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Abstract

In this work we establish trace Hardy-Sobolev-Maz’ya inequalities with best Hardy constants, for
weakly mean convex domains. We accomplish this by obtaininga new weighted Hardy type estimate
which is of independent inerest. We then produce Hardy-Sobolev-Maz’ya inequalities for the spectral
half Laplacian. This covers a critical case left open in [FMoT].
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1 Introduction

The Hardy-Sobolev-Maz’ya (HSM) inequalities combine the Sobolev and Hardy terms, the latter with best
constant. For instance, for the regular (local) Laplacian and for a domainΩ $ IRn n ≥ 3 it states that, if
d(x) = dist(x, ∂Ω), there exists a positive constantc such that

∫

Ω
|∇u|2dx ≥

1

4

∫

Ω

|u|2

d2(x)
dx+ c

(
∫

Ω
|u|

2n
n−2 dx

)
n−2
n

, u ∈ C∞

0 (Ω) . (1.1)

Such an inequality was first proven in [M] in the special case whereΩ is the half space. In [FMT] it was
proven under the assumption thatΩ is a weakly mean convex domain, that is, it satisfies in the distributional
sense,

−∆d(x) ≥ 0, in Ω . (1.2)
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In [FL] inequality (1.3) was established with a constantc independent ofΩ, under the stronger hypothesis
thatΩ is convex. We note that mean convexity is equivalent to convexity in n = 2 dimensions but it is a
much weaker assumption forn ≥ 3, cf [AK].

Our interest in this work is in the fractional (non local) Laplacian in a bounded domain. Various frac-
tionals–Laplacians (0 < s < 1) have been recently studied, see [BBC], [CT], [DF], [FMoT] and references
therein. In [FMoT] the limiting case of obtaining Hardy–Sobolev–Mazy’a inequalities for the half Laplacian
was left open in the case of a domainΩ. In fact, the half Laplacian is a border line case, since different be-
haviors are observed fors < 1

2 ands > 1
2 . For instance, the fractional Laplacian considered in [D],satisfies

Hardy inequality for12 < s < 1 but not for0 < s ≤ 1
2 , in the case of smooth bounded domains. Similarly

a dichotomy appears, for a different fractional Laplacian this time, in the context ofΓ–convergence of non
local phase transitions, or in the context of non local surface diffusion, see, [SV], [CRS]. In our case certain
aymptotics are different fors > 1/2 than fors = 1/2 and as a consequence the analysis in [FMoT] fails for
the limiting case of the half Laplacian.

As we have already mentioned, there are several fractional Laplacians, but in this work we will focus
on the spectral fractional Lapacian that was recently considered in [CT]. We will do this as in [FMoT]
via a suitable extension problem in the spirit of [CS]. In ourcase the appropriate extension problem is the
following:

−∆(x,y)u = 0, in Ω× (0,∞) , (1.3)

u = 0, on ∂Ω × (0,∞) , (1.4)

u(x, 0) = f(x), in Ω , (1.5)

the energy of which is given by

J [u] =
1

2

∫ +∞

0

∫

Ω
|∇(x,y)u(x, y)|

2dxdy .

At this point we recall that the inner radius of a domainΩ is defined asRin := supx∈Ω d(x). We
say that the domainΩ has finite inner radius wheneverRin < ∞. Our first result is the following Trace
Hardy-Sobolev-Maz’ya inequality:

Theorem 1.1. Let n ≥ 2 andΩ $ IRn be a uniformly Lipschitz domain with finite inner radius which in
addition satisfies

−∆d(x) ≥ 0, in Ω . (1.6)

Then there exists a positive constantc such that for allu ∈ C∞

0 (Ω × IR) there holds

∫ +∞

0

∫

Ω
|∇(x,y)u(x, y)|

2dxdy ≥
2

π

∫

Ω

u2(x, 0)

d(x)
dx+ c

(
∫

Ω
|u(x, 0)|

2n
n−1 dx

)
n−1
n

. (1.7)

We note that the constant2
π

is the best constant for the corresponding trace Hardy inequality see Theorem
1 of [FMoT] for the precise statement.

