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Abstract

In this work we establish trace Hardy-Sobolev-Maz'ya inggies with best Hardy constants, for
weakly mean convex domains. We accomplish this by obtaiaingw weighted Hardy type estimate
which is of independent inerest. We then produce Hardy-eebdaz’'ya inequalities for the spectral
half Laplacian. This covers a critical case left operiin [H}lo

AMS Subiject Classification: 35J60, 42B20, 46E35 (26D10, 35J15, 35P15, 47G30)
Keywords: Hardy inequality, Fractional Sobolev inequality, FrantbLaplacian, critical exponent, best
constant, trace inequality.

1 Introduction

The Hardy-Sobolev-Maz'ya (HSM) inequalities combine tlub&ev and Hardy terms, the latter with best
constant. For instance, for the regular (local) Laplaciad fr a domairt g IR™ n > 3 it states that, if
d(z) = dist(z, 092), there exists a positive constarsuch that

n—2
Vul?dz > = dr +c u|n—2dx , ueC§N). (1.2)
[ vupan= 4 [ 2 [ 1u F )
Such an inequality was first proven in_[M] in the special casere? is the half space. In[EMT] it was
proven under the assumption tifats a weakly mean convex domain, that is, it satisfies in thieiligional
sense,

— Ad(z) >0, in Q. (1.2)
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In [EL] inequality (1.3) was established with a constanhdependent of), under the stronger hypothesis
that(2 is convex. We note that mean convexity is equivalent to oitwén n = 2 dimensions but it is a
much weaker assumption far> 3, cf [AK].

Our interest in this work is in the fractional (non local) lagan in a bounded domain. Various frac-
tional s—Laplacians{ < s < 1) have been recently studied, see [EBC], [CTI, [DE], [FMohpaeferences
therein. In[EMoT] the limiting case of obtaining Hardy—®tév—Mazy'a inequalities for the half Laplacian
was left open in the case of a domdn In fact, the half Laplacian is a border line case, sinceediffit be-
haviors are observed fer< % ands > % For instance, the fractional Laplacian considered in Hajisfies
Hardy inequality for% < s < 1butnotfor0o < s < % in the case of smooth bounded domains. Similarly
a dichotomy appears, for a different fractional Laplaciais time, in the context af—convergence of non
local phase transitions, or in the context of non local sgrfdiffusion, see| [SV]LICRS]. In our case certain
aymptotics are different for > 1/2 than fors = 1/2 and as a consequence the analysis in [FMoT] fails for
the limiting case of the half Laplacian.

As we have already mentioned, there are several fractioaplakcians, but in this work we will focus
on the spectral fractional Lapacian that was recently camed in [CT]. We will do this as i [FMQT]
via a suitable extension problem in the spirit/of [CS]. In case the appropriate extension problem is the
following:

—Apyu = 0, in Q x (0,00), 1.3)
u = 0, on 0N x (0,00) , (1.4)
u(z,0) = f(z), mn Q, (1.5)

the energy of which is given by

1 [t
Tl =5 [ ] Ve Py

At this point we recall that the inner radius of a domé&inis defined asR;,, := sup,cq d(z). We
say that the domaif2 has finite inner radius whenevé;,, < oo. Our first result is the following Trace
Hardy-Sobolev-Maz'ya inequality:

Theorem 1.1. Letn > 2 and ) ; IR™ be a uniformly Lipschitz domain with finite inner radius whia
addition satisfies
—Ad(z) >0, in Q. (1.6)

Then there exists a positive constarstuch that for allu € C5°(2 x IR) there holds

e 2 [ u*(z,0) 2n e
Viwou(z, y)|*dedy > —/ : daH—c(/ u(z,0 nldac> . 1.7
| [ 19 epute by > 2 [ o [ Jute.0) a.7)

We note that the constaﬁtis the best constant for the corresponding trace Hardy aldéygsee Theorem
1 of [EMqT] for the precise statement.

