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ABSTRACT 
Chemoprevention is an approach based on the use of natural or synthetic compounds to 

inhibit, suppress or reverse the development and progression of cancer, by blocking the DNA-

damage induction or by arresting or reversing its progression. In order to overcome the cancer 

disease, the identification of chemopreventive compounds became of particular interest. Among 

them, antimutagens prevent the mutagen-induced DNA-injury or promote the repair and/or the 

reversion of damage. In addition to antimutagenicity, some agents also act as chemosensitizers, 

by increasing the effectiveness of cancer chemotherapy and radiotherapy, when used in 

combination with chemotherapeutical agents. This approach is very interesting to prevent the 

development of multidrug resistance (MDR), which makes cancer cells not-sensitive to a broad 

range of drugs.  

In this context, present study was aimed at evaluating the potential chemopreventive properties 

of some natural and naturally-derived compounds, particularly the sesquiterpenes β-

caryophyllene (CRY) and β-caryophyllene oxide (CRYO), and the aldehyde α-hexylcinnamal 

(HCA). The antimutagenic activity (pre-incubation method) was evaluated by the reverse 

bacterial mutation assay (Ames test), on Salmonella typhimurium TA1535, TA1538, TA98, 

TA98NR, TA98 1,8-DNP and TA100, and Escherichia coli WP2uvrA and WP2uvrA/R strains, 

both in absence and presence of the S9-metabolic activation system. As mutagens, 2-

nitrofluorene (2NF), sodium azide (SA), methyl methanesulfonate (MMS), 2-aminoanthracene 

(2AA), benzo[a]pyrene (BaP), 4-nitroquinoline N-oxide (4NQO), 1-nitropyrene (1NP), 1,8-

dinitropyrene (1,8-DNP) and a sample of condensed smoke (CSC) from standard 3R4F cigarette 

were used. In addition to antimutagenicity studies, the potential chemosensitizing properties of 

CRY, CRYO and HCA and their ability to interfere with ABC-transporter function were 

evaluated, in Caco-2, CEM/ADR5000 and CCRF/CEM human cancer cells. For each compound, 

low concentrations (IC10 and IC20) were assayed in order to verify their potential additive, 

synergistic or antagonistic effects with the anticancer doxorubicin. The nature and the extent of 

the interaction were evaluated by the combination index (CI) and the isobologram analysis, 

respectively; conversely, the potential enhancement of drug effectiveness was quantified by 

cytotoxicity enhancement ratio (RR). The interaction between test compounds and ABC-

transporters was studied by the rhodamine 123 assay.  

HCA exhibited an antimutagenic activity against different nitro-compounds (2NF and 

1NP in all experimental protocols and 1,8-DNP in the post-treatment) and in various 

experimental protocols, suggesting the involvement of both desmutagenic and bioantimutagenic 

mechanisms.  
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The sesquiterpenes CRY and CRYO resulted able to inhibit the mutagenicity of CSC, although 

with different potency and specificity: CRYO was the most potent compound, acting at 

concentrations about ten-times lower than CRY. The antimutagenicity was highlighted in 

different strains and in all experimental protocols, suggesting the overlapping of various 

protective mechanisms; the inhibition of CSC-induced oxidative stress seems to be likely and 

deserves further investigations. 

In human cancer cells, the substances produced cytotoxic effects at high concentrations both in 

resistant and in sensitive cell lines (200 µM <IC50< 1000 µM): HCA was the most effective 

substance, especially in the sensitive CCRF-CEM cells (IC50 = 212.95 µM). All the compounds 

synergistically acted with doxorubicin, although HCA was the most potent: IC20 HCA increased 

the doxorubicin cytotoxicity of about six, seven and fourthy-seven folds, in Caco-2, 

CEM/ADR5000, and CCRF-CEM, respectively. In addition, a remarkable inhibition of ABC-

trasporter was produced by HCA in the cancer cells tested: the effect was higher that that of the 

standard inhibitior verapamil. Also CRY and CRY oxide inhibited the ABC transporters but with 

lower potency than verapamil. 

The antimutagenic and chemosensitizing properties of β-caryophyllene, β-caryophyllene oxide 

and the α-hexylcinnamaldehyde deserves attention and represent a starting point to better 

evaluate their potential applications in the field of chemoprevention. 
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GENERAL BACKGROUND 
 

CHEMOPREVENTION  
 

According to Sporn et al. (1976), the term of chemoprevention indicates the use of 

natural or synthetic compounds to inhibit, suppress or reverse the development and progression 

of cancer. Cancer is the second leading cause of death worldwide after heart disease and 

chemotherapy is the major treatment, when cancer is well established within the patient. 

Currently there is greater need for more effective and less toxic therapeutic and/or preventive 

strategies. In this context, natural products are becoming an important research area for 

identifying novel bioactive molecules.  

Phytochemicals and dietary compounds have been used in the cancer treatment throughout 

history due to their safety, low toxicity, and general availability (Pratheeshkumar et al., 2012). 

Hippocrates said “Let food be thy medicine and medicine be thy food”, while Galen of Pegamon 

(129–199 A.D.) was said to have prescribed various foods and vegetables for the cancer 

treatment (Karpozilos and Pavlidis, 2004). Also in the Ayurvedic literature the use of natural 

products to cure “minor neoplasms” (Granthi) and “major neoplasms” (Arbuda) was reported 

(Balachandran et al., 2005). Likewise, Traditional Chinese Medicine (TCM) and Mayan 

civilization applied to natural products to treat or prevent several disease among which cancer 

(Kunow, 2003; Xutian et al., 2009).  

A consistent relationship between fruit and vegetable consumption and cancer risk 

reduction has been found (González-Vallinas et al., 2013). This beneficial effects have been 

attributed to different bioactive compounds (Rafter, 2002), for instance isothiocyanates from 

cruciferous vegetables, polyphenols from green and black tea, and flavonoids from soybeans 

have been identified (Surh, 2003). A variety of naturally-occurring dietary compounds have been 

shown to possess significant chemopreventive properties and many experimental attempts have 

been made to underline their mechanisms of action (Surh, 2003). Recently, also the modulation 

of the signaling pathways, transcription factors and genes expression by chemicals or chemical 

combination has been evaluated as new opportunities for future design chemopreventive agents 

(Kwon et al., 2007; Metha et al., 2010).  

Natural products and phytochemicals can act both as chemopreventive as well as 

chemotherapeutic agents. Until relatively recent times, new potential chemotherapeutic agents 

have been discovered, for example, alkaloids from vinca (vinblastin, vincristine and vindesine), 



 8

epipodophyllotoxins (etoposide and teniposides), taxanes (paclitaxel and docetaxel), and 

camtothecins (camptothecin and irinotecan).  

The mechanisms of chemopreventive agents towards mutagens and carcinogens may depend on 

several variables, such as doses, route of penetration into the organism, sequence of intake, 

chemical interactions, biotransformations in the organism (De Flora and Ferguson, 2005). 

Neverthless, taking into account that mutagenesis and carcinogenesis evolve through a cascade 

and a network of events (Figure 1), it appears very difficult to establish, when the role of a 

preventive agent ends during the progression of cancer and when the role of a therapeutic agent 

begins. For instance, the inhibition of adduct-formation to either nuclear DNA or mitochondrial 

DNA is a biomarker, which reflects the occurrence of protective mechanisms preceding the 

binding of electrophilic molecules to DNA (De Flora et al., 1996).  

A chemopreventive agents may be useful for individuals at high risk of developing cancer, such 

as patients whose colon polyps have been removed or individuals who may be at a higher risk of 

developing cancer due to family history. On the other hand, for cancer patients in whom the goal 

is to kill the cancer cells, chemotherapeutic agents are routinely used. 

 

 
Figure 1.  A schematic diagram to show selective responsiveness of healthy population as 

well as cancer patients to chemopreventive agents. Accordingly, chemopreventive 
agents (CPA) can be useful to all populations; for cancer patients, it is feasible that 
CPA can be used in combination with chemotherapeutic agents. For post-therapy 
patients, dietary modification along with pharmacological intervention should be 
considered for suppressing or inhibiting the recurrence (Mehta et al., 2010). 

 

It is important to point out that in the case of the cancer patient, chemopreventive agents may be 

used in combination with chemotherapeutic agents in hopes of providing additive or synergistic 

effects. Moreover, dietary recommendations (including a variety of fruits, vegetables and whole 

grains) may provide an additional protection and may be a necessary component in the post-

therapy of cancer patients, when recurrence of the disease is an undesired consequence. This 

kind of protection is termed chemoquiescence as it allows to prevent second primary tumors.  
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A good chemopreventive agent should be able to interfere with one or more phases of the 

carcinogenesis process (Figure 2): initiation (days), promotion (several years), and progression 

(1–5 years) (Russo, 2007). Initiation is irreversible and includes the initial damage by chemical 

or physical carcinogenic agents directly at DNA level. Promotion, which involves epigenetic 

mechanisms, is generally a slow and reversible process leading to accumulation of pre-malignant 

cells abnormally dividing. Finally, progression is the irreversible step, and leads to the final stage 

of carcinogenesis with tumor growth and acquisition of invasiveness and metastatic potential 

(Russo, 2007). The passage from pre-malignant to malignant cell requires the activation of proto-

oncogenes and/or the inactivation of tumor suppressor genes (Hanahan, 2000). Both categories 

of genes, when mutated, cause alterations in key cellular processes linked to cell growth and 

proliferation. 

It is well established that mutations in somatic cells play a key role in cancer initiation and other 

stages of the carcinogenesis process. Antimutagens are agents able to protect the cells by inhibit 

the induction of DNA-damage or by favouring its repair. These substances can act by 

extracellular mechanisms, such as inhibition of the mutagen-uptake, complexation, dilution 

and/or deactivation of mutagens, block of secondary oxidative stress and affection of activation 

and detoxification systems; the mutagen-inhibition by some physical, chemical or enzymatically 

catalysed interactions with the antimutagen can also occur in the intracellular compartment (De 

Flora, 1998). The agents which prevent the mutagen-induced DNA-damage both at extra- or 

intracellular level, are defined as desmutagenic agents (Shamon and Pezzato, 1994). Conversely, 

compounds that interfere with fixation and progression of DNA-damage in intracellular 

compartment, by stimulating the DNA repair and/or reversion systems are bioantimutagens 

(Shamon and Pezzato, 1994). It is also clear that certain mechanisms are strictly interconnected 

or partially overlapping. 

Carcinogenesis can be activated by various environmental carcinogens (such as cigarette smoke, 

industrial emissions, gasoline vapors), inflammatory agents (such as tumor necrosis factor, or 

TNF, and H2O2) and tumor promoters (such as phorbol esters and okadaic acid) (Dorai and 

Aggarwal, 2004).  
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Figure 2. Process of carcinogenesis: initiation, promotion and progression. Progression is 

shown here to include the growth of malignant tumors, invasion and metastasis. In 
this diagram for each of the stages, various major actions of phytochemicals 
involving signaling pathways are summarized. Mehta et al. 2010 

 

In the initial stage of carcinogenesis, carcinogens can induce one or more simple mutations, 

including transitions, or small deletions in genes which control the process: phase I enzymes 

(including the cytochrome P450 system) can convert pro-carcinogens into the DNA-reactive 

metabolites, which form covalent adducts with individual nucleic acids (DNA or RNA). 

Conversely, phase II enzymes (e.g., glucoronidases, sulfotransferases) play a role in the 

detoxification of the activated carcinogens. Reactive oxygen species (ROS) can also released as 

end-products of the breakdown of xenobiotics, so inducing additional DNA-damage. When 

DNA-damage is not repaired, mutations in critical genes, such as tumor suppressors or 

oncogenes, can be produced. 

Chemopreventive agents with antioxidant properties, such as vitamin C, genistein, and 

compounds originating from cruciferous vegetables have been shown able to prevent the 

oxidative DNA-damage (Guilford and Pezzuto, 2008). 

The promotion of carcinogenesis is characterized by deregulation of the signaling pathways 

which normally control cell proliferation and apoptosis; particularly, mutation of the genes 

responsible for the cell cycle control result in the continued proliferation of transformed cells in 
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spite of the normal cells. In this context, apoptosis of transformed cells must be expected (Khan 

et al., 2007). Two pathways, intrinsic (mitochondrial) and extrinsic (death receptor), are involved 

in apoptosis. Many chemopreventive agents have been shown to regulate the intrinsic pathways 

of apoptosis (Murillo et al., 2004). The caspases represent a cysteine protease family, which 

possess a pivotal role in the apoptosis control. Bcl-2 family members are crucial to control the 

mitochondrial-mediated apoptosis, by halting the mitochondrial membrane disruption and the 

release of cytochrome c and other pro-apoptotic factors. As well survivin play a key role in 

regulation of apoptosis in cancer cells. So, anti-promotional agents can target a variety of 

signaling pathways, including transcription factors, mitogen-activated protein kinases, hormone 

receptors, cell cycle check-point markers, rate-limiting enzymes and tumor suppressor genes. 

Finally, the progression is characterized by genetic alterations within the karyotype of the cells 

brought about by accumulation of mutated genes and resulting in chromosomal abnormalities; 

invasion, angiogenesis, and metastatic growth constitute the stage of progression. Anti-

angiogenic compounds block the development of new blood vessels, which is a crucial step for 

malignant cell nutrition; as a result, the size of the tumor and metastasis may be reduced. 

Polyunsaturated fatty acids, EGCG, resveratrol, curcumin, and genistein have been shown to 

inhibit this process. Also deguelin has been reported to exert anti-angiogenic effects against 

human hepatocellular carcinoma (Lee et al., 2008). 