We will apply Theorem 1.1 to the spectral fractional Laplacian that is defined as follows. LetΩ ⊂ IRn

be a bounded domain, andλi andφi be the Dirichlet eigenvalues and orthonormal eigenfunctions of the
Laplacian, i.e.−∆φi = λiφi in Ω, with φi = 0 on ∂Ω. Then, forf(x) =

∑

ciφi(x) the s–fractional
Laplacian is defined by

(−∆)sf(x) =

∞
∑

i=1

ciλ
s
iφi(x), 0 < s < 1 . (1.8)

In the sequel we will be interested in the cases = 1
2 . More precisely, the Hardy-Sobolev-Maz’ya inequality

for the spectral half Laplacian reads:
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Theorem 1.2. Letn ≥ 2 andΩ $ IRn be a bounded Lipschitz domain which in addition satisfies

−∆d(x) ≥ 0, in Ω . (1.9)

Then there exists a positive constantc such that for allf ∈ C∞

0 (Ω) there holds

((−∆)
1
2 f, f)Ω ≥

2

π

∫

Ω

f2(x)

d(x)
dx+ c

(
∫

Ω
|f(x)|

2n
n−1 dx

)
n−1
n

. (1.10)

Again, the constant2
π

is the best constant for the corresponding Hardy inequalitysee Theorem 3 of
[FMoT] for the precise statement.

We note that the proof is based on the following crucial estimate that was missing in [FMoT].

Theorem 1.3. LetΩ $ IRn be a domain with finite inner radiusRin and is such that

−∆d(x) ≥ 0, in Ω .

If in additionA+ 1 > 0, then for allu ∈ C∞

0 (IRn × IR) there holds
∫ +∞

0

∫

Ω

yA+2dA+2

(d2 + y2)A+2
|∇u|2dxdy +

(A+ 1)(4A + 9)

4(2A+ 5)2

∫ +∞

0

∫

Ω

yA+1dA+1X

(d2 + y2)A+ 3
2

(−∆d)u2dxdy

≥
(A+ 1)2

8(2A+ 5)2

∫ +∞

0

∫

Ω

yAdAX2

(d2 + y2)A+1
u2dxdy , (1.11)

whereX = X(d(x)
Rin

) andX(t) = (1− ln t)−1, 0 < t ≤ 1.

For Theorem 1.3 it is important that the domain has a finite inner radius.
Using Theorem 1.3 and quite similar arguments to the ones leading to the proof of Theorems 1.1 and

1.2 one can establish HSM–inequalities for the Dirichlet half Laplacian defined in [FMoT]. In particular
Theorems 4, 5 and 12 of [FMoT] are valid for the limiting cases = 1/2.

In Section 2 we give the proof of Theorem 1.3 after establishing a more general result, where weak mean
convexity of the domain is not required. In the final Section 3we give the proofs of Theorems 1.1 and 1.2.

2 The proof of Theorem 1.3

In this section we will prove Theorem 1.3. In fact we will prove a more general result that does not require
any sign assumption on the measure−∆d(x).

Theorem 2.1. Let Ω $ IRn be a domain with finite inner radiusRin. If A + 1 > 0, then for allu ∈
C∞

0 (IRn × IR) there holds
∫ +∞

0

∫

Ω

yA+2dA+2

(d2 + y2)A+2
|∇u|2dxdy

+
A+ 1

4(2A+ 5)2

∫ +∞

0

∫

Ω

[

yA+2dA+1X2

(d2 + y2)A+2
+ 4(A+ 2)

yA+2dA+3X

(d2 + y2)A+3

]

(−∆d)u2dxdy

≥
(A+ 1)2

8(2A+ 5)2

∫ +∞

0

∫

Ω

yAdAX2

(d2 + y2)A+1
u2dxdy , (2.1)

whereX = X(d(x)
Rin

) andX(t) = (1− ln t)−1, 0 < t ≤ 1.

From this estimate we have:
Proof of Theorem 1.3:The result follows from Theorem 2.1 using the sign assumption −∆d(x) ≥ 0 in Ω.

�

The rest of this section is devoted to the proof of Theorem 2.1. We first present some auxilliary Lemmas.
Our first Lemma covers a limiting case of Lemma 8 of [FMoT].
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Lemma 2.2. Let Ω $ IRn be a domain with finite inner radiusRin. If A andB are constants such that
A+ 1 > 0 andB + 1 > 0 then for allu ∈ C∞

0 (IRn × IR) there holds
∫ +∞

0

∫

Ω

yAdBX2

(d2 + y2)
A+B+2

2

|u|dxdy ≤
A+B + 2

A+ 1

∫ +∞

0

∫

Ω

yA+2dBX

(d2 + y2)
A+B+4

2

(−d∆d)|u|dxdy

+
A+B + 3

A+ 1

∫ +∞

0

∫

Ω

yA+1dBX

(d2 + y2)
A+B+2

2

|∇u|dxdy , (2.2)

whereX = X(d(x)
Rin

) andX(t) = (1− ln t)−1, 0 < t ≤ 1.

