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Abstract

We study spectral asymptotic properties of conductive layered-thin-fibers of invasive fractal
nature. The problem is formulated as a boundary value problem for singular elliptic operators
with potentials in a quasi-filling geometry for the fibers. The methods are those of variational
singular homogenization and M-convergence. We prove that the spectral measures of the
differential problems converge to the spectral measure of a non-trivial self-adjoint operator
with fractal terms.
Résumé
Nous étudions les propriétés asymptotiques spectrales de certains fibres conductrices minces
stratifiées de nature fractale. Le problème est formulé comme un problème au bord pour
des operateurs elliptiques singuliers avec un potentiel et une géométrie fractale des fibres,
invasive de l’espace. Les méthodes sont ceux de l’homogénéisation singulière et de la M-
convergence. Nous prouvons que les mesures spectrales des problèmes différentiels convergent
vers la mesure spectrale d’un operateur auto-adjoint non banale avec des termes fractals.
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1. Introduction

Boundary value problems for second order elliptic and parabolic operators in Euclidean
domains with irregular and possibly fractal boundaries have been studied in recent years
from various points of view by several authors, among them [14], [31], [10], [12], [19], [21],
[13], [1], [2], [4], [29], [22], [6], [30], [11], [8], [9]. A distinctive feature of the boundary value
problems considered in [19], [21], [29], and [30] is the dynamical and fractal character of
the boundary, or part of the boundary. In these problems, a Euclidean open domain is
given which has a fractal boundary component. Moreover, in addition to a second order
partial differential operator in the open domain, another operator, also of second order, is
assigned on the fractal boundary. The interaction between the interior operator and the
boundary operator, both of second order, gives rise to a second order transmission condition
on the boundary, which captures the main global dynamical features of the problem at hand.
The dimensional relationship that relies the domain to the boundary may take an unusual
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turn in the case the boundary displays a fractal geometry. For example, we may have an
open two-dimensional Euclidean domain Ω in R2 with a boundary or a component of the
boundary, G, which has a Hausdorff dimension dH that is any number 1 < dH < 2 close to
2 as we wish, and which fills a two-dimensional open subset of Ω up to an arbitrarily small
set. Moreover, for boundaries which have their own dynamics, in addition to dH also the
so-called spectral dimension ds of the fractal G plays a fundamental role. This splitting of
the static and dynamical dimensions for fractal boundaries is new in comparison with the
Euclidean boundaries even of irregular Lipschitz type, for which the two dimensions dH and
ds do in fact coincide.

Our goal is to investigate such boundary value problems, with quasi-filling dynamical
fractal boundaries, from the variational point of view of the singular homogenization theory
for elliptic operators in Euclidean domains. We construct a sequence of second order elliptic
operators Lnu = −div(an∇u) in divergence form and a sequence of scalar potentials V n in
a bounded open domain Ω of the plane. The coefficient matrix anId of Ln and the potential
V n are adjusted to the geometry of a system of open thin fibers Σn

εn , which is moved in Ω as
n→ +∞ by the iterated action of the contractive self-similarities of a fractal inclusion G in Ω.
The fibers have a two-layer structure, with an inner layer of increasingly high conductivity,
and an external layer of increasingly low conductivity. Together with suitable boundary
conditions, these operators define a sequence of self-adjoint operators Anu = Lnu− V nu in
the Lebesgue Hilbert space L2(Ω). We take in consideration the spectral measures P n(dλ)
of the operators An in L2(Ω). Our objective is to prove that the spectral measures P n(dλ)
do in fact converge to the spectral measure of a non trivial self-adjoint operator A in L2(Ω).
Under appropriate boundary and scaling assumptions, we prove in this paper that the limit
operator A does in fact exist. The spectrum converges, despite the coefficients and the
potential develop fractal singularities as n → +∞. From the energy point of view, the
operator A incorporates energy from the surrounding domain, as well as energy conveyed
into the fibers by the balancing asymptotic action of the insulating and the conductive layers.
As a boundary value problem, A is given by the sum of the two-dimensional Laplace operator
and a zero order term in Ω \ G and on G by the sum of a fractal second order operator LG
and a zero order term. LG is the self-adjoint operator defined by the intrinsic energy form
on G in the space L2(G, µG), where µG is the dH−Hausdorff measure on G. The equations in
Ω \ G and the equation in G are coupled by a second-order transmission condition on G and
by a point-wise condition at the intrinsic boundary of G.

Our setting and results apply to wide classes of so called nested fractals. However, as
we wish to keep this paper constructive in nature, we provide details of our study only for
two special families of fractals G, namely a family of Koch curves Kα, 2 < α ≤ 4, which
are invasive as α → 2, and a family of Sierpiński gaskets Sα, α an integer ≥ 2, which are
invasive as α → +∞. In both cases, α−1 is the contraction factor of the similarity maps
defining G. The fractal G is the non-rectifiable component of the boundary of an open
Euclidean domain Ω \ G, where Ω is a given bounded open domain of R2 that contains G in
its interior. We point out that the fractals in consideration are dynamical in nature, as they
support nontrivial intrinsic energy forms. Moreover, they display some of the most significant
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geometric features of fractal sets: the Koch curves, though topologically homeomorphic to
a line, have no infinitesimal linear path and display sharp turns at every small scale; the
Sierpiński sets totally disconnect the surrounding domain displaying ramifications at all small
scales.

Spectral convergence is particularly hard to prove in the quasi-filling geometry of G, when
the surface and the boundary come closer in touch and the dynamical interaction between
them is stronger. As mentioned before, our approach to these dynamical problems consists in
assuming that the invasive fibers have a two-layer structure, with an increasingly conductive
inner core and an increasingly insulating external layer. In the theory of composite media,
two-layer coated fibers have a physical interest on their own. In the singular homogenization
approach adopted in this paper, the fibers are the physical regions where the singularities
and degeneracies of the elliptic operators occur as n → +∞. Our spectral asymptotic
results provide then a physical foundation to the fractal boundary value problems of the
kind described before. This may contribute to opening new perspectives to the study of
small bodies with very rich dynamical boundary effects.

The geometry of the domains Ω and of the fractal boundary G is described in more detail
in Section 2. The operators are introduced in Section 3 and the results are given in Section
4. Section 5 is dedicated to various preliminaries. The proofs are given in Sections 6 and 7.

2. The geometry

By Ω of R2 we denote the open triangle with vertices D = (−3/2,−
√

3/2), E =
(5/2,−

√
3/2), F = (1/2, 3

√
3/2). The domain Ω contains the triangle of vertices A =

(0, 0), B = (1, 0), C = (1/2,
√

3/2). In this triangle we construct a fractal inclusion,
G. The set G is the invariant (self-similar) compact set of R2 associated with a family
Ψ = {ψ1, . . . , ψN} of N ≥ 2 similarities in R2, which are contraction maps in R2 with a com-
mon contraction factor α−1, α > 1, and which satisfy the so-called open set condition. The
set of the essential fixed-points of these maps will be denoted by Γ. We recall that a fixed-
point of a map of Ψ, br ∈ R2 is an essential fixed-point for the family Ψ if ψi(br) = ψj(bs) for
some i ∈ {1, . . . , N}, j 6= i, j ∈ {1, . . . , N} and bs a fixed-point of a map of Ψ. The invariant
(self-similar) regular Borel measure in R2 supported on G, associated with Ψ, is given by

µ = µG :=
1

Hd(G)
1GHd , (2.1)

where
d = dH = lnN/ lnα (2.2)

is the Hausdorff dimension of G and Hd is the Hausdorff measure of dimension d in R2 . In
particular,

µ(ψi|n(G)) =
1

Nn
µ(G) =

1

Nn
(2.3)

where ψi|n = ψi1 ◦ ψi2 ◦ · · · ◦ ψin if n > 0. For these properties, and for the related theory of
so-called nested fractals associated with similarity maps as the one considered here, we refer
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to Hutchinson, [17], and Lindstrøm, [23].
As noted in the Introduction, our results refer specifically to a family of Koch curves,

Kα, and a family of Sierpiński gasket, Sα. The Koch curves are obtained as the invariant
set of the family Ψ = {ψ1, . . . , ψ4} of the following N = 4 similitudes, each one contractive
with a factor α ∈ (2, 4]:{

ψ1(z) = z
α
, ψ2(z) = z

α
eiϑ + 1

α
,

ψ3(z) = z
α
e−iϑ + 1

2
+ i sinϑ

α
, ψ4(z) = z+α−1

α
,

(2.4)

where

ϑ = arcsin

√
α− α2

4
∈ [0,

π

2
) (2.5)

and z = x + iy ∈ C. The set of the essential fixed-points of this family is Γ = {A,B}.
The Sierpiński fractals Sα, α integer ≥ 2, are produced by N = α(α+ 1)/2 similarities with
contraction factor α−1. We describe the set Sα, for simplicity, only in the case α = 2. This
is the standard gasket in R2, which we denote in the following by S. However, since we
keep general notation, the extension of our proofs to any other fractal of the family Sα is
straightforward. S is the invariant set of the family Ψ = {ψ1, ψ2, ψ3}, where

ψ1(z) =
z

2
, ψ2(z) =

z

2
+

1

2
, ψ3(z) =

z

2
+

1

4
+ i

√
3

4
. (2.6)

These N = 3 maps have common contraction factor α = 2. The set of essential fixed-points
is now Γ = {A,B,C}.