We will apply Theoreni 111 to the spectral fractional Lapdacthat is defined as follows. Le&x C IR™
be a bounded domain, and and ¢; be the Dirichlet eigenvalues and orthonormal eigenfunstiof the
Laplacian, i.e.—A¢; = \i¢; in Q, with ¢; = 0 on 9. Then, forf(z) = >_ ¢;¢;(x) the s—fractional
Laplacian is defined by

(=AY f(z) = icz-)\fqﬁi(w), 0<s<1. (1.8)
i=1

In the sequel we will be interested in the case % More precisely, the Hardy-Sobolev-Maz'ya inequality
for the spectral half Laplacian reads:



Theorem 1.2.Letn > 2 and{2 ; IR™ be a bounded Lipschitz domain which in addition satisfies
— Ad(z) >0, in Q. 1.9

Then there exists a positive constarsich that for allf € C§°(Q2) there holds
n—1

((—A) /f2 dx + c (/ \f (2 f"ldx> . (1.10)

Again, the constanf; is the best constant for the corresponding Hardy inequabéty Theorem 3 of
[EMoT] for the precise statement.
We note that the proof is based on the following crucial esterthat was missing in [FMoT].

Theorem 1.3. Let(2 ; IR™ be a domain with finite inner radiuB;,, and is such that
—Ad(z) >0, in Q.
If in addition A 4+ 1 > 0, then for allu € C§°(IR" x IR) there holds

too oy Ar2gAt2 A+1)(4A+9) [too [ yATldtrlx
/ / A+2]Vu\ dxdy + ( / / L (- Ad)u’dzdy

(@ +12) 424 +5) d2+y A+s
A+1 +oo AdA 2
> .
> 2A—|—5 / / (@ A+1 dxdy , (2.12)

whereX = X(42)and X (t) = (1 —Int)~', 0 <t < 1.

For Theorend 113 it is important that the domain has a finiterimadius.

Using Theoreni_1]3 and quite similar arguments to the onelingdo the proof of Theorenis 1.1 and
[1.2 one can establish HSM-inequalities for the Dirichldf haplacian defined in[[EMalT]. In particular
Theorems 4, 5 and 12 df [FMoT] are valid for the limiting case 1/2.

In Section 2 we give the proof of Theoréml1.3 after estabiiglai more general result, where weak mean
convexity of the domain is not required. In the final Sectione3give the proofs of Theorerhs 1.1 dndl1.2.

2 The proof of Theorem[1.3

In this section we will prove Theoreim 1.3. In fact we will peoa more general result that does not require
any sign assumption on the measwad(x).

Theorem 2.1. Let Q2 ; IR™ be a domain with finite inner radiug;,,. If A +1 > 0, then for allu €
C§°(IR"™ x IR) there holds

+00 A+2dA+2
/ / @5 ) A+2]Vu\ dxdy

A+1 +o0 yA+2gA+ X JA2gATE X )
4(2A 4 5)2 / / [ 42 + y2)A+2 +4(A+2)W] (—Ad)u“dxdy

(A+ 1 +o0 AdA 2
- 8 8(24 + 5)2 5)2 / / (&2 + A+1 dxdy , (2.1)

whereX = X (%2) and X (t) = (1 —Int)", 0 <t < 1.

From this estimate we have:
Proof of Theorer 113The result follows from Theorefm 2.1 using the sign assumptidd(z) > 0 in .
O
The rest of this section is devoted to the proof of Thedrem\®/d first present some auxilliary Lemmas.
Our first Lemma covers a limiting case of Lemma 8[of [FMOoT].

3



Lemma 2.2. Let() C IR™ be a domain with finite inner radiug;,. If A and B are constants such that
A+1>0andB + 1 > 0 then for allu € Cg°(IR" x IR) there holds

oo AdBX2 A+B+2 [* A+2dBX
A = L [ s e ia ey

CA+1

LA+B+3 oo A+1dB
Tt g e Vi @2)

whereX = X (42) and X (t) = (1 —Int)~', 0 <t < 1,
Proof: Integrating by parts in thg-variable we compute

+oo AdB +o00 A+2dB
(A+1) / / A+B+2 luldzdy < (A + B +2) / / d2 )A+B+4 lu|dzdy

+o0 A+1dBX2
/ / d2 A+B+2 |uy|d$dy (2.3)

