηε

∫
S1

vhSε (x, v)dv = −D∇x%S +O(
1
√
ηε

),

where D is given by (3.12). By Theorem 2.1 the right hand side of (3.26) is

close to D∇x%Sε in D′((0, L) × S1), where %Sε is given by (2.10). On the other

hand, by Proposition 3.6 and Assumption 1, the left hand side of (3.26) is close

in L∞((0, L) × S1) to JSε (x) defined in (2.9). This concludes the proof of (2.11).

Moreover (2.12) and (2.13) follow by (3.26). �

4. The Hilbert expansions

4.1. Proof of Proposition 3.2. Let h̃ε : R2 × S1 × [0, T ] → R+ be the solution

of the problem (3.10) that we recall here for the reader’s convenience

(4.1)


(
∂t + ηε v · ∇x

)
h̃ε = η2

ε Lh̃ε

h̃ε(x, v, 0) = %0(x),

where %0 is a smooth function of the variable x only. We will prove that h̃ε converges

to the solution of the heat equation by using the Hilbert expansion technique (see

e.g. [EP] and [CIP]), namely we assume that h̃ε has the following form

h̃ε(x, v, t) = h(0)(x, t) +

+∞∑
k=1

(
1

ηε

)k
h(k)(x, v, t),

where the coefficients h(k) are independent of ηε. The well known idea is to deter-

mine them recursively, by imposing that h̃ε is a solution of (4.1). Comparing terms

of the same order we get

v · ∇xh(0) = Lh(1)

∂t h
(k) + v · ∇xh(k+1) = Lh(k+2), k ≥ 0.

We require h(0) to satisfy the same initial condition as the whole solution h̃ε, namely

h(0)(x, 0) = %0(x).

First we will show that each coefficient h(k)(t) ∈ L∞(R2 × S1). We discuss in

detail the cases k = 0, 1, 2. The same procedure can be iterated for any k. The

determination of the other coefficients h(k) is standard and we do not discuss it

further. Then we will show that, in the truncated expansion at order η−2
ε , namely

(4.2) h̃ε(x, v, t) = h(0)(x, t) +
1

ηε
h(1)(x, v, t) +

1

η2
ε

h(2)(x, v, t) +
1

ηε
Rηε(x, v, t),

the remainder Rηε is uniformly bounded in L∞. Therefore h̃ε converges to h(0) in

L∞ for ηε →∞.

In order to prove that h(k)(t) ∈ L∞(R2 × S1) we need the following Lemma.
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Lemma 4.1. Let L be the linear Boltzmann operator defined in (3.2). Then for

any g ∈ L∞(S1) such that

∫
S1

dv g(v) = 0

(4.3) ||L−1g||∞ ≤ C||g||∞,

with C > 0.

Proof. We want to solve the equation Lh = g, with

∫
S1

dv g(v) = 0. The operator

L can be written as L = 2µ(K − I), where

(Kf)(v) :=
1

2

∫ 1

−1

dρ f(v′)

is self-adjoint in L2(S1). Therefore

h = − g

2µ
+Kh

and, by iterating,

h = − g

2µ
− Kg

2µ
− · · · − Kng

2µ
+Kn+1h, ∀n ≥ 0.

Then L−1 can be formally defined through the Neumann series

h = L−1g := − 1

2µ

∞∑
n=0

Kng.

In order to prove that the series converges we need to show that

||Kg||∞ ≤ β ||g||∞, β < 1,(4.4) ∫
S1

dv (Kg)(v) = 0,(4.5)

for any g ∈ L∞(S1) such that

∫
S1

dv g(v) = 0. Indeed (4.4) and (4.5) imply

||L−1g||∞ ≤
1

2µ(1− β)
||g||∞.

The self-adjointness of K and the fact that K1 = 1 imply (4.5).

We focus on the proof of (4.4). For any given v, fix a reference system in such

a way that v = (− cos ζ,− sin ζ), with ζ ∈ [−π, π) (see Figure 1). Then for every

bounded function g with zero average we have

(Kg)(v) =
1

2

∫ π
2

−π2
dα

dρ

dα
g(cos(ζ + 2α), sin(ζ + 2α))

=
1

2

∫ π
2

−π2
dα cosα g(cos(ζ + 2α), sin(ζ + 2α)),

where we used that ρ = sinα. Observe that for any γ ∈ [−π, π)∫ π
2

−π2
dα g(cos(γ + 2α), sin(γ + 2α)) =

1

2

∫ π

−π
dα g(cosα, sinα) = 0.
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Then we can write

(Kg)(v) =
1

2

∫ π
2

−π2
dα (cosα− 1) g(cos(ζ + 2α), sin(ζ + 2α)),

which implies

|(Kg)(v)| ≤ ||g||∞
1

2

∫ π
2

−π2
dα (1− cosα) = β ||g||∞, β < 1.