In the domain Ω we introduce a reference two-layer fiber constructed as follows. This
fiber is made of two co-axial thin hexagons

Σ0
0,ε ⊂ Σ0

0,2ε

of largest transversal size ε > 0 and 2ε, respectively. The common axis of the fibers is the
segment connecting the points A = (0, 0) and B = (1, 0), and the middle point of the segment
AB is denoted by AB/2. The fibers are symmetric with respect to the x − axis and the
vertical line x = 1/2. Therefore, it suffices to describe the geometry of the inner fiber Σ0

0,ε and
of the outer fiber Σ0

0,2ε only in the region y ≥ 0, x ≤ 1/2. We consider the right triangle with
vertices A,AB/2, Q0 which makes the angle of amplitude ϑ∗ at A, the value ϑ∗ ∈ (0, π/6] will
be chosen according to the fractal layer imbedded in the domain. Thus, Q0 = (1/2, ε0), where
ε0 = h0/2, h0 = tan(ϑ∗). For every 0 < ε ≤ ε0, we consider the two points Q1(ε) = (ε/h0, ε)
and Q0(ε) = (1/2, ε) and the quadrilateral A,AB/2, Q0(ε), Q1(ε) . We then define the set
Σ0

0,2ε to be the thin hexagon obtained by reflection of this quadrilateral across the x− axis,
followed by a symmetry across the vertical axis x = 1/2. The vertices of Σ0

0,2ε, listed
clockwise, are the points A,Q1(ε), Q2(ε), B,Q3(ε), Q4(ε), where now Q2(ε) = (1 − ε/h0, ε),
Q3(ε) = (1 − ε/h0,−ε), Q4(ε) = (ε/h0,−ε). The perimeter of the hexagon Σ0

0,2ε gives the
external profile of our two-layer fiber. Inside the hexagon Σ0

0,2ε, we now insert a smaller
hexagon Σ0

0,ε. The construction of this hexagon is similar to that of Σ0
0,2ε, by replacing now
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the triangle A,AB/2, Q0 with the smaller right triangle with vertices A,AB/2, P0, where
P0 = (1/2, ε0/2). The angle of this triangle at A is arctan(h0/2). The vertices of the
hexagon Σ0

0,ε, again listed clockwise, are the points A,P1(ε), P2(ε), B, P3(ε), P4(ε), where
now P1(ε) = (ε/h0, ε/2), P2(ε) = (1− ε/h0, ε/2), P3(ε) = (1− ε/h0,−ε/2), P4(ε/h0,−ε/2).
Note that the two hexagon meet at the common vertices A and B and that set Σ0

0,ε \ {A,B}
is contained in the interior of Σ0

0,2ε. As observed before, for the Koch curves Γ = {A,B},
while for the Sierpiński curve Γ = {A,B,C}. In the construction of the initial fiber Σ0

0,2ε a
possible choice for ϑ∗ in both the previous examples is

ϑ∗ = min{π/2− ϑ, ϑ/2} (2.7)

where ϑ is the rotation angle of the similarities generating the Koch curve Kα (see (2.5)).
We note that min{π/2 − ϑ, ϑ/2} ≤ π/6. In the Sierpiński case we can take ϑ∗ = π/6.
In our theory we need to connect pair-wise all essential fixed points of the fractal under
consideration. This requirement is fulfilled so far only in the case of the Koch curves, not
for the Sierpiński curve. For the Sierpiński fractal the requirement can be easily met by just
adding to Σ0

0,2ε two more co-axial fibers of the kind as Σ0
0,ε ⊂ Σ0

0,2ε, now connecting both A
and B to C. To keep generality in our notation, for every pair br 6= bs in Γ, r, s = 1, . . . , χΓ

– where χΓ denotes the cardinality of Γ – we introduce the similitude

Φbr,bs(z) =
|br − bs|
|A−B|

eiθbr,bsz + br, (θbr,bs = Arg
−−→
brbs)

that maps the vector
−→
AB to

−−→
brbs preserving the orientation. In our examples, the distance

|br− bs| between any two fixed-points is the same, therefore the ratio |br− bs|/|A−B| equals
1 for every br 6= bs in Γ and Φbr,bs is a (Euclidean) isometry. This simplifies our future
calculations. We now connect every pair br, bs in Γ with the co-axial fibers

Σ0
ε(br, bs) ⊂ Σ0

2ε(br, bs)

where
Σ0

2ε(br, bs) = Φbr,bsΣ
0
0,2ε

and
Σ0
ε(br, bs) = Φbr,bsΣ

0
0,ε .

We then define the array of co-axial fibers

Σ0
ε ⊂ Σ0

2ε

connecting all points in Γ, by taking

Σ0
ε =

⋃
br 6=bs∈Γ

Σ0
ε(br, bs) , Σ0

2ε =
⋃

br 6=bs∈Γ

Σ0
2ε(br, bs) .
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We now iteratively transform the arrays Σ0
ε ⊂ Σ0

2ε into finer and finer arrays, by the action,
for each integer n > 0 of the maps

ψi|n = ψi1 ◦ ψi2 ◦ · · · ◦ ψin

associated with arbitrary n−tuples of indices i|n = (i1, i2, . . . , in) ∈ {1, . . . , N}n. If n = 0
we define ψi|n to be the identity map in R2. For every set O ⊆ R2, we define Oi|n = ψi|n(O),
and, occasionally, we call i|n the n− address of the set Oi|n. With this notation, for every ε
and every n ≥ 0, we then define the arrays of co-axial fibers

Σn
ε ⊂ Σn

2ε

by setting

Σn
2ε =

⋃
i|n

Σ
i|n
2ε , Σ

i|n
2ε = ψi|n(Σ0

2ε) =
⋃

br 6=bs∈Γ

Σ
i|n
2ε (br, bs) , (2.8)

Σn
ε =

⋃
i|n

Σi|n
ε , Σi|n

ε = ψi|n(Σ0
ε) =

⋃
br 6=bs∈Γ

Σi|n
ε (br, bs) . (2.9)

3. The partial differential operators

Our approach to spectral convergence is of variational nature and is based on the tools
developed in [26]. However, before introducing the relevant energy functionals, we prefer
to describe the partial differential operators and, though only formally, the boundary value
problems that underly our theory.

The domain Ω of the Euclidean plane has been described in the previous section. In Ω
we now introduce a sequence of linear elliptic operators in divergence form

Anu = −div(an(x, y)∇u)− V n(x, y)u , (3.1)

where (x, y) ∈ Ω, an(x, y)Id is the 2 × 2 symmetric matrix of the coefficients and V n(x, y)
is a potential function in Ω. We describe the structure of the operator An in more detail for
each given n, and also the behavior as n → +∞. In this description, important material
parameters are the positive real numbers εn > 0 and χn > 0 that will be specified later on,
both converging to zero as n→ +∞.

For each given n, we introduce in Ω the two-layer fibers Σn
ε ⊂ Σn

2ε described in Section
2, by choosing now ε = εn. We recall that the fibers are constructed by iteration of a family
Ψ = {ψ1, . . . , ψN} of α−1−contractive similarities generating the fractal G in Ω, as described
in Section 2. The coefficients an(x, y) and the potential V n(x, y) present discontinuities
across the fibers Σn

εn and Σn
2εn . In particular, within the fibers, the internal layer Σn

εn is a
region of increasingly high conductivity as n → +∞, while the external layer Σn

2εn \ Σn
εn

is a region of increasingly low conductivity. More precisely, we assume that the coefficient
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matrix anId is defined at every (x, y) ∈ Ω by

an(x, y)Id =

{
ζn1Ω\Σn2εn (x, y)Id+ χn1Σn2εn\Σ

n
εn

(x, y)Id+

γnσnw
n
εn(x, y)1Σnεn

(x, y)Id
(3.2)

and the potential V n by

V n(x, y) = −λ∗n1Ω\Σnεn (x, y) + λ∗τnw
n
εn1Σnεn

(x, y). (3.3)

In the expression of an(x, y), wnεn = wnεn(x, y) is equal – up to a numerical constant that will
be specified in (6.2) of Section 6 – to the reciprocal of the length `nεn(x, y) of the section of
Σn
εn perpendicular to the point (x, y) of its longitudinal axis, while in V n(x, y), the same wnεn ,

in a light abuse of notation, is taken to be exactly equal to the reciprocal of that length,
that is wnεn(x, y) = (`nεn(x, y))−1. Note that for each given n, `nεn(x, y) decreases to zero as
the point (x, y) – belonging to an open hexagonal component of Σn

εn – approaches one of
the two vertices that lie beside (x, y) on the longitudinal axis of the fiber. Therefore, for
each n, wnεn has a singularity at every longitudinal vertex of Σn

εn . Moreover, wnεn increases
to +∞ everywhere as n→ +∞, because then εn → 0 and `nεn(x, y)→ 0. In particular, wnεn
is singular at every point P of the set Γ introduced in Section 2. The potential V n is also
singular on Σn

εn – at the longitudinal vertices for each n and everywhere else as n→ +∞ –
again in consequence of the coefficient wnεn . In contrast to the internal layer Σn

εn of the fiber,
which is highly conductive as seen before, the external layer Σn

2εn \ Σn
εn displays vanishing

conductivity χn → 0 as n→ +∞, as also anticipated before.
In addition to εn and χn, the constants ζn, γn and λ∗n which also occur in the expressions of

the coefficients and the potential, are positive constants that specify the material properties
of Ω, while σn and τn are suitable scaling parameters that depend on the structural constants
of the fractal G. As to the constant λ∗, which will be specified in the next section, we point
out that a proper choice of its value is crucial in assuring the convergence of the operators.

In order to realize the operators An as densely defined self-adjoint operators in L2(Ω),
we must prescribe suitable boundary conditions – for example, homogeneous Neumann or
Dirichlet conditions – on the boundary ∂Ω of Ω and, as we shall see, also on the set Γ of
the end-points of the fibers Σn

2εn . While ∂Ω does not play a special role in our problems,
the fact that boundary conditions can be also pre-assigned on the set Γ is unusual, because
Γ is a discrete set made of a finite number of points with zero capacity inside Ω. Here the
singularities of the operators play the relevant role.

We begin with the Neumann conditions. As far as Ω is concerned, our boundary value
problem can be formally stated, for a given function f ∈ L2(Ω), as{

−div(an(x, y)∇u)− V n(x, y)u = f in Ω
∂u
∂ν

= 0 on ∂Ω .

By decomposing the terms in the definitions for an and V n, this problem can be written,
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again formally but somehow more transparently, as

−ζndiv(∇u) + λ∗nu = f in Ω \ Σn
2εn

−χndiv(∇u) + λ∗nu = f in Σn
2εn \ Σn

εn

−γnσndiv(wnεn∇u)− λ∗τnwnεnu = f in Σn
εn

∂u
∂ν

= 0 on ∂Ω

natural transmission conditions on ∂(Σn
2εn \ Σn

εn) .

As this strong formulation of the boundary value problem has in this paper only an
illustrative purpose, we do not enter here into the regularity and geometrical details which
would be needed for a rigorous formulation of all the preceding equations and boundary
conditions. Instead, we proceed by giving the variational formulation of the problem at
hand, and by defining the self-adjoint operator An. For every n we define the functional

Fn : L2(Ω) 7→ (−∞,+∞]

by

Fn[u] =

{ ∫
Ω
an(x, y)|∇u|2dxdy −

∫
Ω
V n(x, y)u2dxdy if u ∈ H1(Ω; an)

+∞ if u ∈ L2(Ω) \H1(Ω; an)
(3.4)

where anId is the coefficient matrix given in (3.2) and the domain H1(Ω; an) ⊂ L2(Ω) is the
completion of C1(Ω) in the norm

‖u‖H1(Ω;an) = {
∫

Ω

|u|2dxdy +

∫
Ω

an|∇u|2dxdy}
1
2 . (3.5)

We point out that ∇u is well defined since the weight wnεn and its reciprocal 1/wnεn belong
both to L1(Ω). Then, the operator An, with Neumann conditions on ∂Ω and on Γ, is defined
as the self-adjoint operator An with dense domain D[An] in L2(Ω) given by the identity

Fn(u, v) =

∫
Ω

(Anu)vdxdy , u ∈ D[An] , v ∈ H1(Ω; an) ,

where Fn(u, v) is the bilinear form on H1(Ω; an) associated with the functional Fn.
We now move to the case of Dirichlet conditions on Ω and Γ. Formally, the boundary
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value problem can be stated now as

−ζndiv(∇u) + λ∗nu = f in Ω \ Σn
2εn

−χndiv(∇u) + λ∗nu = f in Σn
2εn \ Σn

εn

−γnσndiv(wnεn∇u)− λ∗τnwnεnu = f in Σn
εn

u = 0 on ∂Ω

uΣnεn
(P ) = 0 on Γ

natural transmission conditions on ∂(Σn
2εn \ Σn

εn) \ Γ .