In the previous calculation there is no boundary term dueutcaesumptlons. To continue we will estimate
the first term in the right hand side above. To this end we défieeector fieldF' by

yA+2dB+1XVd yA+3dBX
(d2 o+ y2)A+2B+4 ’ (d2 i+ y2) A+2B+4

(2.4)

We then have

400 +oo Foo
/ /divF\u!dmdy = —/ /F'V]u\dwdy §/ / |F'||Vu|dzdy. (2.5)
0 Q 0 Q 0 Q

We note that because of our assumptigns 1 > 0 and B + 1 > 0, there are no boundary terms in_(2.5).
Straightforward calculations (in the sense of distribugijoshow that,

yA+2dBX(dAd) yA+2dBX2

divF = , (2.6)
(@+9)5F5 (@)
and
. A+2 BX A+1 BX
|F| = Y dA+B+3 = Y dA+B+2‘ (2.7)
(& +y?) "> (4 +y?) 2
From [2.5)-{(2.17) we get
oo .S too YA T2dB X (—dAd)
/ / A~H23+4 lu|dzdy < / / 2)A+B+4 |lu|dxdy
+y
+o00 A+1dB
/ / @ A+B+2 |Vu|dzdy . (2.8)
Combining [2.8) and (218) the result follows.
O

We next obtain thé.?—analogue of Lemma2.2:

Lemma 2.3. Let () g IR™ be a domain with finite inner radiug;,. If A and B are constants such that
A+1>0andB +1 > 0thenforallu € C§°(IR" x IR) there holds

oo AdBX2 20A+B+2) [T y 2P X
/ / P wldrdy < / / o A+B+4( dAd)u?dzdy

A+l
AA+B+3)* [* A+2dB
A 1 / / A+B+2 ]Vu\ dxdy , (2.9)

whereX = X(d(””))andX() 1-Int)~Lo<t<l.
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Proof: We apply Lemm&2]2 ta?. We then use Young's inequality in the last term of the rigindh side:
1
2 X |ul| V| < ey X2u? + EyAH]VuF,
with
B A+1
244+ B+3)°
We omit the details.
O
The following is a variation of Lemma 6 of [FM0T], in the send®t no assumption on the sign of
(—Ad) is required.
Lemma 2.4. Suppose thaf2 g IR™ has finite inner radius. fA, B are constants such that +1 > 0,
B +1 >0, then for allu € C§°(IR™ x IR) there holds

B+ | - / AdB),ffM uldady < (4+B+3) [ m / Admiﬁﬁ Vuldzdy
/ o / d2AdB+1A‘)f;2 +(A+B+ 2)% (—Ad)uldzdy , (2.10)
whereX = X(42)and X (t) = (1 - Int)"', 0 <t < 1.
Proof: Integrating by parts in the-variables we compute
(B+1) /+OO/ d2¢di}& yu\dxdy+2/+oo/ %\u!dmdy
< [ e e () [ [
/+OO/ @+ AdBHA)f;H |Vuldzdy. (2.11)

In the previous calculation there are no boundary terms dwgit assumptions. To continue we will
estimate the middle term in the right hand side above. Toaihiswe use (2]5) with the following choice of

the vector fieldF':
Fla.y) — [ 21477°XVd -y e X
? N (d2 + y2) A+2B+4 ? (d2 + yz) A+25+4

Straightforward calculations show that

diVﬁ = yAdB—i_gX;(é(jz yAdB+2A)f§+4a
(d? +y?) ™2 (d? +y%) 2
and A jB+2 A jB+1
|ﬁ|: Y d Aﬁw = Y d Aﬁm'
(d? +y%) 2 (d? +y%) 2

We then have that

+o0 AdB+2
/ / (@ + A+B+4 lu|dzdy

+o0o AdB+3X
/ / d2 A+B+4 (—Ad)|u|dzdy

400 AdB+1X
+ / / —|Vu|d:ndy.
0 Q (d? g

+y?)



