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This paper wants to show how practical geometry, created to give a concrete help to people involved 
in trade, in land-surveying and even in astronomy, underwent a transformation that underlined its 
didactical value and turned it first into a way of teaching via problem solving, and then into an 
experimental-intuitive teaching that could be an alternative to the deductive-rational teaching of 
geometry. This evolution will be highlighted using textbooks that proposed alternative presentations 
of geometry. 
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INTRODUCTION  

As is well known, practical geometry was present from the very beginning of the history of 
geometry. Different populations, such as the Egyptians, the Babylonians, the Chinese and 
the Indians, developed practical geometric skills. A practical geometry was present in the 
Greek world too; however, “basing their work on the practical geometry of the Egyptians”, 
the Ancient Greeks developed “a system of logic which culminated with the great work of 
Euclid” (Walker Stamper, 1909, p. 4). As we know, the logical-deductive aspect of Euclid’s 
Elements greatly influenced the teaching of geometry. 

The Romans were mainly interested in practical geometry (land-surveying and the 
engineering of warfare), and in its teaching in their schools. In this environment, we find 
one of the first didactical appreciations of practical geometry: “Leaving its use in warfare, 
many maintain that this science, different from others, is not useful when it is part of the 
knowledge, but at the moment in which it is learned”  (Quintilianus, Istitutio Oratoria, I, 34 
etc.). With these words Quintilianus (1st century AD) attributed to practical geometry, 
through the attention to the process of learning, the same educational role that proving has 
within rational geometry. 

Many attempts have been made to teach geometry following a path different from that 
proposed in the Elements of Euclid (Barbin & Menghini, 2013). The most diffused way was 
to change the order of the theorems and of the problems, while accepting hypothetical 
constructions and a limited use of arithmetic. In this paper we will look at those attempts 
whose main purpose was not in a (new) logical order for geometric deduction, but rather in 
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an “exploration” of geometry that kept a strong link with its practical origin, and whose 
contents and methods can be seen as an evolution of the medieval practical geometry.   

1. “DE PRACTICA GEOMETRIAE” 

We will begin our excursus among the textbooks of practical geometry with Fibonacci’s De 
practica geometriae (1223). This work by Leonardo of Pisa (Fibonacci) gave rise to that 
stream of practical geometry which characterised the geometry of the Late Middle Ages and 
presented not only the very practical rules and methods for calculating distances and areas 
for land-surveyors, but also problems that, towards the end of the Middle Ages, turned into 
“mathematical games” (as in Leon Battista Alberti’s Ludi matematici, written in the 
mid-15th century).  

Fibonacci’s text was largely used in the last grades of the Italian Scuole d’abaco, which 
were parish-schools for pupils who wanted to learn a trade. In these schools pupils had to 
memorize only the rules, but in the text of Fibonacci there was something that went beyond 
this idea. 

Fibonacci didn’t write his book in contrast to the Euclidean one. On the contrary, he often 
refers to Euclid’s propositions. His geometry is simply a different thing. Fibonacci never 
speaks of axioms or theorems; at the beginning he lists definitions and “principles”, which 
broadly correspond to axioms or to constructions that can be done. He uses numbers, 
arithmetic, and practical examples; proofs are often only verifications with numbers. In the 
case of the theorems from the 2nd book of Euclid, concerning geometric algebra, he reports 
the proofs “translated” in an algebraic language. 

Fibonacci doesn’t present drawing or measuring instruments. He doesn’t even refer to 
angles. His geometry has the scope of “measuring all kinds of fields” and “dividing fields 
among partners”. In fact one of the first rules shown by Fibonacci concerns the calculation 
of the area of a square. As he always does, the rule is given with an example (p. 14)1.  

Given a quadrilateral, equilateral and equiangular field having 2 rods 
on each side, I say that its area is to be found by multiplying side ac 
by its adjacent side ab, namely 2 rods by 2 rods.  
Let lines ab and cd be divided into two equal parts [this is one of the 
allowed constructions listed at the beginning] at points e and f, and 
draw the line ef. Likewise […] draw line gf. Thus quadrilateral abcd 
has been divided into four perpendicular squares, each of which is 
measured by one rod on a side. Thus there are 4 plane rods in the entire square 
quadrilateral abcd. 

This explanation will be sufficient for all later practical geometry. But Fibonacci wants to 
show that in fact the four quadrilaterals are squares. The “proof” consists in an observation: 
ef being equal to and equidistant from ac and bd, and gh being equal to and equidistant from 
ab and cd, then ae is also equidistant and equal to cf. Therefore the angle aef is equal to the 
right angle acf, etc. 
                                         
1 For the English translation, as well as for the pages for the quotes, we refer to the edition of Hughes (2008). 
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Fibonacci uses the theorem of Pythagoras to measure areas, and he 
proves it by referring to Euclid’s theorems concerning the similarity 
of the involved triangles; in the triangle agb, we have (p. 69) 

db:bg = gb:ab, hence db·ba = bg2. Similarly ad·ab = ag2.  
So db·ba + ad·ab = bg2 + ag2. But the first part equals the square 
on ab, as proved by Euclid. 