�

Next we consider the first two equations arising from the Hilbert expansion,

namely

(i) v · ∇xh(0) = Lh(1),

(ii) ∂th
(0) + v · ∇xh(1) = Lh(2).

We remind that the linear Boltzmann operator L on L2(S1) is selfadjoint and has

the form L = 2µ(K−I) where K is a compact operator. Therefore, by the Fredholm

alternative, equation (i) has a solution if and only if the left hand side belongs to

(KerL)⊥. Since the null space of L is constituted by the constant functions, it

follows that

(KerL)⊥ = {g ∈ L2(S1) :

∫
S1

g(v) dv = 0}

and, in order to solve equation (i), we have to show that v · ∇xh(0) ∈ (KerL)⊥.

This follows by the fact that v · ∇xh(0) is an odd function of v. Then we can invert

the operator L and set

(4.6) h(1)(x, v, t) = L−1(v · ∇xh(0)(x, t)) + ξ(1)(x, t),

where ξ(1)(x, t) belongs to the kernel of the operator L. On the other hand, since

L−1 preserves the parity (see e.g. [EP]), L−1(v · ∇xh(0)) is an odd function of the

velocity.

We integrate equation (ii) with respect to the uniform measure on S1. Since∫
S1
dvLh(2) = 0, using equation (4.6), we obtain

∂t h
(0) +

1

2π

∫
S1

dv v · ∇x
(
L−1v · ∇xh(0)

)
= 0.

Notice that the term ξ(1)(x, t) gives no contribution since
∫
S1
dv v ·∇xξ(1)(x, t) = 0.

We define the 2×2 matrix Dij = 1
2π

∫
S1
dv vi(−L)−1vj and we observe that Dij = 0

for i 6= j and D11 = D22 = D > 0, where

D =
1

4π

∫
S1

dv v ·
(
− L

)−1
v.
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Therefore h(0) satisfies the heat equation

(4.7)


∂t h

(0) −D∆xh
(0) = 0,

h(0)(x, 0) = %0(x).

In particular h(0)(t) ∈ L∞(R2 × S1) for any t ≥ 0.

Let us consider equation (ii). By integrating with respect to the uniform measure

on S1 the left hand side vanishes, due to equation (4.7). Therefore we can invert

the operator L to obtain

h(2)(x, v, t) = L−1
(
∂th

(0)(x, t) + v · ∇x(L−1(v · ∇x)h(0)(x, t))
)

+

+ L−1
(
v · ∇xξ(1)(x, t)

)
+ ξ(2)(x, t),(4.8)

where ξ(2)(x, t) belongs to the kernel of the operator L.

The equation for h(1) reads

(4.9) ∂t h
(1) + v · ∇xh(2)(x, v, t) = Lh(3).

Therefore, integrating with respect to the uniform measure on S1, using (4.8), we

get the following closed equation for ξ(1)(x, t)

(4.10) ∂t ξ
(1) −D∆xξ

(1) = 0.

Since there are no restrictions on the initial condition, we make the simplest choice

ξ(1)(x, 0) = 0. Therefore ξ(1)(x, t) = 0 for any t ≥ 0 and hence we have the following

expression for h(1)

h(1)(x, v, t) = L−1(v · ∇xh(0)(x, t)).

Thanks to Lemma 4.1 and the smoothness of h(0) we have

sup
t∈[0,T ]

‖h(1)(t)‖∞ ≤
1

2µ(1− β)
sup
t∈[0,T ]

‖∇xh(0)(t)‖∞ < +∞.

The expression for the second order coefficient h(2) now reads

h(2)(x, v, t) = h
(2)
⊥ (x, v, t) + ξ(2)(x, t),

where we set

h
(2)
⊥ (x, v, t) = L−1

(
∂th

(0)(x, t) + v · ∇x(L−1(v · ∇x)h(0)(x, t))
)
.

We observe that, since h(0) solves the heat equation (4.7), using Lemma 4.1 it

follows that h
(2)
⊥ ∈ L∞

(
[0, T ];L∞(R2 × S1)

)
. Moreover any spatial derivative of

h
(2)
⊥ belongs to L∞

(
[0, T ];L∞(R2 × S1)

)
as well.