Proof: Integrating by parts in they-variable we compute

(A+ 1)

∫ +∞

0

∫

Ω

yAdBX2

(d2 + y2)
A+B+2

2

|u|dxdy ≤ (A+B + 2)

∫ +∞

0

∫

Ω

yA+2dBX2

(d2 + y2)
A+B+4

2

|u|dxdy

+

∫ +∞

0

∫

Ω

yA+1dBX2

(d2 + y2)
A+B+2

2

|uy|dxdy. (2.3)

In the previous calculation there is no boundary term due to our assumptions. To continue we will estimate
the first term in the right hand side above. To this end we definethe vector field~F by

~F (x, y) :=

(

yA+2dB+1X∇d

(d2 + y2)
A+B+4

2

,
yA+3dBX

(d2 + y2)
A+B+4

2

)

. (2.4)

We then have
∫ +∞

0

∫

Ω
div ~F |u|dxdy = −

∫ +∞

0

∫

Ω

~F · ∇|u|dxdy ≤

∫ +∞

0

∫

Ω
|~F ||∇u|dxdy. (2.5)

We note that because of our assumptionsA+ 1 > 0 andB + 1 > 0, there are no boundary terms in (2.5).
Straightforward calculations (in the sense of distributions) show that,

div ~F =
yA+2dBX(d∆d)

(d2 + y2)
A+B+4

2

+
yA+2dBX2

(d2 + y2)
A+B+4

2

, (2.6)

and

|~F | =
yA+2dBX

(d2 + y2)
A+B+3

2

≤
yA+1dBX

(d2 + y2)
A+B+2

2

. (2.7)

From (2.5)–(2.7) we get
∫ +∞

0

∫

Ω

yA+2dBX2

(d2 + y2)
A+B+4

2

|u|dxdy ≤

∫ +∞

0

∫

Ω

yA+2dBX(−d∆d)

(d2 + y2)
A+B+4

2

|u|dxdy

+

∫ +∞

0

∫

Ω

yA+1dBX

(d2 + y2)
A+B+2

2

|∇u|dxdy . (2.8)

Combining (2.3) and (2.8) the result follows.
�

We next obtain theL2–analogue of Lemma 2.2:

Lemma 2.3. Let Ω $ IRn be a domain with finite inner radiusRin. If A andB are constants such that
A+ 1 > 0 andB + 1 > 0 then for allu ∈ C∞

0 (IRn × IR) there holds
∫ +∞

0

∫

Ω

yAdBX2

(d2 + y2)
A+B+2

2

u2dxdy ≤
2(A+B + 2)

A+ 1

∫ +∞

0

∫

Ω

yA+2dBX

(d2 + y2)
A+B+4

2

(−d∆d)u2dxdy

+
4(A+B + 3)2

(A+ 1)2

∫ +∞

0

∫

Ω

yA+2dB

(d2 + y2)
A+B+2

2

|∇u|2dxdy , (2.9)

whereX = X(d(x)
Rin

) andX(t) = (1− ln t)−1, 0 < t ≤ 1.
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Proof: We apply Lemma 2.2 tou2. We then use Young’s inequality in the last term of the right hand side:

2yA+1X|u||∇u| ≤ εyAX2u2 +
1

ε
yA+2|∇u|2,

with

ε =
A+ 1

2(A+B + 3)
.

We omit the details.
�

The following is a variation of Lemma 6 of [FMoT], in the sensethat no assumption on the sign of
(−∆d) is required.

Lemma 2.4. Suppose thatΩ $ IRn has finite inner radius. IfA, B are constants such thatA + 1 > 0,
B + 1 > 0, then for allu ∈ C∞

0 (IRn × IR) there holds

(B + 1)

∫ +∞

0

∫

Ω

yAdBX2

(d2 + y2)
A+B+2

2

|u|dxdy ≤ (A+B + 3)

∫ +∞

0

∫

Ω

yAdB+1X

(d2 + y2)
A+B+2

2

|∇u|dxdy

+

∫ +∞

0

∫

Ω

[

yAdB+1X2

(d2 + y2)
A+B+2

2

+ (A+B + 2)
yAdB+3X

(d2 + y2)
A+B+4

2

]

(−∆d)|u|dxdy , (2.10)

whereX = X(d(x)
Rin

) andX(t) = (1− ln t)−1, 0 < t ≤ 1.