Here again uΣnεn
is the restriction of u to Σn

εn and Γ the set of the end-points of Σn
εn .

The set Γ is the intrinsic boundary of the fractal G and, for every n, it is also the set
of the end-points of the fibers Σn

εn and Σn
2εn . As mentioned before, the weight wnεn has a

singularity at every P ∈ Γ. The effect of such a singularity is that for every function u
of finite energy

∫
Ω
an(x, y)|∇u|2dxdy – as is the case in the variational formulation of the

problem that we shall give below – the point-wise value

u(P ) = lim
r→0

∫
Br(P )∩Σnεn

udxdy

|Br(P ) ∩ Σn
εn|

is well defined, as it can be seen by a direct calculation.
The functional Fn : L2(Ω) 7→ (−∞,+∞] is now defined by

Fn[u] =

{ ∫
Ω
an(x, y)|∇u|2dxdy −

∫
Ω
V n(x, y)u2dxdy if u ∈ D0[an]

+∞ if u ∈ L2(Ω) \D0[an]
(3.6)

where anId is again the coefficient matrix defined in (3.2) and the domain D0[an] ⊂ L2(Ω)
is now the completion of the set C = {u ∈ C1

0(Ω) : u|Γ = 0} in the norm

‖u‖H1(Ω;an) = {
∫

Ω

|u|2dxdy +

∫
Ω

an|∇u|2dxdy}
1
2 . (3.7)

The operator An, with Dirichlet conditions on ∂Ω and on Γ, is now defined as the self-adjoint
operator An with dense domain D[An] in L2(Ω) given by the identity

Fn(u, v) =

∫
Ω

(Anu)vdxdy , u ∈ D[An] , v ∈ D0[an] ,

where Fn(u, v) is the bilinear form on D0[an] defined by the new functional Fn.
In both cases, the operators An, with the boundary conditions specified as before, have

been defined as self-adjoint operators with a dense domain D[An] in L2(Ω). The object of our
study are the spectral projectors P n((λ, µ]) and the spectral subspaces Xn = P n((λ, µ])L2(Ω)
in L2(Ω) associated with these operators, in particular, the convergence of P n((λ, µ]) and
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Xn = P n((λ, µ])L2(Ω) as n → +∞, in a sense to be made precise. We point out that
under the assumptions specified in the following, the spectrum of An is a discrete eigenvalue
spectrum, each eigenvalue occurring with finite multiplicity, and the spectral measures are
of pure jump type. Our results are described in the next section.

4. The results

Before stating our results, we recall some definitions and properties which refer to the
fractal G. In addition to the structural constants N and α of the fractal G already introduced
before, we now consider the additional parameter δ = δG > 1 defined by δ = dH

ds
where dH is

the Hausdorff dimension of G and ds is the so-called spectral dimension of G; for the two main
cases in consideration, δKα = ln 4

lnα
and δS = lg 5

lg 4
. The parameter δ determines the parameter

ρ by the relation

ρ =
α2δ

N
. (4.1)

On G an energy bilinear form EG is also defined, with a dense domain D[EG] in L2(G, µ).
It is the Friedrichs extension of the form obtained in the limit as n → +∞ of the discrete
energies

1

2

α2nδ

Nn

∑
i|n

∑
br 6=bs∈Γ

(u(ψi|n(br))− u(ψi|n(bs)))(v(ψi|n(br))− v(ψi|n(bs)))

for all u, v ∈ C(G) such that EG[u] = EG(u, u) < +∞, EG[v] = EG(v, v) < +∞. The Neumann
operator LG on G is the self-adjoint operator LG with dense domain D[LG] in L2(G, µ) defined
by the identity

EG(u, v) =

∫
G
LGu vdµ ∀u ∈ D[LG], v ∈ D[EG] .

The Dirichlet operator LG on G is the self-adjoint operator LG defined again by the identity
above when we replace the domain D[EG] with the domain D0[EG] = {u ∈ D[EG] : u(P ) =
0 ∀P ∈ Γ}, also dense in L2(G, µ).

Here are the assumptions on the operators An, which are common to both Neumann and
Dirichlet cases described in the previous section. For every n we set

σn = (
ρ

α
)n , τn =

αn

τ0Nn
(4.2)

where τ0 denotes the number of the segments brbs, br 6= bs ∈ Γ. We assume that the material
constants ζn, γn, λ

∗
n satisfy the conditions

ζn → ζ∗, γn → γ∗, λ∗n → λ∗ (4.3)

as n→ +∞, with ζ∗, γ∗, λ∗ ∈ (0,+∞). Moreover, we assume that

εn = (
ρ

N
)nωn with ωn → 0 and χn → 0 , (4.4)
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such that
χn
εn
→ 0 (4.5)

and
χn

(Nnεn · α−2n)q
≥ C0 (4.6)

as n → +∞, with C0 > 0 and q ∈ (0, 1
2
). We note that the expression in the denominator

of the fraction in (4.6) represents the total area of the fibers Σn
εn in fact |Σn

εn| behaves as
Nnεn · α−2n as n tends to +∞.

For both Neumann and Dirichlet realizations of the operators An, as described in Section
3, the limit operators A are obtained from the same bilinear energy form a(u, v), taken how-
ever with different domains for each of the versions, Neumann or Dirichlet, of the sequence
An. The form a(u, v) is given by

a(u, v) = ζ∗
∫

Ω

∇u∇vdxdy + λ∗
∫

Ω

uvdxdy + γ∗EG(uG, vG)− λ∗
∫
G
uvdµ (4.7)

where u, v ∈ H1(Ω), uG, vG are the traces of u and v on G and EG is the energy form on the
fractal G described before. In the Neumann case, the domain of the form a is

D[a] = {u ∈ H1(Ω), uG ∈ D[EG]} ,

while in the Dirichlet case the domain is

D[a] = {u ∈ H1
0 (Ω), uG ∈ D[EG], uG = 0 on Γ}

and in both cases the domain D[a] is dense in L2(Ω). Occasionally, in order to distinguish
the two domains, we shall also denote the latter, that is the domain for Dirichlet boundary
conditions, by D0[a]. In both Neumann and Dirichlet cases, the limit operator A is the
self-adjoint operator A with dense domain D[A] in L2(Ω) defined by the identity

a(u, v) =

∫
Ω

Auvdxdy ∀u ∈ D[A], v ∈ D[a] .

Our main result is in fact:

Theorem 4.1. Let the conditions (4.2), (4.3), (4.4), (4.5) and (4.6) be satisfied. Let the
operators An for n ≥ 1 be the self-adjoint operators in L2(Ω) constructed in Section 3, with
domains D[An] of Neumann, resp. Dirichlet type in L2(Ω). Then, there exists a constant
Λ > 0 such that, for every λ∗ < Λ, the spectral projector operators P n((λ, µ]) of An, for
every λ, µ not eigenvalues of A, converge strongly in L2(Ω) as n → +∞ to the spectral
projector P ((λ, µ]) of the self-adjoint operator A in L2(Ω), taken with the domain D[A] of
Neumann, resp. Dirichlet type. Moreover, the spectral subspaces Xn

(λ,µ] = P n((λ, µ])L2(Ω)

of An M−converge in L2(Ω) to the spectral subspace X(λ,µ] = P ((λ, µ])L2(Ω) of A. In the
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Dirichlet case, the restriction λ∗ > 0 can be omitted.

We specify that the subspaces Xn
(λ,µ] M−converge to the subspace X(λ,µ] in L2(Ω) if both

conditions below hold:

(i) for every u ∈ X(λ,µ] there exists un ∈ Xn
(λ,µ] converging strongly to u in L2(Ω)

(ii) for every vnk ∈ X
nk
(λ,µ] converging weakly to u in L2(Ω), then u ∈ X(λ,µ].

In the previous section we have stated, formally, the boundary value problems incor-
porated into the self-adjoint operators An, in both Neumann and Dirichlet cases for the
boundary conditions on ∂Ω and Γ. We now outline, again only formally, the limit boundary
value problems underlying the self-adjoint operator A.

In the Neumann case, the limit boundary value problem associated with A can be formally
stated, for a given f ∈ L2(Ω), as follows:

−ζ∗∆u+ λ∗u = f on Ω \ G
∂u
∂ν

= 0 on ∂Ω

γ∗LGuG − λ∗uG =
[
∂u
∂ν

]
on G

νΓuG = 0 on Γ.

In this expression, ∂u
∂ν

is the exterior normal derivative of u on ∂Ω in the dual space of the

fractional Sobolev space H1/2(∂Ω). The jump
[
∂u
∂ν

]
of the normal derivative of u across the

fractal G belongs to the dual space of the domain D[EG], see [19]. The trace uG of u on G
is well defined and continuous on G, see (5.9) below. LG is the Neumann operator within
the fractal G, that is, the second order operator in L2(G, µG) defined by the form EG under
the Neumann condition νΓuG = 0 on Γ, as described at the beginning of this section. The
exterior normal derivative νΓuG(P ) is well defined at any point P ∈ Γ for every u ∈ L2(G, µ)
with LGu ∈ L2(G, µ), see [28], [32].

In the Dirichlet case, the boundary value problem for A is
−ζ∗∆u+ λ∗u = f on Ω \ G
u = 0 on ∂Ω

γ∗LGuG − λ∗uG =
[
∂u
∂ν

]
on G

uG = 0 on Γ.

As mentioned at the beginning of Section 3, we get the spectral results of Theorem
4.1 by a variational method, namely by applying the convergence theory for functionals
developed in [25] and [26]. This approach leads to the spectral convergence results stated in
Theorem 4.1, once we establish that the energy functionals Fn associated with the operators
An M−converge in L2(Ω) to the energy functional F of the operator A. The functionals
Fn have already been defined in Section 3, both in the Neumann case, (3.4), and in the
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Dirichlet case, (3.6). In order to state our variational result, we only need to introduce the
limit functional F in each of the two cases.