By using (4.10), the left hand side of (4.9) belongs to (KerL)⊥. Therefore we

can invert operator L obtaining

h(3)(x, v, t) = L−1
(
∂t h

(1) + v · ∇xh(2)(x, v, t)
)

+ ξ(3)(x, t),

= L−1
(
∂t L−1(v · ∇xh(0)(x, t)) + v · ∇xh(2)(x, v, t)

)
+ ξ(3)(x, t),



DERIVATION OF THE FICK’S LAW. 19

where ξ(3)(x, t) ∈ KerL. The equation for h(2) reads

∂t h
(2) + v · ∇xh(3) = Lh(4).

Integrating with respect to the uniform measure on S1 and using the above expres-

sions for h(3) and h(2) we find the following equation for ξ(2)(x, t)

(4.11) ∂t ξ
(2) +D∆xξ

(2) = S(x, t),

where

S(x, t) = − 1

2π

∫
S1

dv v · ∇x L−1
(
∂t L−1(v · ∇xh(0)(x, t))

)
− 1

2π

∫
S1

dv v · ∇x L−1
(
v · ∇x h(2)

⊥ (x, v, t)
)
.

We notice that S ∈ L∞
(
[0, T ];L∞(R2)

)
. As before we make the assumption

ξ(2)(x, 0) = 0, then ξ(2) ∈ L∞
(
[0, T ];L∞(R2)

)
and its spatial derivatives as well.

Now we consider the truncated expression (4.2). The first three coefficients are

uniformly bounded. The remainder Rηε satisfies

(4.12)
(
∂t + ηε v · ∇x

)
Rηε = η2

εLRηε −Aηε ,

with initial condition

Rηε(x, v, 0) =: R̄ηε(x, v) = −h(1)(x, v, 0)− 1

ηε
h(2)(x, v, 0).

Here Aηε = ∂th
(1) + 1

ηε
∂t h

(2) + v · ∇xh(2), then Aηε ∈ L∞
(
[0, T ];L∞(R2 × S1)

)
.

Note that the smoothness hypothesis on %0 ensures that R̄ηε ∈ L∞.

We denote by Sηε(t) the semigroup associated to the generator −ηε
(
v ·∇x−ηεL

)
.

By equation (4.12) we get

Rηε(t) = Sηε(t)Rηε(0) +

∫ t

0

ds Sηε(t− s)Aηε(s).

By the usual series expansion for Sηε(t) we obtain

Rηε(x, v, t) =
∑
N≥0

e−2µηε
2t (µηε)

N
∫ ηεt

0

dt1 . . .

∫ tN−1

0

dtN

∫ 1

−1

dρ1 . . .

∫ 1

−1

dρN R̄ηε(γ
−ηεt(x, v))+

+

∫ t

0

ds
∑
N≥0

e−2µηε
2(t−s) (µηε)

N
∫ ηε(t−s)

0

dt1 . . .

∫ tN−1

0

dtN

∫ 1

−1

dρ1 . . .

∫ 1

−1

dρN Aηε(γ
−ηε(t−s)(x, v), s).

Therefore

sup
t∈[0,T ]

‖Rηε(t)‖∞ ≤ ‖R̄ηε‖∞ + T sup
t∈[0,T ]

‖Aηε(t)‖∞ ≤ C < +∞.

2
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4.2. Proof of Proposition 3.3. The proof makes use of the Hilbert expansion in

L2 (see e.g. [EP] and [CIP]). Indeed we follow the same strategy of the previous

subsection. Let hSε be the solution of the following equation
v1∂x1h

S
ε (x1, v) = ηε LhSε (x1, v),

hSε (x1, v) = ρ1, x1 = 0, v1 > 0,

hSε (x1, v) = ρ2, x1 = L, v1 < 0.

We assume that hSε has the following form

hSε (x1, v) = h(0)(x1) +

+∞∑
k=1

(
1

ηε

)k
h(k)(x1, v).

We require h(0) to satisfy the same boundary conditions as the whole solution hSε ,

namely

(4.13)


h(0)(x1) = ρ1, x1 = 0,

h(0)(x1) = ρ2, x1 = L.

Comparing terms of the same order we get

v1∂x1
h(k) = Lh(k+1), k ≥ 0.

