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Abstract We study asymptotically harmonic manifolds of negative curvature, without any
cocompactness or homogeneity assumption. We show that asymptotic harmonicity provides
a lot of information on the asymptotic geometry of these spaces: in particular, we determine
the volume entropy, the spectrum and the relative densities of visual and harmonic measures
on the ideal boundary. Then, we prove an asymptotic analogue of the classical mean value
property of harmonic manifolds, and we characterize asymptotically harmonic manifolds,
among Cartan–Hadamard spaces of strictly negative curvature, by the existence of an asymp-
totic equivalent τ(u)eEr for the volume-density of geodesic spheres (with τ constant in case
DRM is bounded). Finally, we show the existence of a Margulis function, and explicitly
compute it, for all asymptotically harmonic manifolds.
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1 Introduction

Harmonic manifolds are those Riemannian manifolds whose geodesic spheres have constant
mean curvature; equivalently, such that the volume density function, in normal coordinates
at any point x , only depends on the distance d(x, ·). Another equivalent condition is that the
mean-value property
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1050 P. Castillon, A. Sambusetti

f (x0) = 1

vol(Sx0(R))

∫

Sx0 (R)

f (x)dvSx0 (R)

holds for all harmonic functions f on M (cf. [3]). It is not difficult to show that these are
Einstein spaces, hence constant curvature spaces in dimensions 2 and 3.

In 1944, A. Lichnerowicz conjectured, and proved in dimension 4, that the rank one
symmetric spaces (denoted ROSS, in the sequel) are the only harmonic manifolds. The
conjecture was then proved by Z.I. Szabo for compact simply connected manifolds (cf. [25]),
and for negatively curved Cartan Hadamard manifolds admitting compact quotients by G.
Besson, G. Courtois and S. Gallot (also using work of P. Foulon, Y. Benoist and F. Labourie on
the geodesic flow of manifolds having smooth horospherical distribution, cf. [4] section 9.C
and [2,10]). The assumption of negative curvature was further relaxed by G. Knieper in [17],
where he studied relations between volume growth, dynamical properties of the geodesic
flow and Gromov hyperbolicity; in particular he proved that compact harmonic manifolds
with a Gromov hyperbolic fundamental group are quotients of a ROSS. On the other hand, A.
Ranjan and H. Shah proved in [21] that harmonic manifolds with polynomial volume growth
are flat. However, the Lichnrowicz conjecture was proved to be false: E. Damek and F. Ricci
constructed harmonic homogeneous manifolds which are not ROSS (cf. [8]). Since then,
J. Heber proved that Damek-Ricci spaces and ROSS are the only homogeneous harmonic
manifolds (cf. [11]).

In several of these works, an asymptotic version of harmonicity naturally appears (cf.
[10,11]): a Cartan–Hadamard manifold M is asymptotically harmonic if its horospheres have
constant mean curvature h. It is easy to show that, in dimension 2, the only asymptotically
harmonic manifolds are H

2 and R
2. Recently (cf. [12]), it was also proved that, in dimension 3,

the only asymptotically harmonic Cartan–Hadamard manifold of strictly negative curvature
is the hyperbolic space ; this result was then generalized in [24], removing the curvature
bounds and assuming that the mean curvature of the horopsheres is positive.

However, the notion of asymptotically harmonic manifolds was introduced by F. Ledrap-
pier in [19], mainly to study the cocompact case (i.e. when the space admits compact quo-
tients). F. Ledrappier proved that, within cocompact Cartan–Hadamard spaces, asymptotic

harmonicity is equivalent to the condition inf σ(�) = E2

4 (where σ(�) is the spectrum of the
Laplacian of M , and E its volume-entropy) and to the coincidence of the families of harmonic
and Bowen-Margulis measures; moreover, he showed that if M is asymptotically harmonic,
then E = nh. The above recalled work of Besson, Courtois, Gallot, together with [10], settled
the problem both for harmonic and for asymptotically harmonic manifolds, among cocom-
pact, negatively curved Cartan–Hadamard spaces, showing that they are all ROSS. On the
other hand, in [7] necessary and sufficient conditions are given in order that a homogeneous,
negatively curved Cartan–Hadamard manifold is asymptotically harmonic; however, as far
as the authors know, the problem whether any asymptotically harmonic manifold is ROSS is
still open in this class.

The aim of this paper is to show that, for Cartan–Hadamard manifolds of strictly negative
curvature of any dimension, even without any cocompactness or homogeneity assumption,
asymptotic harmonicity provides a lot of information on the asymptotic geometry. In view
of [19], we are naturally interested in the volume entropy, the spectrum and the relations
between visual and harmonic measures on the ideal boundary of a general asymptotically
harmonic manifold.

In particular, in Sect. 3, we show rigidity of Cartan–Hadamard asymptotically harmonic
manifolds under suitable curvature bounds (Corollary 4.7), we determine the volume entropy
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On asymptotically harmonic manifolds of negative curvature 1051

and the spectrum (cf. Theorems 4.3 & 4.4) and, when the curvature is negatively pinched, we
find sharp upper and lower bounds for the volume-growth of the horospheres (Theorem 4.8
and ff. Remarks 4.9 & 4.10). Moreover, we prove an asymptotic analogue of the classical
mean-value property holding on harmonic manifolds (Theorem 4.11).

In Sect. 4, we characterize asymptotically harmonic manifolds as those manifolds whose
volume density function is asymptotically equivalent to a function τ(u)eEr , for some positive
function τ on SM (Theorem 5.1); then, we show that the function τ is constant if DRM (the
derivative of the Riemann tensor) is bounded (Proposition 5.4(ii)). The existence of this
function τ can also be deduced from the computations in [17], but we stress the fact that our
result is stronger as we get some uniformity in the limit (Proposition 5.4 and Remark 5.3).

In Sect. 6 we prove the existence of a Margulis function (Proposition 6.2), we explicitly
compute it for all asymptotically harmonic manifolds, and we find the relative densities of
visual and harmonic measures on the ideal boundary (Proposition 6.1); we also show that
they coincide when DRM is bounded. This result is to compare to what is known in the
cocompact and homogeneous cases, where coincidence of two of the three natural families
of measures on the ideal boundary (visual, harmonic and Patterson-Sullivan measures) forces,
respectively in the two cases, symmetry and asymptotic harmonicity of the manifold (cf. [19,
20,28,27,7]); unfortunately, a similar characterization for general asymptotically harmonic
Cartan–Hadamard manifolds is still missing.

The main tools we use are a comparison lemma for the second fundamental forms of two
tangent spheres, which is proved in Sect. 2, and the Riccati equation. The first section is
devoted to notations and preliminary results.

We thank professor S. Gallot for his suggestions and encouragement, and professor G.
Knieper for explaining us the expression of the function τ in terms of Jacobi tensors.

2 Notations

Unless otherwise stated, throughout all the paper (M, g) will always be a Cartan–Hadamard
manifold (CH-manifold, for short) of dimension n + 1, i.e. a complete, simply connected
Riemanniann manifold with nonpositive curvature.

The ideal boundary of M , denoted ∂∞M , is the set of equivalent classes of geodesic rays,
γ and σ being equivalent if sup{d(γ (t), σ (t)) | t ≥ 0} < ∞ (cf. [5] definition II.8.1). For
ξ ∈ ∂∞M, limt→+∞ γ (t) = ξ will mean that ξ is the equivalence class defined by γ . The
cone topology turn M ∪ ∂∞M into a compact manifold with boundary (cf [5] definition
II.8.6).

For ξ ∈ ∂∞M and x ∈ M , the Busemann function bξ,x , centered at ξ and vanishing at
x , is defined by bξ,x (y) = limt→+∞(d(y, γ (t)) − t), where γ is the unique geodesic such
that γ (0) = x and limt→+∞ γ (t) = ξ . Two Busemann functions centered in the same point
at infinity differ from a constant ; in many situations, we only need to know the Busemann
functions up to a constant, and we shall note bξ some Busemann function centered in ξ .
Busemann functions are Lipschitz and, on CH-manifolds, they are at least C2, cf. [13].