Recent reports showed that cancer chemopreventive phytochemicals, when used in 

combination with chemotherapeutical agents, can act as chemosensitizers, so increasing the 

effectiveness of cancer chemotherapy and radiotherapy. In fact, the use of chemotherapy to treat 

cancer ever results in the development of broad resistance to a wide variety of drugs with 

different chemical structures and mechanisms of action. This form of resistance is mediated 

primarily by classical ATP-driven drug efflux pumps such as the P-glycoproteins and the MRP 

family of proteins. The earlier agents characterized as transporter blocking, such as verapamil 

and PSC-833, have shown to produce significant toxic effects. Recent reports on the reversal 

multidrug resistance (MDR) by chemopreventive compounds, such as curcumin and genistein, 

have provided encouraging results. The chemosensitization can occur at various levels, by 

directly competing with the ATP binding site of the MDR or MRP drug efflux pumps, by 

saturating the pumps and increase the amount of the chemotherapeutic drug within the cell, or by 

interfering with the pump functioning, so impairing the efflux of anticancer compounds. For 

instance, curcumin is able to inhibit the pump, and to interfere with MRP transporter function 

(requiring a steady supply of reduced glutathione), so increasing the intracellular concentrations 

of chemotherapeutic drugs, such as vinblastine or vincristine (Harbottle et al., 2001). Conversely, 
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genistein and green tea components (EGCG) act as efflux substrate, competing with the MDR or 

MRP substrates, saturating the pump and prevent the efflux of chemotherapeutics.  

On the basis of these evidences, chemopreventive agents can be used not just to prevent but also 

in the treatment of cancer. Because of their pharmacological safety, the combination of 

chemopreventive agents with anticancer drugs enhance the effectiveness of chemotherapy at 

lower doses, so minimizing toxicity and overcoming the multidrug resistance phenomenon. 

Again, some chemopreventive agents are also able to suppress multiple pathways involved in 

cancer development, so representing a potential new source of anticancer compounds.  
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MULTIDRUG RESISTANCE 
Chemotherapy is the treatment of choice for patients diagnosed in the late stage of locally 

advanced and metastatic cancers, and it is used for primary treatment, adjuvant therapy and 

palliation. In these patients, administering a drug dosage, which maximizes the efficacy and 

minimizes the toxicity of treatment is the main challenge. Unfortunately, the tumor does not 

respond to the therapeutic agents in a significant number of patients. This clinical obstacle is due 

to known and yet-to-be determined mechanisms of resistance to chemotherapy (MDR), in which 

the cells become resistant to a variety of structurally and mechanistically unrelated drugs in 

addition to the drug initially administered (Gillet and Gottesman, 2010). Taking into account that 

cancer cells are genetically heterogeneous because of the mutate phenotype, the involvement of 

more than one mechanism of multidrug resistance can be expected: this phenomenon has been 

called multifactorial multidrug resistance (Gottesman et al., 2002). Resistance can be developed 

against a wide range of anticancer drugs, especially natural product agents (e.g., anthracyclines, 

epipodophyllotoxins, taxanes and vinca alkaloids): although their few structural and functional 

similarities, they are large, hydrophobic molecules and may enter the cell by passive diffusion 

(Thomas, 2003).  

Two general classes of anticancer drug resistance have been identified: 1) the anticancer drug 

release to tumor cells is impaired; 2) genetic and epigenetic alterations affect drug sensitivity in 

the cancer cell (Gottesman, 2002). 

The main mechanisms that cause drug resistance involve: 

 the increased activity of the efflux pump (i.e. ATP-dependent transporters) enhances the 

anticancer agent elimination (classical multidrug resistance): this mechanism affects 

vinblastine and vincristine, doxorubicin and daunorubicin, and paclitaxel; 

 the decreased uptake might fail to accumulate the drug without evidence of its increased 

efflux (es. water-soluble drugs that ‘piggyback’ on transporters, carriers that are used to bring 

nutrients into the cell, or agents that enter by means of endocytosis): methotrexate, nucleotide 

analogues, such as 5-fluorouracil and 8-azaguanine, and cisplatin are examples; 

 drugs inactivation by induction of detoxifying proteins (such as cytochrome P450 mixed-

function oxidases); a synchronize induction of the multidrug transporter P-glycoprotein (Pgp) 

and cytochrome P450 3A has been observed (Schuetz et al., 1996): this type of multidrug 

resistance can be induced after exposure to any drug; 

 activation of the mechanisms that repair drug-induced DNA damage; 

 alteration or modification of the drug targets; 
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 disruptions in apoptotic signaling pathways: for instance before a malignant transformation 

(e.g. tumors with mutant or nonfunctional p53; decreased ceramide levels), the cells acquire 

changes in apoptotic pathways, which can prevent the initiation apoptosis. The main 

mechanisms that cause drug resistance are showed in Figure 3. 

 

 
 

Figure 3. Cellular factors that cause drug resistance (Gottesman et al., 2002) 

 

Alternatively, impaired drug delivery can result from poor absorption of orally administered 

drugs, increased drug metabolism or increased excretion, resulting in lower levels of drug in the 

blood and reduced diffusion into the tumor mass. Furthermore, environmental factors, such as 

the extracellular matrix or tumor geometry, might be involved in drug resistance.  

Although a variety of mechanisms are responsible for MDR in cancer cells, the overexpression 

of ATP-binding cassette (ABC) transporters seems to be of particular importance. Therefore, in 

order to combat MDR and sensitize resistant cancer cells, a significant effort has been directed 

recently toward the develop of ABC-transporter inhibitors (Yan et al., 2013). 
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ATP-BINDING CASSETTE (ABC) TRANSPORTERS 
ATP-binding cassette (ABC) transporters are carrier protein superfamily, whose 

designation was based on the highly conserved ATP-binding cassette (Higgins, 1992). So far, 48 

human ABC genes have been identified and divided into seven distinct subfamilies (ABCA–

ABCG), on the basis of their sequence homology and domain organization (Dean et al., 2001). 

MDR1 P-glycoprotein (ABCB1), MRP1 (multidrug resistance protein, ABCC1), and BCRP1 

(breast cancer resistance protein, ABCG2, MXR, ABCP) are the most extensively studied 

transporters at moment.  

These carriers are involved the active transport of phospholipids, peptides, steroids, 

polysaccharides, amino acids, nucleotides, organic anions, drugs, toxicants, food components, 

and their conjugates with glutathione, glucuronate, or sulfate (Hoffmann and Kroemer, 2004).  

The clinical significance of the multidrug resistance pumps P-glycoprotein, and MRP has been 

initially restricted to the resistance to anticancer drugs by enhancing cellular export of classical 

cytostatics. Afterwards, it has been described that three members of the ABCC family, MRP4 

(ABCC4), MRP5 (ABCC5), and MRP7 (ABCC7), transport cyclic nucleotides thereby having a 

potentially modulating effect on signal transduction. However, these cyclic nucleotide 

transporters are involved in cellular export of structurally related anticancer drugs (e.g., 

methotrexate, adriamycin) and antiviral compounds (e.g., ganciclovir, adefovir) and contribute to 

drug resistance (Chan et al., 2004; Kruh and Belinsky, 2003).  

It should be noted that interactions between cross-stimulatory or cross-inhibitory compounds 

appear very complex. ABC transporters can transport at the same time multiple different 

substrates, and the co-transport results in a modification of the transport efficacy. Many 

transporters have an overlapping substrate specifity or distinct drug. The transport binding sites 

influences the molecular interactions (Hoffmann and Kroemer, 2004). 

From a structural point of view, ABC proteins are composed of about 1300 amino acids 

and two structurally similar fractions, each of which contains two parts: a transmembrane 

domaine (TMD) that is arranged into six α-helices, and a nucleotide-binding domain (NBD), 

(Figure 4). An additional N-terminal extracellular extension consisting of five putative 

transmembrane segments are present in the MRP 1–3 transporters. NBD represent the binding 

sites for ATP, whose hydrolysis release the energy to move the substrates across the membrane. 

Two sequence motifs located in each NBD, designated ‘‘Walker A’’ and ‘‘Walker B,’’ are 

critical for ATPase function (Walker et al., 1982). The Walker A motif is involved in the binding 

β-phosphate of ATP, while the Walker B motif binds magnesium (Sharom et al., 1999). The 

exact mechanism by which the energy derived from ATP hydrolysis is transduced into drug 
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transport is not known. All ABC-transporters possess to extracelluar N-glycosylation branches. 

Moreover, frequently a single gene encodes for the four domains, as is the case for P-gp which 

has a TMD-NBD-TMD-NBD structure (Gottesman et al. 1996; Higgins, 2001). 

 
Figure 4. Structures of some ABC-transporters based on the amino acid sequence 

homology and the assumed secondary structure. 1) P-glycoprotein, MRP4 and 
MRP5: two transmembrane domains (TMD), each containing six transmembrane α-
helices, and two nucleotide binding domains (NBD); glycosylation of P-gp and MRP 
at first extracellular loop, and at first loop of second extracellular domain, 
respectively. 2) MRP1-3: additional aminoterminal extension containing five 
transmembrane segments, glycosylated near N-terminus at extracellular loop. 3) 
BCRP: six transmembrane helices and one NBD; likely N-glycosylated at third 
extracellular loop; NBD located on aminoterminal loop (Hoffmann and Kroemer 
2004). 

 

MDR1 P-glycoprotein (ABCB1 or P-gp) 

It is a single polypeptide (170 kDa) consisting of 1280 residues that are structured in two repeats 

of 610 amino acids, joined by a linker region (Jones and George, 2000). Each duplicate is formed 

of a NH2-terminal hydrophobic domain with six transmembrane α-helices, separated by three 

hydrophilic loops (TMD); the hydrophilic intracelluar domain (NBD) contains the ATP binding 

site (Figure 5). The transporter is a cylinder of about 10 nm in diameter with one half of the 

molecule in the lipid bilayer and the rest above and below the membrane (Rosenberg et al., 

1997). The central pore, of approximately 5 nm in diameter, is delimited by a hexagonal TMD-

array (Dong et al., 1998). The drug binding domain is located near the transmembrane domains. 

For a functional molecule both ATP sites are necessary, but sites for substrate recognition and 

ATP binding are different (Dey et al., 1998).  
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A wide range of structurally unrelated hydrophobic compounds (mainly neutral or basic organic 

agents), including numerous drugs, can be extruded by P-gp transporter. Molecules characterized 

by hydrophobicity, planar aromatic rings, and tertiary amino groups are preferentially 

transported. Among the other structural elements, the presence of two or three electron donor 

groups with a fixed spatial separation increase the affinity to the P-gp binding sites. Moreover, a 

high percentage of hydrogen bonding amino acids of P-gp in the transmembrane sequences is 

relevant for the substrate interaction (Seelig, 1998; Seelig et al., 2000).  

P-glycoprotein can be activated by protein kinase C (PKC)-mediated phosphorylation; 

conversely, PKC inhibitors reduce the phosphorylation, leading to drug accumulation. PKC 

inhibitors can also directly interact with P-gp protein and inhibit drug transport (Castro et al., 

1999; Conseil et al., 2001). 

 
 

Figure 5.  Schematic P-gp-models. (A) White and grey cylinders represent TM segments in 
TMD1 and TMD2, respectively. Branched lines and rounded rectangles indicate the 
glycosylation sites and NBD domains. Residues in the TM segments are included in 
the drug-binding pocket. (B) Model of TM-segments organization based on cross-
linking and cysteine scanning mutagenesis studies (Loo and Clarke, 2005). 
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This transporter is localized in the plasma membrane, on the apical or luminal surface of 

epithelial cells, including the blood brain barrier, the choroid plexus, the brush border membrane 

of intestinal cells, the biliary cannicular membrane of hepatocytes, and the luminal membrane in 

proximal tubules of the kidney (van Helvoort et al., 1996). Considering its localization and the 

vectorial outward transport of the molecules, its physiological function seems to be the cell 

protection against various toxicants. Protection can be realized by elimination of the toxins in the 

intestine or blood-tissue barriers or by active excretion in the liver, intestine, or kidney. The P-

gp, in the mucosal epithelium of the intestine, contributes to the direct excretion of compounds 

into the intestinal lumen and determines therefore the reduced uptake of orally administered 

agents. Many organs such as liver express several ABC transporters with overlapping substrate 

specificity, thereby allowing elimination and hence protection of hepatic tissue (Müller, 2000). 

In the epithelial cells of the proximal tubules of the kidneys, P-gp plays both a direct excretory 

role for drugs and limits the reuptake of xenobiotics (Krishna and Mayer, 2000). Furthermore, P-

gp has also modulating role for the penetration of drugs through the blood-brain barrier. In fact, 

the efflux transporters restrict the uptake of drugs by active elimination from the brain. P-gp 

seems also active in releasing of active neurotransmitters as β-endorphins, opiods, or glutamate 

directly from the brain into the blood thereby modulating the activity of the peripheral nervous 

system (King et al., 2001; Liu and Liu, 2001). P-gp is present in placental barrier, on the 

maternal side of the brush-border membrane of the trophoblasts (Usigome et al., 2000). A 

proposed physiological role of P-glycoprotein is also the intracellular transport of lipid and 

cholesterol (Johnstone et al., 2000). Functional P-gp might play a fundamental role also in 

regulating apoptosis induced by a range of chemotherapeutic drugs, fas cross-linking, binding of 

TNF-α to the cell surface receptor, or UV irradiation (Johnstone et al., 1999, 2000; Ruefli et al., 

2000).  

P-glycoprotein mediated multi-drug resistance is reversed by different compounds, 

including calcium channel blockers, calmodulin inhibitors, phenothiazines, steroid hormones, 

opiate antagonists, or herbal remedies (e.g. curcumine, flavonoids, terpenoids) (Wink, 2007). 

Some compounds, among them tamoxifen, valspodar (PSC 833), biricodar (VX 710), tariquidar 

(XR 9576) have been clinically evaluated in different oncologic patients, without confirmation of 

the reversal effects obtained in preclinical studies (Hoffmann and Kroemer, 2004). MDR-

modulators also exhibited toxic side effects and poor pharmacokinetics.  
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Multidrug Resistance Associated Protein (MRP, ABCC) 

The second most extensively studied transporter is the multidrug resistance protein family 

MRP (Borst et al., 2000; Schinkel and Jonker, 2003). Seven different proteins have been 

identified in cells and tissues (from MRP1 to MRP7) and are involved in drug resistance. Two 

new members have been identified, MRP8 and 9, but the role in the xenobiotic transport remains 

to be elucidated (Tammur et al., 2001). The MRP1-5 are organic anion pumps, but they differ in 

substrate specificity, tissue distribution, and intracellular location. MRP1, 2, 3 and 6 have shown 

the highest sequence homology (Borst and Elferink, 2002).  