Then Fibonacci gives the rule for the area of a triangle: “To find the square measure, 
namely the areas of all triangles, multiply half the cathete [the height] by the whole base or 
half the base by the whole cathete” (p. 66 Fibonacci shows, only in the 
case of a rectangular triangle, that a triangle can be seen as half a 
rectangle. For the other triangles, he tries to come back to right-angled 
triangles by dividing the figure by using the height. He gives many 
examples in order to consider various positions of the height. 

The many problems concerning “dividing fields” into equivalent parts are more abstract, 
although they originate from concrete problems. Here we start to find “puzzles”, challenges. 
For instance “To divide a triangle in two equal parts by a line drawn from a given point on a 
side” (p. 188): 

In the triangle abg, consider the point d. I will divide side 
bg in two equal parts at point e, and I will join lines ad 
and ae. And through point e I will draw line ez equidistant 
from line ad, and I will draw line dz. I say therefore that 
triangle abg is divided in two by line dz. The proof 
follows. Two equal triangles ade and adz [are] sitting on 
base ad with sides ad and ez equidistant from one another. 
To both triangles add triangle abd. The two triangles abd 
and adz become quadrilateral abdz equal to two triangles abd and ade, that is triangle 
abe. But triangle abe is half of triangle abg. Whence quadrilateral abdz is half of triangle 
abg. What is left, namely triangle zdg, is the other half of triangle abg. Therefore triangle 
abg is divided into equal parts at point d by line dz.  
Numerically: ed·ga/gd = az, for instance considering the triangle with sides ab = 13, bg = 
14, ga = 15, and choosing d such that de = 2, then gz = 11 and 2/3.2 

These kinds of problems are not found in Euclid. In the following centuries, they became 
typical problems in texts of practical geometry.  

In the chapter about “measuring heights, depths, and longitudes 
of planets”, we find practical problems such as the following (p. 
346): 

If you wish to measure a height [ab], fix a staff [ed] 
perpendicular to the ground. Step away from the staff and the 
object you wish to measure. Stoop down the ground level 

                                         
2 The triangle 13 – 14 – 15 was often used in practical problems, as it has a “good” area (42). 
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from where you can see the top of the object across the top of the staff, and mark the 
place from where you looked [c].  

Considering the involved similar triangles, Fibonacci explains how to find the height. He 
gives different examples, always repeating how the rules are used (“This can be shown with 
numbers. Let ed be 5 palms [...]”, p. 347). 

With Fibonacci’s text the students’ learning is facilitated because the rules are introduced 
through numerical examples, and theorems are “proved” by substituting numbers to the 
considered lengths, and, sometimes, with the help of algebra (as in the theorem of 
Pythagoras). On the other hand, the student is challenged with problems, such as the 
division of fields.   

Books similar to Fibonacci’s, maybe with a little more Euclidean proofs, lasted for over 300 
years and influenced the teaching not only in the old universities, but also in the first 
secondary schools of the 16th century. Examples are the texts of Luca Pacioli in Italy (1494) 
and of Orontius Finaeus in France (1556).  

2. “GEOMETRIAE LIBRI”: THE WAY TO GEOMETRY3 

In Renaissance, Italy lost its mathematical “supremacy” to France. In fact, in the 16th 
century we find the interesting work of Pierre de la Ramée (Petrus Ramus). The text by 
Ramus (1569 – we refer below to the edition of 1636) should be about practical geometry. 
But, even though Ramus presents more drawing and work instruments than Fibonacci, he is 
also a philosopher and an educator and explicitly criticizes the presentation of Euclid.  

Ramus writes in the preface that “geometry is the art of measuring well” (geometria est ars 
bene metiendi). To measure well it is necessary to consider the nature and “affections” of 
everything that is to be measured: to compare such things one with another, to understand 
their reason, proportion and similarity ... This aim of Geometry appears much more 
beautiful when one observes “astronomers, geographers, land-meaters, sea-men, enginers, 
architects, carpenters, painters, and carvers” in their description and measurement of the 
“starres, countries, lands, engins, seas, buildings pictures, and statues or images”. 

Ramus starts with an extended presentation of geometric entities and figures through 
drawings, measures and simple constructions. We could call this an observational 
geometry, through which the reader becomes acquainted with the figures and their 
properties. We can say that in Ramus we find the concept of the different levels of 
geometric understanding. To reach his aim, Ramus also presents unusual objects and 
relations. Some examples (Book 4): 

6. [The Diameter is a right line inscribed within the 
figure by its center]. The diameters in the same 
figure are infinite.   
- If a figure has all equal diameters it is a circle. 

                                         
3 The way to geometry is the title of the English translation of Bedwell (Ramus, 1636) that we use here for 
the English quotes. 
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11. A prime or first figure, is a figure which cannot be 
divided into any other figures more simple then it selfe. 

 

 

Ramus introduces drawing instruments (ruler and compass), then, also referring to 
previously mentioned properties, he states: 

12. If two equall peripheries from the ends of a right line given, 
doe meete on each side of the same, a right line drawne from 
those meetings, shall divide the right line given into two equall 
parts (Book 5). 

Ramus explains that the segment ae of the figure is divided into 
two equal parts by io, using the equality of triangles. Then he 
shows how to construct a triangle given three sides. 