Combining the above witth (2.11) and the fact that< 1 we conclude the proof.
([l

We next obtain thé.?—analogue of Lemnia 2.4:

Lemma 2.5. Suppose thaf2 & IR™ has finite inner radius. 1A, B are constants such that + 1 > 0,
B +1 >0, then for allu € C§°(IR™ x IR) there holds

oo AdBX2 4(A+B+3)* [T AdB+2
/ / (@ + A+B+2 w’drdy < T Br1Z / / A+B+2 |Vul*dzdy

400 AdB+1X2 AdB+3X
Y /

A+B+2 (A+B+2)—A+123+4
whereX = X(42)and X (t) = (1 —Int)"', 0 <t < 1.

(—Ad)u*dxdy , (2.12)

d2

(@ +y?) 2

Proof: We apply Lemma& 214 ta? We then use Young’s inequality in the first term of the rightdhaide:
1
2dP X |u||Vu| < edP X?u? + gdB“\vuy?,
with
B B+1
C2(A+B+3)°
We omit the details.

We are now ready to give the proof of Theorem 2.1:
Proof of Theoreri 21 1We first apply Lemma2]3 witlB = A + 2 to get:

+oo AdA+2X2 2A +oo A+2dA+2
/ / wldedy < +5)° / / A2 \Vu|>dzdy

(d2 + y2)A+2 (A+1)2 (d? +9?)
4(A+2) [* A+2dA+3X 2
—-A . (213
CA+1 / / (d? 4+ y?) (@ 5 ypyis (- Aduidedy . (2.13)

We next use Lemma 2.5 with = B + 2, to obtain:

+o00 B+2dB 2 QB + 5 +o0 B+2dB+2
X . 2
/ o (B + )b B+2 drdy < NGESER / / B+2‘ Vul“dzdy

400 B+2dB+1X2 yB+2dB+3X )
"B +1 / / { d2 + 2)B+2 +2(B + 2>W] (—Ad)u dzdy , (2.14)

ReplacingB by A in (2.14) and adding it td_(2.13) we conclude the proof.

3 The proofs of Theorem$ 1.1 and1]2
We first establish the following Hardy—Sobolev estimatey thill be used in an essential way in the proof
of Theorem 1.1. For the definition of the “ uniformly Lipschllomain” see for instance [FMoT].

Theorem 3.1. Letn > 2 and () ; IR™ be a uniformly Lipschitz domain with finite inner radius thiat

addition satisfies
—Ad(z) >0, in Q. (3.1)

Then there exists a positive constarguch that for alle € C3° (2 x IR) there holds

n—1
oo 2 [ u?(x,0) F00 2(n+1) Tl
Viznu(z,y 2alacdyz—/ : dm—l—c(/ / uw(z,y)| T dwdy) . (3.2
| | Wt - [ S [ [t




Proof of Theorern_3]1We first recall inequality (2.11), from [FM0T], with = 1/2 (anda = 0), that is

+oo LL’ 0 +o0
/ /\Vu] dedy > / e d +/ /]Vu——u]zdwdy
- /0 /Q f *dady (3.3)

oy =A(2), y>0 weq, (3.4)
and A solves (2.3), (2.4) i [EFMQoT], that is

whereg is given by

2
A(t) =1— —arctant, t>0. (3.5)

s

The result will follow after establishing the following igaeality:

+oo +oo +00 (n+1) ==
/ / |Vu — u]zdwdy / / a¢ uldzdy > ¢ </ / \u(m,y)]znjll dwdy) . (3.6)
0 Q

To this end we start with the Sobolev inequality,

+oo +oo il s
/ / |Vuldzdy > ¢ </ / |u(x,y)|Tdmdy> , ue CyP(Q x R),
0 Q 0 Q

with the choiceu = (b%v. Hence we obtain

+oo on 2n oo ntl
/ /¢n1|Vv|d:ndy—|——/ /¢n1|V¢|Ivldwdy
0 Q n—1Jo Q
t+00 2n n+1 n”_il
>c </ / |¢7L1U|Td$dy> ) (3.7)
0 Q

Next we will control the second term of the LHS using Lemma JEMI0T]. To this end we recall that we
have the following asymptotics (cf Lemma 2 bf [FMoT]),

[un

on dn—1 n+l dn—1
Pprt ort Vo ~» —————— . (3.8)
(d? +y?)7T (d? +y?)mT

We then use Lemma Lemma 7 of [FMoT] with the choide= 0, B = Z—ﬂ andI' = "5 taking into
account thatd + B +2 — 2I"' = 1 > 0, to obtain the estimate

“+o0 +o0
T vldxdy < ¢ / / — |Vv|dzdy
/ / d2+y z 1 ' d2+y2n1| |

+oo nfl
—i—cz/ / ———|v|dzdy . (3.9)
0o Ja(d®+y?)nt .