In particular, MRP2, also called canalicular multispecific anion transporter (cMoat), is 

structurally similar to P-gp, but, in addition, it contains a TMD0 domain with five putative 

transmembrane segments, an extracellular N-terminus, and a long internal loop L0 to the core 

domain (Figure 4). It is mainly expressed in liver canaliculi on the apical site, where it is 

responsible for the excretion of endogenous metabolites as well as many exogenous compounds. 

Also renal proximal tubules, gut enterocytes, syncytiotrophoblast cells of the placenta, and brain 

capillaries have shown lower levels of this transporter (Hoffmann and Kroemer, 2004). A 

MRP2-co-expression with relevant phase II enzymes is assumed: so glutathione-S-transferases 

and UDP-glucuronosyltransferases catalyze the conjugation with glutathione and glucuronic acid 

(phase II metabolism), then MRP2 mediates their export (phase III metabolism). An 

overexpression of MRP2 in pathophysiological situations, especially cholestasis, and various 

hepatic, colorectal, mesothelial, lung, ovarian, or leukemic cancer, has been also highlighted 

(Zollner et al., 2001, 2003; Hoffmann and Kroemer, 2004).  

MRP2 possess high affinity for several metabolites formed in phase-II reactions, such as GSH-

conjugates, sulfates, and glucuronide (Lee et al., 2004; Rea et al., 1998). It also transports neutral 

or basic drugs as vinca alkaloids, etoposide, and anthracylines as P-gp. A GSH co-transport with 

anticancer drugs is required (Evers et al., 2000; van Aubel et al., 1999). Metal excretion is also 

GSH dependent, and arsenic and methyl arsenic glutathione were formed and effluxed by MRP2. 

Likewise, the biliary elimination of zinc, copper, and manganese, and the renal elimination of 

organic anions have been shown (Kala et al., 2000; Liu et al., 2001; Trauner and Boyer, 2003). 

Distribution of MRP2 and P-gp tissue is extensively overlapped: it appears to be conceivable that 

these two transporters have overlapping features in terms of their pharmacological and 

toxicological functions (Kruh et al., 2001). MRP2 also confers resistance to a variety of natural 

products as well as to campthothecins, methotrexate, and cisplatin (Suzuki and Sugiyama, 2002). 

Reversal agents for MRP2-induced chemoresistance have not been as readily identified. The 

pyridine analog PAK-104P, is able to inhibit both P-gp and MRP in vitro models (Chen et al., 
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1999). Likewise, the farnesyl protein transferase inhibitor SCH-66336 (Ionafarnib) showed to 

inhibit the function of both MRP1 and MRP2. A synergistic effect between cisplatin and 5-

fluorouracil mediated by MRP-inhibition has been highlighted (Wang and Johnson, 2003). Also 

curcumin inhibited the MRP1- and MRP2-mediated transport in cells (Wortelboer et al., 2003).  

 

Breast Cancer Resistance Protein BCRP (ABCG, MXR, ABCP) 

BCRP/ABCG2, consists of 655 amino acids and possesses six transmembrane helices and 

one ATP binding site (Figure 4). It is a halftransporter, requiring to at least homodimerize in 

order to function (Nakanishi et al., 2003). Biochemical analysis using gel-filtration 

chromatography suggests that BCRP exists as a homotetramer that may act only to regulate the 

level of functional homodimerized BCRP transporters (Xu et al., 2004). BCRP has been 

characterized as an important part of self-defense systems in the organisms, being an efflux 

transporter for xenobiotics and unwanted toxic compounds. It is present in normal tissues, such 

as placental syncytiotrophoblasts, hepatocytes, and intestinal mucosal cells (Doyle and Ross, 

2003); in addition it is located on the luminal surface of microvessel endothelium, in brain 

microvasculature (Cooray et al., 2002). This tissue distribution reflects the major role of BCRP 

in protecting cells from potentially toxic xenobiotics, incluing dietary mutagens and carcinogens.  

Numerous natural or physiological BCRP-substrates, among which polycyclic aromatic 

hydrocarbons, micotoxins, hormon steroid (i.e. 17β-estradiol and dihydrotestosterone) and folic 

polyglutamate conjugates have been identified and have been well reviewed elsewhere (Volk 

and Schneider, 2003; Chen et al., 2003; Doyle and Ross, 2003; Ebert et al., 2005; van 

Herwaarden et al., 2006; Polgar et al., 2008; Nakanishi and Ross, 2012). 

BCRP/ABCG2 confers resistance to a limited range of anticancer agents respect to P-

glycoprotein and MRP1/2, particularly methotrexate (its polyglutamylated metabolite), 

anthracyclines, mitoxantrone, and topoisomerase I inhibitors (such as camptothecin) (Hooijberg 

et al., 2003, 2004; Ifergan et al., 2004; Stark et al., 2003). Conversely, it does not confer 

resistance to vinca alkaloids, epipodophyllotoxins, paclitaxel, or cisplatin (Allen and Schinkel, 

2002).  
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Development of ABC-transporter inhibitor 
The inhibition of ABC-transporter function (or the expression) with potent and low toxic 

inhibitors (or modulators) is still considered the easiest approach to restore drug sensitivity in 

MDR cancer cells. The use of a chemosensitizing agent can restore drug sensitivity in MDR 

cancer cells by direct blocking drug efflux, by improving drug penetration and distribution, and 

increasing drug accumulation (Wu et al., 2011).  

In the past two decades substantial efforts have been carried out to develop potent modulators of 

ABC drug. Unfortunately, there is still a lack of irrefutable evidence and clinical trial data 

demonstrate that this approach can improve bioavailability or delivery, or restore drug sensitivity 

in MDR cancer patients (Szakacs et al., 2006). The difficult to find an ideal inhibitor is often 

associated with the adverse interactions between modulator and anticancer drug. Furthermore, 

the variability in the expression levels and polymorphisms of ABC transporters among 

individuals makes clinical trials related to MDR cancer exceptionally challenging (Polgar and 

Bates, 2005). Four major categories of ABC transporter-inhibitors have been identified: the First 

Generation Inhibitors included drugs or chemicals with known biological activities (such as 

channel blockers, immunosuppressants and even cardiovascular drugs); the Second Generation 

Inhibitors and Third Generation Inhibitors were specifically designed and synthesized based on 

structural information obtained from the First Generation Inhibitors (Shukla and Ambudkar, 

2008). For these inhibitors, the ABC-transporter inhibition was not their primary targets, so 

unspecific and unfavorable interactions with other molecules could be expected. Also, higher 

concentrations of these drugs were required to obtain the inhibitory effect, so causing 

undesirable toxicity (e.g. verapamil) (Shukla and Ambudkar, 2008). Fourth Generation 

Inhibitors are represented by modulating compounds of natural origin. A great variety of 

materials, such as plants, fungi and even marine organisms, can be use to find new natural 

compounds. Furthermore, natural extracts are often low in toxicity and are well tolerated in the 

human body. For that reason, new candidates from natural sources with strong modulating effect 

on the function and/or the ABC transporter-expression have been screened. When a lead 

compound is identified, quantitative structure-activity relationship (QSAR) studies and an 

optimization process are carried out (Raub, 2006). For example, the fungal toxin fumitremorgin 

C (FTC) is an ABCG2 inhibitor discovered from natural sources, but has unfavorable 

neurotoxicity (Rabindran et al., 2000). Therefore, the optimization of this molecule into a more 

potent, specific and less-toxic analog Ko143 has been made (Allen et al., 2002). Over the years, 

a large number of natural product modulators have been discovered, such as curcumin, 

flavonoid, terpenoids, etc. (Wu et al., 2011). 
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BASIC CONCEPT OF GENETIC TOXICOLOGY 
 

Genetic toxicology is a branch of the toxicology field that assesses the toxic effects of damage to 

deoxyribonucleic acid (DNA). Genetic information, encoded in DNA, is maintained, replicated 

and transmitted to successive generations with high fidelity. Damage to DNA can occur through 

normal biologic process or as the result of interaction of DNA, both directly or indirectly, with 

chemical, physical or biological agents (Brusick, 1980). Genetic toxicology therefore involves 

the study of DNA single- and double-strand breaks, damage to DNA, mutations in DNA, and 

recombinational events in DNA mediated by exogenous agents in bacteria, yeast, plant cells, and 

mammalian cells. In plant and mammalian cells, genetic toxicology also encompasses 

micronucleus formation, chromosomal aberrations, chromosomal aneuploidy, and morphological 

and neoplastic transformation (Landolph, 2005). In addition, genetic toxicology allows 

investigators to determine genetic damage and mutations induced by chemical carcinogens and 

ultraviolet (UV) and ionizing radiations in lower animals and humans (Landolph, 2005). 

The importance of mutations and chromosomal alterations for human health is evident from their 

roles in genetic disorders and cancer (Table 1). 

 

Table 1. Examples of Human Genetic Disorders (Teaf and Middendorf, 2000). 

Chromosome Abnormalities 
Cri-du-chat syndrome (partial deletion of chromosome 5) 
Down’s syndrome (triplication of chromosome 21) 
Klinefelter’s syndrome (XXY sex chromosome constitution; 47 chromosomes) 
Turner’s syndrome (X0 sex chromosome constitution; 45 chromosomes) 
Dominant Mutations 
Chondrodystrophy 
Hepatic porphyria 
Huntington’s chorea 
Retinoblastoma 
Recessive Mutations 
Albinism 
Cystic fibrosis 
Diabetes mellitus 
Fanconi’s syndrome 
Hemophilia 
Xeroderma pigmentosum 
Complex Inherited Traits 
Anencephaly 
Club foot 
Spina bifida 
Other congenital defects 
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A critical link exists between DNA mutation, chromosomal rearrangements (genomic instability) 

and cancer development. The genomic instability can manifest itself as small changes at the 

nucleotide level or as gross chromosomal alterations. Moreover, mutations in the genes that 

encode DNA damage response proteins are responsible for a variety of genomic instability 

syndromes and these disorders often result in a heightened predisposition to cancer (Martin et al., 

2010). Oncogenes and tumor suppressor genes have a central role in cancer. Oncogenes can 

originate from proto-oncogenes, usually involved in normal cellular growth and development, by 

point mutations or chromosomal alterations, (Bishop, 1991; Barrett, 1993; Rabbitts, 1994), and 

can stimulate the transformation of normal cells into cancer cells (Bishop, 1991). Tumor 

suppressor genes usually control the cellular proliferation; inactivation or deletion of these genes, 

due to mutational events, free the cells from their inhibitory influence (Hanahan and Weinberg, 

2000) and have been associated with various cancers, including those of the eye, kidney, colon, 

brain, breast, lung, and bladder (Fearon and Vogelstein, 1990; Marshall, 1991). Combinations of 

activating mutations in proto-oncogenes and inactivating mutations in tumor suppressor genes, in 

somatic (non germline) or germ line cells play a key role in carcinogenesis (Landolph, 2005). 

 
Figure 6.  Multistage carcinogenesis process. The mutagenesis hypothesis of cancer formation 

postulates that the cause of most cancers is mutagenesis. Mutations accumulate 
during cell proliferation and when mutations alter critical genes, carcinogenesis is 
initiated. Interference with the normal mechanisms guarding genomic stability would 
consecutively accelerate genome destabilization, leading to tumor progression and 
metastasis (modified from Pan et al. 2011). 
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High association between positive responses in genetic toxicity tests and rodent and human 

carcinogenicity is showed (McCann et al., 1975a; Purchase et al., 1978). However, genetic 

toxicity is not a measure of carcinogenicity, but it is often used as a surrogate in the evaluation of 

cancer risk because the tests measure an initiating or intermediate event in tumorigenesis (Fearon 

and Vogelstein, 1990).  

Damage to the genome can occur both in germ cells and in somatic cells. The injure in germ 

cells affect the reproductive performance or result in genetic diseases in future generations. 

Mutations in germ cells (sperm or egg cells), can lead to a predisposition to cancer, such as the 

Li-Fraumeni syndrome, and still other mutations can be lethal and result in nonviable offspring. 

Mutation in the somatic cells are involved in the initiation and progression of cancer (Zeiger, 

2001). 

Today, genetic toxicity assays are used routinely as an initial toxicological screening in chemical 

and drug development. 

 

Mutagenesis 

Mutagenesis results from changes in the sequence of DNA bases; these alterations are 

transmitted to the RNA (synthesized according to the instructions carried by the DNA) and then 

to proteins, which conduct chemical (enzymatic) reactions in the cell, or serve as structural 

materials, giving a cell its shape (Landolph, 2005).  

Mutations can have beneficial effects, deleterious effects or no consequences in organisms. The 

sickle mutation in the hemoglobin gene represents an example of positive mutation in the 

organism and is thought to give humans in Africa an ability to survive malaria better. In fact, the 

resulting mutated haemoglobin aggregates in the red blood cells, leading them to assume a sickle 

shape that makes difficult for the malarial parasite to enter and infect red blood cells.  

Many mutations are neutral and have no significant effects on the organism at all. However, 

certain types of mutations can have harmful consequences in organisms; a deleterious mutation 

in humans destroys the activity of adenosine deaminase enzyme, leading to a deficient immune 

system and a consequent inability to fight disease (Landolph, 2005). 

Different mutational events can occur, such as frameshift mutations and basepair substitutions at 

gene level, while aberrations, micronuclei induction and sister chromatid exchange (SCE) at 

chromosomal level. 