10. If of three right lines given, any two of them be 
greater than the other, and peripheries described upon 
the ends of the one, at the distances of the other two, 
shall meete, the rayes from that meeting unto the said 
ends, shall make a triangle of the lines given (Book 6). 

In all cases Ramus explains his constructions, he proves 
that they work, linking the theoretical to the practical aspect. The text is full of drawings 
and of properties of the figures that we normally don’t find in textbooks. He brings the 
reader to observe in an active way; and he supplies the proofs. We also find problems about 
the partition of fields, as in Fibonacci: 

10. If a right line be drawne from the toppe of a triangle, 
unto a point given in the base (so it be not in the middest of 
it) and a parallell be drawne from the middest of the base 
unto the side, a right line drawne from the toppe of the sayd 
parallell unto the sayd point, shall cut the triangle into two 
equall parts (Book 7). 

We omit the proof, which is the same as in Fibonacci.  

Then Ramus arrives to the “classical” 
problems of practical geometry, giving rules 
(and instruments) for the measuring of 
segments (Book 9, the quotation refers to the 
lower part of the figure): 

7. If the sight be from the beginning of the 
Index right or plumbe unto the length, and 
unto the farther end of the same, as the 
segment of the Index is, unto the segment 
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of the transome, so is the heighth of the measurer unto the length. 
Let therefore the segment of the Index, from the toppe, I meane, unto the transome be 6. 
parts. The segment of the transome, to wit, from the Index unto the opticke line be 18. 
The Index, which here is the heighth of the measurer, 4. foote: The length, by the rule of 
three, shall be 12. foote. The figure is thus, for as ae, is to ei, so is ao, unto ou, […] for 
they are like triangles.  

Up to this point, Ramus’ text is concerned with the measuring of lengths. The way to 
measure the area of a rectangle by dividing it in unit squares is shown only after a long 
chapter on quadrilaterals and their properties.  

In Ramus’ text, measurement is still the main aim of geometry, but the activity of measuring 
is preceded by a very interesting and original part of observation, a “play” with figures. The 
theorems that are proved mainly belong to the classical tradition, but their proofs are 
strongly supported by geometric constructions, and the use of drawing is added to the 
practical activity of measuring by means of proper instruments. 

3. “ÉLÉMENTS DE GÉOMÉTRIE”: GEOMETRIC CONSTRUCTIONS 

In 1741, again in France, Alexis Clairaut wrote his Éléments de Géométrie. His first chapter 
is about the measurement of fields; nevertheless Clairaut was not interested in teaching a 
practical geometry. With Clairaut we see a shift from measurement as a goal to 
measurement as a means to teach geometry via problems. This is seen by the fact that the 
part about measurement doesn’t contain numbers; there is only a hint at the necessity for a 
comparison with a known measure. 

The aim of Clairaut is to solve a problem “constructing” the elements he wants to measure. 
The focus is on the process of constructing and in a narrative method.  

A person placed on D, on the bank of a river, wishes to 
ascertain how far it is from the other bank AB. It is clear, in this 
case, that to have this measure, it is necessary to take the 
shortest of all the right lines DA, DB, etc., which may be drawn 
from the point D to the right line AB. Now it is easy to observe 
that the line wanted is DC, which must not lean to the line AB 
more in the direction of the right hand than of the left. On this 
therefore, which is called a perpendicular, we must move our 
known measure [...] We are therefore under the necessity of 
finding a method of drawing perpendiculars (p. 2). 

Clairaut shows other cases in which a perpendicular is needed, for instance, to draw a 
rectangle. And then he goes on with the construction: 

The point C might be found by repeated trials, but this method would leave the mind 
unsatisfied [...] Take a common measure, a rope line, or a pair of compass with a certain 
opening, according as you may going to operate either on the ground or on paper... 

Even if a more detailed part has been omitted, this quotation shows the precision of the 
description. There is no definition of perpendicular, but the term is clear when it appears. 
We can note here the importance of the “moment” of learning, mentioned by Quintilianus. 
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Clairaut’s text doesn’t contain proofs, but constructions and arguments. The third part of the 
text also presents concrete models for space geometry.  

Numbers appear rarely in Clairaut’s treatise: mainly to show that the area of a rectangle is 
given by the product of its base by the height (dividing the rectangle in horizontal stripes 
whose height is one, and then each stripe into unit squares). The area of a triangle is then 
half the product of its base and height, because “we may easily perceive that this figure [the 
rectangle] transversely divided by the line AC, which is called a diagonal, resolves itself 
into two equal triangles” (p. 12). Clairaut seems not to be worried, as Fibonacci was, of 
showing that the property holds for all triangles. 

The second part of the text is more rigorous, as Clairaut himself asserts, not because there 
are proofs, but because the allowed instruments are only a ruler and a compass. Clairaut 
continues via his problem-solving method to transform, for example, a rectangle into 
another rectangle with equal area. 

Let it now be proposed to change the rectangle ABCD into 
another, which shall have the same surface but with the 
altitude BF. [...] the new rectangle (the altitude of which is to 
be greater than BC) must necessarily have a base less than 
AB; [...] All therefore we have to do is to divide the line AB in 
such manner that AB shall be to GB, as BF to BC. This 
(according to Part I, XLI) will be done by drawing the line 
FA, and, from the point C, the line GC parallel to FA (p. 68). 