The horospheres centered in ξ ∈ ∂∞M are the level hypersurfaces of bξ : Hξ (t) = {x ∈
M | bξ (x) = t}; we shall also use the convenient notation Hξ (x) for the horosphere centred
at ξ and passing through x . As the Busemann functions are limit of distance functions, the
horospheres centered in ξ are (locally) limit of spheres whose centers tends to ξ . Since
|∇bξ | = 1 and the gradient lines of bξ are the geodesics γ such that limt→−∞ γ (t) = ξ , we
can define the inner unit vector field of horospheres centred at ξ as ν = −∇bξ (i.e. ν points
towards the center ξ of the horosphere).
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1052 P. Castillon, A. Sambusetti

For a general hypersurface N of M, �AN denotes its second (vector valued) fundamental
form ; that is, for u, v ∈ Tx N , �AN (u, v) is the component of DM

u V normal to N , where
DM is the connection of M and V extends v in a neighborhood of x . Associated to the
choice of a unit normal vector field ν to N we then have the second (scalar) fundamental
form AN = 〈 �AN , ν〉 and the shape operator AN ∈ End(Tx N ), defined by 〈AN u, v〉 =
〈DM

u ν, v〉 = −〈 �AN (u, v), ν〉. The mean curvature vector of N at x is �hN (x) = 1
n T r �AN (x),

while the (scalar) mean curvature, associated with ν, is hN = 〈�hN , ν〉.
A manifold M is called asymptotically harmonic if all its horospheres have constant mean

curvature h. The curvature of M being nonpositive, the horospheres are convex and we have
h ≥ 0 when choosing ν pointing to the center of the horosphere.

2.1 Hessian and Laplacian of Busemann functions

The second fundamental form naturally appears when restricting a function to a submanifold:

Proposition 2.1 Let i : N → M be an isometric immersion, let F : M → R be a smooth
function and let f = F|N be its restriction to N.

For all x ∈ N and all u, v ∈ Tx N we have

(HessN f )(u, v) = (HessM F)(u, v) + 〈∇M F, �AN (u, v)〉

Proof The proof is standard. ��

As a consequence, the Hessian of the Busemann function is given by the second scalar
fundamental form of its horospheres, with respect to the inner normal vector field ν; taking
the trace we get �bξ (y) = −T r(Hessybξ ) = −nhξ (y), where hξ (y) is the mean curvature
at y of the horosphere centered in ξ passing through y, with respect to ν. (Similarly, the
second fundamental form of spheres is the Hessian of the distance function to the center and
the Laplacian of the distance from a point x gives the mean curvature of the spheres centered
in x).

It follows, by the regularity theory of solutions of elliptic equations, that for asymptotically
harmonic manifolds Busemann functions and horospheres are at least as regular as the metric
(whereas they are known to be real analytic on harmonic manifolds, cf. [22]). Moreover, it
is then straightforward to check that, for any asymptotically harmonic manifold M with
horospheres of mean curvature h, the function f (y) = e−nhbξ (y) is harmonic.

2.2 The Riccati equation

Let ξ ∈ ∂∞M and γ be a geodesic such that limt→−∞ γ (t) = ξ . For each t , let Aξ (t) be
the shape operator of the horosphere centered in ξ passing through γ (t), with respect to the
inner unit vector field ν = −∇bξ = −γ ′(t); this family of operators satisfies the Riccati
equation (cf. [14] §1.3):

A′
ξ (t) + A2

ξ (t) + RM (γ̇ (t), .)γ̇ (t) = 0 (2.1)

where RM is the Riemann tensor of M .
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3 Comparison of spheres on CH-manifolds

In the sequel, we note M
n(−a2) the simply connected Riemannian manifold with constant

sectional curvature −a2, and we shall note Ca and cota the functions defined by:

Ca(s) =
{ 1

a2 (cosh(as) − 1) if a > 0

s2

2 if a = 0
and cota(s) =

{
a coth(as) if a > 0
1
s if a = 0

3.1 Comparison of triangles

When assuming a sectional curvature upper bound KM ≤ −a2 for M , the classical Topono-
gov theorem (cf. [14]) implies that, given two edges of a triangle in M with angle α at the
common vertex, then the third edge is larger than the one of a triangle in the model space
M

2(−a2) with the same lengths for the first two edges and the same angle at the common
vertex. The following lemma is a slight modification of this result, where we compare the
ratio of (some function of) the lengths of the third edge and of an “intermediate edge”.

Lemma 3.1 (Triangle comparison with curvature upper bound) Let M be a CH-manifold
with KM ≤ −a2 ≤ 0. Let (xyz) and (x̃ ỹ z̃) be triangles in M and M

2(−a2) respectively,
such that r1 = d(x, y) = d(x̃, ỹ), r2 = d(x, z) = d(x̃, z̃) and α = � x (y, z) = � x̃ (ỹ, z̃).
Moreover, for θ ∈]0, 1[ let p, q and p̃, q̃ be respectively the points on the geodesic segments
xy, xz and x̃ ỹ, x̃ z̃ such that d(x, p) = d(x̃, p̃) = θr1 and d(x, q) = d(x̃, q̃) = θr2 (cf.
Fig. 1). Then:

Ca(d(y, z))

Ca(d(p, q))
≥ Ca(d(ỹ, z̃))

Ca(d( p̃, q̃))
= Fa(r1, r2, α, θ).

Remark 3.2 By the cosine formula in M
2(−a2) (cf. [5] proposition I.2.7) we know that the

right-hand side of the above inequality only depends on the lengths r1, r2, α and θ , whence
the existence of the function Fa .

When a = 0 we have F0 = 1
θ2 and lemma 3.1 is a direct consequence of the convexity of

the distance function in C AT (0)-spaces (cf. [5] proposition II.2.2).
When a > 0 we find:

Fa(r1, r2, α, θ) = cosh(ar1) cosh(ar2) − sinh(ar1) sinh(ar2) cos(α) − 1

cosh(aθr1) cosh(aθr2) − sinh(aθr1) sinh(aθr2) cos(α) − 1
.

An important point in the proof of lemma 3.1 is that, whenever θ ≤ 1, the function Fa is
nondecreasing with respect to α.

Proof of lemma (2.1) First consider a comparison triangle (x̄ ȳ z̄) in M
2(−a2), that is such

that d(x̄, ȳ) = r1, d(x̄, z̄) = r2, and d(ȳ, z̄) = d(y, z). Define p̄, q̄ to be the points on the
geodesic segments x̄ ȳ and x̄ z̄ respectively, such that d(x̄, p̄) = θr1, d(x̄, q̄) = θr2, and let
ᾱ = � x̄ (ȳ, z̄). By Toponogov theorem, we have d( p̄, q̄) ≥ d(p, q) and ᾱ ≥ α. Using these
inequalities and remark 3.2 we have

Ca(d(y, z))

Ca(d(p, q))
≥ Ca(d(y, z))

Ca(d( p̄, q̄))
= Fa(r1, r2, ᾱ, θ) ≥ Fa(r1, r2, α, θ) = Ca(d(ỹ, z̃))

Ca(d( p̃, q̃))

��
A similar inequality holds for CH-manifolds with curvature lower bound:
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Fig. 1 Comparison triangles

Lemma 3.3 (Triangle comparison with curvature lower bound) Let M be a CH-manifold
with KM ≥ −b2. Let (xyz) and (x̃ ỹ z̃) be triangles in M and M

2(−b2) respectively, such that
r1 = d(x, y) = d(x̃, ỹ), r2 = d(x, z) = d(x̃, z̃) and α = � x (y, z) = � x̃ (ỹ, z̃). Moreover,
for θ ∈]0, 1[ let p, q and p̃, q̃ be respectively the points on the geodesic segments xy, xz
and x̃ ỹ, x̃ z̃ such that d(x, p) = d(x̃, p̃) = θr1 and d(x, q) = d(x̃, q̃) = θr2. Then:

Cb(d(y, z))

Cb(d(p, q))
≤ Cb(d(ỹ, z̃))

Cb(d( p̃, q̃))
= Fb(r1, r2, α, θ).

Proof The proof is similar to that of lemma 3.1. Toponogov theorem gives d( p̄, q̄) ≤ d(p, q)

and ᾱ ≤ α, and by the monotonicity of the function Fb we get

Cb(d(y, z))

Cb(d(p, q))
≤ Cb(d(y, z))

Cb(d( p̄, q̄))
= Fb(r1, r2, ᾱ, θ) ≤ Fb(r1, r2, α, θ) = Cb(d(ỹ, z̃))

Cb(d( p̃, q̃))

��
3.2 Comparison of spheres

Let Sx (r) and Sy(R) be two geodesic spheres in M , with r < R, tangent at some point z,
with Sx (r) internal to Sy(R). Let �Ax and �Ay (resp. Ax , Ay) be the second, vector-valued
(resp. scalar) fundamental forms of Sx (r) and Sy(R), and let ν be the common inner unit
normal vector at z. We will now compare the two second fundamental forms Ax and Ay .