The first two equations read

(i) v1∂x1
h(0) = Lh(1),

(ii) v1∂x1
h(1) = Lh(2),

which have a solution if and only if the left hand side belongs to (KerL)⊥ = {g ∈
L2(S1) :

∫
S1
g(v) dv = 0}. Since v1∂x1h

(0) is an odd function of v we can invert

the operator L and set

(4.14) h(1)(x1, v) = L−1(v1∂x1
h(0)) + ξ(1)(x1),

where ξ(1) ∈ KerL. We integrate equation (ii) with respect to the uniform measure

on S1. Observing that
∫
S1
dvLh(2) = 0, by (4.14) we obtain(∫
S1

dv v1L−1v1

)
∂2
x1
h(0) = 0,

with the boundary conditions (4.13). Therefore

h(0)(x1) =
ρ1(L− x1) + ρ2x1

L
.

With the same strategy as the previous subsection, one can prove that ξ(1)(x1) ≡ 0.

Hence

(4.15) h(1)(x1, v) = h(1)(v1) =

(
ρ2 − ρ1

L

)
L−1(v1).
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Moreover by equation (ii) we get

h(2)(x1, v) = L−1
(
v1∂x1h

(1)(x1, v)
)

+ ξ(2)(x1)

= ξ(2)(x1),

where in the last step we used (4.15). By iterating the same procedure of the

previous subsection, since in this case the source term in (4.11) is zero, we have that

ξ(2) satisfies ∂2
x1
ξ(2) = 0. We choose zero boundary conditions so that ξ(2)(x1) ≡ 0.

Then

h(2)(x1, v) ≡ 0.

We consider the truncated expansion

(4.16) hSε = h(0) +
1

ηε
h(1) +

1

ηε
Rηε .

The remainder Rηε satisfies

(4.17) v1∂x1
Rηε = ηεLRηε .

We required h(0) to satisfy the same boundary conditions as the whole solution hSε ,

then the boundary conditions for Rηε read
Rηε(x1, v) = −

(
ρ2 − ρ1

L

)
L−1(v1), x1 = 0, v1 > 0,

Rηε(x1, v) = −
(
ρ2 − ρ1

L

)
L−1(v1), x1 = L, v1 < 0.

The unique solution of the above problem is

Rηε(x1, v) =− e
ηε
v1
x1L

(
ρ2 − ρ1

L

)
L−1(v1)χ(v1 > 0)

− e−
ηε
v1

(L−x1)L
(
ρ2 − ρ1

L

)
L−1(v1)χ(v1 < 0).

By (4.17) we get

−ηε
(
Rηε , −LRηε

)
= −bηε ,

where the boundary term bηε is given by

bηε = −
∫
v1>0

dv v1

(
ρ2 − ρ1

L

)2 (
L−1(v1)

)2 [
e
ηε
v1
LL − 1

]
.

We remark that (·, ·) and ‖·‖2 denote the scalar product and the norm in L2((0, L)×
S1) respectively. Observe that bηε ≥ 0. Using the spectral gap of the operator L
we get

(4.18) − bηε = −ηε
(
Rηε , −LRηε

)
≤ −ληε‖Rηε‖22,

where λ is the first positive eigenvalue of −L. Therefore we obtain

‖Rηε‖2 ≤
C
√
ηε
.
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Since the coefficients h(1) and h(2) are bounded, we have that hSε converges to h(0)

in L2((0, L)× S1) for ηε →∞.

2

5. The kinetic description

5.1. The extension argument. We remind that houtε is the solution of the Boltz-

mann equation (3.6), therefore it can be expressed as

houtε (x, v, t) =
∑
n≥0

(µεε)
n

∫ t

0

dt1 . . .

∫ tn−1

0

dtn

∫ 1

−1

dρ1 . . .

∫ 1

−1

dρn χ(τ < tn)χ(τ > 0) e−2µεε(t−τ)fB(γ−(t−τ)(x, v)),

(5.1)

with fB(x, v) defined in (2.4) and

(5.2) γ−(t−τ)(x, v) = (x− v(t− τ − t1)− v1(t1 − t2) · · · − vntn, vn).

Lemma 5.1. Let houtε be the solution of the Boltzmann equation (3.6) defined in

(5.1). Then

houtε (x, v, t) =
∑
N≥0

e−2µεεt(µεε)
N

∫ t

0

dt1 . . .

∫ tN−1

0

dtN

∫ 1

−1

dρ1 . . .

∫ 1

−1

dρN χ(τ > 0) fB(γ−(t−τ)(x, v)).

(5.3)

The above identity follows from the fact that in the last term we added fictitious

jumps, those in the time interval (0, τ) which do not affect fB(γ−(t−τ)(x, v)) but

allows us to remove the indicator function χ(tn > τ) replacing consequently the

factor e−2µεε(t−τ) by the more handable factor e−2µεεt. In view of the particle

interpretation it is convenient to think the trajectory γ−s, s ∈ (0, t) as extended

outside Λ, see Figure 2. The dashed part of the trajectory is ininfluent for the

evaluation of houtε .