We define the functional F : L2(Ω) 7→ (−∞,+∞] , associated with the operator A, in
the Neumann case by

F [u] =

{
a(u, u) if u ∈ D[a]
+∞ if u ∈ L2(Ω) \D[a]

(4.8)

where D[a] = {u ∈ H1(Ω), u|G ∈ D[EG]} , and in the Dirichlet case by

F [u] =

{
a(u, u) if u ∈ D0[a]
+∞ if u ∈ L2(Ω) \D0[a]

(4.9)

where D0[a] = {u ∈ H1
0 (Ω), u|G ∈ D[EG], u|G = 0 on Γ}.

The sequence Fn : L2(Ω) 7→ (−∞,+∞] M−converges in L2(Ω) to the functional F :
L2(Ω) 7→ (−∞,+∞] if:

(a) for every u ∈ L2(Ω) there exists un converging strongly to u in L2(Ω), such that

lim supFn[un] ≤ F [u], as n→ +∞ ; (4.10)

(b) for every vn converging weakly to u in L2(Ω),

lim inf Fn[vn] ≥ F [u] as n→ +∞ . (4.11)

We prove the theorem

Theorem 4.2. Let the conditions (4.2), (4.3), (4.4), (4.5) and (4.6) be satisfied. Let Fn for
n ≥ 1 be the functionals in L2(Ω) defined in (3.4) (Neumann), resp. (3.6) (Dirichlet). Then,
there exists a constant Λ > 0 such that for every λ∗ < Λ, the sequence of functionals Fn M-
converges in L2(Ω) to the functional F defined in (4.8) (Neumann), resp. (4.9) (Dirichlet),
as n→ +∞. Moreover, in the Dirichlet case, the restriction λ∗ > 0 can be omitted.

The proof of Theorem 4.2 provides us also with an estimate of the constant Λ in terms
of suitable imbedding and trace results. In the Neumann case, λ∗ > 0 and Λ is obtained as

Λ = min
{
C∗1 ,

1

C∗2

}
, (4.12)

with
C∗1 = min{ζ∗, λ∗}C−1

1 , (4.13)

C∗2 = C2 · C3 · C∗3 , (4.14)

where

13



C∗3 = 23(1−p/2) max
{(1 + C4(1 + C5))

C
p/2
0

,
(1 + C4(1 + C5))|Ω|(1−p/2)

(ζ∗)p/2
,
(C4C5)|Ω|(1−p/2)

(λ∗)p/2
}
.

(4.15)
Here p = 2

q+1
; s is a fixed number in the interval (1/2, 2−2/p); C1 = CTr,1,G (C2 = CTr,s)

is the constant (independent of n) of the trace estimate from H1(Ω) (resp., Hs(Ω)) into the
L2 space of the fractal G (resp, of the pre-fractal approximations of G), see Propositions
5.3, 5.2; C3 = Cp,s is the constant of the fractional Sobolev imbedding W 1,p(Ω) ⊂ Hs(Ω),
see Proposition 5.5; C4 = CP ;p,p is the Poincaré constant in W 1,p(Ω), see Proposition 5.6;
C5 = CTr,p is the constant (independent of n) of the trace estimate in Lp(∂Ω) for functions
in W 1,p(Ω \ Σn

εn), with Ω at the right hand side replaced by Ω \ Σn
εn , see Proposition 5.4.

In the Dirichlet case, λ∗ can be zero and the constant Λ is obtained as

Λ = min
{
C∗1,D,

1

C∗2,D

}
, (4.16)

with

C∗1,D = max
{ γ∗
C7

,
max{min{λ∗, ζ∗}, ζ∗(1 + C8)}

C1

}
, (4.17)

C∗2,D = C2 · C3 · C∗3,D , (4.18)

where

C∗3,D = 22−p max
{(1 + C4)

C
p/2
0

,
(1 + C4)|Ω|(1−p/2)

(ζ∗)p/2
}
. (4.19)

Here C7 = CG is the Poincaré constant on the fractal (see 5.10), C8 = CP ;2,2 is the Poincaré
constant on the domain Ω (see Proposition 5.6), and C1 = CTr,1,G is the trace constant on
the fractal (see Proposition 5.3).

Remark 4.1. In the Koch case, sufficient conditions for the assumptions (4.4), (4.5),
(4.6) to hold are:

ε = εn = N−s1n, χn = N−s2n , (4.20)

where 1 − ln ρ/ lnN < s1 < s2 ≤ s3 and s3 = (s1 + 2 lnα/ lnN − 1)q for some q ∈ (0, 1
2
).

In the Sierpiński case, and in the case of the Koch curve with α = 3, assumption (4.5) can
be omitted due to the simpler geometry, as it will be clear from the proof in Section 6. The
theory can be further developed by assuming different relative scalings for the parameters of
the conductive and insulating layers of the fibers. Different asymptotic boundary conditions
on G occur in the limit, which may be of first order type. This will be the object of another
research.

5. Preliminaries

We collect a few results instrumental to our proofs. To facilitate their application, we state
them in the geometry of our domains.
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By Gn, n ≥ 0 we denote the pre-fractal set:

Gn =
⋃
i|n

Gi|n =
⋃
i|n

⋃
br 6=bs∈Γ

G
i|n
brbs

(5.1)

where br bs is the segment with end-points br and bs and G
i|n
brbs

= ψi|n(br bs). We define
the arc-length measure ds on Gn by ds =

∑
i|n
∑

br 6=bs∈Γ L1

G
i|n
brbs

, where L1

G
i|n
brbs

= ds is the

1−dimensional Lebesgue measure ds on the segment G
i|n
brbs

of Gn. The sets Gn converge to
the fractal set G as n→ +∞ (in the Hausdorff metric) and also the renormalized measures
τnds on Gn weakly converge to the measure µ on G defined in (2.1).

Proposition 5.1. Let µ be the measure defined in (2.1), and τn as in (4.2). Then, for every
ϕ ∈ C(Ω̄),

τn

∫
Gn
ϕ ds→

∫
G
ϕ dµ (5.2)

as n→ +∞.

The trace inequality below shows in particular how the estimate in question depends on
the number of sides of Gn (see Theorem 5.3 in [6] and Theorem 3.5 in [7]):

Proposition 5.2. Let Gn be as in (5.1), τn be as in (4.2), and let s > 1/2. For functions
in the fractional Sobolev space Hs(Ω), the following inequality holds

τn||v||2L2(Gn) ≤ CTr,s||v||2Hs(Ω) (5.3)

where the constant CTr,s depends on s but is independent of n.

Analogous results hold on the set G and on the boundary ∂Ω:

Proposition 5.3. Let d be the Hausdorff dimension of G, and let s > 1 − d/2. Then for
functions in the space Hs(Ω) the following inequality holds∫

G
|v|2dµ ≤ CTr,s,G||v||2Hs(Ω) (5.4)

For the proof we refer, for instance, to Theorem 1 of Chapter V in [16].
The fractal G is the closure in R2 of the set V∞ =

⋃+∞
n=0 Vn where for every n ≥ 0

Vn =
⋃
i|n

ψi|n(Γ). (5.5)

The fractal energy E [u] = EG[u] is the limit of the increasing sequence

E [u] = lim
n→+∞

En[u] , (5.6)
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with

En[u] =
1

2

α2nδ

Nn

∑
i|n

∑
br 6=bs∈Γ

(u(ψi|n(br))− u(ψi|n(bs)))
2 , (5.7)

on the domain
D[EG] = {u ∈ C(G)| sup

n≥0
En[u|Vn ] < +∞} . (5.8)

D[EG] ⊂ Cβ(G) and the estimate

|u(P )− u(Q)| ≤ CH
√
E [u] |P −Q|β (5.9)

holds for every P,Q ∈ G. For these Hölder estimates we refer to Kozlov [18] (see also [27],
where Kozlov’s result is interpreted as an intrinsic Morrey’s imbedding). From the previous
inequality we get the Poincaré inequality for functions v in the domain D0[EG]∫

G
v2dµ ≤ CP,G E [v] . (5.10)

The propositions that follow are standard trace and Poincaré inequalities for Sobolev
spaces:

Proposition 5.4. For functions in the Sobolev space W 1,p(Ω), p > 1, the following inequality
holds ∫

∂Ω

|v|pdxdy ≤ CTr,p
( ∫

Ω

|∇v|pdxdy +

∫
Ω

|v|pdxdy
)
. (5.11)

Proposition 5.5. If p > 1 and s− 2/2 < 1− 2/p, then the fractional Sobolev space W 1,p(Ω)
is imbedded with compact inclusion in the Sobolev space Hs(Ω), moreover

||v||2Hs(Ω) ≤ Cp,s
( ∫

Ω

|∇v|pdxdy +

∫
Ω

|v|pdxdy
) 2
p (5.12)

For the proof we refer, for instance, to Theorem 2.19 in [5].

Proposition 5.6. If p > 1 and 1 ≤ r < 2p
2−p , for functions in W 1,p(Ω) the following inequality

holds ∫
Ω

|v|rdxdy ≤ CP ;r,p

( ∫
Ω

|∇v|pdxdy +

∫
∂Ω

|v|pds
)r/p

(5.13)

For the proof we refer, for instance, to Lemma 3.1.1 in [24], and to Theorem 2.19 in [5].

6. Strong limit

In this section we start the proof of Theorem 4.2 in the Neumann case. Namely, we
prove property (a) in (4.10) for the functionals Fn and F introduced in (3.4) and (4.8),
respectively. In the Dirichlet case the proof is quite similar. Property (b) in (4.11) will be
given in the next section: again the proof in the Neumann case, for the functionals Fn and
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F introduced in (3.4) and (4.8), respectively, is very similar to the proof in Dirichet case,
for the functionals Fn and F introduced in (3.6) and (4.9), respectively. We will specify the
different constants in the estimates in Remark 7.1.

We note that in proving property (a) in (4.10) for a given u ∈ L2(Ω) we can further
assume without loss of generality that u ∈ H1(Ω) and uG ∈ D[EG]. In fact, if u ∈ L2(Ω) does
not satisfy both conditions, then F [u] = +∞ and property (a) is trivial. Our objective then
is, given u ∈ H1(Ω), to construct a sequence of functions un ∈ L2(Ω), such that un → u in
L2(Ω) and

lim supFn[un] ≤ F [u] (6.1)

as n → +∞. The proof will be achieved in two steps, first by assuming more regularity
for u, then removing this additional assumption later. Moreover, since the geometry of the
fibers is different in the two fractal cases under consideration, we shall split our proof in
two parts, by proving the inequality (6.1) separately, first in the Sierpiński case, then in the
Koch case. Before proceeding we specify the value of wnεn in notation from Sections 2 and

3. In the expression of an(x, y), for any fiber Σ
i|n
εn (br, bs) and for every fixed address i|n and

every pair br 6= bs ∈ Γ, we define

wnεn(x, y) =

{
2+h20

4|P ∗−P⊥| if (x, y) ∈ T i|n(br, bs)
1

2|P ∗−P⊥| if (x, y) ∈ Ri|n(br, bs)
(6.2)

where Ri|n(br, bs) = ψi|n(R(br, bs)) with R(br, bs) = Φbr,bsR and T i|n(br, bs) = ψi|n(T (br, bs))
and with T (br, bs) = Φbr,bsT . Here R is the central rectangle in Σ0

0,ε, which has vertices
P1, P2, P3, P4, and T is the union of the two isosceles triangles A,P1, P4 and P2, B, P3. More-
over, for every point P = (x, y) ∈ Σ

i|n
εn (br, bs) we denote by P⊥ the orthogonal projection of

the point P on the longitudinal median axis of Σ
i|n
εn (br, bs) and we denote by P ∗ the inter-

section of the orthogonal line through P⊥ with the boundary ∂Σ
i|n
εn (br, bs) of Σ

i|n
εn (br, bs) in

the half fiber containing the point P . Here |P ∗ − P⊥| is the (Euclidean) distance between

P ∗ and P⊥ in R2. Instead, in the expression of V n(x, y), in every fiber Σ
i|n
εn (br, bs) we simply

take
wnεn(x, y) = (`nεn(x, y))−1 (6.3)

where `nεn(x, y) = 2|P ∗ − P⊥| is the transversal size of Σ
i|n
εn (br, bs) at (x, y).