Clairaut introduces proportions and gives numerical examples. 

To sum two squares “we can transform the smallest square into a rectangle whose height is 
the side of the other square, so obtaining a new rectangle”. 

To sum two squares in order to obtain another square, we can 
work on the decomposition of the two squares, as in following 
figure, where H is taken so that DH = CF (and consequently HF 
= fh = DC) (p.76). 

So the theorem of Pythagoras comes to mind when speaking of 
equivalent figures and of comparison of figures (though Clairaut 
doesn’t explicitly mention Pythagoras). 

Clairaut doesn’t make use of the classical 
theorems of Euclid, but he does prove the 
theorems concerning the angles in a 
circumference. He then goes back to problems of 
land-surveying; this has the purpose of using 
properly the protractor so as to construct a similar 
figure on the paper: “Knowing the distances 
between the given points ABC, we want to find 
their distances to a fourth point D from which the three are seen” (Part 3, n. 91).  
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Then two circumferences can be constructed, which have 
as a periphery angle the angle adb and the angle bdc...” 

This application of the theorem about the periphery angles 
is one of the few challenging problems of Clairaut’s text. 

The challenges of Clairaut are not in solving difficult 
problems, but rather in the request for the learner to follow 
him in the process of the solution to a problem, by paying attention to the needed 
construction.  

Clairaut’s success came a century after his text was written. In 1836 it was translated for use 
in the Irish national schools (Clairaut, 1836)4 and was reprinted in French in 1852 and 
officially adopted. It was also used in Italian Technical Schools (which correspond to the 
first three years of technical instruction) till the beginning of the 20th century. 

4. “ANFANGSGRÜNDE DER GEOMETRIE”: DRAWING, CONSTRUCTIONS, 
PROOFS 

In 1846 Franz (Ritter von) Mocnik wrote a text that had many reprints and adaptations up to 
the beginning of the 20th century. It was used in the Austro-Hungarian territories, including 
the Northern part of Italy before the Italian unification, and was mainly intended for 
technical and professional schools (see Mocnik, 1873). It is another text for the practical 
application of geometry, but it is now a textbook aimed at an extended school-system; and 
as a result pedagogical theories start to emerge. 

Mocnik divides his text into a first part called Formenlehre, which includes free-hand 
drawing, some hints about projective geometry and practical measurements, and a second 
part called Grundlehre, which includes constructions with ruler and compass (as in Clairaut) 
and also proofs. Formenlehre reminds us of the educator Johann Heinrich Pestalozzi, who 
was particularly successful in Middle- and North-European countries, and who supported an 
initial approach to teaching based on intuition. Projective geometry is included in 
Formenlehre because it describes the way we see. 

Mocnik starts with practical indications on how to represent points, on how to draw a line 
by free-hand or with a ruler. In fact, he gives many exercises that require free-hand drawing. 
There are also problems applied to land-surveying, such as:  

If we want to plant a pole, in a field, that must 
be aligned with two other poles A and B, we 
need to be behind pole B while an assistant 
goes with pole C to where the pole should be 
planted. Then we can indicate to him with our 
hand where he should move until we can see 
that pole C is aligned with A and B (p. 9, 
translated by the author). 

                                         
4 This is the translation that we used for the quotes of the first two parts. 
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The concept of distance is primitive, and there is an exercise that asks, for instance, to draw 
five horizontal lines at equal distances; then Mocnik suggests to compare approximately the 
length of two segments and to draw their sum or difference (there is no reference to 
numbers). Also approximate multiples or submultiples of a segment have to be found by 
drawing them. 

Some information is given about new and old unit measures, and about measuring 
instruments. The angle is introduced as the difference between the inclination of two 
straight lines, and the perpendicular [to a line AB] is defined, as in Clairaut, as a line which 
must not lean to the line AB more in the direction of the right hand than of the left. But 
Mocnik also adds that it will form two equal angles with the line AB. 

This geometric description and others (such as the diagonals of a square) help pupils to 
understand the concept and thus be able to draw perpendiculars free-hand. In a field a 
perpendicular has to be drawn using a special instrument. 

Measuring instruments are only introduced after the concept has 
been explored through free-hand drawing. But the use of 
instruments is not an aim, their use is not often suggested. For 
instance, after the introduction of the protractor, Mocnik shows 
how to draw a 60° angle (p. 30): 

We take a segment AB, and a point C whose distance from A 
and B should be as the distance from A to B. Then we draw 
AC. BAC = 60°. If we then draw the perpendicular AD to AB, 
then CAD = 30° (translated by the author). 

Mocnik also gives a method to “construct” our own protractor for angles less than 16 
degrees (approximating the values of the tangent), but he also suggests to guess the value of 
an angle.  

Mocnik doesn’t explain all the rules and methods that he gives. Nevertheless we cannot say 
that his practical geometry follows the “medieval” meaning of the term. The suggested 
work aims at giving the pupil a familiarity with the topics. In a certain sense it has 
something in common with Ramus. And in fact Mocnik slowly increases the level of rigor. 