Let u ∈ Tz Sx (r) be a unitary vector, and let cu(s) be the geodesic of Sx (r) with ini-
tial tangent vector u. Denote by rx and ry the distance functions to x and y respectively,
and let ry(s) = ry(cu(s)) be the restriction of the function ry to the curve cu . Applying
Proposition 2.1 to c and ry we find

r ′′
y (0) =

(
HessMry

)
(u, u) + 〈∇ry, �Ax (u, u)〉,

and, since HessMry gives the second fundamental form of Sy(R) w.r. to ν,

r ′′
y (0) = Ay(u, u) − Ax (u, u) (3.1)
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Fig. 2 Comparing the second fundamental forms of tangent spheres

But r ′′
y (0) ≤ 0 as z is the maximum of ry on Sx (r), thus at the point z we have Ay ≤ Ax

which means that Sx (r) is “more curved” than Sy(R). Using the above comparison lemmas
for triangles, we get sharper comparison estimates for the tangent spheres:

Lemma 3.4 Let (M, g) be a CH-manifold with KM ≤ −a2. With the above notations, the
second fundamental forms of Sx (r), Sy(R) at the tangent point z satisfy:

0 ≤ Ax − Ay ≤ (cota r − cota R) g

Moreover, if we assume −b2 ≤ KM then at the tangent point z we also have:

(cotb r − cotb R) g ≤ Ax − Ay

Remark 3.5 These estimates are optimal, since they are equalities when M has, respectively,
constant curvature −a2 or −b2.

Proof We only consider the case a > 0 ; when a = 0, the proof is similar (just replace the
hyperbolic laws by the Euclidean ones) and is left to the reader.

As before, let u ∈ Tz Sx (r) be a unitary vector, let c(s) be the geodesic of Sx (r) with initial
tangent vector u and let ry(s) be the restriction of the function ry to the curve c. For s > 0
we consider (cf. Fig. 2):

• the angle α(s) between ∇ry and ∇rx at c(s);
• the angle β(s) between the geodesic lines from y to z and from y to c(s);
• θ = R−r

R and the point x(s) of the geodesic from y to c(s) such that d(y, x(s)) =
θd(y, c(s));

so r ′
y(s)=〈∇ry, ċ(s)〉= − sin(α(s)). Using Toponogov theorem for the triangle (c(s)x(s)x)

and the law of cosine in M
2(−a2) we get
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1056 P. Castillon, A. Sambusetti

cosh(ad(x, x(s))) ≥ cosh(ar) cosh(a(1 − θ)ry(s))

− sinh(ar) sinh(a(1 − θ)ry(s)) cos(α(s))

≥ 1 + sinh(ar) sinh(a(1 − θ)ry(s))(1 − cos(α(s)) (3.2)

On the other hand, Lemma 3.1 applied to the triangle (yzc(s)) implies that

cosh(ad(x, x(s))) − 1 ≤ cosh(ad(z, c(s))) − 1

Fa(R, ry(s), β(s), θ)
(3.3)

which, plugged in (3.2), yields:

1 − cos(α(s)) ≤ cosh(ad(z, c(s))) − 1

sinh(ar) sinh(a(1 − θ)ry(s))Fa(R, ry(s), β(s), θ)
(3.4)

We divide by s2 and pass to the limit for s → 0 in (3.4): as r ′
y(s)

2 = sin2 α(s) and r ′
y(0) = 0,

we have lims→0
1−cos α(s)

s2 = 1
2 lims→0

(
r ′

y(s)
s

)2
= 1

2r ′′
y (0)2; then, notice that d(z,cu(s))

s → 1

and that, as ry(s) − R = O(s2) and β(s) = O(s), we have lims→0 Fa(R, ry(s), β(s), θ) =
sinh2(a R)

sinh2(a(R−r))
. So from (3.4) we get

∣∣∣r ′′
y (0)

∣∣∣ ≤ a sinh(a(R − r))

sinh(ar) sinh(a R)
= a(coth(ar) − coth(a R))

By (3.1), as r ′′
y (0) ≤ 0 we deduce Ax (u, u) − Ay(u, u) ≤ cota r − cota R.

Consider now the curvature lower bound −b2 ≤ KM . By Toponogov theorem and the
law of cosine, Eq. (3.2) becomes

1 − cos(α(s)) ≥ cosh(bd(x, x(s))) − 1

sinh(br) sinh(b(1 − θ)ry(s))
+ 1 − cosh(br(1 − ry(s)

R ))

sinh(br) sinh(b(1 − θ)ry(s))
(3.5)

while Lemma 3.3 implies

cosh(bd(x, x(s))) − 1 ≥ cosh(bd(z, c(s))) − 1

Fb(R, ry(s), β(s), θ)
, (3.6)

which plugged in (3.5) yields

1 − cos(α(s)) ≥ cosh(bd(z, c(s))) − 1

sinh(br) sinh(b(1 − θ)ry(s))Fb(R, ry(s), β(s), θ)

+ 1 − cosh(br(1 − ry(s)
R ))

sinh(br) sinh(b(1 − θ)ry(s))
(3.7)

Dividing by s2 and letting s → 0 as before, we get (cotb r − cotb R)g ≤Ax −Ay . ��
In the sequel, we will be mainly interested in the second fundamental form of horospheres.

We will use a result similar to Lemma 3.4, where the sphere Sy(R) is replaced by a horosphere:

Lemma 3.6 Let (M, g) be a CH-manifold with KM ≤ −a2. Let Sx (r) and Hξ (z) be respec-
tively a sphere and a horosphere tangent at a point z, with Sx (r) internal to the horosphere.
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Let Ax , Aξ be the second fundamental forms of Sx (r), Hξ (z) with respect to be the common
inner unit normal vector at z. Then, at the tangent point z we have:

0 ≤ Ax − Aξ ≤ (cota r − a) g (3.8)

Moreover, if we assume −b2 ≤ KM , then at the tangent point z we also have:

(cotb r − b) g ≤ Ax − Aξ

This result can be obtained in two different ways: taking limits, in the inequalities of
Lemma 3.4, for y tending to ξ along the geodesic expz(tν), or following the same proof with
the Busemann function bξ in place of ry . The proof is left to the reader.

Remark 3.7 In lemma 2.3 of [17], the author gives an expression of Ax − Ay and Ax − Aξ

in term of integrals along the geodesic t �→ expz(tν) involving operators satisfying a Jacobi
equation. Using this expression and comparison results for solutions of Jacobi equations
under suitable bounds on the curvature, one might also give proofs of our Lemmas 3.4 and
3.6 purely in terms of Jacobi tensors.

4 Asymptotically harmonic CH-manifolds

In this section, M will always be an asymptotically harmonic CH-manifold with horospheres
of constant mean curvature h.

4.1 The entropy and the spectrum

We are interested here in two invariants of the manifold M : the volume entropy and the
spectrum. The entropy is determined by the behaviour of the volume of balls whose second
derivative (with respect to the radius) is given, in turns, by the mean curvature of the spheres.
On the other hand, the spectrum can be determined by using special functions whose Laplacian
has a nice behaviour; in our case, the distance function, whose Laplacian is again given by
the mean curvature of spheres (see discussion in Sect. 2).

For points x and y in M , let �hx (y) be the mean curvature vector at y of the sphere
Sx (d(x, y)), and hx (y) = −〈�hx (y),∇rx 〉. Notice that, as KM ≤ 0, balls and horoballs are
convex, so both h and hx (y) are non-negative.

Lemma 4.1 Let Mn+1 be an asymptotically harmonic CH-manifold. For all x ∈ M and
r > 0, the sphere Sx (r) satisfies

∀ y ∈ Sx (r) h ≤ hx (y) ≤ h + 1

r
.

Proof From Lemma 3.6 we have

Aξ (u, u) ≤ Ax (u, u) ≤ Aξ (u, u) + 1

r
|u|2

where Ax and Aξ are, respectively, the second fundamental forms of Sx (r) and of the
horosphere Hξ (y), tangent to Sx (r) at y. Taking the trace on an orthonormal basis gives
the result. ��
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1058 P. Castillon, A. Sambusetti

We fix x ∈ M . For r > 0, let Bx (r) be the ball of radius r centered in x , and V (r) =
Vol(Bx (r)) the growth function. The entropy of M is defined by

E = lim sup
r→∞

1

r
log V (r).