Step1,(a): Sierpiński. We assume that u ∈ Cβ(Ω̄) ∩ H1(Ω) and uG ∈ D[EG], where
Cβ(Ω̄) is the space of Hölder continuous functions on Ω̄ with Hölder exponent β = ln ρ/(2 lnα).
We note that β is the Hölder regularity parameter in the inequality (5.9) for functions of
D[EG]. As u is continuous on Ω̄ we may simply write u instead of uG in an integral over G.
We decompose the functional Fn[v], for every v ∈ L2(Ω), as follows:

Fn[v] = Bn[v]−
∫

Ω

V n(x, y)v2dxdy
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where we define

Bn[v] =

{ ∫
Ω
an(x, y)|∇v|2dxdy if v ∈ H1(Ω; an)

+∞ if u ∈ L2(Ω) \ v ∈ H1(Ω; an) .
(6.4)

The functionals Bn can be easily compared with the functionals F n
εn introduced in [30] in

relation to the same Sierpiński-type system of fibers: we have

Bn[v] ≤ F n
εn [v]

for every v ∈ H1(Ω; an). In fact, the coefficient an in the two functionals differs only in the
external layer Σn

2ε \ Σn
ε of the fiber. It is equal to 1 in F n

εn , while in Bn we have 0 ≤ an ≤ 1
as n→ +∞, because of the insulating nature of Σn

2ε \ Σn
ε in the case at hand.

In Proposition 4.3 of [30] it is proved that, given a function u as in Step 1, there exists a
sequence of functions un ∈ H1(Ω)

⋂
Cβ(Ω̄), such that un → u strongly in L2(Ω) and

lim supF n
εn [un] ≤ F [u]

as n→ +∞. The functional F occurring in this inequality is defined by

F [u] =

{
ζ∗
∫

Ω
|∇u|2dxdy + γ∗EG[uG] if u ∈ H1(Ω), u|G ∈ D[EG]

+∞ if u ∈ L2(Ω) \ {u ∈ H1(Ω), u|G ∈ D[EG]} .
(6.5)

Therefore, for the same sequence un, we also get the inequality

lim supBn[un] ≤ F [u] (6.6)

as n→ +∞.
Moreover as un → u strongly in L2(Ω) we have

lim sup

∫
Ω\Σnε

−V n u2
ndxdy ≤ λ∗

∫
Ω

u2dxdy. (6.7)

The functions un in this inequality, that is, the functions un constructed in Proposition
4.3 of [30], have the following additional property. For each (x̄, ȳ) ∈ Gn, un(x̄, y) is constant,
and equal to uIn(x̄, ȳ), on the transversal segment of the internal fiber Σn

εn based at x̄. More

precisely, as the fiber Σn
εn is the union over i|n and br 6= bs ∈ Γ of all smaller fibers Σ

i|n
ε (br, bs),

see (2.9), every (x̄, ȳ) ∈ Gn belongs to one of such Σ
i|n
εn (br, bs), and, in notation from the

beginning of Section 6, the transversal segment mentioned before – which we shall denote
simply by S

i|n
εn (x̄, ȳ) – is the intersection with Σ

i|n
εn (br, bs) of the perpendicular line through

(x̄, ȳ) to the longitudinal axis G
i|n
brbs

of Σ
i|n
εn (br, bs). For all (x̄, y) ∈ Si|nεn , un(x̄, y) = uIn(x̄, ȳ).

Here uIn is continuous on Gn and affine on each side of Gn and is obtained by interpolating
the values of u at the vertices of Gn.
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As we shall see in a moment, this property of the functions un allows us to prove that

lim

∫
Σnε

V n u2
ndxdy = λ∗

∫
G
u2dµ (6.8)

as n → +∞, where µ is the Hausdorff measure on G, see Section 2. Together with ( 6.6)
and (6.7) , inequality (6.8) gives

lim sup [Bn[un]−
∫

Ω

V n u2
ndxdy] ≤ F [u] + λ∗

∫
Ω

u2dxdy − λ∗
∫
G
u2
Gdµ . (6.9)

Now we observe that if F [u] < +∞, then u ∈ H1(Ω) and uG ∈ D[EG], hence

F [u] = ζ∗
∫

Ω

|∇u|2dxdy + γ∗EG[uG] .

By replacing this expression in the previous inequality, we get

lim sup Fn[un] = lim sup (Bn[un]−
∫

Ω

V n u2
ndxdy ) ≤ F [u]

and the proof of (a) in Step 1 will be completed.
Therefore, it only remains to prove the limit (6.8). By (2.9), we decompose∫

Σnεn

V n u2
ndxdy =

∑
i|n

∑
br 6=bs∈Γ

∫
Σ
i|n
εn (br,bs)

V n u2
ndxdy .

In order to compute each integral in the sum at the right hand side, we consider the set
Σ
i|n
εn (br, bs) as a normal domain based on its longitudinal axis G

i|n
brbs

and use in Σ
i|n
εn (br, bs) the

coordinates (s, t), with s ∈ Gi|n
brbs

and t ∈ Si|nεn :∫
Σ
i|n
εn (br,bs)

V n u2
ndxdy =

∫
G
i|n
brbs

ds

∫
S
i|n
εn

V n(s, t)u2
n(s, t)dt .

We now recall that V n(s, t) = λ∗τnw
n
εn(s, t) = λ∗τn`

n(s)−1, where `n(s) = |Si|nεn | is the length

of the transversal segment S
i|n
εn = S

i|n
εn (s, 0) at the point (s, 0) ∈ Gi|n

brbs
, and un(s, t) = uIn(s, 0)

for all t ∈ Si|nεn , therefore∫
S
i|n
εn

V n(s, t)u2
n(s, t)dt = λ∗τnu

2
In(s, 0)`n(s)−1

∫
S
i|n
εn

dt = λ∗τnu
2
In(s, 0)

and we obtain ∫
Σnεn

V n u2
ndxdy =

∑
i|n

∑
br 6=bs∈Γ

λ∗τn

∫
G
i|n
brbs

u2
In(s, 0)ds ,
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then

|
∫

Σnεn

V n u2
ndxdy −

∫
Gn
λ∗τnu

2ds| ≤ λ∗Cα
−βn (6.10)

where the constant C depends on the Cβ(Ω̄) norm of u but does not depend on n. By
Proposition 5.1, we know that

lim
n→+∞

λ∗τn

∫
Gn
u2ds = λ∗

∫
G
u2dµ , (6.11)

This, with (6.10), proves our claim (6.8) and concludes the proof of property (a) in the
Sierpiński case, under the additional assumption of Step 1.

Step 2,(a): Sierpiński. We remove the additional assumption made in Step 1, complet-
ing in this way the proof of (a) in the Sierpiński case. This is achieved by first approximating
in H1(Ω) any given function u ∈ H1(Ω) that has the trace uG ∈ D[EG] with a sequence of
functions ǔm ∈ Cβ(Ω̄)∩H1(Ω) which have same trace on G as u, then by a further approxi-
mation in L2(Ω) of every such ǔm, and finally by applying a diagonal argument to build up
the required un. We refer to Propositions 4.4 and 4.5 in [30], for the details. However, we
will describe Step 2 in more details in our proof of (a) in the Koch case, that comes next.
Before, we point out that in the Sierpiński case treated so far the assumption (4.5) played
no role in the proofs and it can be omitted in Theorems 4.1 and 4.2, as already noticed in
Remark 4.1.

We now give the proof of (a) for the Koch curves Kα. When α 6= 3, we cannot rely
on the standard equilateral triangulations and interpolation operators in the whole domain
Ω that are used in the Sierpiński case. The geometry of the Koch curves is more irregular
and the interpolation technique is easier if restricted only to the pre-fractal curves Gn. New
approximation tools from fractional Sobolev spaces come into play. This method is more
general and can be applied to other cases, therefore we give the proof in some detail. As in
the Sierpiński case dealt with before, the proof will be achieved again in two steps, first by
assuming more regularity for u, then removing this additional assumption.

Step1,(a): Koch. We assume, in addition, that u ∈ Hς(Ω) ∩ Cβ(Ω̄), β = log ρ
2 logα

, ς =
log ρ

2 logα
+ 1− ε. Here Hς(Ω) is the fractional Sobolev space.

For every pre-fractal polygonal curve Gn, we introduce the space Sn of the functions on
Gn which are continuous on Gn and are affine on each side of Gn. We recall that the set of
vertices of Gn is denoted by Vn. For a given continuous function g ∈ C(Ω̄), and for every n,
we denote by gIn the function of Sn obtained by interpolating the values of g at the vertices
of Gn, that is,

gIn ∈ Sn gIn(P ) = u(P ), P ∈ Vn. (6.12)

We now introduce an auxiliary operator Gε that acts on C(Ω̄). This requires some
preliminary notation. We set Ĉ = (1/2, h1/2) with, h1 = tan(ϑ/2). The segment AB
divides the set Σ0

0,ε (and the set Σ0
0,2ε) in two parts: the one which lies inside the triangle

of vertices A,B, Ĉ – denoted Σ+
ε (Σ+

2ε) – and the one which lies outside that triangle –

denoted Σ−ε (Σ−2ε). For every point (x, y) in Σ
0

0,2ε, by (x>, y>) we denote the orthogonal
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projection of (x, y) on G0; by P± = P±(x, y) = (x̂±, ŷ±) ∈ ∂Σ0
0,ε the points where the

straight line connecting (x, y) to (x>, y>) intersects the boundary ∂Σ0
0,ε of Σ0

0,ε and, similarly,
by Q±=Q±(x, y) = (x̃±, ỹ±) ∈ ∂Σ0

0,2ε the points where the same line intersects the boundary
∂Σ0

0,2ε of Σ0
0,2ε. In this notation, as before, the sign + refers to points inside the triangle,

the sign − to points outside. We then define the operator Gε : C(Ω̄) 7→ C(Ω̄), by putting
Gεg = gε where for (x, y) ∈ Ω̄,

gε(x, y) =


g(x, y) if (x, y) ∈ Ω̄ \ Σ

0

0,2ε

gIn(x>, y>) if (x, y) ∈ Σ
0

0,ε

gIn(x>, y>)t± + g(Q±)(1− t±) if (x, y) ∈ Σ
0

0,2ε \ Σ
0

0,ε.