He describes solids in space and gives the first elements of 
perspective, for instance: 

If a line [a segment] is rotated from the position AB ... 
around A to the positions AB’, AB”, AB’”, it can be seen 
under different angles and with different lengths. The 
apparent length of the segments is obtained when, from 
point A, we draw – inside the corresponding angle of 
view – a perpendicular to the central ray (p. 64, 
translated by the author).5 

                                         
5 The drawing doesn’t seem very precise, but the description is correct. 
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Congruent triangles are, in this first part of the text, simply triangles that have three equal 
sides and three equal angles. Mocnik suggests drawing them using motions. In the part 
concerning Grundlehre, the first proof is about the equality of two triangles that have three 
equal sides. Indications are given on how to construct, with ruler and compass, a triangle 
that is equal to another one, and then how to construct a triangle given three elements. 

Theorems are always followed by exercises that require constructions. We find practical 
applications of the congruence of triangles (p. 93): 

To determine the distance of two points in a 
field, if this cannot be measured directly due to 
an obstacle between them, but it is possible to 
measure the distance from a third point to both… 

 

 

 

As well as practical applications of similarity (p. 104): 
“To determine the distance between two un-reachable 
points” you have to fix two points C and D and measure 
the angles CDB... 

Only at this point does Mocnik introduce the measurement of areas. The area of a square is 
determined as in Clairaut; Mocnik first sees the figure as subdivided in rectangles, and then 
in unit squares. He proposes many numerical examples for this rule.  

The theorem of Pythagoras too is proved in the way of Clairaut, but Mocnik also proposes 
to draw the figure used for the proof (see section 3) on paper and then to cut its various parts 
in order to re-obtain the considered squares.  

Again we find practical problems, such as to represent 
parts of a land on paper. Here Mocnik also describes 
instruments used by surveyors. 

And again we come back to theorems. Mocnik proves 
those concerning the circumference and also conic 
sections and geometry in space. 

 
 

5. “LEHRBUCH DER ELEMENTAR GEOMETRIE”: GEOMETRIC 
TRANSFORMATIONS 

In the second half of the 19th century, many texts tried to modify the introduction to 
geometry by also including “new geometries”. Geometric transformations, in particular 
translations, were used to introduce the concepts of straight line and parallelism, and 
rotations were used to introduce the concept of angle and perpendicularity (as in Méray, 
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1874). In this period, new topics such as conic sections and analytical geometry made their 
first appearance in the school curriculum. 

Among those new texts we find a text by Julius Henrici and Peter Treutlein (1881-1883). It 
is not a book about practical geometry, even though it contains a part explicitly devoted to 
practical geometry. The extended use of geometric transformations is linked to movement 
and to geometric constructions: the authors state in the preface that it is important that the 
pupils concretely perform the transformations in the classroom using models. 

In fact the importance of practical geometry is not so much in its use for applications, but 
rather in its educational value; in particular the interpretation of the term practical as “to be 
performed concretely” is the meaning that it mainly acquired in the 1900s. 

The text of Henrici and Treutlein is a text of synthetic geometry for the Gymnasium (for the 
Tertia, that is for pupils older than 13), with axioms and theorems. But it presents relevant 
differences from the Euclidean text. The authors state that they pursue “a logical order of 
the concepts rather than of the theorems”. In particular the subject is developed according to 
the kind of transformations that are necessary for the proofs.  

Here the use of geometric transformations is more relevant than in Méray. At first, figures 
with a centre are introduced, and the central symmetry is used to define parallel lines (p. 
23). To draw parallel lines the use 
of a set square is also suggested 
(p. 21).  

 

 

A new kind of proof can be performed using geometric 
transformations. Let’s see how central symmetry is used to 
prove that the medians of a triangle are concurrent (p. 36): 

If two of them, AA1 and BB1, meet in S, we can rotate the 
segment CS around B1 in AB2 and around A1 in BA2, so that 
CS is parallel and equal to AB2 and BA2. Also AB2 and BA2 
can be superimposed and the centre of the rotation will be 
S. The three parallel lines CS, AB2, BA2 will cut equal 
segments on AB, on AA2 and BB2 [so CS is a median]. 

A new kind of theorems is also possible. 

For instance, after the introduction of translations and rotations, 
the authors show how to find the transformations that bring two 
equal triangles to coincide (p. 40). 
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After the circle is introduced, a drawing 
with ruler and compass can be 
performed, and it is a relevant part. A 
method is given on how to face problems 
of constructions. At first, we find the 
usual problems that require the 
construction of perpendicular or parallel 
lines, as we can find in Clairaut, but we soon arrive at more complicated problems, such as 
drawing tangents to a circle under certain conditions or drawing the common tangent to two 
given circles (p. 64).  

Areas are introduced with reference 
to Euclid’s Book II (geometric 
algebra), to the proportions of the 
area of rectangles of equal bases, to 
equi-decomposition (seen also as 
equivalent transformation, p. 93).  