A first consequence of asymptotic harmonicity is the following linear isoperimetric
inequality:

Proposition 4.2 Let Mn+1 be an asymptotically harmonic CH-manifold. For any domain
�⊂ M with smooth boundary ∂� we have nhVol(�)≤vol(∂�).

Proof Fix some ξ ∈ ∂∞M . Since −�bξ = nh, integrating by parts on � the function −�bξ

gives the result. ��

Theorem 4.3 Let Mn+1 be an asymptotically harmonic CH-manifold. The entropy of M is
E = nh.

Proof By the co-area formula we have V ′(r) = vol(Sx (r)), and by Proposition 4.2 we get
nhV (r) ≤ V ′(r). Integrating this inequality we get V (r) ≥ Aenhr for some constant A, so
that the entropy is bounded below by nh.

Now, the second derivative of V is given by V ′′(r) = n
∫

Sx (r)
hx (y)dvr (y) where dvr

is the volume form of Sx (r). Choose ε > 0 and let r0 = 1
ε
. By Lemma 4.1, we have

V ′′(r) ≤ n(h + ε)V ′(r) for any r ≥ r0. Integrating this inequality between r0 and r , yields
V ′(r) ≤ Aen(h+ε)r for some constant A. Integrating once again between r0 and r , we get
V (r) ≤ B + Cen(h+ε)r , which implies that E ≤ n(h + ε). Since ε is arbitrarily small, this
concludes the proof. ��

Theorem 4.4 Let Mn+1 be an asymptotically harmonic CH-manifold. The spectrum of the

Laplacian of M is σ(�) = [ n2h2

4 ,+∞)

Proof By Proposition 4.2 and Cheeger’s inequality, we have σ(�) ⊂ [ n2h2

4 ,+∞).
Conversely, we choose x ∈ M and consider the distance function rx to x . Since the

Laplacian of rx is given by the mean curvature of spheres, we have

sup
y∈M\Bx (R)

{ |�rx (y) − nh| } ≤ n

R
(4.1)

Using (4.1) and the fact that |∇rx | = 1, we can follow the method initiated by H. Donnelly

to determine the essential spectrum (cf. [9]): for each λ > n2h2

4 we use radial functions to
construct sequences satisfying Weyl’s criterion for λ (cf. [23] theorem VII.12 p. 237). See for
example [18] theorem 1.2 for a general result, whose hypotheses are satisfied by the function
rx . ��

Remark 4.5 From Theorems 4.3 and 4.4 we deduce inf{σ(�)} = E2

4 .
For cocompact negatively curved manifolds, this equality is equivalent to the asymptotic

harmonicity (cf. [19] theorem 1). But, in the general case, it is easy to construct manifolds
satisfying this inequality, which are not asymptotically harmonic. For example, the conclu-
sions of Theorems 4.3 and 4.4 hold true for any Cartan–Hadamard manifold with curvature
less than −h2 and tending to −h2 at infinity.
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4.2 Rigidity

Consider the second fundamental form Aξ of a horosphere Hξ , and let λ1, . . . , λn be the
principal curvatures of Hξ at some point x , with respect to the inner unit normal of Hξ . If M
satisfies the curvature upper bound KM ≤ −a2, then it is well known that λi ≥ a (cf [14]).
Therefore we get

n2h2 =
(∑

i

λi

)2

=
∑

i

λ2
i + 2

∑
i< j

λiλ j ≥ |Aξ |2 + n(n − 1)a2,

and
|Aξ |2 ≤ n2h2 − n(n − 1)a2. (4.2)

When assuming a curvature lower bound KM ≥ −b2, a similar argument gives

|Aξ |2 ≥ n2h2 − n(n − 1)b2. (4.3)

Now, as the mean curvature is the same for all horospheres, taking the trace of Riccati
Eq. (2.1) gives |Aξ |2 + RicM (u, u) = 0 for any u ∈ SM , for the second fundamental form
Aξ of a horosphere tangent to u⊥. Therefore we get:

Proposition 4.6 Let Mn+1 be an asymptotically harmonic CH-manifold. For any u ∈ SM
we have

(i). if M satisfies KM ≤ −a2, then RicM (u, u) ≥ −n2h2 + n(n − 1)a2;
(ii). if M satisfies KM ≥ −b2, then RicM (u, u) ≤ −n2h2 + n(n − 1)b2.

As a consequence, we have the following characterization of constant curvature spaces:

Corollary 4.7 Let Mn+1 be an asymptotically harmonic CH-manifold.

(i). if M satisfies KM ≤ −a2 then h ≥ a, and h = a if and only if M = M
n+1(−a2);

(ii). if M satisfies KM ≥ −b2 then h ≤ b, and h = b if and only if M = M
n+1(−b2).

Proof The curvature upper bound KM ≤ −a2 implies h ≥ a. If h = a, then Proposition 4.6
gives RicM ≥ −na2, and since the Ricci curvature is a sum of n sectional curvatures which
are not greater then −a2, this implies that all the sectional curvatures are equal to −a2. The
proof is the same when assuming a curvature lower bound. ��
4.3 Growth of horospheres

It is well known that, on CH-manifolds with pinched curvature, horospheres have polynomial
volume growth, whose degree depend on the bounds on the curvature (cf. [15]). We will now
see that, under the asymptotic harmonicity assumption, an upper bound KM ≤ −a2 < 0 is
enough to estimate from above the polynomial growth of horospheres.

Let Hξ be a horosphere centered in some point at infinity ξ , let bξ be the Busemann
function vanishing on Hξ , and let g0 be the Riemannian metric induced on Hξ . For each
t ∈ R, there is a natural diffeomorphism ϕt : Hξ → Hξ (t) defined by ϕt (x) = expx (t∇bξ ),
which in turns induces a diffeomorphism

�

{
R × Hξ (0) → M
(t, x) �→ ϕt (x)
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In these “horospherical” coordinates (t, x), the metric of M reads g = dt2 + gt , where
gt = ϕ∗

t gHξ (t) and gHξ (t) is the induced Riemannian metric of Hξ (t).
When assuming a sectional curvature upper bound K ≤ −a2, the map ϕt increases the

distance for t > 0 and decreases the distance if t < 0. In fact, as a consequence of comparison
theorem for Jacobi fields, we have that all the eigenvalues of dϕt are greater than or equal to
eat if t > 0, and less than or equal to eat if t < 0 (cf. [13]).

Now, it is a standard fact that the mean curvature gives the derivative of the volume form
of a submanifold under a deformation. In our setting, if dvt = Jt (x)dv0 is the volume form of
the metric gt and Jt (x) is the density of dvt with respect to dv0, we have J ′

t = nht Jt , where
ht is the mean curvature of Hξ (t). By asymptotic harmonicity, we deduce that dvt = enht dv0

for all t ; therefore, in horocyclic coordinates the volume form of M reads dvM = enht dtdv0.
On the other hand, by Theorem 4.3, the volume entropy of M is nh: heuristically, this

means that the exponential rate of the volume growth of M comes from the behaviour of the
volume form in the R direction, and that the volume growth of the slices Hξ (t) should be
subexponential. Namely:

Theorem 4.8 Let Mn+1 be an asymptotically harmonic CH-manifold with sectional curva-
ture upper bound KM ≤ −a2 < 0. Then, there exists a constant C (depending only on n, a

and h) such that, for any horosphere H of M, the balls of H satisfy vol(B H
x (r)) ≤ Cr

nh
a for

all r > 0.