(6.13)

Here:

t± =
|ỹ± − y|+ |x̃± − x|
|ỹ± − ŷ±|+ |x̃± − x̂±|

.

Thus, gε is equal to g in Ω \ Σ0
0,2ε and, on each segment J obtained as the intersection of

Σ
0

0,2ε with the orthogonal line to AB at the point (x>, y>), gε is the piecewise-affine function

which is constant and equal to gIn(x>, y>) on J ∩ Σ
0

0,ε and equal to g at the intersection
points J ∩ ∂Σ0

0,2ε of J with ∂Σ0
0,2ε.

For given n and for every εn as in the assumptions of the theorem we define

un(ξ, η) =

{
u(ξ, η) if (ξ, η) ∈ Ω \ Σn

2εn

Gεn(u ◦ ψi|n) ◦ ψ−1
i|n (ξ, η) if (ξ, η) ∈ Σ

i|n
2εn ,

(6.14)

where Gεn is the operator Gε defined before, here taken with ε = εn.

Lemma 6.1. The functions un defined in (6.14) converge to u in L2(Ω) and satisfy

lim supFn[un] = F [u] (6.15)

as n→ +∞.

Proof. For every n, two distinct copies Gi|n, Gj|n intersect each other at most at vertices
belonging to the set Vn. Moreover, for every 0 < ε ≤ h0/2, two distinct copies Σ

i|n
2ε , Σ

j|n
2ε

meet at most only in Vn. Therefore, as the function u is regular in this Step 1, the functions
un belong to H1(Ω) ∩ Cβ(Ω). Moreover,

max
Σn2ε

|un| ≤ ||u||L∞(Ω) (6.16)

and the sequence un converges strongly to u in L2(Ω). We put

F n[un] =

∫
Ω

an(x, y)|∇un|2dxdy (6.17)
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and we decompose the integral as

F n[un] = ζn

∫
Ω\Σn2εn

|∇u|2dξdη + γnσn

∫
Σnεn

|∇un|2wndξdη + χn

∫
Σn2εn\Σ

n
εn

|∇un|2dξdη. (6.18)

Since the two-dimensional Lebesgue measure of Σn
2εn goes to zero as n → +∞ and by

assumption (4.3) we have

lim
n→+∞

ζn

∫
Ω\Σn2εn

|∇u|2dξdη = ζ∗
∫

Ω

|∇u|2dξdη. (6.19)

Now we prove that:

lim
n→+∞

χn

∫
Σn2εn\Σ

n
εn

|∇un|2dξdη = 0. (6.20)

For every n, we have

Σn
2εn\Σnεn

=
⋃
i|n

Σ
i|n
2εn \ Σi|n

εn ,

moreover, for a fixed n-address i|n, the set Σ
i|n
2εn \Σ

i|n
εn can be seen as the union of rectangles

and triangles. We split the corresponding integrals according to this decomposition, namely,
we write ∫

Σ
i|n
2εn
\Σi|nεn
|∇un|2dξdη ≡ R+ +R− +

∑6

j=3
Xj , (6.21)

where

R+ =

∫
ψi|n(R+

εn )

|∇un|2dξdη, R− =

∫
ψi|n(R−εn )

|∇un|2dξdη

Xj =

∫
ψi|n(Tj,εn )

|∇un|2dξdη , j = 3, 4, 5, 6.

HereR+
εn is the rectangle of vertices P1, P2, Q2, Q1;R−εn is the rectangle of verticesQ4, P4, P3, Q3

and Tj,εn is the triangle of vertices A,Ph, Qh if j = 3, 6, or the triangle Ph, Qh, B if j = 4, 5,
h = j − 2. It suffices to give the proof for R+, as the other integrals can be evaluated
similarly. By the change of coordinates (ξ, η) = ψi|n(x, y), we define

g(x, y) = (u ◦ ψi|n)(x, y) (6.22)

for all (x, y) ∈ R+
εn . In R+

εn we have x̂+ = x, ŷ+ = εn/2, x̃+ = x, ỹ+ = εn, Q+ = (x, εn).
Therefore, by applying (6.13) to the function g, we obtain

gεn(x, y) = {u(ψi|n(A))(1− x) + u(ψi|n(B))x}2(εn−y)
εn

+ u(ψi|n(x, εn))2y−εn
εn

.
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The derivative with respect to the variable y leads to terms of the type

Z =
(u(ψi|n(A))− u(ψi|n(x, εn)))2

ε2
n

which after integration on R+
εn gives

χn

∫
R+
εn

Zdxdy ≤ C · χn (1− 2εn
h0

)ε−1
n · α−2βn . (6.23)

Here and elsewhere by C we denote a constant which is independent of n. We note that in
the previous inequality we have used the fact that u is Hölder continuous with exponent β
that is

(u(ψi|n(A))− u(ψi|n(x, εn)))2 ≤ Cα−2βn.

The derivative with respect to the variable x leads to terms of the type Y = u2
x(ψi|n(x, εn)),

which after integration on R+
εn gives

χn

∫
R+
εn

Y dxdy

≤ C · χn εn/2
∫ 1− εn

h0

εn
h0

u2
x(ψi|n(x, εn))dx ≤ Cχn · α−n εn/2

∫
ψi|n([ ε

h0
, 1− εn

h0
],εn)

|∇u|2(S)ds (6.24)

where we denote by S any point in segment ψi|n(x, εn) and by ds the arc-lenght measure
along the polygonal curve ψi|n(∂Σ+

2εn). The last integral can be estimated taking into account

the fact that u ∈ Hς(Ω) with ς = ln ρ
2 lnα

+ 1 − ε and this leads to estimate (6.28) below. We
now evaluate the integral X3. In T3,ε, we have x̂0,+ = x, ŷ0,+ = h0x/2, x̃0,+ = x, ỹ0,+ = h0x,
P+ = (x, h0x/2), Q+ = (x, h0x) and

gε(x, y) = {u(ψi|n(A))(1− x) + u(ψi|n(B))x}2(h0x− y)

h0x
+ u(ψi|n(x, εn))

2y − h0x

h0x
. (6.25)

As in the previous calculation the derivatives of the function in (6.25) lead to different terms
that can be evaluated as the term

X =
(u(ψi|n(A))− u(ψi|n(x, h0x)))2

x2
;

then after integration on T3,εn one obtain

χn

∫
T3,εn

Xdxdy ≤ C χn ε
2β
n · α−2nβ. (6.26)

The integrals X4, X5 and X6 can be dealt with in a similar way.
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Since u ∈ Cβ(Ω), by taking estimates (6.23) (6.24) into account we get from (6.21)

χn

∫
Σn2ε\Σnε

|∇un|2dξdη =

∑
i|n

χn

∫
Σ
i|n
2ε \Σ

i|n
ε

|∇un|2dξdη ≤ C
∑
i|n

{N−nχn
εn

+ χnεnα
−n
∫
∂Σ

i|n
2ε

|∇u|2ds} (6.27)

where ds is the arc-lenght measure along the polygonal curve
⋃
i|n ∂Σ

i|n
2εn . We note now that

an estimates analogous to (5.3) holds on the boundary of Σn
2εn , see Proposition 5.2 with

s = ς − 1. We then obtain the estimate:

τn

∫
∂Σn2εn

|∇u(S)|2ds ≤ C||∇u||2Hς−1(Ω) (6.28)

with a constant C independent of n. Claim (6.20) follows then from (6.27) and (6.28) by
taking assumption (4.5) into account. We note that, for a given function u ∈ H1(Ω)∩Cβ(Ω̄)),
the function un defined in (6.14) differs from the corresponding function un considered in
[30] only in the set Ω\Σn

ε . In the fibers Σn
εn , both functions coincide, as they are constructed

as the piece-wise affine continuous functions that interpolates the function u at the nodes
Vn of Gn. Therefore, we can prove that un ∈ H1(Ω; an) for every n and

lim sup
n→+∞

γnσn

∫
Σnεn

|∇un|2wnεndξdη = γ∗E [u]. (6.29)

as in the proof of (4.22) in Proposition 4.3 of [30].
The limit

lim

∫
Σnεn

V n
ε u

2
ndxdy = λ∗

∫
G
u2dµ. (6.30)

can be evaluated as n→ +∞ in the same way as the limit (6.8) and we omit the details.
Finally, by (6.16), the functions un are uniformly bounded on the set Σn

2εn and they are all
equal to the function u on the set Ω \ Σn

2εn . Therefore,

limλ∗n

∫
Ω\Σnεn

u2
ndxdy = λ∗

∫
Ω

u2dxdy (6.31)

as n→ +∞.
Putting all estimates (6.19), (6.20), (6.29), (6.31) and (6.30) together, we get (6.15) and

conclude the proof of Lemma 6.1 and with it the proof of (a) in Step 1.
We now move to Step 2, by removing the additional assumption u ∈ Hς(Ω) ∩ Cβ(Ω),

made in Step 1.
Step 2,(a): Koch. We are given u ∈ L2(Ω) and prove that there exists a sequence of
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functions un ∈ L2(Ω), such that un → u in L2(Ω) and

lim supFn[un] ≤ F [u] . (6.32)

As noticed at the beginning of this section, we can further assume that u ∈ H1(Ω) and
uG ∈ D[EG]. We need the following lemma, that relies on trace, extension and density results
for functions in Sobolev and Besov spaces on so-called d−sets. For these results we refer to
Jonsson [15], Jonsson and Wallin [16].

Lemma 6.2. Let u ∈ H1(Ω) be such that u|Kα ∈ D[EKα ]. Then, there exists a sequence of

functions ûm ∈ Cβ(Ω) ∩Hς(Ω), β = ln ρ
2 lnα

, ς = ln(ρ)
2 lnα

+ 1− ε, satisfying

ûm ≡ u|Kα on Kα ,

which converges strongly to u in H1(Ω) as m→ +∞.