The theorems of Euclid and Pythagoras are thus proved with reference to equivalent 
transformations, and not to proportions. This chapter is about the “transformations of 
figures” and contains exercises similar to those of Clairaut in his analogous chapter about 
“comparison of figures”. But there are also problems of 
“divisions of figures” that are exactly like those of 
Fibonacci in his “division of fields”, even if they have 
now lost their practical origin. For instance: 

To divide a triangle in n [3] parts from a point on a 
side (p. 96). 

The solution is suggested by the figure. 

In the appendix of the text by Henrici and Treutlein, the measurement of areas is introduced 
by giving the rule to calculate the area of a rectangle; this procedure is always that of 
Clairaut or Mocnik. We now find the first numerical examples of this text. 

In the second volume similarity is introduced, and also elements of projective geometry. 
Besides elements of prospective representation, as we find in Mocnik, there is a more 
extended part containing topics such as harmonic points, pole and polar, projective 
correspondences, conic sections. Problems of measurement 
are taken up again and solved by algebraic means.  

Problems of practical geometry are treated as an application 
of trigonometry. For instance, the problem that Mocnik solves 
with the help of similar representation and concrete 
measurement is solved by means of trigonometric formulas 
that lead to the value of x (p. 157):  
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Measuring is no longer the aim of teaching geometry, as it was for Fibonacci or Ramus; nor 
an “excuse”, as it was for Clairaut (with the only exception of the applications of 
trigonometry). Numbers have a very small role. The aim of Henrici and Treulein is the 
comparison of figures by means of transformations. But the concrete references to the 
operations of transforming and the geometric constructions place this book in a new stream 
of synthetic “practical” geometry that evolved in the succeeding decades. 

6. EXPERIMENTAL GEOMETRY 

At the beginning of the 20th century an international reform movement started, which aimed 
at introducing modern topics, such as analytical geometry and calculus, in secondary school, 
and which also proposed new methodologies in mathematics teaching. As to geometry, a 
practical-intuitive approach was suggested. In many countries new syllabi were established. 
Borel (1905) wrote a text in accordance with the new French syllabi of 1905 (see 
Nabonnand, 2007). The various reprints of Henrici & Treutlein’s text seemed to be suitable 
for the German syllabi of 1907 (Becker, 1994). 

The experimental geometry of John Perry had a major influence at an international level. 
Perry (1901) emphasized the educational value of experimental procedures in the first 
approach to Euclidean geometry. He thought that a major part of elementary geometry had 
to be assumed as primitive and that the subject matter should be taught with reference to its 
utility as well as being interesting to the pupils (Howson, 1982; Barbin and Menghini, 
2013). 

The text of practical geometry by Joseph Harrison (1903) was written according to the 
proposals of Perry and even presented an appreciation of Perry himself in the preface. 

Harrison states in the preface that many of the British schools and colleges are equipped 
with laboratories in which “experimental work involving quantitative measurements can be 
carried on as part of the ordinary school course”, and that it is “coming to be recognized that 
elementary mathematics should be taught in relation to such work”. 

The syllabus that the author cites at the end of the book (Science Subject I, Board of 
Education, South Kensington) states that  

This subject [practical plane and solid geometry] comprises the graphical representation 
of position and form and the graphical solution of problems. [...] In the elementary stage 
the main object of the instruction will be to familiarize the student with the fundamental 
properties of geometric figures and their applications [...] It is not intended that the 
student shall follow the Euclid’s sequence [...]. In the Advanced stage [...] the subject 
will be developed in its applications [Engineering and physical group...].  

We can see that the advanced stage doesn’t propose Euclidean Geometry.  
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Harrison starts with a sort of definition of points, lines and surfaces which is a mixture of 
Euclid’s definitions, Ramus’ drawings and Mocnik’s representation of points. The aim of 
drawing points is to explain how a point can be 
seen in a drawing. 

He then gives a detailed description of drawing 
instruments and their uses, and explains how to 
draw parallel and perpendicular lines using 
various kinds of instruments (ruler and set square, 
tee square and clinograph, p. 29). 

Harrison gives a long explanation of how to 
measure angles, and he also defines the basic 
trigonometric functions and explains the 
trigonometric tables (we can thus understand that 
the considered level is not a primary or beginning secondary school level). 

One of the problems is, as was in Clairaut, that of determining the width of a river. The 
suggested method is different (please note that Harrison doesn’t suggest to work in scale, so 
the solution is not very practical ...)  

The figure shows how the width of a river could 
be ascertained by a person on one bank. He might 
select and measure a base BC. Then note some 
conspicuous object A on the remote bank, and by 
a sextant or other instrument measure the two 
angles ABC and ACB. The triangle ABC could 
then be plotted, and the width measured (p. 61).  

Defining a parallelogram Harrison states:  
A parallelogram is a quadrilateral in which opposite 
sides are parallel. Thus in fig. c the two systems of 
parallel sides give rise to a series of parallelograms. 
From the figure it is evident that opposite angles of a 
parallelogram are equal. And by measurement the 
student will easily satisfy himself that opposite sides 
are also equal (p. 42) 

No further explanation is given. 

Again through measurement or by paper 
cutting the student can verify the Pythagoras 
theorem (p. 47). 