Mutation in which one or two nucleotides are inserted or deleted into a DNA sequence, shifting 

the coding frame out of its original alignment, are defined frameshift mutation (Figure 7). As a 

result, the original amino acids in the encoded protein are changed, and the code is shifted out of 
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register and away from the site of this type of mutation. Hence, the site of the mutation produces 

a new or “scrambled” protein, which can have an altered structure, and if the protein is an 

enzyme, the enzymatic activity may be decreased or abolished (Landolph, 2005). 

In a deletion mutation, one or more bases are removed from the DNA, while in an addition 

mutation, also called insertion mutation, one or more bases are added; deletion or addition 

mutations are called large or small if many or only a few bases are involved (Figure 7). 

A transition mutations one in which, during replication, one base (purine or pyrimidine) is 

replaced by another (purine or pyrimidine respectively). Conversely, a transversion mutation 

occurs when a purine base is substituted for a pyrimidine base (guanine for thymidine) or a 

pyrimidine base for a purine base (cytosine for adenine) (Figure 7). These types of mutations are 

also called base substitution mutations (Landolph, 2005). 

Figure 7 shows a schematic representation of the point mutations described above. 

 

 

 
Figure 7. Schematic representation of point mutations. 

 

Also mutation can occur at chromosomal level in mammalian cells. It is defined as macrolesion 

because may be visualized by microscopy and it can be chromosomal aberration, which may be 

chromatid gap or break, symmetrical exchange (exchange of corresponding segments between 

arms of a chromosome), asymmetric interchange between chromosomes and micronuclei (MN) 

induction. During cell division can occur an incomplete separation of replicated chromosomes. 

This kind of macrolesion is characterized by the abnormal chromosome numbers that results in 

the daughter cells and may be recognized as a change in the number of haploid chromosome sets 

(ploidy changes) or in the gain or loss of single chromosomes (aneuploidy). 
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Chromosome aberration is another type of macrolesion. It is caused by damage to chromosome 

structure (clastogenic effect), which showed an abnormal morphology. The lesion may be 

repaired when an initial lesion induces a break in the chromosomal backbone. However, the 

lesion can not be repaired when result in a permanent break, misrepaired or joined with another 

chromosome to cause a translocation of genetic material (Teaf and Middendorf, 2000). 

SCE are produced during the S phase and are presumed to be a consequence of errors in the 

replication process (Preston and Hoffmann, 2001). Finally, MN are small nuclear structures 

containing one or more whole chromosomes, or pieces of chromosomes, as results of 

aneuploidogenic or clastogenic mutational events, respectively. 

Point mutations can result in altered products of gene expression, but chromosomal aberrations 

or alterations of chromosome numbers in germ cells can have disastrous consequences 

(embryonic death, teratogenesis, retarded development, behavioral disorders and infertility) 

(Teaf and Middendorf, 2000). 

The importance of a mutation depends on where it occurs in a gene coding for a protein. It do not 

have a significant effect on the structure of the cell or on the enzymatic activity of a protein if it 

occurs in a site that does not significantly change the shape of a protein used to maintain the 

structural integrity of a cell, or in a site that does not affect the structure of an enzyme. 

Conversely, the mutation can have severe negative consequences for the survival of the cell if 

the mutation occurs in a part of the protein that significantly changes its structure or decreases its 

enzymatic activity (Landolph, 2005). 

However, it is important to take into account that all cells possess the capability to repair DNA 

breaks, point mutations, and nucleotide repeats. The cell can undergo apoptosis (programmed 

cell death) if the damage is extensive, (Evan and Littlewood, 1998); but the cells can also repair 

the damage, by repair processes that returns the DNA to its undamaged state (error-free repair) 

or to an improved but still altered state (error-prone repair), if the damage is less severe. The 

basic principles underlying most repair processes are damage recognition, removal of damage 

(except for strand breaks or cleavage of pyrimidine dimers), repair DNA synthesis, and ligation. 

Figure 8 shows the mechanisms involved in DNA repair. 
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Figure 8. Responses to DNA damage. DNA damage (black triangle) results in either repair or 
tolerance. a. In damage tolerance, damaged sites are recognized by the replication machinery 
before they can be repaired, resulting in an arrest that can be relieved by replicative bypass 
(translesion DNA synthesis); it persists in the genome but its potential for interfering with DNA 
replication and transcription is somehow mitigated. b. A damaged base is excised as a single free 
base (base excision repair, BER) or as an oligonucleotide fragment (nucleotide excision repair, 
NER); mispaired bases are excised as single nucleotides during mismatch repair. c. The cell has 
a network of complex signalling pathways that arrest the cell cycle and may ultimately lead to 
programmed cell death (Friedberg 2003). 
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The major pathway by which DNA base damages are repaired is the Base Excision Repair 

(BER); this process involves a glycosylase that removes the damaged base, causing the 

production of an apurinic or apyrimidinic site. Subsequently, this site can be filled by the 

appropriate base or processed further (Demple and Harrison, 1994); DNA polymerase fills the 

resulting gap, and bind it to the parental DNA. 

The Nucleotide Excision Repair (NER) system provides the ability of the cells to remove bulky 

lesions from DNA; damage recognition, incision, excision, repair synthesis, and ligation are the 

basic steps (Preston and Hoffmann, 2001). 

A specific system is present in eukaryotic cells to repair DNA double-strand breaks, the Double-

Strand Break Repair; it act by two general pathways, the homologous recombination and the 

nonhomologous end-joining (Haber, 2000). 

The DNA mismatch repair system operates to repair mismatched bases formed during DNA 

replication, genetic recombination, and as a result of DNA damage induced by chemical and 

physical agents. Damage recognition by a specific protein that binds to the mismatch, 

stabilization of the binding by the addition of one or more proteins, cut of DNA at a distance 

from the mismatch, excision past the mismatch, resynthesis and ligation are the principal steps in 

all cells from prokaryotes to humans (Jiricny, 1998). 

The 06-methylguanine-DNA methyltransferase (MGMT) protects the cells from the cytotoxic 

effect of alkylating agents. The MGMT-mediated repair mechanism involves a one-step reaction, 

in which the alkyl group at the 06 position of guanine is transferred to a cysteine residue in 

MGMT. This process results in guanine being restored in DNA (direct reversal) and MGMT 

being rendered inactive, which is an irreversible process. Therefore, MGMT is often referred to 

as a “suicide enzyme” (Christmann and Kaina, 2013).  

The particular repair pathway, the rate of the damage-repair and the fidelity and completeness of 

the repair can influence the probability that induced DNA damage can be converted into a 

genetic alteration. 

 

 

Genotoxicity Tests 
In vitro and in vivo test systems have been developed to study the effects of chemicals on cellular 

DNA and chromosomes (Table 2). Gene mutation systems in bacteria and gene and chromosome 

damage systems in cultured rodent cells are the most frequently used in vitro tests for routine 

screening; regarding as in vivo test, chromosome damage is typically measured in bone marrow 

cells of mice or rats. 
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Table 2. Principal assays in Genetic Toxicology (Preston and Hoffmann, 2001). 

 
 

Bacterial assays are commonly used to detect and study the molecular mechanisms of mutations 

in bacteria and also to establish priorities for other testing approaches. Also, fungi have been 

used in genotoxicity assays. The yeasts belonging to the genus Saccharomyces and 

Schizosaccharomyces, as well as the molds Neurospora and Aspergillus, have been utilized in 

forward mutation tests, which are similar to the Salmonella histidine revertant assays. 

In mammalian cells, mutagenesis in vitro assays are used to measure the induction of mutants 

that are resistant to the cytotoxicity of toxic drugs. One of the most frequently employed is the 

assay detecting mutation conferring 6-thioguanine resistance in the Chinese hamster ovary 

(CHO) cell line. 

Many in vitro assays have been also developed to measure the ability of specific agents to induce 

damage at chromosomal level, as chromosomal aberrations, micronuclei formation and 

unscheduled DNA synthesis (UDS) (Landolph, 2005). 

The in vivo mutagenicity tests in mammalian systems are the most relevant methods to evaluate 

mutagenicity in humans; rats or mice offer insights into human physiology, metabolism, and 

reproduction that cannot be duplicated in other tests. Furthermore, the way of administration of a 

chemical to a test animal can be selected taking into account the human environmental or 

occupational conditions of exposure. Moreover, human epidemiologic findings may also be 

compared with the results of tests done in animals. Time required and the costs are the 
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disadvantages of in vivo mammalian test systems (Teaf and Middendorf, 2000). The ICH and the 

OECD/EPA guidelines provide the scientific basis of the genetic toxicology tests, the rationale 

for the selection of test batteries, test procedures and guidance for data interpretation (EMEA, 

1998). 

The usual approach in detecting genotoxic agents is to carry out a battery of in vitro and in vivo 

tests. According to EMEA (1998), to detect relevant genetic changes and the most of genotoxic 

rodent carcinogens, it is appropriate to assess genotoxicity in vitro in a bacterial reverse mutation 

test or Salmonella (Ames) test. Furthermore, it should be evaluated in vitro, in mammalian cells, 

chromosomal damage, gene mutations and clastogenic effects that can not adequately measured 

in bacteria. A variety of in vitro mammalian cell tests are proposed, such as L5178Y test (MLA), 

chromosome aberrations assay by using CHO or V79 cell lines and micronucleus test in human 

lymphocytes or in peripheral blood erythrocytes (Kirkland et al., 2005). Finally, an in vivo test 

for genetic damage should usually be a part of the test battery to give a test model in which 

additional relevant factors (absorption, distribution, metabolism, excretion) that may influence 

the genotoxic activity of a compound, are taking into account. A sufficient level of safety is 

defined for compounds that giving negative results in the standard 3-test battery. Compounds 

giving positive results may need to be tested more extensively. The suggested standard set of 

tests does not imply that other genotoxicity tests are generally considered as inadequate or 

inappropriate; such tests serve as options in addition to the standard battery for further 

investigations. Furthermore, molecular techniques to study mechanisms of genotoxicity in the 

standard battery systems may be useful for risk assessment (EMEA, 1998). In this study we 

describe in detail the Ames test. 

 

Ames Test 

An usually accepted short-term bacterial assay for identifying substances which can produce 

genetic damage that leads to gene mutations is the “Ames Test”, also named “Bacterial Reverse 

Mutation Test” or “Salmonella typhimurium/microsome assay” (Mortelmans and Zeiger, 2000). 

This assay has been described for the first time in 1971 by Bruce Ames. Over the years the 

Bacterial Reverse Mutation Test was improved to increase its sensitivity to several types of 

mutagens. An exogenous mammalian metabolic activation system was included, since the 

bacteria cells are unable to metabolize chemicals via cytochromes P450 (CYP450) (Ames et al., 

1973). Simultaneously, the plate incorporation assay procedure was developed to replace the 

spot test method. It was a major contributing factor to the success of the Ames test, because it 

made the test easier to perform, more sensitive and reduced its cost. Afterwards, a pre-incubation 
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methods was introduced to test some mutagens poorly detected by the standard procedure 

(Gatehouse et al., 1994). In the years, several mutant strains were introduced to obtain major 

information on the mechanism of action of chemicals tested. For example, YG descendants of 

TA98 and TA100, in which the introduction of a further plasmid expresses the genes codifying 

for nitro-reductase and O-acetyl-transferase enzymes, are strains high sensitive to the mutagenic 

action of specific chemicals such as nitroarenes, nitro-aromatic compounds and aromatic amines 

(Aufderheide and Gressmann, 2008). Finally, the Ames test was also used to assess the 

antimutagenic activity as described by Edenharder et al. (1997). 

International guidelines have also been developed from several regulatory agencies, such as the 

Organisation for Economic Co-operation and Development (OECD, 1997), the International 

Commission on Harmonization (ICH, 1995) and the European Medicines Agency to ensure 

uniformity of testing procedures (EMEA, 1996). The test is used worldwide as an initial screen 

to determine the mutagenic potential of new chemicals and drugs because there is a high 

predictive value for rodent carcinogenicity when a mutagenic response is obtained (Zeiger et al., 

1990). 

 

Plate-incorporation vs. pre-incubation method 

The pre-incubation test has been widely accepted as a sensitive method to detect the 

mutagenicity of carcinogenic azo dyes, nitrosamines, alkaloids and several volatile chemicals 

(Maron and Ames, 1983) (Table 3). The fact that test compound, S9 or phosphate buffer and 

bacteria are incubated at higher concentrations than in the standard plate incorporation enhance 

the method sensitivity. The pre-incubation procedure seems to posses some advantages: the pre-

incubation time reduce the possibility of non-specific binding of the “active mutagen” to top 

agar; the bacterial suspension is exposed to a higher concentration of test compound; it is used a 

higher concentration of S9, so there is a more efficient metabolism, useful to detect some indirect 

mutagens that require metabolic activation; in presence of S9 mix, the lag phase of the growth 

curve of the bacterial strains is shortened (~ 1-2 hr) due to the nutritive effects of the S9 proteins. 

The rapid bacterial growth allows to detect the mutagenicity of some relatively unstable or short-

lived “mutagenic species” (Gatehouse et al., 1994). 
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Table 3. Compounds more efficiently detected by using the pre-incubation method 
(Gatehouse et al., 1994). 
 

 
 

A disadvantage of the pre-incubation procedure is the enhanced toxicity at highest 

concentrations. Some chemicals can be tested at higher non toxic concentrations only by the 

plate-incorporation method. 

The pre-incubation can be used routinely to confirm the results or when inconclusive data are 

obtained in the standard method. De Serres and Shelby (1979) have recommended the use of this 

test in screening assay, because of the increased sensitivity. Although on the basis of the 

published literature certain classes of chemicals were more effectively tested using the pre-

incubation procedure, the two methodologies are highlighted as valid approaches at least as 

initial test. 