Proof. Let u ∈ D[a]. The trace u|Kα of u on Kα belongs to the space D[EKα ]. This
space coincides with the space Lipγ,2,∞(Kα), γ = ln(Nρ)/2 lnα, introduced by Jonsson, see
[15] and also [20]. As the space Lipγ,2,∞(Kα) is a subspace of the Besov space B2,∞

γ (Kα),

u|Kα admits an extension ǔ to R2, such that ǔ ∈ B2,∞
γ+1−d/2(R2), where B2,∞

γ+1−d/2(R2) is the

fractional Besov space defined by Jonsson and Wallin, see [16]. We recall that the Besov
space B2,∞

γ+1−d/2(R2) is a subspace of the Besov space B2,2
γ+1−d/2−ε(R

2) for any positive ε. The

latter space coincides with the fractional Sobolev space Hγ+1−d/2−ε(R2) (see [16]). By the
imbedding properties of these Besov spaces (see [16]), we have

ǔ ∈ Cβ(R2) ,

where β = γ + 1 − d/2 − 2/2 = ln ρ
2 lnα

. We set û = ǔ|Ω and we have û ∈ Hς(Ω), ς =
γ + 1 − d/2 − ε. As u ∈ H1(Ω), hence û − u ∈ H1(Ω) and the trace of û − u on Kα is the
function û|Kα − u|Kα ∈ Cβ(Kα) and û|Kα − u|Kα ≡ 0. Since C2(Ω̄) is dense in H1(Ω), there
exists a sequence of functions u∗m ∈ C2(Ω̄), u∗m ≡ 0 on Kα, that converges strongly to u− û
in H1(Ω) as m→ +∞. For every m, we put

ûm = u∗m + û . (6.33)

The sequence {ûm}m has the required properties, in particular ûm ∈ Hς(Ω), it converges to
u in H1(Ω) and

E [ûm] = E [u|Kα ] (6.34)

for every m. This concludes the proof of the lemma.

We proceed with our proof of (a). By Lemma 6.2, given our function u ∈ D[a], there exists
a sequence of function ûm ∈ Hς(Ω) ∩ Cβ(Ω) such that

ûm → u H1(Ω)
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and ûm = u on Kα. By Lemma 6.1, for each function ûm there is a sequence of functions
ûm,n such that

lim
n→+∞

‖ûm,n − ûm‖L2(Ω) = 0 and lim sup
n→+∞

Fn[ûm,n] = F [ûm] . (6.35)

As ûm → u in H1(Ω), from (6.35), by taking (6.34) into account, we get

F [u] = lim
m→+∞

{
ζ∗
∫

Ω

|∇ûm|2dxdy + λ∗
∫

Ω

û2
mdxdy − λ∗

∫
G
û2
mdµ+ γ∗E [ûm]

}
= lim

m→+∞
F [ûm] = lim

m→+∞
{lim sup
n→+∞

Fn[ûm,n]} ,

moreover,
lim

m→+∞
( lim
n→+∞

‖ûm,n − u‖L2(Ω)) = 0 .

We now apply the diagonal formula of Corollary 1.16 in [3]. This gives a strictly increasing
mapping n→ m(n) with limn→+∞m(n) = +∞, such that, by denoting un = um(n),n:

‖un − u‖L2(Ω) → 0 and lim supFn[un] ≤ F [u],

as n→ +∞.

7. Weak limit

In this Section we carry on the proof of condition (b) in (4.11). In the space L2(Ω) we
are given an arbitrary sequence vn that converges weakly to a function u, and we must prove
that

lim inf Fn[vn] ≥ F [u] . (7.1)

By possibly extracting a subsequence of vn, still denoted by vn, it is not restrictive to
assume that vn ∈ H1(Ω; an); that

vn → u weakly in L2(Ω); (7.2)

and that there exists a constant C̃ such that we have

Fn[vn] ≤ C̃ , (7.3)

with C̃ a constant independent of n, where Fn[·] is the functional defined in (3.4).
Our first concern it to prove that u ∈ H1(Ω). Against this property there are two features

in the present setting: the loss of coercivity in the insulating layer of the fibers Σn
2εn \ Σn

εn ,
on the one hand, the action of the negative part of the potential V n on the other hand. To
overcome this difficulty we rely on suitable fractional Sobolev and trace inequalities. We
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begin by establishing a uniform estimate for the sequence vn in the Sobolev space W 1,p(Ω)
with p < 2. More precisely, we prove

Lemma 7.1. Let F n be the functionals introduced in (6.17). Then for every p > 1 the
following inequalities hold:∫

Ω

|v|pdxdy +

∫
Ω

|∇v|pdxdy ≤ C∗3

{
λ∗n

∫
Ω\Σnεn

v2dxdy + F n[v]
}p/2

, (7.4)

where

C∗3 = 23(1−p/2) max
{(1 + C4(1 + C5))

C
p/2
0

,
(1 + C4(1 + C5))|Ω|(1−p/2)

(ζ∗)p/2
,
(C4C5)|Ω|(1−p/2)

(λ∗)p/2
}

for every n and every v ∈ H1(Ω; an).

Proof. The estimate of the term
∫

Ω
|v|pdxdy follows from Propositions 5.6 and 5.4. We

should only observe that inequality in Proposition 5.4 which involves the boundary ∂Ω also
holds, with a constant that is independent of n, if we replace the set Ω with the set Ω \Σn

εn .

In fact, ∂Ω can be taken to be part of the boundary of an open set Ω̃ with Ω̃ ⊂ Ω \Σn
εn . The

inequality obtained in this way is

||v||pW 1,p(Ω) ≤
{

(1 + CP ;p,p(1 + CTr,p))

∫
Ω

|∇v|pdxdy + CP ;p,pCTr,p

∫
Ω\Σnεn

|v|pdxdy
}
. (7.5)

As λ∗n → λ∗, the last term can be estimated for large n by∫
Ω\Σnεn

|v|pdxdy ≤ {λ∗n
∫

Ω\Σnεn

v2dxdy
} p

2 ·
2(1−p/2)|Ω \ Σn

εn|
1− p

2

(λ∗)
p
2

, (7.6)

where by |E|, as usual, we denote the 2−dimensional Lebesgue measure of E ⊂ R2. Similarly,∫
Σn2εn\Σ

n
εn

|∇v|pdxdy ≤
{
χn

∫
Σn2εn\Σ

n
εn

|∇v|2dxdy
} p

2 ·
|Σn

2εn \ Σn
εn|

1− p
2

χ
p
2
n

(7.7)

and by (4.6) with q = 2/p− 1
|Σn

2ε \ Σn
ε |q

χn
≤ 2q

C0

. (7.8)

Estimates (7.7), (7.8) imply∫
Ω

|∇v|pdxdy =

∫
Σn2εn\Σ

n
εn

|∇v|pdxdy +

∫
(Ω\Σn2εn )

⋃
Σnεn

|∇v|pdxdy ≤
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≤ 2(1− p
2

)C
− p

2
0

{
χn

∫
Σn2εn\Σ

n
εn

|∇v|2dxdy
} p

2
+

2(1− p
2

)|Ω|1− p2
(ζ∗)p/2

{
ζn

∫
(Ω\Σn2εn )

⋃
Σnεn

|∇v|2dxdy
} p

2

for large n. Since for n large enough{
χn

∫
Σn2εn\Σ

n
εn

|∇v|2dxdy + ζn

∫
(Ω\Σn2εn )

⋃
Σnεn

|∇v|2dxdy
}
≤ F n[v]

our claim (7.4) follows and the lemma is proved.
Lemma 7.1 is applied with an appropriate choice of the exponent p in order to prove the
lemma that follows, which is also instrumental to proving that u ∈ H1(Ω). The choice of p
makes it possible to apply the results of Propositions 5.5, 5.2. We also note that it is this
special choice of p that leads to the requirement q < 1/2 in the assumptions of Theorem 4.1
and Theorem 4.2.

Lemma 7.2. The functions vn, satisfying conditions (7.2) and (7.3), have also the property:

vn → u strongly in Hs(Ω) (7.9)

for some s > 1/2, as n→ +∞. Moreover,

lim
n→+∞

λ∗n

∫
Ω\Σnε

v2
ndxdy = λ∗

∫
Ω

u2dxdy . (7.10)

Proof. We claim that the following inequality holds:∫
Ω

an(x, y)|∇vn|2dxdy + λ∗n

∫
Ω\Σnεn

v2
ndxdy ≤ C̃∗. (7.11)

with a constant C̃∗ that does not depend on n. By (7.4) of the previous lemma, this inequality
implies that the sequence vn is uniformly bounded in W 1,p(Ω). We can choose p > 4

3
. Then,

by the Sobolev compact imbedding of Proposition 5.5, we get vn → u strongly in Hs(Ω)
with s > 1/2. Since this implies in particular that the integrals of v2

n over Σn
εn vanish as

n→ +∞, and since λ∗n → λ∗, the inequality (7.10) also follows and the proof of the lemma
will be achieved.
We now prove the claim. By Propositions 5.2, 5.5, we have

τn

∫
Gn
v2
nds ≤ CTr,s||vn||2Hs(Ω) ≤ CTr,s · Cp,s||vn||2W 1,p(Ω),

and by (7.4) we get

τn

∫
Gn
v2
nds ≤ C∗2

{
F n[vn] + λ∗n

∫
Ω\Σnεn

v2
ndxdy

}
(7.12)
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where
C∗2 = CTr,s · Cp,s · C∗3 .

This estimate allows us to reduce the estimate of the term
∫

Σnεn
V n v2

ndxdy to the estimate

of the term
∫

Σnεn
V nv2

ndxdy − λ∗τn
∫
Gn
v2
nds. This calculation can be carried out piece-wise

on each fiber of Σn
εn .

As in the previous section (see (6.10)) for any fiber Σ
i|n
εn (br, bs) of Σn

εn we have

|
∫

Σ
i|n
εn (br,bs)

V n v2
ndxdy−λ∗τn

∫
G
i|n
brbs

v2
nds| = λ∗τn|

∫
G
i|n
brbs

(`εn)−1(s)

∫
S
i|n
εn

(
v2
n(s, t)−v2

n(s, 0)
)
dtds |

≤ 2λ∗τn

∫
G
i|n
brbs

(

∫
S
i|n
εn

|∇v|2ndt)1/2(

∫
S
i|n
εn

v2
ndt)

1/2ds;

by summing over the fibers we get

|
∫

Σnεn

V nv2
ndxdy − λ∗τn

∫
Gn
v2
nds| ≤ τnλ∗

{∫
Σnεn

|∇vn|2dxdy +

∫
Σnεn

v2
ndxdy

}
. (7.13)

By Propositions 5.6 and 5.4, as in the proof of previous Lemma 7.1 (see in particular
(7.5),( 7.6),(7.7) and (7.8))∫

Σnεn

V nv2
ndxdy ≤ λ∗(C

∗
2 + τnC

∗
4)(F n[vn] + λ∗n

∫
Ω\Σnεn

v2
ndxdy) (7.14)

where C∗4 is a positive constant that depends on the constants CP ;2,p, CTr,p, C0, ζ
∗ and λ∗

(see the proof of Lemma 7.1). Therefore

Fn[vn] ≥
(
F n[vn] + λ∗n

∫
Ω\Σnεn

v2
ndxdy

)
(1− λ∗(C∗2 + τnC

∗
4))

The claim has been proved and with it the lemma.