Harrison uses the same drawings as Fibonacci 
to show that the area of any plane figure may 
be measured by finding how many unit 
squares would be required to cover it (pp. 77-79). 
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Another problem that we have already found in Clairaut is “To 
reduce a given rectangle AC to an equivalent rectangle on the 
base BD”. 

And its solution, different from Clairaut, is without 
explanations: “Join DA. Draw CE parallel to DA. Draw the 
rectangle ED, which is the one required” (p. 83). 

The same kind of “proof” is given for other theorems, such as “The angle in a semicircle is 
a right angle”: 

Verification: Draw any semicircle, diameter AA. Set out several angles ABA in the 
semicircle. Verify that in all cases the angle ABA is 90°. 

Harrison introduces also vectors, their representation, sum and difference. Practical 
geometry in space is about methods of representing solids, mainly by projections on the 
coordinate planes. These exercises are definitely not elementary technical drawing 
exercises. They require, for instance, the use of trigonometry to calculate angles and 
measures. 

Not all English books on practical or experimental geometry are of the same kind; in the 
text by Godfrey and Siddons (1903) the part devoted to measurement is shorter than in 
Harrison, and moreover it presents exercises which require an idea or a form of explanation 
(Fujita et al., 2004). Anyway, the main focus of practical geometry in that period is on 
measuring or calculating measures, with some technical drawing; it is quite obvious that 
objections would eventually be raised about this methodology: 

Most recent text-books of geometry contain an introduction on practical geometry. While 
presupposing a short preliminary course of this nature, we have preferred to leave it to 
the teacher to devise himself. In this direction we think that the recent reforms have gone 
too far, and we feel sure that, as regards secondary schools, it will be necessary to retrace 
our steps. Too much time spent on experimental and graphical work is wearisome and of 
little value to intelligent pupils. They can appreciate the logical training of theoretical 
geometry, while experiments of far greater interest can be made in the physical and 
chemical laboratories (Preface, Davison, 1907). 

7. INTUITIVE-INTRODUCTORY GEOMETRY 

Notwithstanding these criticisms, experimental geometry has influenced, from the 
beginning of the 1900s, texts of intuitive or introductory geometry devoted to the lower 
school grades. These texts were influenced not only by experimental geometry, but also by 
the whole stream of texts of practical geometry (Menghini, 2010). An earlier 
intuitive-experimental approach was considered a good aid for students to overcome the 
difficulties caused by the logical deduction of Euclid’s textbook.  

So we find free-hand drawing (Veronese, 1901) and drawing instruments (Borel, 1905), and 
parallel lines introduced by means of central symmetry or translation. Geometric 
transformations are considered not only useful to introduce simple concepts, but also to 
compare segments and figures, as they were carried out practically. The equality of triangles 
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is established through the possibility of constructing them (as in Clairaut), and measurement 
and the use of numbers become widespread.  

We also find the use of paper folding and concrete materials. For instance: two successive 
foldings of a piece of paper are used to introduce the concept of perpendicularity (Frattini, 
1901; Borel, 1905); in order to prove that the diagonals of a parallelogram bisect each 
other, a parallelogram is cut out from a piece of paper, filling again the resulting empty 
space after a rotation of 180 degrees (Frattini, 1901); to know the sum of the angles of a 
triangle, the corners of a triangle drawn on paper are cut and placed next to each other to 
check that they form a straight angle (Amaldi, 1941).   

Emma Castelnuovo, who was also largely inspired by the approach via problems of 
Clairaut, uses simple tools, such as a folding meter, to show how to modify a quadrilateral 
into a different one and to analyze the limit situations (Castelnuovo, 1948). 

8. DEVELOPMENTS OF PRACTICAL GEOMETRY IN THE 20TH CENTURY 

8.1. Axioms for measure 

The textbook Basic Geometry, by George David Birkhoff and Ralph Beatley, was published 
in an experimental edition in 1933, and officially edited in 1941. The text starts with many 
exercises that require the practical use of a 
scale and a protractor: measuring of lengths 
and angles, and verifying rules about their 
addition and subtraction. Numbers are very 
important from the beginning. It would seem 
to be a text about practical geometry, but 
measuring is not an aim. The aim is to help 
pupils to accept the Principles. The first is 
about:  

Line measure: the points of any straight 
line can be numbered so that number differences measure distances (p. 40). 

And the third about: 
Angle measure: All half lines having the same end point can be numbered so that number 
differences measure angles (p. 47). 

Two more axioms state that “there is one and only one straight line through two given 
points” and that “all straight angles have the same measure”, while the fifth axiom 
corresponds to a criterion of similarity of triangles. An 
example of the application of the axioms is the proof of the 
theorem about the sum of the angles of a triangle: 

Principle 1 guarantees that the sides of the triangle ABC can 
be divided by two, while Principle 5 guarantees the similarity 
of T, T’, T” to ABC, and thus the similarity of ABC and the 
internal triangle. So ... (see figure).  
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The ideas of Birkhoff slowly found their way into American teaching, and inspired many 
other textbooks on geometry, such as those produced by the School Mathematics Study 
Group. 