Proof Let H = Hξ be a horosphere centered in ξ . For any two orthonormal vectors u, v ∈
T H , Gauss equation implies that K H (u, v) = KM (u, v) + Aξ (u, u)Aξ (v, v) − Aξ (u, v)2,
where K H and KM are the sectional curvatures of H and M respectively, and Aξ is the
second fundamental form of H . Taking the trace (with respect to v) on an orthonormal frame
(ei )i=1..n , we get

RicH (u, u) = RicM (u, u) − KM (u, ν) + nhAξ (u, u) −
n∑

i=1

Aξ (u, ei )
2

Since the curvature of M is negative, the second fundamental form Aξ is positive, and by
definition of its norm we have

∑n
i=1 Aξ (u, ei )

2 ≤ |Aξ |2. Therefore we get

RicH (u, u) ≥ RicM (u, u) − |Aξ |2 ≥ −2n2h2 + 2n(n − 1)a2

where the last inequality comes from (4.2) and Proposition 4.6. Therefore, by Bishop’s
comparison theorem, there exists a constant C (depending only on n, a and h) such that, for
any x in H we have Vol(B H

x (1)) ≤ C .
Let now x ∈ H and consider the map ϕ−t : H → Hξ (−t) defined above, for t > 0. As

KM ≤ −a2, we have ϕ−t (B H
x (r)) ⊂ B

Hξ (−t)
ϕ−t (x) (e−atr). Moreover, as dv−t = e−nht dv0, we

have vol(ϕ−t (B H
x (r))) = e−nht vol(B H

x (r)); so, choosing t = ln r
a we obtain

vol(B H
x (r))) ≤ enh ln r

a vol(B
Hξ (−t)
ϕ−t (x) (1)) ≤ Cr

nh
a

��
Remark 4.9 This theorem proves that the degree of the polynomial volume growth of the
horospheres is bounded above by nh

a . This upper bound is sharp, as it is the degree of the
volume growth of the horospheres in the hyperbolic space (the horospheres being Euclidean
in that case). Note that the upper bound is also sharp for the rank one symmetric spaces.
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Remark 4.10 Using a similar proof, it is easy to see that the lower bound −b2 ≤ KM ≤ 0

gives a lower bound on the volume growth of the horospheres, namely vol(B H
x (r)) ≥ Cr

nh
b .

The proof is left to the reader.

4.4 The mean value property

Harmonic manifolds are characterized by the fact that the harmonic functions have the mean
value property: for any harmonic function F and any R > 0

F(x0) = 1

vol(Sx0(R))

∫

Sx0 (R)

F(x)dvSx0 (R)

This can be proved by taking the derivative of the right-hand side of the above equality, and
by observing that it vanishes for any harmonic function F if and only if the spheres have
constant mean curvature.

In the following theorem we prove that harmonic functions on an asymptotically harmonic
manifold satisfy a mean value property, where, naturally, the mean is taken on horospheres.
As the horospheres are non-compact, the mean on an horosphere is obtained as the limit of
the means on an exhaustion. The computations of these horospherical means are inspired by
those in [15].

Theorem 4.11 Let Mn+1 be an asymptotically harmonic manifold with sectional curvature
upper bound KM ≤ −a2 < 0, and let F be a function which is continuous on M ∪ ∂∞M
and harmonic on M.

For any ξ ∈ ∂∞M, any horosphere Hξ centered in ξ , and any x ∈ Hξ , there exists a
sequence (r j ) j∈N tending to +∞ such that

lim
j→∞

1

Vol(B
Hξ
x (r j ))

∫

B
Hξ
x (r j )

FdvHξ = F(ξ)

where B
Hξ
x (R) denote the ball in Hξ centered in x of radius R.

Proof Let Hξ be a horosphere centered in some point at infinity ξ , and let ϕt : Hξ → Hξ (t)
be the diffeomorphism defined in §3.3.

Choose x ∈ Hξ . Because Hξ has polynomial volume growth, there exists a sequence
(r j ) j∈N tending to +∞ such that

lim
j→∞

vol(∂ B
Hξ
x (r j ))

Vol(B
Hξ
x (r j ))

= 0.

For t ∈ R and j ∈ N, let � j,t = ϕt (B
Hξ
x (r j )). As pointed out in Sect. 4.3, we have

Vol(� j,t ) = enht Vol(B
Hξ
x (r j )). Moreover, the boundary of � j,t satisfy

d

dt
vol(∂� j,t ) = −(n − 1)

∫

∂� j,t

〈
�k j,t ,

∂

∂t

〉

where �k j,t is the mean curvature vector of ∂� j,t (seen as a submanifold of M). Taking an
orthonormal basis (e1, . . . , en−1) of T ∂� j,t and η j,t its exterior unit normal in Hξ (t) we
have
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−(n − 1)〈�k j,t ,
∂

∂t
〉 =

n−1∑
i=1

〈DM
ei

∂

∂t
, ei 〉 = nh −

〈
DM

η j,t

∂

∂t
, η j,t

〉
≤ nh − a

where the last inequality comes from the curvature upper-bound on M . Therefore we have
d
dt vol(∂� j,t ) ≤ (nh − a)vol(∂� j,t ), and integrating this inequality we get vol(∂� j,t ) ≤
e(nh−a)t vol(∂� j,0) and

vol(∂� j,t )

Vol(� j,t )
≤ e−at vol(∂ B

Hξ
x (r j ))

Vol(B
Hξ
x (r j ))

. (4.4)

Consider now

g j (t) = 1

Vol(� j,t )

∫

� j,t

Fdvt (4.5)

where dvt is the volume form of Hξ (t) and F a function which is continuous on M ∪ ∂∞M
and harmonic on M . In particular, F is bounded. Using the fact that horospheres have constant
mean curvature, we have

g′
j (t) = 1

Vol(� j,t )

∫

� j,t

〈∇F,
∂

∂t
〉dvt (4.6)

and

g′′
j (t) = 1

Vol(� j,t )

∫

� j,t

(HessM F)(
∂

∂t
,

∂

∂t
)dvt (4.7)

Using proposition 2.1 and the fact that F is harmonic in M we get

(HessM F)(
∂

∂t
,

∂

∂t
) = −tr((HessHξ (t)F)|T Hξ (t) ) = �Hξ (t) f + nh〈∇F,

∂

∂t
〉

where f is the restriction of F to Hξ (t). Equation (4.7) gives

g′′
j (t) − nhg′

j (t) = 1

Vol(� j,t )

∫

� j,t

�Hξ (t) f dvt

= − 1

Vol(� j,t )

∫

∂� j,t

〈∇F, η j,t 〉dvt . (4.8)

As RicM is bounded from below and F is bounded on M , using Yau’s gradient estimate
for harmonic functions [26], there exists a constant C (depending on n, a, h and ||F ||∞)
such that |∇F | ≤ C on M . Therefore, using (4.4), the right-hand side of (4.8) satisfies

∣∣∣∣∣∣∣
1

Vol(� j,t )

∫

∂� j,t

〈∇F, η j,t 〉dvt

∣∣∣∣∣∣∣
≤ Ce−at vol(∂ B

Hξ
x (r j ))

Vol(B
Hξ
x (r j ))

and tends uniformly to zero on bounded intervals when j tends to +∞. In particular, it
implies that, on bounded intervals, the C0 norms of the functions g′′

j are uniformly bounded.

The fact that F is bounded and Yau’s gradient estimate also imply that the C0 norms of the
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functions g j and g′
j are uniformly bounded, and, using Arzela-Ascoli convergence theorem,

we have that, up to a subsequence, (g j ) j∈N tends in C1 topology to a function g.
Moreover, multiplying (4.8) by a test function, integrating by part and letting j tend to

+∞ we find that, in the sense of distributions, g is a solution of

g′′(t) − nhg′(t) = 0.

Therefore, by classical regularity theory, g is smooth and g′(t) = g′(0)enht . Since g′ is
bounded on R we must have g′ ≡ 0 and g is constant.

For any neighbourhood U of ξ (for the cone topology) there exist t such that the horosphere
Hξ (t) is contained in U . By continuity of F on M ∪ ∂∞M and by the definition of g j , the
value g j (t) can be made arbitrary close to F(ξ) (for any j). Therefore we have g(t) = F(ξ)

for any t ∈ R, and g(0) = F(ξ) gives the result. ��
Remark 4.12 It would be better to have a similar result without taking a sequence of radii
tending to infinity, that is to have

lim
r→∞

1

Vol(B
Hξ
x (r))

∫

B
Hξ
x (r)

FdvHξ = F(ξ).

For the proof to work in that case, one need to have limr→∞ vol(∂ B
Hξ
x (r))

Vol(B
Hξ
x (r))

= 0. However, from

the polynomial volume growth of horospheres one only get lim infr→∞ vol(∂ B
Hξ
x (r))

Vol(B
Hξ
x (r))

= 0.

5 Asymptotic behaviour of the volume form

In the previous section, in order to compute the entropy, we integrated the inequalities of
Lemma 3.6 on spheres. But since these inequalities hold pointwise, we can try to determine
the asymptotic behaviour of the volume form at least in a fixed direction. Actually, let θx (u, r)

be the density of the volume form of M in normal coordinates centered in some point x ; so
the volume form reads dvM = θx (u, r)dvSx M dr , where dvSx M is the volume form of Sx M .