 

Bacterial tester strains 

Several mutant strains are used, each sensitive to specific genotoxic damage. According to 

OECD guideline 471 (1997), to detect a mutagenic substance, at least five bacterial strains 

should be used, particularly S. typhimurium TA1535, TA1537 (or TA97), TA98, TA100, and E. 

coli WP2uvrA (or WP2uvrApKM101, or S. typhimurium TA102). S. typhimurium strains are 

able to detect frameshift and base-substituition mutagen at GC base pairs, while WP2uvrA 

increase the system sensitivity to oxidizing and cross-linking agents at AT base pair.  
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S. typhimurium and E. coli strains carry different mutations that leave the bacteria dependent to 

histidine (his) and tryptophan (trp) respectively to grow. New mutations at site of these pre-

existing mutations can reverse the gene-function, allowing the cells to synthesize the aminoacid 

and growing to form the colonies. To make the strains more sensitive to detect specific mutation 

mechanisms, additional mutations were engineered into them. The specificity of the test strains 

can provide some information on the types of mutations that are induced by the genotoxic 

agents; among these, base pair substitution mutagens induce a base change in DNA while 

frameshift mutagens cause base pair addition or deletion, changing the reading frame in RNA. 

The table 4 showed the genotype and the kind of mutation induced by the strains used in our 

study. 

 

Table 4. Genotype and kind of mutation induced by the strains used in our study. 

Straina Genotype Reversion event 

TA1535 hisG46, Δ(gal-bio-chl-1005) rfa Base-pair substitution 

TA100 hisG46 Δ(gal-bio-chl-1005) rfa, ΔuvrB, pKM101f Base-pair substitution 

TA1537 hisC3076 Δ(gal-bio-chl-1005) rfa Frameshifts 

TA98 hisD3052, Δ(gal-bio-chl-1008), rfa, ΔuvrB, pKM101  Frameshifts 

TA98NR Same as TA98, but deficient in classical NRb Frameshifts 

TA98 1,8DNP Same as TA98, but deficient in OATc Frameshifts 

WP2uvrA trpE65, ΔuvrA Base-pair substitution 

WP2uvrA/R trpE65, ΔuvrA, pKM101 Base-pair substitution 
aTA98 and TA100 (Ames et al. 1973b); WP2uvrA (Hill 1958); TA1535 and TA1537 (Mortelmans and Zeiger 
2000); TA98NR and TA98 1,8DNP (Hrelia et al. 1999). bNR: nitroreductase. cOAT: O-acetyltransferase 

 

S. typhimurium is a pathogenic bacterium, causing diarrhoea and food poisoning. The name of 

this bacterium derives from Daniel Elmer Salmon, an American veterinary pathologist, although 

it was his partner Conor Fitzpatrick who first isolated the bacterium in 1885 from pigs. S. 

typhimurium LT2 strain is the wild-type parent of the strain used in reversion mutation assays. It 

is  not very virulent and unable to grow in media containing n-histidine as source of nitrogen 

because it produces a very little histidase and urocanase upon induction by n-histidine.  

Ames and other genetists obtained the standard tester strains by modifications of wild-type. 

Mutant strains present virulence lower by orders of magnitude, due to the deep rough mutation 

(rfa). A mutation at the hisG gene, hisD3052 (TA98, TA98NR, TA98 1,8DNP) and hisG46 

(TA100) alleles determine the histidine-dependence. TA98 and its derivative strains are reverted 

to wild-type by various frameshift mutagens while TA100 by several mechanisms of base-pair 
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substitution (DeMarini, 2000). The presence in the genome of a plasmid pKM101, in the strains 

above mentioned, determines a more sensitivity to chemical mutagens. 

E. coli was first identified by the German pediatrician, Theodor Escherich. It is a Gram 

negative micro-organism (Fam. Enterobacteriaceae such as the Salmonella genus), 

predominantly facultative anaerobe and distributed in the intestine of humans and warm-blooded 

animals. Although most strains of E. coli are not regarded as pathogens, they can cause 

opportunistic infections in immunocompromised hosts. Virulent strains are distinguishable from 

nonvirulent by possessing genetic elements encoding for virulence factors (Qadri et al., 2005). 

However, in the genotoxicity assays are used non pathogenic mutant strains. E. coli WP2uvrA 

and WP2uvrA/pKM101 (WP2uvrA/R) strains are mutants used in the reversion mutation assays, 

carrying a tryptophan-dependence which makes them sensitive to oxidative mutagens, free 

radical generators and cross-linking agents which preferentially attack the A-T base pair base-

pair substitution mutagens (Brusick et al., 1980; Wilcox et al., 1990). 

The genotypes of the strains tested, listed in Table 4, are following described, according to 

Mortelmans and Zeiger (2000). 

 his or trp mutation: this mutations lead bacteria aminoacid-dependent to grow. 

 bio-mutation: it leads to biotin dependence, increasing the sensitivity to mutagens. 

 gal-mutation: it encodes to galactose-synthesis and increase bacteria permeability, by 

reducing the lipolysaccharide (LPS) layer; some chemicals (e.g. crystal violet or 

benzo[a]pirene) which cannot cross the wild-type bacteria cell, are toxic in the gal-mutant 

strains. 

 chlD-mutation: it increase bacteria sensitivity to mutagens by removing the chlorates–

resistence. 

 rfa-mutation o deep rough: it leads to a defective LPS layer, so making bacteria more 

permeable to bulky chemicals. 

 uvrB and uvrA mutation: these deletions reduce the excision repair effectiveness. Therefore 

more DNA lesions might to be repaired by the error-prone DNA repair system. 

 pKM101-mutation: the plasmid encodes for muc-gene (Mutable by Chemicals), which 

enhance chemical and UV-induced mutagenesis, inducing the error-prone recombinational 

DNA repair pathway. Additionally, pKM101 confers ampicillin-resistance, which is a 

marker for its presence. 
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Specific target DNA sequence 

Target site for mutations in S. typhimurium TA98 and TA100 is the hisG gene, hisD3052 and 

hisG46 alleles respectively, which carry the histidine-dependence. The hisD3052 allele, carried 

by strains TA98, TA98NR, TA98 1,8-DNP is a 1-frameshift deletion within a reversion target of 

at least 76 bases. This allele can be reverted by five classes of mutations: hotspot 2-base deletion 

(within the sequence CGCGCGCG), deletions, duplications, insertions, or complex mutations 

consisting of either complex frameshifts (a frameshift with an adjacent base substitution) or 

concerted (templated) mutations. Mutagens can revert this allele primarly by induction of only 

two of these classes of mutations: hotspot deletion and complex frameshifts (DeMarini, 2000). 

Various frameshift mutagens, such as 2-nitrofluorene and other aromatic nitroso derivatives of 

amine carcinogens, can determine a reversion of the hisD3052 mutation back to the wild-type 

state (DeMarini, 2000). 

The hisG46 marker in TA100 results from the substitution of a leucine (GAG/CTC) by a proline 

(GGG/CCC); mutational event consist of a transition or transversion base substitutions primarily 

at one of the GC pairs (DeMarini, 2000). Mutagens that cause base-pair substitution mutations 

can revert this mutation. 

E. coli WP2uvrA and WP2uvrA/pKM101 are a tryptophan-dependent strains, which contain a 

substitution in allele trpE65. The excisable and non-excisable misreplications or misrepairs at 

AT sequence are the main genotoxic events involved in WP2uvrA DNA-damage (Brusick et al., 

1980); they are reverted by base-pair substitution mutations. 
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AIM OF THE STUDY AND EXPERIMENTAL DESIGN 

 
Present study was aimed at evaluating the potential chemopreventive properties of some natural 

and naturally-derived compounds, particularly the sesquiterpenes β-caryophyllene (CRY) and β-

caryophyllene oxide (CRYO), and the aldehyde α-hexylcinnamal (HCA). 

Chemoprevention is an approach which uses natural or synthetic compounds to inhibit, suppress 

or reverse the development and progression of cancer, by blocking the DNA damage that 

initiates carcinogenesis or by arresting or reversing the progression of pre-malignant cells in 

which such damage has already occurred (Hong and Sporn, 1997; Sporn and Suh, 2002). Cancer 

chemoprevention is an important aspect of biomedical research and provides a practical 

approach to identify potential useful inhibitors of cancer development and to study the 

mechanism of carcinogenesis (Wattenberg, 1993). Some compounds exert protective 

antimutagenic activity by extracellular mechanisms, such as inhibition of the mutagen-uptake, 

complexation, dilution and/or deactivation of mutagens, affection of the activation and 

detoxification systems; furthermore, antioxidant effects can also prevent DNA-damage; the 

mutagen-inhibition by some physical, chemical or enzymatically catalysed interactions with the 

antimutagen can also occur in the intracellular compartment (De Flora, 1998). Antimutagens, 

which induces extra- or intracellular inhibiting interferences with the mutagen, are defined as 

desmutagenic agents (Shamon and Pezzato, 1994). Other antimutagens can prevent the fixation 

and progression of DNA-damage, acting in intracellular compartment, by stimulating the DNA 

repair and/or reversion systems: these substances are defined as bioantimutagens (Shamon and 

Pezzato, 1994). 

In addition to the antimutagenicity, some chemopreventive agents can also exert 

chemosensitizing properties, by increasing the effectiveness of cancer chemotherapy and 

radiotherapy, when used in combination with chemotherapeutical agents. This approach is very 

interesting to prevent the development of multidrug resistance (MDR), which makes the cancer 

cells not-sensitive to a broad range of drugs with different chemical structures and mechanisms 

of action. A chemopreventive compound can act synergistically with a chemotherapeutic one, 

also potentiating the anticancer effect at lower doses, so minimizing the chemotherapy-induced 

toxicity.  

In this context, natural substances are of very interest for chemoprevention, because of their 

widespread exposure and the easy availability. Vitamins, soyabeans, polyphenols, cruciferous 

vegetables, curcumin, diallyl sulfide and indole-3-carbinol represent some examples of natural 

compounds with “chemopreventing” properties (Shukla et al., 2003; Shukla and Pal, 2004). In 
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addition, both curcumin and its major metabolite tertrahydrocurcumin were found to restore drug 

sensitivity in cancer cells overexpressing ATP-binding cassette (ABC) transporters by directly 

inhibiting their functions (Wu et al., 2011). 

In present study, the chemopreventive potential of CRY, CRYO and HCA has been evaluated in 

term of antimutagenic activity, which represents the ability of a compound to inhibit DNA-

damage induced by known mutagens. At this purpose, the reverse bacterial mutation assay 

(Ames test), the most widely used assay for assessing the mutagenic and antimutagenic 

properties of a chemical, has been carried out (Di Sotto et al., 2012). The pre-incubation method, 

which has been recognized more sensitive than the standard plate-incorporation, has been 

applied (Maron and Ames, 1983). A metabolic activation system (S9) has been also included to 

mime the mammalian metabolism. In fact bacterial strains are unable to metabolize inactive 

chemicals via CYP450-based metabolic system. In this manner substances that require an 

enzymatic activation to display their mutagenic activity, can also be detect. S. typhimurium 

TA1535, TA1538, TA98, TA98NR, TA98 1,8 DNP and TA100, and E. coli WP2uvrA and 

WP2uvrA/R were used as tester strains, according to the OECD Guideline (1997). TA98NR and 

TA98 1,8 DNP were derivative strains, enclosed in our study when necessary, in order to better 

understand the mechanisms responsible for the inhibition of the mutagens. The strain genotypes 

were verified by assessing the presence of specific genetic markers in the strain check assay. 

Before evaluating the antimutagenicity, for each compound preliminary assays were performed 

in order to identify the concentrations at which no cytotoxic effects (i.e. reduction in the number 

of revertant colonies and thinning of the bacterial background growth) were produced, and to 

exclude any potential genotoxic effects.  

The compounds 2-nitrofluorene (2NF), sodium azide (SA), methyl methanesulfonate (MMS), 2-

aminoanthracene (2AA), benzo[a]pyrene (BaP), 4-nitroquinoline N-oxide (4NQO), 1-

nitropyrene (1NP), 1,8-dinitropyrene (1,8 DNP) in the Ames test  were used as known mutagens 

(Figure 15). 2-Nitrofluorene (2NF) is an environmental pollutant released from industrial and 

engine waste (Rosenkranz and Mermelstein, 1983). 2NF is a direct-acting mutagen, bioactivated 

by cytoplasmic nitroreductase and O-acetyltransferase enzymes (codified by cnr, snrA, and OAT 

genes) to electrophilic intermediates, which form DNA-adducts with cellular, so inducing 

frameshift mutations (Rosenkranz and Mermelstein, 1983; Watanabe et al., 1990; Espinosa-

Aguirre et al., 1999). Sodium azide is a base-pair substitution mutagen (mainly G:C→A:T 

transitions), activated into bacterial cells by O-acetylserine (thiol)-lyases to L-azidoalanine, 

which induce DNA helix distortion (Owais and Kleinhofs, 1988; Koch et al., 1994). Methyl 

methanesulfonate is a SN2 type DNA alkylating agent, which predominantly methylates nitrogen 
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atoms of the purine bases guanine and adenine, so causing base mispairing and replication blocks 

(Lundin et al., 2005). The sensitivity of cells to MMS increases significantly when other DNA 

repair pathways are compromised (Lundin et al., 2005). In particular in E. coli, MMS induces 

two complex systems, the Ada response, which protect the cells against alkylating agents 

(Shevell et al., 1990), and the SOS response, which express some proteins enabling DNA 

replication after the non-coding lesions (Walker, 1984). 4-nitroquinoline N-oxide (4NQO) is a 

potent mutagen and carcinogenic compound (Endo et al., 1971; McCann et al., 1975b), activated 

into bacterial cytoplasm, by the enzymatic reduction of its nitro group, to 4-

hydroxyaminoquinoline 1-oxide (4HAQO), which forms DNA-adducts (Tada et al., 1976, 1984) 

and causes oxidative DNA-damage (Ishizawa and Endo, 1967; Hozumi, 1969). 1-nitropyrene 

(1NP) is a nitrocompound released from engine emissions and hard cooking (Tokiwa and 

Ohnishi, 1986). Its N-(deoxyguanosin-8-yl)-1-aminopyrene (dG-C8-AP) derivative, formed by 

bacterial nitroreductase, is responsible for DNA adducts, so inducing mutagenic effects (Tokiwa 

and Ohnishi, 1986; Wislocki et al., 1986; Howard et al., 1983; Bell et al., 1991; Malia et al., 

1996). The cnr-codified nitroreductase seem to be mainly involved in the 1NP activation 

(Salamanca-Pinzón et al., 2010), although the biotransformation O-acetytransferase-mediated 

has been also reported (Watanabe et al. 1990; Espinosa-Aguirre et al. 1999). Also the pollutant 

1,8-dinitropyrene (1,8 DNP) is a potent, direct-acting mutagen, activated by both bacterial 

nitroreductase and O-acetyltransferase to the nitropyrene-1-nitrenium ion, responsible for DNA-

adducts and frameshift type mutations induction (Shah et al., 1990; Lambert et al., 1991; Djuric 

et al., 1993; Nohmi et al., 1995). Nitroreductases (snrA- and cnr-codified) seem to be less 

responsible for the 1,8-DNP activation (Salamanca-Pinzón et al., 2010). In fact, cnr-

overproducing strains and cnr-deficient strain (i.e. TA98NR) are equally sensitive to the 

mutagenic effect of 1,8-DNP (Rosenkranz et al., 1983; Watanabe et al., 1989).  