Proof. Observe that for τ > 0, τ given,

1 =
∑
m≥0

(µεε)
m

∫ t

0

ds1 . . .

∫ sm−1

0

dsm χ(s1 ≤ τ)

∫ 1

−1

dξ1 . . .

∫ 1

−1

dξm e
−2µεετ .

Using the previous identity we can express houtε as

houtε (x, v, t) =
∑
N≥0

e−2µεεt(µεε)
N

∫ t

0

dt1 . . .

∫ tN−1

0

dtN

∫ 1

−1

dρ1 . . .

∫ 1

−1

dρN(
N∑
n=0

χ(tn > τ)χ(tn+1 ≤ τ)

)
χ(τ > 0) fB(γ−(t−τ)(x, v)),
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Figure 2. Extension of the trajectory outside Λ

with the convention that t0 = t, tN+1 = 0. Since(
N∑
n=0

χ(tn > τ)χ(tn+1 ≤ τ)

)
= 1,

we obtain the desired result. �

5.2. Proof of Proposition 3.4. By (3.17) for (x, v) ∈ Λ× S1, t > 0 we have

foutε (x, v, t) = e−µε|Bt(x)∩Λ\Bε(x)|
∑
q≥0

µqε
q!

∫
(Bt(x)∩Λ\Bε(x))q

dcq χ(τ > 0)fB(T−(t−τ)
cq (x, v)).

Here T
−(t−τ)
cq (x, v) is the flow associated to the initial datum (x, v) for a given

scatterers configuration cq, Bt(x) and Bε(x) denote the disks centered in x with

radius t and ε respectively.

Since fB(T
−(t−τ)
cq (x, v)) depends only on the scatterer configurations inside Λ ∩

Bt(x), we want to add fictitious scatterers outside Λ which do not affect the value

fB(T
−(t−τ)
cq (x, v)) in the same spirit of Lemma 5.1. However there is a small diffi-

culty because the scatterers located in the vertical strips [−ε, 0]×R and [L,L+ε]×R
actually can modify the value of τ . For this reason we introduce

f̆outε (x, v, t) = e−µε|B
ε
t (x)|

∑
Q≥0

µQε
Q!

∫
(Bεt (x))Q

dcQ χ(τ > 0)

(
1− χ∂Λ(cQ)

)
fB(T−(t−τ)

cQ (x, v)),
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where

χ∂Λ(cQ) = χ{cQ : ∃i = 1, . . . Q s.t. ci ∈ [−ε, 0]× R ∪ [L,L+ ε]× R

and |xε(−s)− ci| = ε, s ∈ [0, t]},
(5.4)

allows to have a consistency in the definition of the hitting time for the extended

dynamics. Here Bεt (x) := Bt(x) \ Bε(x). We expect that the contribution due to

the obstacles with centers in the vertical strips [−ε, 0]×R, [L,L+ε]×R influencing

the trajectory is indeed negligible in the limit. This fact will be discussed later on

(see Section 5.3).

Since |Bεt (x) \ {[−ε, 0]× R ∪ [L,L+ ε]× R}| ≤ |Bεt (x)|, then foutε ≥ f̆outε .

We distinguish the obstacles of the configuration cQ = c1 . . . cQ which, up to the

time t, influence the motion, called internal obstacles, and the external ones. More

precisely, ci is internal if

inf
0≤s≤t

|xε(−s)− ci| = ε,

while ci is external if

inf
0≤s≤t

|xε(−s)− ci| > ε.

Here (xε(−s), vε(−s)) = T−scQ (x, v), s ∈ [0, t]. We observe that the characteristic

function χ∂Λ depends only on internal obstacles. Therefore, by integrating over the

external obstacles we obtain

f̆outε (x, v, t) =
∑
N≥0

µNε
N !

∫
Bεt (x)N

dbN e
−µε|Tt(bN )| χ(τ > 0)

χ({bN internal})
(
1− χ∂Λ(bN )

)
fB(T

−(t−τ)
bN

(x, v)),

where Tt(bN ) is the tube

Tt(bN ) = {y ∈ Bεt (x) s.t. ∃s ∈ [0, t] s.t. |y − xε(−s)| ≤ ε}.

We define

f̃outε (x, v, t) =e−2µεεt
∑
N≥0

µNε
N !

∫
Bεt (x)N

dbN χ({bN internal})

(1− χ∂Λ(bN )
)
fB(T

−(t−τ)
bN

(x, v))χ(τ > 0).