Harmonic manifolds are characterized by the fact that θx (u, r) only depends on r . In
this section we give a characterization of asymptotically harmonic manifolds in term of the
asymptotic behaviour of θx (u, r):

Theorem 5.1 Let M be a CH-manifold with KM ≤ −a2 < 0 and entropy E. M is asymp-
totically harmonic if and only if there exists a positive function τ : SM → R+ such that
θx (u, r) is uniformly equivalent to τ(u)eEr for r → ∞.

“Uniformly equivalent” here means that the quotient of θx (u, r) by τ(u)eEr converges to
1 for r → ∞, uniformly with respect to u ∈ SM . For the sake of clarity, we will split this
result in two Propositions 5.4 and 5.7 which will be proved in the two following subsections.

Remark 5.2 It is a natural question whether Theorem 5.1 remains true if we assume K ≤ 0
and E > 0.

(i). For the “only if” part (Proposition 5.4) to hold true, a sufficient condition for the existence
and uniformity of the limit of θ(v, t)e−nht would be that det(U ′

v(0)−S′
v,t (0)) is bounded

from below by a positive constant which does not depend on v (where Uv and Sv,t are
defined at the beginning of §4.1).

123



1064 P. Castillon, A. Sambusetti

(ii). On the other hand, the “if” part (Proposition 5.7) still holds if we assume K ≤ 0 and
E > 0: it is enough to replace in the proof of Proposition 5.7 the upper bound in
inequalities (5.7) by n ln( R+s

r+s ) which also tends to 0 as s → ∞.

Remark 5.3 There is some overlap between the results of this section and the work of G.
Knieper in [17]. In the setting of harmonic manifolds he uses Jacobi tensors to express the
quotient θx (u,r)

eEr and its limit as r → ∞ (when it exists). In particular, in corollary 2.5 he proves

that θx (u,r)

eEr is a monotonically increasing function of r and therefore has a (possibly infinite)
limit; he then gives sufficient conditions for this limit to be finite (such as an Anosov geodesic
flow, or a rank equal to one). Once we know that the volume entropy of M is E = nh (cf.
Theorem 4.3), it is easy to see that the computations in [17] can be carried out in our setting.
We will use this approach to prove the existence of the function τ in Theorem 5.1. Notice
however that our comparison lemma also proves the uniform convergence of θx (u, r)e−Er to
τ(u), and that this uniformity is crucial for proving the above characterization of Theorem 5.1.

5.1 The asymptotic volume-density function τ

The function θx is related to the mean curvature hx of spheres centered in x of radius r by
the formula

θ ′
x (u, r)

θx (u, r)
= nhx (expx (ru)) (5.1)

where θ ′
x denotes the derivative of θx with respect to r .

In what follows, we shall often write for short the point expx (ru) as (u, r) to avoid
cumbersome notations; moreover, we will regard θx (u, r) as a function on SM × R, so we
can drop the index x .

The quantity θ(u, r)e−nhr can be expressed in terms of Jacobi tensors. This was used to
study the asymptotic behaviour of the volume on harmonic manifolds (cf. [7,12,17]). As we
will use this approach to prove the first proposition of this section, let us recall some basic
fact on Jacobi tensors.

A Jacobi tensor along a geodesic γ is a smooth family J (t) of endomorphisms of γ̇ (t)⊥
satisfying the Jacobi equation J ′′(t)+R(t)J (t) = 0, where R(t) is defined from the Riemann
tensor by R(t)u = R(γ̇ (t), u)γ̇ (t). Then, applying J to any parallel vector field V (t) along
γ gives a Jacobi vector field J (t)V (t).

Let v ∈ Sx M and γ (t) = expx (tv), and consider the Jacobi tensor Jv along γ defined
by Jv(0) = 0 and J ′

v(0) = Id. It is well known that J ′
v(r)J−1

v (r) gives the shape operator
Ax (v, r) of the sphere Sx (r) at expx (rv) (with respect to the inner normal to the sphere), and
that θ(v, r) = det(Jv(r)).

For r > 0, let Uv,r , Sv,r be the Jacobi tensors on γ defined by Uv,r (−r)= 0, Uv,r (0) =
Sv,r (0) = Id and Sv,r (r) = 0. The unstable and stable Jacobi tensors at v are defined by
Uv = limr→∞ Uv,r and Sv = limr→∞ Sv,r . As U ′

v,r (0) = J ′
γ̇ (−r)(r)J−1

γ̇ (−r)(r) is the shape
operator of the sphere Sγ (−r)(r) at x , it follows (for example by Lemma 3.6) that U ′

v(0) is
shape operator at x of the horosphere centered in ξ− = limr→∞ γ (−r). In a similar way, we
have that −S′

v(0) is the shape operator at x of the horosphere centered in ξ+ = limr→∞ γ (r).
Using Jacobi tensors and Lemma 3.6 we get the following result:

Proposition 5.4 Let M be a CH-manifold with curvature KM ≤ −a2 < 0. If M is asymp-
totically harmonic, then there exists a bounded, positive function τ : SM → R+ such that

∀u ∈ SM
∣∣∣ θ(u, t)

τ (u)enht
− 1

∣∣∣ ≤ ε(t)
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where the function ε(t) only depends on a and n and satisfies limt→∞ ε(t) = 0.
Moreover, the function τ has the following properties:

(i). τ : SM → R+ is invariant by the geodesic flow and flip invariant, i.e.:

• τ(γ̇ (t)) is constant for any geodesic γ ;
• τ(v) = τ(−v) for all v ∈ SM.

(ii). τ ≥ 1
(2h)n , with equality if and only if the curvature is constant.

Proof Since M is asymptotically harmonic, we have tr(U ′
v(0)) = nh; following the proof of

Corollary 2.5 of [17] we get

θ(v, t)e−nht = 1

det(U ′
v(0) − S′

v,t (0))
,

and

lim
t→∞ θ(v, t)e−nht =

{
+∞ if det(U ′

v(0) − S′
v(0)) = 0

1
det(U ′

v(0)−S′
v(0))

if det(U ′
v(0) − S′

v(0)) > 0

Since U ′
v(0) and −S′

v(0)) are the shape operators of horospheres and K ≤ −a2, we have, by
standard comparison theorem, U ′

v(0)−S′
v(0)) ≥ 2aI d and det(U ′

v(0)−S′
v(0)) ≥ (2a)n > 0.

Therefore the limit is finite and we define

τ(u) = lim
t→∞ θ(u, t)e−nht = 1

det(U ′
v(0) − S′

v(0))
(5.2)

which is a function on SM bounded above by 1
(2a)n .

The Jacobi tensor −S′
v,t (0) is the shape operator of the sphere Sγ (t)(t). Using Lemma 3.6

we have that −S′
v,t (0) tends uniformly to −S′

v(0), and det(U ′
v(0)−S′

v,t (0)) tends uniformly to
det(U ′

v(0)− S′
v(0)). Moreover, we still have det(U ′

v(0)− S′
v,t (0)) ≥ (2a)n > 0 and therefore

the function τ is the uniform limit of θ(u, t)e−nht . Since the function τ is bounded above,
we also have that θ(u,t)

τ (u)enht tends uniformly to 1, which proves the first part of Proposition 5.4.

The properties of τ also rely on its expression in term of Jacobi tensors. First, as U ′
v(0)

and −S′
v(0) are the shape operators of the horospheres centered in ξ− and ξ+, relative to their

respective inner normals, it is clear that τ is flip invariant. The invariance by the geodesic
flow is just lemma 2.2 in [12].

The second property is similar to Corollary 2.6 in [17]. As U ′
v(0) − S′

v(0) is a positive
symmetric matrix, the arithmetic-geometric inequality gives

det(U ′
v(0) − S′

v(0))
1
n ≤ 1

n
tr(U ′

v(0) − S′
v(0)) = 2h

and the inequality follows. The case of equality follows, as in the proof of Corollary 2.6 in
[17], from the fact that s �→ U ′

γ̇ (s)(0) and s �→ S′
γ̇ (s)(0) satisfy the Riccati equation, and

because U ′
γ̇ (s)(0) − S′

γ̇ (s)(0) = 2h
n−1 I d . ��

A Riemannian manifold is harmonic if and only if the density function only depends on
r . As an asymptotic analogue, one would expect that for asymptotically harmonic manifolds
limr→∞ θ(u,r)

eEr does not depend on u, and thus that τ(u) be constant on SM . In the following
proposition we prove that it is true under the additional assumption that DRM is bounded.
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Proposition 5.5 Let M be a CH-manifold with curvature KM ≤ −a2 < 0. If M is asymp-
totically harmonic, and if the derivative of the Riemann tensor DRM is bounded on M, then
τ is constant on SM.