As an example of procarcinogenic compound, requiring a CYP450-mediated, 2-aminoanthracene 

(2AA) was also included. It is a common pollutant, released in the environment by the 

incomplete combustion or burning of organic (carbon-containing) items, e.g., cigarettes, 

gasoline, and wood (ATSDR, 1995). From a chemical point of view, this mutagen is an aromatic 

amine and is mainly activated by CYP1A2 and CYP1A1 isoenzymes, respectively (Jemnitz et 

al., 2004). The reactive derivative of 2AA, N-hydroxyarylamine, is able to attacks DNA, causing 

frameshift and base pair substitution mutations (Sabbioni and Jones, 2002). Moreover, the 

increase of the cellular oxidative stress seems to contribute to the 2AA-mutagenicity (Murata and 

Kawanishi, 2011; Leadon et al. 1988).  
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The antimutagenic activity was studied against the following mutagens: 2NF (11 µM for TA98 

without S9), 2AA (10 µM for TA98 and TA100 with S9), SA (30 µM for TA100 without S9), 

MMS (5826 µM for WP2uvrA without S9), 4NQO (1 µM for TA98 without S9), 1NP (3 µM for 

TA98 without S9), 1,8-DNP (30 µM for TA98 without S9), and 2AA (49 µM for WP2uvrA with 

S9). These concentrations, obtained from the linear part of the concentration-response curve of 

mutagens, were chosen as they induce a submaximal mutagenic effect (about 70%). 

In addition to the mutagens described above, in the present study a sample of cigarette smoke 

condensed (CSC), obtained from 3R4F reference cigarettes (University of Kentucky, Lexington, 

KY) was used. CSC was prepared using the standard Federal Trade Commission (FTC) protocol 

(35 puff volume in ml, 60 inter puff interval in sec and 2puff duration in sec, respectively) (Wan 

et al., 2009). Reference cigarettes have a circumference and lengths that are typical of cigarettes 

in the Canadian market; they are homogenous in terms of their physical, chemical and smoke 

yield characteristics and are intended to be used as references during smoke emissions testing 

(ISO 10185:2004). Tobacco smoke is one of the greatest threats to human health and the leading 

cause of preventable death in the industrialized society. Also the indirect or involuntary smoke, 

called "secondhand smoking" and derived from the smoke released in the environment by 

smokers, is considered by IARC (International Agency for Research on Cancer) as an important 

carcinogenic hazard for humans (IARC, 2004). Smoking-damages are numerous and involve 

mainly the respiratory and cardiovascular system. Although smoking cessation is the better 

strategy to avoid the development of cancer in the upper aerodigestive tract, former smokers 

continue to have an elevated risk of cancer for years after quitting (Tong et al., 1996). In this 

context, chemoprevention represents a highly sought-after approach to reduce the risk of 

smoking damages. In the present study, CSC was prepared by diluting, in DMSO, the sample 

provided by the University of Kentucky (40 mg/ml smoke particulates in DMSO). The CSC-

concentration of 700 µg/plate was used in the antimutagenicity assay as, in preliminary assays, it 

resulted inducing a submaximal mutagenic effect (data not shown).  

In addition to the antimutagenicity studies, the potential ability of CRY, CRYO and HCA to 

inhibit or modulate the multidrug resistance in cancer cells by acting as chemosensitizers was 

evaluated. A chemosensitizer is a compound that makes tumor cells more sensitive to the effects 

of chemotherapy and a combination of cytotoxic drugs with chemosensitizers represents a new 

approach to overcome drug resistance (Gottesman et al., 2002). Today, drug combinations are 

already applied successfully in the treatment of infectious diseases (including AIDS), 

hypertension, and many types of cancer and rheumatic diseases (Wagner, 2011; Proudman et al., 

2000). The advantages of using drug combinations include an increase of therapeutic efficacy, a 
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decrease in the dose while maintaining the same effect with less toxicity, a reduction of drug 

resistance development, and potential synergistic effects (Chou, 2006).  

The Figure 9 shows the molecular structures of the mutagens used in the Ames test. 

 

 
Figure 9. Molecular structures of the mutagens used in Ames test 

 

Multi-resistant tumor cells frequently express different ATP-binding cassette (ABC) transporters 

simultaneously, e.g. P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), breast cancer 

resistant protein (BCRP), and others (Annereau et al., 2004; Gillet et al., 2004). Because the 

substrate spectra of ABC transporters only partly overlap, co-expression of transporters might 

produce more diverse resistance profiles than those of any one member alone. Thus a broad 

spectrum of reversal agents are needed (Hyafil et al., 1993; Maliepaard et al., 2001; Brooks et 

al., 2003). At this purpose, in our study different human cancer cell lines, particularly 

CCRF/CEM (suspended sensitive cells of human T cell leukemia), CEM/ADR5000 (the derived 

doxorubicin-resistant subline of CCRF/CEM) and Caco-2 (adherent human colon-rectal 

adenocarcinoma cells) were used. CCRF/CEM cells, poorly expressing P-gp transporter, are 

studied in comparison with the multidrug-resistant subline CEM/ADR5000, which in contrast 

over-express P-gp and represent a model for evaluating the modulatory effects of different 

compounds on P-gp (Efferth et al., 2003; Gillet et al., 2004). Caco-2 cells represents an ideal 

model for studying MDR, because they highly express the ABC-transporter proteins, including 

P-gp (synonym MDR1), MRP1, and BCRP. 
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In regard to the experimental design, preliminarily the cytotoxicity of the test substances in the 

three different cell lines by methyl thiazol-diphenyl-tetrazolium bromide (MTT) assay was 

evaluated. This test represents one of major technique for evaluating the tumor cell resistance to 

anticancer agents, on the basis of the living cell ability (in contrast to the dead ones) to reduce 

MTT into a formazan derivative, which can be measured spectrophotometrically. It is a rapid, 

reliable and objective assay, suited for large-scale studies in leukaemia and lymphoma.  

Subsequently, if the compounds resulted only weakly cytotoxic, we evaluated its potential ability 

to act as chemosensitizers. In this context, some combination tests were performed in order to 

detect the potential additive, synergistic or antagonistic effects between non toxic concentration 

(IC10 or IC20) of the test compounds and doxorubicin (DOX) (Figure 10), used as a common 

anticancer drug; also combination assays among the test substances were carried out.  

 

 
Figure 10. Molecular structure of the anticancer agent doxorubicin. 

 

DOX is an anthracyline drug routinely used in the treatment of several types of cancer (i.e. 

breast, lung, gastric, ovarian, thyroid, non-Hodgkin’s and Hodgkin’s lymphoma, multiple 

myeloma, sarcoma and pediatric tumors) (Arcamone et al., 1969; Weiss, 1992). DOX acts by an 

unstable semiquinone metabolite, intercalating into DNA, disrupting the topoisomerase-II-

mediated DNA repair and increasing the free radicals release, so damaging the cell structures and 

DNA (Doroshow, 1986; Gewirtz, 1999). Although doxorubicin is a valuable clinical 

antineoplastic agent, the major limits for the use of doxorubicin are cardiotoxicity and the 

development of cancer cell resistance (Carvalho et al., 2009; Swain et al., 2003). The mechanism 

of resistance involves ABCB1 (MDR1, Pgp) and ABCC1 (MRP1) and other transporters 

(ABCC2, ABCC3, ABCG2, and RALBP1) (Thorn et al., 2011). 

In order to study the potential ability of the test compounds to inhibit the ABC transporters, the 

rhodamine 123 (Rho123) assay was performed. Rhodamine 123 is a fluorescente dye extensively 

used as both an inhibitor of mitochondrial function and a tracer for membrane transport. It cross 
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easily through the membranes, due to its lipophilic nature and accumulates in areas with negative 

membrane potentials (i.e. mitochondria matrix) (Altenberg et al., 1994). Rho123 is also a known 

substrate not only for P-gp but also for MRP, so it can be used as a probe to detect the ABC 

transporters inhibitory activity (Versantvoort et al., 1996). The main advantages of the Rho123 

use as a biological tracer, include commercial availability, low cost, high quantum yield, non-

invasive detection and low interference with metabolic processes. In our experiments, verapamil, 

which is a MDR1 substrate, has been used as a known P-gp inhibitor (positive control).  
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Overview on the test substances 
 

α-HEXYL CINNAMALDEHYDE 
α-Hexylcinnamaldehyde (HCA; FL No. 05.041; Flavouring Group Evaluation, FGE.19, sub-

group 3.1) is a synthetic α,β-unsaturated aldehyde (Figure 11), structurally derived from the 

natural aldehyde cinnamal. It possess a characteristic floral scent and are used as ingredients in 

many personal care (perfumes, creams, shampoos, etc.) and household products, and as additives 

in food and pharmaceutical industry (Schnuch et al., 2007). It is enclosed among the most 

frequently flavouring additives used in UK (Buckley, 2007). 

 

 
 

Figure 11. Chemical structure of α-hexyl cinnamaldehyde 

 

It has been also listed by European Food Safety Authority (EFSA) in CEF (Food Contact 

Materials, Enzymes, Flavourings and Processing Aids) Panel, in order to require additional 

toxicity data for safety assessment (EFSA, 2012).  

From a structural point of view, it is an aldehyde, due to the presence of a polarized carbon–

oxygen double bond, able to react with electron-rich biological macromolecules (i.e. DNA and 

proteins), and to induce adverse health effects, including general toxicity, allergenic reactions, 

mutagenicity, and carcinogenicity (Feron et al., 1991; Patlewicz et al., 2002; Garaycoechea et al., 

2012). HCA is potentially more reactive than a simple aldehyde, as it also possesses an 

additional double bond between carbons 2 and 3 (α and β respectively).  

In spite of its potential reactive structure, in our previous study we found that HCA was not 

genotoxic, inducing neither point mutations nor primary DNA-damages, nor chromosome 

abnormalities (Di Sotto et al., 2013).  

On the basis of these results, and taking into account that cinnamaldehyde, its natural precursor, 

has been found to possess many beneficial properties (Chuang et al., 2012), in the present study 

the potential chemopreventive properties of HCA have been evaluated. 
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β-CARYOPHYLLENE 
β-caryophyllene (FL No. 01.007; FGE. 78), a bicyclic sesquiterpene with a rare cyclobutane ring 

(Figure 12), is a volatile compounds found in large amounts in the essential oil of many different 

spice and food plants, such as Eugenia caryophyllata (Fam. Myrtaceae) (Zheng et al., 1992) 

Salvia spp. (Fam. Lamiaceae) (Sonboli et al., 2006), Syzygium aromaticum Merr. et Perr. (Fam. 

Myrtaceae) (Prashar et al., 2006), Piper nigrum L. (Fam. Piperaceae) (Politeo et al., 2006), 

Cannabis sativa L. (Fam.) (Malingrè et al., 1975), Citrus aurantifolia (Fam. Rutaceae) (Gamarra 

et al., 2006), Zingiber nimmonii (J. Graham) Dalzell (Fam. Zinziberacee) (Sabulal et al., 2006), 

Origanum syriacum L. (Fam. Lamiaceae) (Alma et al., 2003), Marrubium globosum subsp. 

globosum (Fam. Labiate) (Sarikurkcu et al., 2008), Comptonia peregrina L. Coulter (Sylvestre et 

al., 2007) and in copaiba balsam, Copaifera reticulata Ducke (Fam. Fabaceae) (Veiga Junior et 

al., 2007). It is also one of the major components of the extracts from different species of 

Helichrysum (Lourens et al., 2004) and of Carum nigrum seed (Singh et al., 2006). 

 

 
Figure 12. Chemical structure of β-caryophyllene 

 

 

β-Caryophyllene is also one of the volatiles emitted by maize, by a terpene synthase 23 (TPS23) 

enzyme, which catalyzes the cyclization of farnesyl diphosphate to β-caryophyllene (Köllner et 

al., 2008), in response to herbivore damage (Turlings et al., 1998; Gouinguené et al., 2001). It is 

also an important signal in the attraction of enemies (particularly Diabrotica virgifera virgifera, 

defined as the root-feeding pest western maize rootworm) toward other maize herbivore. It is 

known that after the damage by this parasite, maize roots release β-caryophyllene, which attracts 

entomopathogenic nematodes (Rasmann et al., 2005). In nature, β-caryophyllene is usually found 

together with small amount of its isomers α-caryophyllene (α-humulene) and γ-caryophyllene 

(isocaryophyllene) or in a mixture with its oxidation product, β-caryophyllene oxide. Because of 
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its aromatic taste, β-caryophyllene is commercially used as a food additive and in cosmetics 

since the 1930s (Opdyke, 1973). It was detected in 33% of 300 analyzed cosmetic products on 

the Dutch market in the beginning of the 1990s (De Groot et al., 1994). In another study carried 

out on 71 deodorants sold in European market (Rastogi et al., 1998), it has been revealed in the 

45% analyzed products. The Federal Food, Drug and Cosmetic Act, section 201 (s) and the 

Expert Committee of the USA Flavour and Extract manufacturer’s Association (FEMA) have 

recognized β-caryophyllene as safe when used as a food flavouring additive. The Joint 

FAO/WHO Expert Committee on Food Additives has reported β-caryophyllene as presenting no 

safety concerns at current levels of intake when used as a flavouring agent (FAO/WHO, 2004). 