From this and[(3]7) we have that

+00 om +o0 9n +o0 o2 ngl E=)
| [etwaeay+ [ [ <z>n1|v|dwdy2c< | et dwdy) -
0 Q 0 Q 0 Q

To continue we next sat = ywy% and apply Schwartz inequality in the LHS. After a simplifioatwe

arrive at:
oo +oo +oo 2nt1) e
/ /¢2|Vw| d:ndy+/ /¢2 2d:1:dy>c</ /| pw| T ) . (3.10)
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To conclude the proof of the Theorem we need the followingrese:

c /0 = /Q P*widrdy < /0 = /Q $*|Vw|*dzdy — /0 o /Q (Ag)pw?dxdy . (3.11)

It is worth noticing that the estimates of [FMoT] that workfia < s < 1 falil to give (3.11) for the limiting
values = 1. Itis at this point that we will use the more refined estimdt€eoren{ LB with4 = 0, that is,

+oo X2 2 +o00 2 2 2 +oo X
/ oy ey < 200/ / d W“" Y dudy +18/ /yd d;vdy,
d? +y?)
hereX = X( ) This implies
+oo 2,,2 +oo 2 2 +o00o
— / d ey < 200/ d W“" S dndy —1—18/ / ‘Z dedy . (3.12)
Rzn d2 d2+y 2

Taking into account the asymptotics @fcf (3.8), as well as the fact that

_ 2y
—A¢ = %W(—Ad%

estimate[(3.12) leads to (3]11). We omit further details.
]
We next give the proof of Theorem 1.1.
Proof of Theorenh_111We will use [3.8) where) is given, as before, by (3.4), (3.5). The result then will
follow once we establish:

n—1

+oo +o0 A¢ 2 on pos
/ / |Vu — u] dxdy — / / dxdy > ¢ / |u(x,0)| 1 dz . (3.13)
0 Q Q

To this end we start with the trace inequality,

+00
/ / |Vu|dzdy > c/ |u(z, 0)|dx ,
0 Q Q

valid for u € C§°(2 x IR). We apply this ta: = qﬁn%nlv. Hence we obtain

+00 o m +oo ntl 2n_
/ / o1 |Vou|dxdy + —/ / ¢n1|Vol||lv|dxdy > c/ |pn—To|dz . (3.14)
0 Q n—1J 0 0

Next we will control the second term of the LHS exactly as wekidi (3.9) in the proof of Theorein 3.1, to

arrive at
oo 2n_ oo 2n_ 2n_
/ /¢n1|Vv|d:Edy—|—/ /¢n1|v|d:ndy Zc/ |pn=Tv(z,0)|dz .
0 Q 0 Q Q

To continue we next set = ywy% and apply Schwartz inequality in the LHS to get after eleragnt
manipulations that

</0+°°/ !¢w!2?+11)dwdy> [/+°°/ $*|Vwl? dgcdy+/ /¢2 dedy]
>C</ |pw(z, 0)| 7= 1dm> . (3.15)




At this point we use[(3.10) and then inequallty (3.11) tovarat

n—1

/O+OO/Q¢2|VU)|2dmdy_/O+OO/Q(A¢)¢w2dmdyZc</ﬂ|¢w($’0)|n2nldm>n |

which is equivalent td (3.13) after the substitution= ¢|w|. We omit further details.

]
Proof of Theoren_112The result follows from Theorem 1.1 since the harmonic esitenu(z, y) in Q x
[0,0) of f, that is, the solution of (113)=(1.5), has energy that Basis

+o0 1
| [ Ivuldedy = (-2} 1,000, (3.16)
see (8.5) of [EMoTT].
O
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