Proof: Integrating by parts in thex-variables we compute

(B + 1)

∫ +∞

0

∫

Ω

yAdBX2

(d2 + y2)
A+B+2

2

|u|dxdy + 2

∫ +∞

0

∫

Ω

yAdBX3

(d2 + y2)
A+B+2

2

|u|dxdy

≤

∫ +∞

0

∫

Ω

yAdB+1X2(−∆d)

(d2 + y2)
A+B+2

2

|u|dxdy + (A+B + 2)

∫ +∞

0

∫

Ω

yAdB+2X2

(d2 + y2)
A+B+4

2

|u|dxdy

+

∫ +∞

0

∫

Ω

yAdB+1X2

(d2 + y2)
A+B+2

2

|∇u|dxdy. (2.11)

In the previous calculation there are no boundary terms due to our assumptions. To continue we will
estimate the middle term in the right hand side above. To thisend we use (2.5) with the following choice of
the vector field~F :

~F (x, y) :=

(

yAdB+3X∇d

(d2 + y2)
A+B+4

2

,
yA+1dB+2X

(d2 + y2)
A+B+4

2

)

.

Straightforward calculations show that

div ~F =
yAdB+3X(∆d)

(d2 + y2)
A+B+4

2

+
yAdB+2X2

(d2 + y2)
A+B+4

2

,

and

|~F | =
yAdB+2X

(d2 + y2)
A+B+3

2

≤
yAdB+1X

(d2 + y2)
A+B+2

2

.

We then have that
∫ +∞

0

∫

Ω

yAdB+2X2

(d2 + y2)
A+B+4

2

|u|dxdy

≤

∫ +∞

0

∫

Ω

yAdB+3X

(d2 + y2)
A+B+4

2

(−∆d)|u|dxdy +

∫ +∞

0

∫

Ω

yAdB+1X

(d2 + y2)
A+B+2

2

|∇u|dxdy.
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Combining the above with (2.11) and the fact thatX ≤ 1 we conclude the proof.
�

We next obtain theL2–analogue of Lemma 2.4:

Lemma 2.5. Suppose thatΩ $ IRn has finite inner radius. IfA, B are constants such thatA + 1 > 0,
B + 1 > 0, then for allu ∈ C∞

0 (IRn × IR) there holds
∫ +∞

0

∫

Ω

yAdBX2

(d2 + y2)
A+B+2

2

u2dxdy ≤
4(A +B + 3)2

(B + 1)2

∫ +∞

0

∫

Ω

yAdB+2

(d2 + y2)
A+B+2

2

|∇u|2dxdy

+
2

B + 1

∫ +∞

0

∫

Ω

[

yAdB+1X2

(d2 + y2)
A+B+2

2

+ (A+B + 2)
yAdB+3X

(d2 + y2)
A+B+4

2

]

(−∆d)u2dxdy , (2.12)

whereX = X(d(x)
Rin

) andX(t) = (1− ln t)−1, 0 < t ≤ 1.

Proof: We apply Lemma 2.4 tou2 We then use Young’s inequality in the first term of the right hand side:

2dB+1X|u||∇u| ≤ εdBX2u2 +
1

ε
dB+2|∇u|2,

with

ε =
B + 1

2(A+B + 3)
.

We omit the details.
�

We are now ready to give the proof of Theorem 2.1:
Proof of Theorem 2.1:We first apply Lemma 2.3 withB = A+ 2 to get:

∫ +∞

0

∫

Ω

yAdA+2X2

(d2 + y2)A+2
u2dxdy ≤

4(2A + 5)2

(A+ 1)2

∫ +∞

0

∫

Ω

yA+2dA+2

(d2 + y2)A+2
|∇u|2dxdy

+
4(A+ 2)

A+ 1

∫ +∞

0

∫

Ω

yA+2dA+3X

(d2 + y2)A+3
(−∆d)u2dxdy . (2.13)

We next use Lemma 2.5 withA = B + 2, to obtain:
∫ +∞

0

∫

Ω

yB+2dBX2

(d2 + y2)B+2
u2dxdy ≤

4(2B + 5)2

(B + 1)2

∫ +∞

0

∫

Ω

yB+2dB+2

(d2 + y2)B+2
|∇u|2dxdy

+
2

B + 1

∫ +∞

0

∫

Ω

[

yB+2dB+1X2

(d2 + y2)B+2
+ 2(B + 2)

yB+2dB+3X

(d2 + y2)B+3

]

(−∆d)u2dxdy , (2.14)

ReplacingB byA in (2.14) and adding it to (2.13) we conclude the proof.
�

3 The proofs of Theorems 1.1 and 1.2

We first establish the following Hardy–Sobolev estimate, that will be used in an essential way in the proof
of Theorem 1.1. For the definition of the “ uniformly Lipschitz domain” see for instance [FMoT].