8.2. Old applications and new theorems 

In the period of the New Math reforms in the 60s, the British School Mathematics Project 
(1970) still presented elements of practical geometry. A chapter was devoted to the 
measuring of an angle, to the use of the protractor, and to applications such as: 

To measure the height of a hill, land-surveyors measure the angles a and b from two 
different points A and B which are at the same height, and whose height and distances are 
known. If AB = 1000 m, a = 19° and b = 36°, draw a diagram in a scale 1 cm to 200 m 
and find DC. If A and B are at 200 m height, what is the height of the hill? (p. 82) 

 
Pupils are supposed to find the answer by measuring, as was seen in exercises of Clairaut or 
Mocnik. 

After chapters about polygons and polyhedra, approximations of areas by tessellation, 
observation of the symmetries of a figure, and paper folding, a chapter is again devoted 
explicitly to land-surveying. The aim is not only to apply what has been studied in the 
previous chapters, but also to introduce new concepts. Here the old applications of practical 
geometry are the basis for exercises in the new practical geometry. There is also the 
suggestion to do real exercises in the open air. 

These exercises mainly require to draw on paper a piece of land by measuring (or taking as 
given) certain distances and angles using similarity (p. 298); irregular forms (p. 300) can be 
drawn by using the way 
proposed by Mocnik.  

So we find many of the 
topics that we have met from 
the beginning of practical 
geometry.  

The book also presents 
geometric transformations and new theorems based on their composition (as we have seen 
in Henrici & Treutlein) and on their invariants. 

CONCLUSION  

For Fibonacci, instruments and their use to measure distances were taken for granted. With 
the exception of a short part about the unit measures used at that time, his text is mainly 
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concerned with rules for calculating areas and with theorems that can help in comparing the 
areas. The rules arise mostly from a generalization of numerical examples, and numerical 
values are given to the considered segments in order to verify theorems. These 
simplifications are an aid for the reader, who at the same time is challenged with concrete 
problems that require finding a distance (using similarity), or with more abstract problems 
that require the division of a field, given certain conditions. For the solution to these 
problems, only an initial hint to allowed constructions is given.  

With Petrus Ramus we find on the one hand an increase in the activity of measuring, 
through the explicit presentation of measuring and drawing instruments; but on the other 
hand this activity is postponed in order to present geometric figures, their properties, and to 
“play” with them.  

We can see that the “puzzles” of the practical geometry of the Middle Ages and the “plays” 
of Ramus are characteristic of a freedom that is not in the Euclidean tradition. Euclid is 
absolutely not “playful”. 

Clairaut focuses again on activity, which is now aimed at constructing the geometric 
elements to be measured. As in Fibonacci, not only is measuring per se not important, but 
also the starting problems are not as important as the process of solving them. The role of 
the process of constructing is principally an educational one. 

The educational role of constructions, of concrete activities, and of observation can also be 
found in the text of Mocnik, whose aim is again practical. Finding distances and areas is 
still a goal, but the use of measuring instruments is in the background, while theorems 
acquire importance. 

The text of Henrici and Treutlein cannot be considered exactly along the same line of 
thinking, but it takes from practical geometry examples, problems and an idea of concrete 
activity, which is then applied to new objects such as the geometric transformations. Here 
we can see how practical geometry suggested a methodology that also influenced the more 
theoretical study at the Gymnasium. 

In the practical geometry of the 1900s, we find something similar to Fibonacci. If Fibonacci 
verified the theorems by substituting lengths with numbers, Harrison verifies them by 
measuring. The use of instruments and the activity of measuring are central to Harrison; but 
we find nothing that can be considered an intellectual challenge to the pupil.  

The intuitive geometry for the lower grades can be considered as a middle ground: those 
activities of measuring, of concretely performing transformations, of using instruments, can 
be seen as an introductory activity before starting with Euclidean deduction.  

Another way of combining practical and deductive geometry is proposed in the book of 
Birkhoff and Beatley, where measuring must help pupils to understand the role and the 
meaning of axioms for line and angle measure. This book shows that a deductive geometry 
based on measure needs new axioms. 

Avoiding axioms, the SMP proposes a curriculum that encompasses many of the topics that 
we have seen in the development of practical geometry: from the concrete problems of 
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land-surveying, to drawing, to the new theorems and proofs based on geometric 
transformations. The proposals of SMP in the 60s show that practical geometry can have a 
role that goes beyond an introductory or intuitive presentation.  

As we understand from the presented development, a practical-intuitive teaching of 
geometry requires an active role of the pupil, where reasoning is supported by action and by 
construction. We have also seen examples of rational teaching of geometry supported by 
practical elements. Even if the challenging problems proposed by the practical geometry of 
the late Middle Ages entered only occasionally in the successive geometry textbooks (with 
the exception of the division of fields), we can recognize the heritage of this geometry in a 
certain freedom in choosing problems and methods (including intuition). However the main 
methodological heritage lies in the shift of the meaning of practical from “useful for 
applications” to “to be performed concretely”. This shift happened towards the end of the 
Middle Ages, even in texts whose aim was very concrete, through the description of the 
activity of measuring or of constructing, and the use of instruments. 

Practical geometry can thus suggest alternative methodologies, not only for an intuitive 
introduction before rational geometry, not only for examples of useful applications, but also 
for a different way of teaching based on a conception of knowledge which includes the 
practical process of knowing.  
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