Since |Tt(bN )| ≤ 2εt, then foutε ≥ f̆outε ≥ f̃outε .

Note that, according to a classical argument introduced in [G] (see also [DP],

[DR]), we remove from f̃outε all the bad events, namely those untypical with respect

to the Markov process described by houtε . Then we will show they are unlikely.

For any fixed initial condition (x, v) we order the obstacles b1, . . . , bN according

to the scattering sequence. Let ρi and ti be the impact parameter and the hitting

time of the light particle with ∂Bε(bi) respectively. Then we perform the following

change of variables

(5.5) b1, . . . , bN → ρ1, t1, . . . , ρN , tN
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with

0 ≤ tN < tN−1 < · · · < t1 ≤ t.

Conversely, fixed the impact parameters {ρi} and the hitting times {ti} we construct

the centers of the obstacles bi = b(ρi, ti). By performing the backward scattering

we construct a trajectory γ−s(x, v) := (ξε(−s), ωε(−s)), s ∈ [0, t], where

(5.6)

{
ξε(−t) = x− v(t− t1)− v1(t1 − t2) · · · − vN tN
ωε(−t) = vN .

Here v1, . . . , vN are the incoming velocities. We remark that ωε is an autonomous

jump process and ξε is an additive functional of ωε.

Observe that the map (5.5) is one-to-one, and so (ξε(−s), ωε(−s)) = (xε(−s), vε(−s)),
only outside the following pathological situations.

i) Recollisions.

There exists bi such that for s ∈ (tj+1, tj), j > i, ξε(−s) ∈ ∂B(bi, ε).

ii) Interferences.

There exists bj such that ξε(−s) ∈ B(bj , ε) for s ∈ (ti+1, ti), j > i.

In order to skip such events we define

f̄outε (x, v, t) =e−2µεεt
∑
N≥0

µNε

∫ t

0

dt1 . . .

∫ tN−1

0

dtN

∫ ε

−ε
dρ1 . . .

∫ ε

−ε
dρN

χ(τ > 0) (1− χ∂Λ)(1− χrec)(1− χint)fB(γ−(t−τ)(x, v)),

(5.7)

where

χrec =χ({bN s.t. i) is realized})

χint =χ({bN s.t. ii) is realized}).
(5.8)

Observe that in (5.7) γ−(t−τ)(x, v) = (xε(−(t− τ)), vε(−(t− τ))). Moreover

f̄outε ≤ f̃outε ≤ f̆outε ≤ foutε .

Next we represent, thanks to Lemma 5.1, houtε , solution to equation (3.6), as

houtε (x, v, t) =e−2µεεt
∑
N≥0

µNε

∫ t

0

dt1 . . .

∫ tN−1

0

dtN∫ ε

−ε
dρ1 . . .

∫ ε

−ε
dρN χ(τ > 0) fB(γ−(t−τ)(x, v)).

(5.9)

Observe that

(5.10) 1− (1− χ∂Λ)(1− χrec)(1− χint) ≤ χ∂Λ + χrec + χint.

Then by (5.7) and (5.9) we obtain

(5.11) |houtε (t)− f̄outε (t)| ≤ ϕ1(ε, t),
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with

ϕ1(ε, t) := ‖fB‖∞e−2µεεt
∑
N≥0

(µε)
N

∫ t

0

dt1 . . .

∫ tN−1

0

dtN∫ ε

−ε
dρ1 . . .

∫ ε

−ε
dρN {χ∂Λ + χrec + χint}.

(5.12)

We state the following result. The proof is postponed to Section 5.3.

Lemma 5.2. Let ϕ1(ε, t) be defined in (5.12). For any t ∈ [0, T ] we have

(5.13) ‖ϕ1(ε, t)‖L∞ ≤ Cε
1
2 η3

ε t
2.

Let us estimate the difference |foutε (t)− houtε (t)|. By (5.11) we have∣∣foutε (t)− houtε (t)
∣∣ ≤ ∣∣foutε (t)− f̄outε (t)

∣∣+
∣∣f̄outε (t)− houtε (t)

∣∣
≤
∣∣foutε (t)− f̄outε (t)

∣∣+ ϕ1(ε, t).
(5.14)

Since f̄outε ≤ foutε , the difference foutε (t)− f̄outε (t) is non negative and we can skip

the absolute value. Moreover

(5.15) foutε (t)− f̄outε (t) ≤
(
foutε (t)− f̆outε (t)

)
+
(
f̆outε (t)− f̄outε (t)

)
.