Theorem 3.1. Let n ≥ 2 andΩ $ IRn be a uniformly Lipschitz domain with finite inner radius thatin
addition satisfies

−∆d(x) ≥ 0, in Ω . (3.1)

Then there exists a positive constantc such that for allu ∈ C∞

0 (Ω × IR) there holds

∫ +∞

0

∫

Ω
|∇(x,y)u(x, y)|

2dxdy ≥
2

π

∫

Ω

u2(x, 0)

d(x)
dx+ c

(
∫ +∞

0

∫

Ω
|u(x, y)|

2(n+1)
n−1 dxdy

)

n−1
n+1

. (3.2)
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Proof of Theorem 3.1:We first recall inequality (2.11), from [FMoT], withs = 1/2 (anda = 0), that is
∫ +∞

0

∫

Ω
|∇u|2dxdy ≥

2

π

∫

Ω

u2(x, 0)

d(x)
dx+

∫ +∞

0

∫

Ω
|∇u−

∇φ

φ
u|2dxdy

−

∫ +∞

0

∫

Ω

∆φ

φ
u2dxdy , (3.3)

whereφ is given by

φ(x, y) = A
(y

d

)

, y > 0, x ∈ Ω , (3.4)

andA solves (2.3), (2.4) in [FMoT], that is

A(t) = 1−
2

π
arctan t, t ≥ 0. (3.5)

The result will follow after establishing the following inequality:

∫ +∞

0

∫

Ω
|∇u−

∇φ

φ
u|2dxdy −

∫ +∞

0

∫

Ω

∆φ

φ
u2dxdy ≥ c

(
∫ +∞

0

∫

Ω
|u(x, y)|

2(n+1)
n−1 dxdy

)

n−1
n+1

. (3.6)

To this end we start with the Sobolev inequality,

∫ +∞

0

∫

Ω
|∇u|dxdy ≥ c

(
∫ +∞

0

∫

Ω
|u(x, y)|

n+1
n dxdy

)

n

n+1

, u ∈ C∞

0 (Ω × IR) ,

with the choiceu = φ
2n
n−1 v. Hence we obtain

∫ +∞

0

∫

Ω
φ

2n
n−1 |∇v|dxdy +

2n

n− 1

∫ +∞

0

∫

Ω
φ

n+1
n−1 |∇φ||v|dxdy

≥ c

(
∫ +∞

0

∫

Ω
|φ

2n
n−1 v|

n+1
n dxdy

)

n

n+1

. (3.7)

Next we will control the second term of the LHS using Lemma 7 of[FMoT]. To this end we recall that we
have the following asymptotics (cf Lemma 2 of [FMoT]),

φ
2n
n−1 ∼

d
2n
n−1

(d2 + y2)
n

n−1

, φ
n+1
n−1 |∇φ| ∼

d
n+1
n−1

(d2 + y2)
n

n−1

. (3.8)

We then use Lemma Lemma 7 of [FMoT] with the choiceA = 0, B = n+1
n−1 andΓ = n

n−1 taking into
account thatA+B + 2− 2Γ = 1 > 0, to obtain the estimate

∫ +∞

0

∫

Ω

d
n+1
n−1

(d2 + y2)
n

n−1

|v|dxdy ≤ c1

∫ +∞

0

∫

Ω

d
2n
n−1

(d2 + y2)
n

n−1

|∇v|dxdy

+c2

∫ +∞

0

∫

Ω

d
2n
n−1

(d2 + y2)
n

n−1

|v|dxdy . (3.9)

From this and (3.7) we have that

∫ +∞

0

∫

Ω
φ

2n
n−1 |∇v|dxdy +

∫ +∞

0

∫

Ω
φ

2n
n−1 |v|dxdy ≥ c

(
∫ +∞

0

∫

Ω
|φ

2n
n−1 v|

n+1
n dxdy

)

n

n+1

.