Remark 7.1. In the Dirichlet case, Lemma 7.1 can be replaced by: let F n be the functionals
introduced in (6.17), then for every p > 1 the following estimate holds∫

Ω

|v|pdxdy +

∫
Ω

|∇v|pdxdy ≤ C∗3,D{F n[v]}p/2 , (7.15)

where

C∗3,D = 22−p max
{1 + C4

C
p/2
0

,
(1 + C4)|Ω|(1−p/2)

(ζ∗)p/2
}

for every n and every v ∈ D0[an]. Consequently, in the Dirichlet case, inequality (7.14) in
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the proof of Lemma 7.2 can be replaced by:∫
Σnεn

V nv2
ndxdy ≤ λ∗(C

∗
2,D + τnC

∗
4)F n[vn] (7.16)

where
C∗2,D = C2 · C3 · C∗3,D

and C∗4 is a positive constant that depends on the constant C∗3,D. Therefore

Fn[vn] ≥ F n[vn](1− λ∗(C∗2,D + τnC
∗
4)).

We are ready to prove that u ∈ H1(Ω) and that additional properties of u hold.

Lemma 7.3. The functions u has the property:

u ∈ H1(Ω) . (7.17)

Moreover, for the functions vn satisfying the properties (7.2) and (7.3), the following condi-
tions hold:

ζ∗
∫

Ω

|∇u|2dxdy ≤ lim inf ζn

∫
Ω\Σn2εn

|∇vn|2dxdy ; (7.18)

for every ϕ ∈ C(Ω̄),

τn

∫
Gn
ϕvnds→

∫
G
ϕu dµ , (7.19)

as n→ +∞ .

Proof. We exploit suitable monotonicity properties of the integration domains and
related Fatou’s properties. We first consider the Sierpiński case. By T0 we denote the open
triangle of vertices A,B,C and we put T ∗0 = T0 ∪ Σ0

2ε, Ω0 = Ω \ T ∗0 , and for every n ≥ 1

T ∗n = ∪i|nψi|n(T0) ∪ Σn
2ε , Ωn = Ω \ T ∗n .

We note that the sequence of the open sets Ωn is increasing. Moreover, Ωn converges to
the domain Ω, in the sense that the sequence of the two-dimensional Lebesgue measures of
Ωn tends to the two-dimensional Lebesgue measure of Ω and the sequence of the indicatrix
functions 1Ωn tends to the indicatrix function 1Ω a.e in Ω. In the case of the Koch curves
Kα we denote by T̂0 the open triangle of vertices A = (0, 0), B = (1, 0) and Ĉ = (1/2, h1/2)
where h1 = tan(ϑ

2
), ϑ the rotation angle (2.5). The triangle T̂0 satisfies the open set condition

with the maps Ψ, that is, ψi|n(T̂0) ⊂ T̂0 for every i|n and ψi|n(T̂0) ∩ ψj/n(T̂0) = ∅ for every

i|n 6= j/n. For every n, we define the (open) polygonal fiber T̂ n

T̂ n =
⋃
i|n

T̂ i|n where T̂ i|n = ψi|n(T̂0), (7.20)
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and we set
Ωn = Ω \ (T̂ n ∪ Σn

2εn) .

By the properties of T̂0 and of the geometry of the fibers, it follows that – as in the previous
case of the Sierpiński set – the sequence of open sets Ωn is increasing and Ωn converges to Ω
as specified before. Therefore, in both cases, Koch and Sierpiński, for every n ≥ m we have

Ωm ⊂ Ωn ⊂ Ω \ Σn
2εn .

This property implies, by the estimate (7.11), that vn converge weakly in H1(Ωm) to u,
moreover, ∫

Ωm

|∇u|2dxdy ≤ lim inf
n→+∞

∫
Ω\Σn2εn

|∇vn|2dxdy ≤ C̃∗∗ (7.21)

where the constant C̃∗∗ depends on the constant C̃∗ in (7.11) and on the material constants
ζ∗, λ∗, but it is independent of n and m. By applying Fatou’s Lemma to the integrals at the
left-hand side of the previous inequality, we obtain that both (7.17) and (7.18) hold. We
now prove the last property in the lemma, (7.19). By (5.3) of Proposition 5.2,

τn

∫
Gn

(ϕvn − ϕu)ds→ 0 (7.22)

as n→ +∞. By the density of C(Ω̄) in H1(Ω) and (5.2), we have

τn

∫
Gn
ϕuds→

∫
G
ϕu dµ (7.23)

as n→ +∞. This conclude the proof of (7.19) and of the lemma.
We now proceed to the proof of condition (b), that is, of inequality (7.1). We proceed in

two steps.
Step1. We assume, in addition, that

vn ∈ C1(Ω̄)

for every n. The inequality to prove, (7.1), is

ζ∗
∫

Ω

|∇u|2dxdy + λ∗
∫

Ω

u2dxdy + γ∗EG[uG]− λ∗
∫
G
u2dµ (7.24)

≤ lim inf (F n[vn]−
∫

Ω

V n(x, y)v2
ndxdy)

(7.25)

31



as n→ +∞, where

F n[vn] = ζn

∫
Ω\Σn2εn

|∇vn|2dxdy + χn

∫
Σn2εn\Σ

n
εn

|∇vn|2dxdy + γnσn

∫
Σnεn

wnεn |∇vn|
2dxdy

and ∫
Ω

V n(x, y)v2
ndxdy = −λ∗n

∫
Ω\Σnεn

v2
ndxdy + λ∗τn

∫
Σnεn

wnεnv
2
ndxdy .

The inequalities (7.10) and (7.18) of Lemma 7.2 and Lemma 7.3, together, give

ζ∗
∫

Ω

|∇u|2dxdy+ λ∗
∫

Ω

u2dxdy ≤ lim inf (ζn

∫
Ω\Σn2εn

|∇vn|2dxdy+ λ∗n

∫
Ω\Σnεn

v2
ndxdy) (7.26)

as n→ +∞. Next, we claim that the following inequality holds:

γ∗EG[uG] ≤ lim inf γnσn

∫
Σnεn

wnεn|∇vn|
2dxdy . (7.27)

We note that this inequality does not involve the insulating external fibers Σn
2εn \Σn

εn nor
the potentials V n, which are the peculiarities of the present setting. The inequality has in
fact been obtained in [30], see (5.51) of that paper. The proof is rather technical, and it will
not be reproduced here.

The term at the right hand side of inequality (7.27) is bounded, because all integrals are
part of F n[vn] which, by (7.11), are uniformly bounded in n. This implies that EG[uG] < +∞,
what implies in particular that uG is continuous on G.
Finally, we shall prove in a moment that

lim

∫
Σnεn

V nv2
ndxdy = λ∗

∫
G
u2dµ. (7.28)

By adding (7.26), (7.27), (7.28) together, we get the inequality (7.1) and bring Step 1 to its
end.

To prove (7.28), we write∫
Σnεn

V nv2
ndxdy − λ∗

∫
G
u2dµ =

(λ∗τn

∫
Σnεn

wnεnv
2
ndxdy − λ∗τn

∫
Gn
v2
nds) + λ∗τn(

∫
Gn
v2
nds−

∫
Gn
u2ds) + λ∗(τn

∫
Gn
u2ds−

∫
G
u2dµ)

= J1 + J2 + J3 .

By (7.13),

|J1| = λ∗τn|
(∫

Σnεn

v2
nw

n
εndxdy −

∫
Gn
v2
nds
)
| ≤ τnλ∗C

∗
4

{
F n[vn] + λ∗n

∫
Ω\Σnεn

v2
ndxdy

}
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with C∗4 a positive constant that depends only on the constants CP ;2,p, CTr,p, C0, ζ
∗ and

λ∗ (see the proof of Lemma 7.2) occurring in (7.4) and (7.14). The terms in brackets are
uniformly bounded in n and τn → 0. Therefore, J1 → 0 as n→ +∞.

By the estimate (5.3) of Proposition 5.2

|J2| = λ∗τn|
(∫

Gn
v2
nds−

∫
Gn
u2ds

)
| ≤ λ∗CTr,s||vn − u||Hs(Ω)||vn + u||Hs(Ω) → 0.

Finally, by property (5.2) of Proposition 5.1

J3 = τn

∫
Gn
u2ds−

∫
G
u2dµ→ 0 .

This concludes the proof.
Step 2. We remove the assumption that vn ∈ C1(Ω̄). This is done by a density argu-

ment based on the fact that the space C1(Ω̄) is dense in the weighted space H1(Ω; an) (see
Proposition 5.4 in [30] for more details).

Acknowledgement
This work was partially supported by NSF grant No.1109356.

[1] Y.Achdou, C.Sabot, N.Tchou: Transparent boundary conditions for the Helmholtz
equation in some ramified domains with a fractal boundary, J. Comput. Phys. 220 (2007)
no. 2, 712-739.

[2] Y.Achdou, N.Tchou: Neumann conditions on fractal boundaries, Asymptotic Anal-
ysis 53 (2007) no. 1-2, 61-82.

[3] H. Attouch: Variational Convergence for Functions and Operators, Pitman Advanced
Publishing Program, London 1984.

[4] R. Bass, K. Burdzy, Z. Chen: On the Robin problem in fractal domains, Proc.
Lond. Math. Soc. (3) 96 (2008), no. 2, 273-311.

[5] F. Brezzi, G. Gilardi: FEM Mathematics, in Finite Element Handbook, Eds.
Kardestuncer H., Norrie D.H., McGraw-Hill Book Co., New York, 1987.

[6] R. Capitanelli: Asymptotics for mixed Dirichlet-Robin problems in irregular domains,
in J. Math Anal. Appl. 362 (2010), 450-459.

[7] R. Capitanelli, M.A. Vivaldi: Trace theorems on scale irregular fractals, in Clas-
sification and Application of Fractals, 363-381 Nova Science Publishers 2011.

[8] R. Capitanelli, M.R.Lancia, M.A. Vivaldi: Insulating layers of fractal type,
Differential and integral Equations 26 (2013) no. 9-10, 1055-1076.

33



[9] M. Cefalo, M.R.Lancia, H.Liang: Heat flow problems across fractal mixtures:
regularity results and numerical approximation, Differential and Integral Equations 26
(2013) no. 9-10, 1027-1054.

[10] D. Daners: Robin boundary value problems on arbitrary domains, Trans. Amer. Math.
Soc. 352, (2000), no. 9, 4207-4236.

[11] E.Evans, H.Liang: Singular Homogenization for Sierpiński pre-fractals, Nonlinear
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