Using the fact that the map (5.5) is one-to-one outside the pathological sets we

can write f̄outε in (5.7) as

f̄outε (t) = e−2µεεt
∑
N≥0

µNε
N !

∫
Bεt (x)N

dbN χ({bN internal})χ(τ > 0)

(1− χ∂Λ)(1− χrec)(1− χint)fB(T
−(t−τ)
bN

(x, v)).

Hence

f̆outε (t)− f̄outε (t) =
∑
N≥0

µNε
N !

∫
Bεt (x)N

dbN fB(T
−(t−τ)
bN

(x, v)) χ({bN internal})χ(τ > 0)

(1− χ∂Λ)
(
e−µε|Tt(bN )| − e−2µεε t (1− χrec)(1− χint)

)
≤ ||fB ||∞

∑
N≥0

µNε
N !

∫
Bεt (x)N

dbN χ({bN internal})

(
e−µε|Tt(bN )| − e−2µεε t (1− χrec)(1− χint)

)
.

By observing that∑
N≥0

µNε
N !

∫
Bεt (x)N

dbN χ({bN internal}) e−µε|Tt(bN )| = 1,

we obtain

f̆outε (t)− f̄outε (t) ≤ ||fB ||∞
(
1− e−2µεε t

∑
N≥0

µNε

∫ t

0

dt1 . . .

∫ tN−1

0

dtN∫ ε

−ε
dρ1 . . .

∫ ε

−ε
dρN (1− χrec)(1− χint)

)
.
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Observe that

1− (1− χrec)(1− χint) ≤ χrec + χint.

Hence we get

(5.16) f̆outε (t)− f̄outε (t) ≤ ϕ1(ε, t),

with ϕ1 defined in (5.12).

Now we consider foutε (t)− f̆outε (t). We observe that

foutε (x, v, t) = e−µε|B
ε
t (x)\∂Λε|

∑
Q≥0

µQε
Q!

∫
(Bεt (x))Q

dcQ χ(τ > 0)

(
1− χ∂Λ(cQ)

)
fB(T−(t−τ)

cQ (x, v)),

where ∂Λε :=
(
[−ε, 0] ∪ [L,L + ε]

)
× R. By using the previous strategy one can

prove

(5.17) foutε (t)− f̆outε (t) ≤ ϕ1(ε, t).

Therefore (5.14), (5.16), (5.17) and (5.13) imply

‖foutε (t)− houtε (t)‖∞ ≤ Cε
1
2 η3

ε t
2.

5.3. Proof of Lemma 5.2 (the control of the pathological sets). For any

measurable function u of the process (ξε, ωε) defined in (5.6) we set

Ex,v(u) = e−2µεεt
∑
N≥0

(µε)
N

∫ t

0

dt1 . . .

∫ tN−1

0

dtN∫ ε

−ε
dρ1 . . .

∫ ε

−ε
dρN u(ξε, ωε).

Then we realize that

ϕ1(ε, t) = ‖fB‖∞ Ex,v[χ∂Λ + χrec + χint]

and we estimate separately the events in (5.4) and (5.8).

We consider the interference event. Let ti the first time the light particle hits

the i-th scatterer, v−i the incoming velocity and v+
i the outgoing velocity (for the

backward trajectory). Moreover we fix the axis in such a way that v+
i is parallel to

the x axis. We have

χint ≤
N∑
i=1

∑
j>i

χi,jint,

where χi,jint = 1 if the obstacle with center bj belongs to the tube spanned by ξε(−s)
for s ∈ (ti+1, ti). We denote by α the angle between v+

i and v+
j−1. We have two

situations, when the velocity v+
j−1 is transverse to v+

i (i.e. α > εγ for a suitable

positive γ) or when the velocity v+
j−1 is almost parallel to v+

i (i.e. α ≤ εγ). Then

Ex,v[χint] ≤ Ex,v
[ N∑
i=1

∑
j>i

χi,jintχ(α > εγ)
]

+ Ex,v
[ N∑
i=1

∑
j>i

χi,jintχ(α ≤ εγ)
]
.(5.18)
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Figure 3. Backward Interference-First case

We estimate separately the two contributions. To estimate the first term we fix

all the variables {th}Nh=1, {ρh}Nh=1 except tj . By a simple geometrical argument

we argue that the integral over tj is restricted over an interval of measure at most

Cε1−γ . Hence we get

Ex,v
[ N∑
i=1

∑
j>i

χi,jintχ(α > εγ)
]

≤ e−2µεεt
∑
N≥1

(N)2(2µεε)
N tN−1

(N − 1)!
Cε1−γ

≤ e−2µεεt(2µεε)
3t2
∑
N≥3

(2µεε)
N−3 tN−3

(N − 3)!
Cε1−γ

≤ Cε1−γη3
εt

2.