To continue we next setv = |w|
2n
n−1 and apply Schwartz inequality in the LHS. After a simplification we

arrive at:
∫ +∞

0

∫

Ω
φ2|∇w|2dxdy +

∫ +∞

0

∫

Ω
φ2w2dxdy ≥ c

(
∫ +∞

0

∫

Ω
|φw|

2(n+1)
n−1

)

n−1
n+1

. (3.10)
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To conclude the proof of the Theorem we need the following estimate:

c

∫ +∞

0

∫

Ω
φ2w2dxdy ≤

∫ +∞

0

∫

Ω
φ2|∇w|2dxdy −

∫ +∞

0

∫

Ω
(∆φ)φw2dxdy . (3.11)

It is worth noticing that the estimates of [FMoT] that work for 1
2 < s < 1 fail to give (3.11) for the limiting

values = 1
2 . It is at this point that we will use the more refined estimate of Theorem 1.3 withA = 0, that is,

∫ +∞

0

∫

Ω

X2w2

d2 + y2
dxdy ≤ 200

∫ +∞

0

∫

Ω

y2d2|∇w|2

(d2 + y2)2
dxdy + 18

∫ +∞

0

∫

Ω

ydX(−∆d)w2

(d2 + y2)
3
2

dxdy ,

hereX = X
(

d
Rin

)

. This implies

1

R2
in

∫ +∞

0

∫

Ω

d2w2

d2 + y2
dxdy ≤ 200

∫ +∞

0

∫

Ω

d2|∇w|2

d2 + y2
dxdy + 18

∫ +∞

0

∫

Ω

yd(−∆d)w2

(d2 + y2)
3
2

dxdy . (3.12)

Taking into account the asymptotics ofφ, cf (3.8), as well as the fact that

−∆φ =
2

π

y

d2 + y2
(−∆d) ,

estimate (3.12) leads to (3.11). We omit further details.
�

We next give the proof of Theorem 1.1.
Proof of Theorem 1.1:We will use (3.3) whereφ is given, as before, by (3.4), (3.5). The result then will
follow once we establish:

∫ +∞

0

∫

Ω
|∇u−

∇φ

φ
u|2dxdy −

∫ +∞

0

∫

Ω

∆φ

φ
u2dxdy ≥ c

(
∫

Ω
|u(x, 0)|

2n
n−1 dx

)
n−1
n

. (3.13)

To this end we start with the trace inequality,

∫ +∞

0

∫

Ω
|∇u|dxdy ≥ c

∫

Ω
|u(x, 0)|dx ,

valid for u ∈ C∞

0 (Ω × IR). We apply this tou = φ
2n
n−1 v. Hence we obtain

∫ +∞

0

∫

Ω
φ

2n
n−1 |∇v|dxdy +

2n

n− 1

∫ +∞

0

∫

Ω
φ

n+1
n−1 |∇φ||v|dxdy ≥ c

∫

Ω
|φ

2n
n−1 v|dx . (3.14)

Next we will control the second term of the LHS exactly as we did in (3.9) in the proof of Theorem 3.1, to
arrive at

∫ +∞

0

∫

Ω
φ

2n
n−1 |∇v|dxdy +

∫ +∞

0

∫

Ω
φ

2n
n−1 |v|dxdy ≥ c

∫

Ω
|φ

2n
n−1 v(x, 0)|dx .

To continue we next setv = |w|
2n
n−1 and apply Schwartz inequality in the LHS to get after elementary

manipulations that

(
∫ +∞

0

∫

Ω
|φw|

2(n+1)
n−1 dxdy

)[
∫ +∞

0

∫

Ω
φ2|∇w|2dxdy +

∫ +∞

0

∫

Ω
φ2w2dxdy

]

≥ c

(
∫

Ω
|φw(x, 0)|

2n
n−1dx

)2

. (3.15)
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At this point we use (3.10) and then inequality (3.11) to arrive at

∫ +∞

0

∫

Ω
φ2|∇w|2dxdy −

∫ +∞

0

∫

Ω
(∆φ)φw2dxdy ≥ c

(
∫

Ω
|φw(x, 0)|

2n
n−1 dx

)
n−1
n

,

which is equivalent to (3.13) after the substitutionu = φ|w|. We omit further details.
�

Proof of Theorem 1.2:The result follows from Theorem 1.1 since the harmonic extensionu(x, y) in Ω ×
[0,∞) of f , that is, the solution of (1.3)–(1.5), has energy that satisfies

∫ +∞

0

∫

Ω
|∇u|2dxdy = ((−∆)

1
2 f, f)Ω , (3.16)

see (8.5) of [FMoT].
�
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