Proof Let us first show that τ(u) = τ(v) when u, v ∈ SM point towards the same boundary
point ξ ∈ ∂∞M , i.e. lims→+∞ γu(s) = lims→+∞ γv(s). By the invariance of τ under the
geodesic flow, we may as well assume that u and v are normal to the same horosphere, so
d(γu(t), γv(t)) ≤ c1e−at for all t > 0. For any r, t > 0 we have

|τ(u) − τ(v)| ≤ |τ(u) − θ(γ̇u(t), r)e−nhr | + |θ(γ̇u(t), r) − θ(γ̇v(t), r)|e−nhr

+|τ(v) − θ(γ̇v(t), r)e−nhr |,
and using the invariance of τ by the geodesic flow and Proposition 5.4 we get

|τ(u) − τ(v)| ≤ (τ (u) + τ(v))ε(r) + |θ(γ̇u(t), r) − θ(γ̇v(t), r)|e−nhr . (5.3)

For s ∈]0, r ], let hu,t (s) (resp. hv,t (s)) be the mean curvature, at the point γu(t + s) (resp. at
γv(t + s)), of the sphere of radius s centered in γu(t) (resp. γv(t)). Following the Lemma 2.3
in [12], we will use comparison theory for Riccati equation to estimate |hu,t (s)−hv,t (s)|. We
choose orthonormal parallel basis eu,i (s) of γ̇u(t +s)⊥ and ev,i (s) of γ̇v(t +s)⊥) such that, for
any i , d(eu,i (s), ev,i (s)) ≤ c2e−a(t+s) in SM , for some constant c2 (cf. [6] for the existence
of such frame fields). Let Au,t (s) and Av,t (s) be the matrices of the second fundamental
forms of the spheres of radius s centered in γu(t), γv(t) in these basis. They satisfy the
Riccati equations A′

u,t (s) + A2
u,t (s) + Ru,t (s) = 0 and A′

v,t (s) + A2
v,t (s) + Rv,t (s) = 0,

where Ru,t (s) is the matrix of the endomorphism R(γ̇u(t+s), .)γ̇u(t+s), and analogously for
Rv,t (s). Because of the assumption on DRM , we have that the tensor r(s) = Ru,t (s)−Rv,t (s)
satisfies

|r(s)| ≤ C3e−a(t+s). (5.4)

Consider now B(s) = Au,t (s) − Av,t (s) and Q(s) = 1
2 (Au,t (s) + Av,t (s)). From the

Riccati equations we have that B is solution of

B ′(s) + B(s)Q(s) + Q(s)B(s) + r(s) = 0.

A direct computation shows that for any 0 < ε < s we have the formula

B(s) = t C(s)

⎡
⎣ t C(ε)−1 B(ε)C(ε)−1 −

s∫

ε

t C(ζ )−1r(ζ )C(ζ )−1dζ

⎤
⎦ C(s) (5.5)

where C(s) is a solution of C ′(s) = −C(s)Q(s). In particular, because of the curvature upper
bound we have Q(s) ≥ aId hence, for any 0 < ε < s, |C(ε)−1C(s)| ≤ e−a(s−ε). Plugging
this estimate and (5.4) in the formula (5.5) we get

|B(s)| ≤ |B(ε)|e−2a(s−ε) + c4e−a(t+s)

Since both Au,t (s) and Av,t (s) behave, for s → 0, as 1
s Id + o(1) we have limε→0 B(ε) = 0;

therefore we deduce that |B(s)| ≤ c4e−a(t+s) and, taking the trace,

|hu,t (s) − hv,t (s)| ≤ c5e−a(t+s)

for some constant c5. By the expression (5.1) for hx , integrating on [0, r ] yields

−c6(1 − e−ar )e−at ≤ ln
θ(γ̇u(t), r)

θ(γ̇v(t), r)
≤ c6(1 − e−ar )e−at
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With these inequalities we can bound the last term of (5.3):

θ(γ̇v(t), r)e−nhr [
exp(−c6(1 − e−ar )e−at ) − 1

]
≤ |θ(γ̇u(t), r) − θ(γ̇v(t), r)|e−nhr

≤ θ(γ̇v(t), r)e−nhr [
exp(c6(1 − e−ar )e−at ) − 1

]
(5.6)

Choosing r large enough, the term ε(r) in (5.3) can be made arbitrary small; for this value
of r, θ(γ̇v(t), r)e−nhr stays close to τ(v) for all t by Proposition 5.4, and the above estimate
(5.6) implies that we can choose t large enough to make also the last term of (5.3) arbitrary
small. Therefore τ(u) = τ(v).

Consider now any vector u, v ∈ SM , and let σ be a geodesic such that lims→−∞ σ(s) =
lims→+∞ γu(s) and lims→+∞ σ(s) = lims→+∞ γv(s). From the above computations we
must have τ(v) = τ(σ̇ (0)) and τ(u) = τ(−σ̇ (0)), so by flip invariance we get τ(u) = τ(v).
Therefore τ is constant. ��
Remark 5.6 This Proposition is very close to Lemma 2.3 and Corollary 2.1 of [12], but, in
our proof, we don’t need any lower bound on the curvature and rather use Proposition 5.4.

5.2 Characterization of asymptotic harmonicity

Propositions 5.4 and 5.5 say that the volume form of M has purely exponential growth, with
isotropic exponential rate (and is asymptotically perfectly isotropic when DRM is bounded).
In fact this is a characterization of asymptotic harmonicity:

Proposition 5.7 Let M be a CH-manifold with KM ≤ −a2 < 0 and entropy E. If there
exists a positive function τ : SM → R such that θ(u, r) is uniformly equivalent to τ(u)eEr

for r → ∞, then M is asymptotically harmonic.

Remark 5.8 Notice that, together with Benoist-Foulon-Labourie and Besson-Courtois-
Gallot characterization of cocompact asymptotically harmonic spaces, Proposition 5.7 shows
that if a CH-manifold with compact quotients has volume form which is (uniformly) equivalent
to a function τ(u)eE R , then it is a ROSS.

Proof Let γ (t) be a geodesic of M with limt→−∞ γ (t) = ξ ∈ ∂∞M , and let h(t) be the
mean curvature at γ (t) of the horosphere Hξ (t) centered in ξ and passing through γ (t). We
shall prove that the function h(t) is constant.

Let r < R be two real numbers, and choose s > −r . For any t ∈ [r, R], we use Lemma 3.6
to compare the second fundamental forms of Hξ (t) and Sγ (−s)(t + s) at γ (t). Taking the
trace in (3.8), we have

0 ≤ θ ′(γ̇ (−s), t + s)

θ(γ̇ (−s), t + s)
− nh(t) ≤ na (coth(a(t + s)) − 1)

and integrating on [r, R] with respect to t we get

0 ≤ ln
θ(γ̇ (−s), R + s)

θ(γ̇ (−s), r + s)
− n

R∫

r

h(t)dt ≤ ln
( sinhn(a(R + s))

sinhn(a(r + s))
e−na(R−r)

)
(5.7)

The right-hand side tends to 0 when s tends to infinity. Moreover, by hypothesis we have
| θ(γ̇ (−s),R+s)
τ (γ̇ (−s))eE(R+s) − 1| ≤ ε(R + s) with lims→∞ ε(R + s) = 0, and we get

lim
s→∞

θ(γ̇ (−s), R + s)

τ (γ̇ (−s))eEs
= eE R .
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Analogously, we find lims→∞ θ(γ̇ (−s),r+s)
τ (γ̇ (−s))eEs = eEr , so letting s tend to infinity in (5.7) we

obtain

E(R − r) − n

R∫

r

h(t)dt = 0.

Therefore
∫ R

r (E − nh(t))dt = 0 for all r < R, from which we deduce that h(t) = E
n for all

t ∈ R, and M is asymptotically harmonic. ��

6 Margulis function and measures at infinity

In this last section, we assume that M is a asymptotically harmonic CH-manifold with pinched
curvature −b2 ≤ KM ≤ −a2 < 0, and h is always the mean curvature of the horospheres.