The Council of Europe Committee of Experts on Flavouring Substances has also established that 

as a flavouring substance it may be used as foodstuffs by at an upper level of 5 mg/kg in other 

foods, namely candy and confectionary. Moreover, this sesquiterpene appears on the list of 

“Permitted Additives to Tobacco Products in the United Kingdom" at a maximum level 

permitted for inclusion in cigarettes of 0.15 % w/w tobacco (Philipp Morris, 2005). Finally, it is 

considered a rare sensitizer agent. In fact, although caryophyllene is widely used, only few 

sensitized patients were identified (0.5%, 8 of 1511 tested consecutive dermatitis patients) 

(Sköld et al., 2006). Sköld et al., 2006 showed that β-Caryophyllene itself was revealed to be 

non-sensitizing while an oxidation mixture of autoxidized β-caryophyllene showed a weak 

sensitizing capacity in animal experiments. 

β-caryophyllene was investigated for its possible in vitro biological activities; only few in vivo 

studies are carried out. This sesquiterpene has showed to be responsible of some antimicrobial 

(Alma et al., 2003; Lourens et al., 2004; Sabulal et al., 2006; Delamare et al., 2007), 

antileishmanial (Soares et al., 2013), anti-inflammatory, antiarthritic (Martin et al., 1993; Tambe 

et al., 1996; Baricevic et al., 2001; Agarwal and Rangari, 2003; Cho et al., 2007) local 

anaesthetic (Ghelardini et al., 1999) and anti-oxidant activities (Lourens et al., 2004; Ka et al., 

2005; Singh et al., 2006). β-caryophyllene also showed anti-spasmodic activity on isolated rat 

tracheal smooth muscle which could be explained, at least in part, by the voltage-dependent Ca²⁺ 

channels blockade (Pinho-da-Silva et al., 2012). The anti-inflammatory effect of β-caryophyllene 

was also be demonstrated in vivo studies. and it seems to be mediated by the cannabinoid 

receptor 2 (CB2) and the PPARγ pathway (Bento et al., 2011). Furthermore, β-caryophyllene has 

been reported to possess cannabimimetic in vivo effects, such a CB2-receptor ligand (Gertsch et 

al., 2008) and some properties as skin-penetration enhancing (Cornwell and Barry, 1994). 

β-caryophyllene has also demonstrated to act as a potential anticarcinogenic agent, due to its 

capability to induce the detoxifying enzyme glutathione S-transferase (Kubo et al., 1996). 
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Furthermore, Legault and Pichette (2007) have reported that it increases the anticancer activity 

of α-humulene, isocaryophyllene and paclitaxel against tumour cell lines, in part by alterating the 

membrane permeability. In previous studies carried out in my group of research, β-caryophyllene 

resulted lacking of genotoxic effects both in bacterial and in human eukaryotic cells (Di Sotto et 

al., 2008; Di Sotto et al., 2010); conversely a strong antimutagenic activity against the mutagen 

2-nitrofluorene and anticlastogenic properties were highlighted (Di Sotto et al., 2008; Di Sotto et 

al., 2010). 

On the basis of these results and taking into account that β-caryophyllene appears on the list of 

“Permitted Additives to Tobacco Products in the United Kingdom” for inclusion in cigarettes 

(Philip Morris U.S.A., 2005), in the present study we evaluated the potential ability of CRY to 

inhibit the genotoxic damage induce by cigarette smoke. In addition, its chemosensitizing 

properties were investigated. 
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β-CARYOPHYLLENE OXIDE 
β-caryophyllene oxide (FL No. 16.043; Flavouring Group Evaluation, FGE. 82) (Figure 13), is a 

biciclic sesquiterpene structurally similar to β-caryophyllene. It represents the oxidation product 

of β-caryophyllene by auto-oxidation due to air exposure (Sköld et al., 2006). It occurs in 

essential oils from various medicinal and edible plants, such as clove (Syzygium aromaticum (L.) 

Merr. et Perry), citrus (Citrus spp.), basil (Ocimum basilicum L.) and hop (Humulus lupulus L.) 

(Pino et al., 2001; Njoroge et al., 2006; Sajjadi, 2006; Nance and Setzer, 2011). However, the 

major amount (43.8 %) is contain in the essential oil of Melaleuca styphelioides (Fam: 

Myrtaceae) (Farag et al., 2004). 

These sesquiterpene is used as a food additive and in several consumer products, such as creams, 

lotions, detergents, and various other personal and household products. Accordingly, the human 

exposure to this agent is widespread and often involuntary. Obviously, given the ubiquitous 

distribution of flavourings, it is to be assumed that when used as intended they do not represent a 

health hazard. In order to define a list of the flavouring substances which may be used in 

foodstuffs, the European Food Safety Authority (EFSA) asked to provide additional data for the 

risk assessment of some flavouring substances, reported on the EFSA CEF (Food Contact 

Materials, Enzymes, Flavourings and Processing Aids) Panel (EFSA 2012). Among these 

fragrances, β-caryophyllene oxide is representative for the epoxide group. The assessment of the 

toxicity risk for this flavor was reported to be pending due to its potentially reactive structure. In 

fact, epoxides, owing to their instability, are considered as reactive electrophilic intermediates, 

which are able to form covalent adducts with cellular macromolecules, such as proteins and 

DNA (Laffon et al., 2003). Recently, Di Sotto et al. (2013) have demonstrated that β-

caryophyllene oxide is devoid of genotoxic potential, both at gene level, as a frameshift or a 

base-substitution mutagen, and at chromosomal level, as a clastogenic or aneuploidogenic agent. 

Our research group also has demonstrated the antimutagenic activity of this compound 

(unpublished data). 

This sesquiterpene has showed to be responsible of some antifungal (Johann et al., 2012), 

trypanocidal (Polanco-Hernández et al., 2012) and antiviral (Dunkić et al., 2011) activities. 

Moreover, it recently showed an antimicrobial activities (Ellouze et al., 2012). In the past the 

antimicrobial activity of β-caryophyllene oxide was supposed. In fact, the sesquiterpene was 

considered the responsible of the antimicrobial activity of the oil of St. John's wort and the 

alcoholic extract of Centaurea ensiformis Hub.-Mor., being content in large amount, 30.8% and 

28.7%, respectively. (Toker et al., 2006; Cavaleiro et al., 2011). 
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Figure 13. Chemical structure of β-caryophyllene oxide 

 

β-Caryophyllene oxide has also showed to suppress the proliferation of a wide variety of tumor 

cells, including breast, liver, prostate, multiple myeloma, and lung adenocarcinoma and can thus 

act as a potent anticancer agent. Also, this compound has attracted interest, especially for its 

reported potential anti-inflammatory effects (Tung et al., 2008; Chao et al., 2005). The in vivo 

anti-hypernociceptive properties of this sesquiterpene have been demonstrated in inflammatory 

and neuropathic models of hypernociception in mice (Quintao et al., 2010). β-Caryophyllene 

oxide ability to control the expression of pro-inflammatory cytokines (IL-1b and IL-6) (Chao et 

al. 2005), nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide 

(LPS)-activated RAW 264.7 macrophages (Tung et al., 2008) has been reported. Also, it have 

recently reported that β-caryophyllene oxide can induce apoptosis, suppress cell proliferation, 

and inhibit invasion through the modulation of STAT3 (Kim et al., 2013), PI3 

K/AKT/mTOR/S6K1 signaling cascades and MAPKs activation (Park et al., 2011). Kim et al. 

(2013) also have showed that β-caryophyllene oxide potentiated the apoptosis induced by tumor 

necrosis factor α (TNFα) and chemotherapeutic agents, suppressed TNFα-induced tumor cell 

invasion, all of which are known to require NF-κB activation. The effects of β-caryophyllene 

oxide might be mediated through the suppression of NF-κB and NF-κB–regulated gene products. 

In this study, the possible chemopreventive properties of β-caryophyllene oxide was 

investigated. Firstly, considering the demonstrated antimutagenic activity of β-caryophyllene 

oxide and its possible presence in tobacco smoke, being a metabolite of β-caryophyllene, we 

evaluated the potential protective role against the cigarette smoke condensate. Then, the potential 

ability of β-caryophyllene oxide to act as chemosensitizer was investigated. 
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MATERIALS 
 

Chemicals 

The test substances α-hexylcinnamaldehyde (synonyms hexyl cinnamal, 2-phenyl methylene 

octanal; CAS number 101-860; purity ≥ 95%), β-caryophyllene (synonyms trans-caryophyllene, 

trans-4,11,11-trimethyl-8-methylenebicyclo[7,2,0]undec-4-ene; CAS number 87-44-5; purity ≥ 

98.5%) and β-caryophyllene oxide (synonyms epoxycaryophyllene, (1R,4R,6R,10S)-9-

Methylene-4,12,12-trimethyl-5-oxatricyclo[8.2.0.0(4,6)]dodecane; CAS number 1139-30-6; 

purity 95), the mutagens 2-nitrofluorene (synonym 2NF; CAS number 607-57-8; purity 98%), 

sodium azide (synonyms SA, hydrazoic acid sodium salt; CAS number 26628-22-8; purity > 

99.5%), methyl methanesulfonate (synonyms MMS, ethanesulfonic acid methyl ester; CAS 

number 66-27-3; purity 99%), 2-aminoanthracene (synonyms 2AA, 2-anthramine; CAS number 

613-13-8; purity 96%), 4-nitroquinoline N-oxide (synonyms 4-NQO, 4-nitroquinoline 1-oxide; 

CAS number 56-57-5; purity ≥ 98%), 1-nitropyrene (synonym 1-NP; CAS number 5522-43-0; 

purity  99%), 1,8-dinitropyrene (synonym 1,8-DNP; CAS number 42397-65-9; purity 98%), 9-

aminoacridine hydrochloride hydrate (synonym 9AA; CAS number 52417-22-8; purity > 98 %), 

benzo[a]pyrene (synonyms BaP, 3,4-benzopyrene, 3,4-Benzpyrene, Benzo[def]chrysene; CAS 

number 50-32-8; purity 96 %), doxorubicin hydrochloride (synonyms DOX, adriamycin, 

hydroxydaunorubicin hydrochloride; CAS number 25316-40-9; purity 98.0-102.0%), rhodamine 

123 (synonyms Rho123, 2-(6-Amino-3-imino-3H-xanthen-9-yl)benzoic acid methyl ester; CAS 

Number 62669-70-9), Methylthiazolyldiphenyl-tetrazolium bromide (synonyms MTT, Thiazolyl 

Blue Tetrazolium Bromide; CAS Number 298-93-1; purity 98%), the solvents 

dimethylsulphoxide (DMSO; CAS number 67-68-5; purity > 99.5%), ethanol (EtOH; CAS 

number 64-17-5; purity ≥ 99.5%) and all the other substancess, if not otherwise written, were 

purchased from Sigma, St. Louis, MO. The 3R4F ccigarette smoke condensate (CSC; batch n. 

R100404) was obtained from the University of Kentucky.  

 

Media 

The media Oxoid Nutrient broth No. 2, Vogel-Bonner medium, and Nutrient Agar were 

purchased from Sigma-Aldrich Co (St. Louis, MO, USA), while Dulbecco’s Modified Eagle’s 

Medium (DMEM) and RPMI 1640 were obtained by Gibco™, Invitrogen (Karlsruhe, Germany). 

The Oxoid Nutrient broth No. 2 was prepared as a water solution, then sterilized by autoclave 

and added with the essential aminoacid for the bacterial growth. The Vogel-Bonner agar medium 

(syn. minimal glucose agar medium), which favours the selective growth of the strains tested, 
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contained a sterile solution of bacteriologic agar, glucose and salt solutions, and was poured hot 

onto sterile disposable plastic Petri disch. The Vogel-Bonner plates are prepared a few days 

before the experiments and left to solidify and dry for about seven days. Likewise, a hot solution 

of Nutrient agar, previously sterilized by autoclave, was poured onto sterile Petri plates. The Top 

agar, was prepared as a sterile water solution of bacteriological agar (0.6%) and NaCl (0.5%). 

During experiments, the medium was freshly prepared and maintained liquid at 45°C in a 

thermal bath, added with a 10% (v/v) solution of histidine and biotine (0.5 mM) (for the strains 

TA1535, TA1537, TA98, TA98NR, TA98 1,8-DNP and TA100) or tryptophan 0.5% (for the 

strains WP2, WP2uvrA and WP2uvrA/pKM101), and mixed to the treatment, and poured onto 

plates. The presence, in the top agar, of aminoacids (histidine, biotin and tryptophan) traces 

allows the bacteria to start the cell division and the colony formation. 

The Dulbecco’s modified Eagle’s medium (DMEM) was purchased as solution and added with 

L-glutamine (1% v/v), heat-inactivated fetal bovine serum (FBS; 10% v/v), penicillin (100 

U/ml), streptomycin (100 µg/ml), sodium pyruvate (1 mM) and non-essential amminoacids (1% 

v/v) in order to prepare a complete medium for growing and maintaining Caco-2 (human colon-

rectal adenocarcinoma cells) adherent cells. Likewise, the solution of RPMI 1640 was added 

with L-glutamine (1% v/v), heat-inactivated fetal bovine serum (FBS; 10% v/v), penicillin (100 

U/ml), streptomycin (100 µg/ml), and used for the growing and maintaining of both CCRF/CEM 

(human T cell leukemia) and CEM/ADR5000 (doxorubicin-resistant subline from CCRF/CEM) 

suspension cells. 