(5.19)

Concerning the second term in (5.18), the condition α ≤ εγ implies that the

(j − 1)-th scattering angle θj−1 can varies at most εγ (see Figure 4). Then, fixing

all the variables {th}Nh=1, {ρh}Nh=1 except ρj−1, performing the change of variable

ρj−1 → θj−1 and recalling that the scattering cross section for a disk of unitary

radius is given by dρ
dθ = 1

2 sin θ
2 we obtain

Ex,v
[ N∑
i=1

∑
j>i

χi,jintχ(α ≤ εγ)
]
≤ e−2µεεt

∑
N≥1

(N)2(2µεε)
N tN

(N)!
Cεγ

≤Cεγη2
εt

2.

(5.20)
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Figure 4. Backward Interference-Second case

By choosing γ = 1/2, from (5.19) and (5.20) we obtain

(5.21) Ex,v[χint] ≤ Cε
1
2 η3
εt

2.

Finally we consider the recollision event. We have

χrec ≤
N∑
i=1

∑
j>i

χi,jrec,

where χi,jrec = 1 if the i-th obstacle is recollided in the time interval (tj , tj−1). Also in

this case we have to take into account two possible situations, when |bi−bj−1| > εγ

for a suitable positive γ or when |bi − bj−1| ≤ εγ . Then

Ex,v[χrec] ≤Ex,v
[ N∑
i=1

∑
j>i

χi,jrecχ
(
|bi − bj−1| > εγ

)]

+ Ex,v
[ N∑
i=1

∑
j>i

χi,jrecχ
(
|bi − bj−1| ≤ εγ

)]
.

(5.22)

We look at the first term. Using geometric arguments the condition |bi−bj−1| >
εγ gives a bound for the (j−1)-th scattering angle θj−1 (see Figure 5). In particular

it can varies at most ε/εγ = ε1−γ . Therefore, performing the change of variable

ρj−1 → θj−1 as before, we get

Ex,v
[ N∑
i=1

∑
j>i

χi,jrecχ
(
|bi − bj−1| > εγ

)]
≤ e−2µεεt

∑
N≥1

(N)2(2µεε)
N tN

(N)!
Cε1−γ

≤ Cε1−γη2
εt

2.

(5.23)

If |bi − bj−1| ≤ εγ a simple geometrical argument shows that the time interval

|tj−1 − tj | is bounded by εγ (see Figure 6). Hence, following the same strategy as
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Figure 5. Backward Recollision-First case

Figure 6. Backward Recollision-Second case

in (5.19), we obtain

Ex,v
[ N∑
i=1

∑
j>i

χi,jrecχ
(
|bi − bj−1| ≤ εγ

)]
≤ e−2µεεt

∑
N≥1

(N)2(2µεε)
N tN−1

(N − 1)!
Cεγ

≤ Cεγη3
εt

2.

(5.24)
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As before we choose γ = 1/2. Then from (5.23) and (5.24) we obtain

(5.25) Ex,v[χrec] ≤ Cε
1
2 η3
εt

2.

Figure 7. Λ ∪ {[−ε, 0]× R ∪ [L,L+ ε]× R}

We now consider the expectation value for (1− χ∂Λ), with χ∂Λ defined in (5.4).

Observe that χ∂Λ = 1 implies that ξε(−(t− tj)) ∈ Λc and d(ξε(−(t− tj)), ∂Λ) ≤ ε
for some j = 1, . . . , N . As we can see in Figure 7, by the same argument used to

estimate the interference events in (5.19) and (5.20) we obtain

(5.26) Ex,v[χ∂Λ] ≤ Cε 1
2 η3
εt

2.

By estimates (5.21), (5.25) and (5.26) we obtain

‖ϕ1(ε, t)‖∞ ≤ Cε
1
2 η3
εt

2,

for some C > 0.

5.4. Proof of Proposition 3.5. The proof follows the same strategy of the proof

of Proposition 3.4. Actually it is easier since it does not require the extension trick,

but it follows directly by the recollision and interference estimates.
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di Roma, P.le Aldo Moro 5, I-00185 Roma, Italy

E-mail address, G. Basile: basile@mat.uniroma1.it

(Alessia Nota) Dipartimento di Matematica “Guido Castelnuovo”, Sapienza Università
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