6.1 Visual and harmonic measures

There are two families of measures naturally defined on the ideal boundary of Cartan–
Hadamard manifolds: the visual and harmonic measures.

To define the visual measures, consider the homeomorphism given by the “projection on
∂∞M from x”:

φx :
{

Sx M → ∂∞M
u �→ φx (u) = limt→∞ expx (tu)

The measure λx is the push-forward on ∂∞M of the (normalized) Riemannian measure of
Sx M .

On the other hand, the family of harmonic measures comes from the uniqueness of the
solution to the Dirichlet problem at infinity (cf. [1]): given a continuous function f on ∂∞M ,
there exists a unique bounded harmonic function F on M such that limx→ξ F(x) = ξ .
Then, it is a consequence of Riesz representation theorem that there exists a unique family
of measures μx , x ∈ M , such that F(x) = ∫

∂∞ M f (ξ)dμx (ξ).

Proposition 6.1 Let M be an asymptotically harmonic CH-manifold with pinched curvature
−b2 ≤ KM ≤ −a2 < 0. For any x, y ∈ M we have

dλx

dλy
(ξ) = τ(φ−1

y (ξ))

τ (φ−1
x (ξ))

e−nh(bξ (x)−bξ (y)) and
dμx

dμy
(ξ) = e−nh(bξ (x)−bξ (y)).

Proof Consider the distance functions rx and ry to x, y ∈ M respectively, and the sphere
Sx (t) centered in x of radius t . For t great enough, each geodesic ray from y intersect Sx (t) at
a unique point; for v ∈ Sy M , let Ft (v) be the intersection point of the geodesic s �→ expy(sv)

and Sx (t).
The map Ft : Sy M → Sx (t) so defined is a diffeomorphism whose Jacobian can be

expressed in the following way. Fix some v ∈ Sy M , let R = ry(Ft (v)) and z = Ft (v) =
expy(Rv). Consider the sphere Sy(R) and the “projection” P : Sx (t) → Sy(R), where P(m)

is the intersection of Sy(R) with the half-geodesic from y passing through m. Obviously we
have P ◦ Ft (u) = expy(Ru) for all u ∈ Sy M , and from the very definition of the density
function we get

Jacv(P ◦ Ft ) = θ(v, R). (6.1)
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On the other-hand, the tangent map Tz P : Tz Sx (t) → Tz Sy(R) is the orthogonal projection
in Tz M whose Jacobian is given by the scalar product of the unit normals of the hyperplanes
Tz Sx (t) and Tz Sy(R); therefore we have

Jacz(P) = 〈∇ry(Ft (v)),∇rx (Ft (v))〉 (6.2)

From Eqs. (6.1) and (6.2) we get

Jacv Ft = θ(v, ry(Ft (v)))

〈∇ry(Ft (v)),∇rx (Ft (v))〉 (6.3)

Now, let U ⊂ ∂∞M be a measurable set with negligible boundary, and let Ut =
{expx (tu) | u ∈ φ−1

x (U )} be the projection of U on Sx (t) from x .
By definition of λx we have

λx (U ) =
∫

φ−1
x (U )

dσx = 1

vol(Sn)

∫

Ut

1

θ(P−1
t (z), t)

dvSx (t)(z)

where Pt (u) = expx (tu) for u ∈ Sx M, dσx is the normalized measure of Sx M , and dvSx (t)

the volume forms of Sx (t).
By (6.3), we get

λx (U ) =
∫

F−1
t (Ut )

θ(v, ry(Ft (v)))

θ(P−1
t ◦ Ft (v), t)

〈∇ry(Ft (v)),∇rx (Ft (v))〉−1dσy(v) (6.4)

where dσy is the normalized measure on Sy M .
Now we observe that, letting t tend to infinity, we have

• limt→∞ P−1
t ◦ Ft (v) = φ−1

x ◦ φy(v);
• limt→∞ χF−1

t (Ut )
= χ

φ−1
y (U )

almost everywhere;

• limt→∞〈∇ry(Ft (v)),∇rx (Ft (v))〉 = 1

Moreover, from Proposition 5.4 we know that

1 − ε(ry(Ft (v)))

1 + ε(t)

τ (v)

τ (P−1
t ◦ Ft (v))

enh(ry(Ft (v))−t) ≤ θy(v, ry(Ft (v)))

θ(P−1
t ◦ Ft (v), t)

≤ 1 + ε(ry(Ft (v)))

1 − ε(t)

τ (v)

τ (P−1
t ◦ Ft (v))

enh(ry(Ft (v))−t)

By definition of Busemann function we have that ry(Ft (v))−t converges, uniformly on Sy M ,
to bφy(v)(y)−bφy(v)(x); so, as τ is continuous and bounded, by dominated convergence (6.4)
yields

λx (U ) =
∫

φ−1
y (U )

τ (v)

τ (φ−1
x ◦ φy(v))

e−nh(bφy (v)(x)−bφy (v)(y))dvSy M (v)

=
∫

U

τ(φ−1
y (ξ))

τ (φ−1
x (ξ))

e−nh(bξ (x)−bξ (y))dλy(ξ)

which proves the first equality of the proposition.
The second equality follows from [1]: the relative densities of harmonic measures are

given by the Poisson kernel, and, as �bξ = −nh, by unicity of the Poisson kernel we have
dμx
dμy

(ξ) = e−nh(bξ (x)−bξ (y)). ��
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As a consequence of Theorem 5.4, we have that, when the derivative of the Riemann tensor
is bounded, the visual and harmonic measures class have the same relative densities.

6.2 The Margulis function

For cocompact CH-manifolds Margulis introduced the function

m(x) = lim
r→∞ vol(Sx (r))e−Er .

where E is the volume entropy of M . The main conjecture concerning this function is that
it is constant if and only if M is a symmetric space, cf. [28,16] for some related results.
Theorem 5.4 allows us to define the Margulis function for asymptotically harmonic manifolds
(even noncocompact):

Proposition 6.2 Let M be an asymptotically harmonic CH-manifold with −b2 ≤ K ≤
−a2 < 0. There exists a function m : M → R+ such that

lim
r→∞ vol(Sx (r))e−nhr = m(x) and lim

r→∞ vol(Bx (r))e−nhr = m(x)

nh

for any x ∈ M. Moreover, the function m is harmonic.

Proof Let Vx (r) = Vol(Bx (r)) and vx (r) = vol(Sx (r)), so V ′
x (r) = vx (r). Since vx (r) =∫

Sx M θ(u, r)du, integrating (5.2) on Sx M , by monotone convergence we get the first equality
with m(x) = ∫

Sx M τ(u)du.

Then, by Proposition 4.2, we have V ′
x (r)− nhVx (r) ≥ 0, so Vx (r)e−nhr is increasing. As

Vx (r) = ∫ r
0

∫
Sx M θ(u, s)duds, Theorem 5.4 implies, for any r ≥ 1,

Vx (r) ≤ Vx (1) + m(x)

nh
(enhr − enh) + vol(Sn)

r∫

1

ε(s)enhsds

from which we deduce that Vx (r)e−nhr is bounded; hence, it converges to some limit l(x).
As Vx (r)e−nhr is increasing and converging, there exists a sequence rk → ∞ such that

0 = lim
k→∞

d

dr
∣∣r=rk

(
Vx (r)e−nhr

)

= lim
k→∞(vx (rk)e

−nhrk − nhVx (rk)e
−nhrk )

= m(x) − nhl(x).

Finally, to show that the Margulis function is harmonic, we write it using the visual
measures:

m(x) =
∫

Sx M

τ(u)du =
∫

∂∞ M

τ(φ−1
x (ξ))dλx (ξ)

Choosing a fixed point x0 ∈ M , we get

m(x) =
∫

∂∞ M

τ(φ−1
x0

(ξ))e−nh(bξ (x)−bξ (x0))dλx0(ξ)

and we are done, because e−nh(bξ (x) is harmonic. ��
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Remark 6.3 Notice that the existence of a Margulis function is a consequence of the existence
of the function τ , and therefore it can also be deduced from [17] in a more general setting (cf.
remark 5.3). However, to prove the harmonicity of the Margulis function, we need Proposition
6.1 whose proof uses our uniform estimate of Proposition 5.4.
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