 

Preparation of the solutions 

All solutions were prepared in the better solvent, sterilized by autoclave and stored for a just 

conservation time at recommended temperature, i.e. room temperature (RT) or refrigerated 

conditions (from 4°C to -80°C). Each solution was labeled, indicating substance identity, 

solvent, concentration, date of preparation, sell-by date and storage temperature. 

The mutagens 2NF, 4-NQO, 1-NP, 1,8-DNP, 9AA, 2AA and BaP were dissolved in DMSO, 

while SA and MMS in deionised water. The compounds α-hexylcinnamaldehyde, β-

caryophyllene and β-caryophyllene oxide were prepared in DMSO for the Ames test; while, to 

perform the assays on the eukaryotic cell cultures, they were dissolved in EtOH solution (50% 

v/v) and hence diluted in the appropriate complete medium. Doxorubicin hydrochloride was 

dissolved in deionised water to obtain a 2 mg/ml stock solution, hence diluted in the medium and 

added to cultures. The stock solutions of Rho123 (1 mg/ml) and MTT (5 mg/ml) were prepared 

by dissolving the powder in DMSO and phosphate buffer saline (PBS 1X v/v), respectively. In 
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order to avoid the solvent cytotoxicity, DMSO and EtOH were used at a maximum of 2% and 

1% concentration in bacteria and eukaryotic cells, respectively. 

 

Stock solutions used in the Ames test 

−  Voger Bonner Salts 50X (VBS 50X): addition in succession (when the previous one was completely 

dissolved) of MgSO4 × 7 H2O (1%), citric acid (10%), K2HPO4 (50%), NH4NaHPO4 × 4 H2O 

(17.5%); sterilization by autoclave; RT storage. 

−  40% glucose solution: powder dissolution in 45° C hot deionised water; sterilization by autoclave and 

RT storage. 

−  Ampicilline solution (8 mg/ml): ampicilline dissolution in NaOH 0.02 N; sterilization by filtration; 4° 

C storage. 

−  Phosphate buffer solution 0.2 M (pH 7.4): mixture of 19.7% KH2PO4 solution (0.2 M) and 80.3% 

KH2PO4 solution (0.2 M); sterilization by autoclave; RT storage. 

−  Phosphate buffer solution 0.1 M (pH 7.4): 1:2 (v/v) dilution of 0.2 M phosfate buffer solution; 

sterilization by autoclave; RT storage. 

−  KCl 330 mM: powder dissolution in 45°C hot deionized water; sterilization by autoclave; RT storage. 

−  MgCl2 100 mM, powder dissolution in 45°C hot deionized water; sterilization by autoclave; RT 

storage. 

−  Tryptophan (trp) solution 1 mM: powder dissolution in 45°C hot deionised water; sterilization by 

autoclave; 4°C storage. 

−  Histidine (his) 1 mM: powder dissolution in 45°C hot deionised water; sterilization by autoclave; 4°C 

storage. 

−  Biotin (bio) 1 mM: powder dissolution in 45°C hot deionised water; sterilization by autoclave; 4°C 

storage. 

−  Trp 0.5 mM: 1:2 (v/v) dilution of 1 mM trp; sterilization by autoclave; 4°C storage. 

−  His + Bio 0.5 mM: mixture of 1 mM histidine and 1 mM bio (1:1); sterilization by autoclave; 4°C 

storage. 

−  Glucose-6-phosphate (G6P) 0.1 M: powder dissolution in deionised water; sterilization by filtration; -

20°C storage. 

− Nicotinamide adenine dinucleotide phosphate (NADP) 0.1 M: powder dissolution in deionised water; 

sterilization by filtration; -20°C storage. 

 

Stock solutions used for the test on eukaryotic cells  

−  Phosphate buffered saline (PBS) 10X (pH 7.4): dissolution of NaCl (80 g), KCl (2 g), Na2HPO4 (14.4 

g), KH2PO4 (2.4 g) in 800 ml deionized water; sterilization by autoclave; RT storage. 

−  Phosphate buffered saline (PBS) 1X (pH 7.4): 1:10 dilution of PBS 10X; sterilization by autoclave; 

RT storage. 
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−  Fetal bovine serum (FBS): thawed in a water bath at 37 °C, inactivated under shaking in 56 °C hot 

water for 30 min;  -20 °C storage. 

− 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (5 mg/ml): powder dissolution in 

PBS; sterilization by filtration; - 20°C storage. 

−  Rhodamine 123 (Rho123) (1 mg/ml): powder dissolution in DMSO; -20 °C storage. 

 

S9-BASED METABOLIC ACTIVATION SYSTEM 

S9 fraction is the supernatant of a postmitochondrial liver homogenate obtained from rats treated 

with chemicals which induce the hepatic microsomal enzymes, particularly the mixture 

phenobarbital/β-naphthoflavone (PB/NF). The treatment with PB/NF mixture is able to induce a 

wide variety of CYP450 enzyme families, so that the S9 fraction results very suitable to detect 

numerous carcinogens requiring metabolic activation. In comparison with other tissues, the liver 

seems to be the most convenient source of activating enzymes.  

In our experiments, we chosen to use a S9 fraction obtained from PB/NF-treated rats, purchased 

and certified from Moltox (Molecular Toxicology, Boone, NC, USA). According to SRI 

Internation, the S9-fraction was stored at -80°C, in order to preserve its activity. 

The S9-based metabolic activation system was prepared just before use by mixing phosphate 

buffer (0.2 M; 500 μl), deionised water (130 μl), KCl (0.33 M; 100 μl), MgCl2 (0.1 M; 80 μl), S9 

fraction (100 μl), G6P (0.1 M; 50 μl) and NADP (0.1 M; 40 μl). The mixture was kept in ice 

during testing. 
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METHODS 
 

AMES TEST 
This test detects mutations, which can revert previous mutations giving the strains depending by 

an aminoacid to grow; thus, the functional capability of the bacteria to synthesize this aminoacid 

was restored. All procedures have been carried out by using clean sterile glasswares and 

solutions, and inside of a sterile cabinet (model VBH48, Steril S.p.a., Mazzo di Rho, MI, Italy). 

 

Bacterial strains and procedures for growing cultures 

The strains Salmonella typhimurium TA1535, TA1537, TA98, TA98NR, TA98 1,8-DNP and 

TA100 and Escherichia coli WP2uvrA and WP2uvrA/pKM101 were used. All strains were 

kindly provided by the Research Toxicological Centre (Pomezia, Rome, Italy) and by University 

“Alma Mater Studiorum” of Bologna (Italy). In our laboratory, the tester strain genotypes have 

been verified every two years by a Strain Check assay. 

Some aliquots of the tester strains (working cultures) are grown in glass cultures bottles (100 ml) 

having loose fitting caps and containing sterilized Oxoid nutrient broth No. 2 (NB; 11.5 ml) 

added with sterile histidine or tryptophan solution (1 mM) (500 μl). The capacity of the vessel 

should be 3-5 times the volume of the culture required. The cultures are incubated overnight (16 

h) at 37° C to reach the late exponential or early stationary phase of growth (concentration 

approximately 1×109 cells/ml). To ensure an adequate aeration, cultures are shaken in a Dubnoff 

waterbath with horizontal oscillation (model 750, Asal s.r.l., Cernusco S.N., MI, Italy) at 

approximately 100 rpm. During the experimental procedures, the cultures are maintained at room 

temperature to avoid thermal shock to the bacteria when they are placed in 45 °C top agar. In 

order to assere that the cultures used contained a high titre of viable bacteria, in each experiment 

the number of viable cells was evaluated by a plating experiment, according to OECD (1997). 

Some aliquots of the tester strains (permanent cultures; Figure 14) were stored in sterile 

cryotubes at -80° C. 

The permanent cultures are used only for the renewal of the strains. At this purpose, a fresh 

overnight culture, diluted 1:1000 in sterile NB, is added with the cryoprotective agent DMSO 

(9:100), distributed into 1.7 ml cryotubes and stored at -80° C. For TA98, TA98NR, TA98 1,8-

DN, TA100 and WP2uvrA/pKM101 strains, ampicillin (25 μg/ml) has been added to NB 

medium in order to allow the growth of the strains retaining the R-factor in the genotype.  

The working cultures, prepared from the frozen permanent ones, are used to prepare the fresh 

overnight culture for the experiments. A periodical Strain Check assay (about every six months) 
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of these cultures has been carried out. During the experiments, the bacterial cultures must be 

stored at controlled temperature to maintain constant the plateau of growth. 

 

 
Figure 14. Preparation and check of the strains. 
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Strain Check Assay 

The Strain Check assay allows to confirm the genotypes of tester strains, by studying specific 

genome markers (Ames, 1975). Both permanent and working cultures were checked, after 

preparation of renewed copies, during storage and when the spontaneous revertants or the strain-

sensitivity to standard mutagens fall out of the normal range. Fresh overnight cultures (1×109) or 

the progressive (1:10) dilutions A (1×108), B (1×107) and C (1×106) are used. According to 

Mortelmans and Zeiger (2000), the following steps have been followed. 

Spontaneous revertant colonies 

The strains TA1535, TA1537, TA98, TA98NR, TA98 1,8-DNP and TA100, and WP2uvrA and 

WP2uvrA/pKM101 require the aminoacids histidine (his-) as well as tryptophan (trp-) to grow; a 

genotype mutation can revert to his or trp independence. The spontaneous revertant colony 

frequence is characteristic for each strain. The number of spontaneous revertants depends on 

his/trp concentrations. To evaluate this parameter, the overnight culture (100 μl), added to 

phosphate buffer (500 μl; 0.1 M) or S9 metabolic activator system, and to 45 °C hot top agar (2 

ml), was poured onto Vogel Bonner Agar plates. After incubation at 37 °C for 72 hr, the number 

of revertant colonies per plate was scored. Acceptable ranges of spontaneous revertants should 

be consistent with the mean (μ) of historical values (acceptable limit is μ±2σ). 

Mutagen-induced revertant colonies 

The frequence of revertants/plate induced by specific mutagen is characteristic of each tester 

strain, in absence and in presence of metabolic activator S9. To evaluate this parameter, the 

overnight culture (100 μl) and the mutagen (100 μl), added to phosphate buffer (500 μl; 0.1 M) 

or S9 metabolic activator system, and to 45 °C hot top agar (2 ml), were poured onto Vogel 

Bonner Agar plates. After incubation at 37 °C for 72 hr, the number of revertant colonies per 

plate were scored. Acceptable ranges of spontaneous revertants should be consistent with the 

mean (μ) of historical values (acceptable limit is μ ± 2σ). 

Preexistent mutants 

They are colonies independent on the presence of the essential aminoacids and existing before 

the mutagen agent exposition. They can proliferate because of a his or trp inactivity, causing 

false positive results. To evaluate this parameter, the overnight culture (100 μl) and biotin (100 

μl), were poured onto Vogel Bonner Agar plates. After incubation at 37 °C for 72 hr, the number 

of revertant colonies per plate were scored. Acceptable ranges of spontaneous revertants should 

be consistent with the mean (μ) of historical values (acceptable limit is μ±2σ). 

Viability 
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The number of the viable colonies is verified because a reduction of the strain culture-growth 

could cause false results. For each strain, the C dilution of bacterial culture (100 μl), added to 45 

°C hot top agar (2 ml), were poured onto Nutrient Agar plates. After incubation at 37 °C for 12-

24 hr, plates were examined and the colonies were scored. Acceptable ranges of viability should 

be of 100-500 colonies. 

R-factor (pKM101 gene) or ampicillin-resistence 

The presence of this factor was evaluated by determining the the viability of the strains in the 

presence of a ampicillin solution. For each strain, the C dilution of bacterial culture (100 μl) and 

the ampicillin solution (8 mg/ml; 100 μl), were added to 45 °C hot top agar (2 ml) and poured 

onto Nutrient Agar plates. After incubation at 37 °C for 12-24 hr, plates were examined and the 

colonies were scored. Results were expressed as ampicillin-resistent colonies/viable colonies per 

plate. Acceptable values should be represented by about 70% of ampicillin-resistance.  

rfa mutation 

The number of the viable colonies in presence of the toxicant crystal violet is defined to verify 

the presence of rfa mutation. For each strain, the overnight culture (100 μl) was added to 45 °C 

hot top agar (2 ml) and poured onto Nutrient Agar plates; hence we pipet 10 μl of a crystal violet 

solution (0.1 %) to the centre of a sterile filter paper disc (Whatman 6 mm AA disc), placed on 

the plates using sterile forceps. After incubation at 37 °C for 12-24 hr, the plates were examined 

for the presence of a clear zone of inhibition around the disc, indicating the killing of bacteria. 

Acceptable values of inhibition-zone diameter must be > 10 mm. 

uvrB mutation 

The UV sensitivity of the strains tested, due to uvrB (TA98 and TA100) or uvrA (WP2uvrA and 

WP2uvrA/pKM101) deletion was evaluated by exposing bacteria to UV germicide radiations. 

For each strain, the B dilution of overnight culture (100 μl) was added to 45 °C hot top agar (2 

ml) and poured onto Nutrient Agar plates; Half of the plate was covered with a piece of 

cardboard, hence irradiated with a UV germicide lamp (λ = 254 nm) at a distance of 33 cm, for 

8-10 second. After incubation at 37 °C for 12-24 hr, plates were examined. The strains carrying 

the uvrB deletion will grow only on the not-irradiated side of the plate. 

Morfological analysis 

Morfology of the strain-colonies was examined at microscopy (40x magnification): S. 

typhimurium colony appears like an egg, containing a dense nuclear zone, while E. coli is 

rounded and with a no much clear nuclear zone. 



 65

Preliminary assays 

Solubility and selection of test concentrations 

Solubility of the test substances in the final mixture poured onto plate was preliminarily assessed 

in order to identify the highest concentration suitable to be tested. The concentration at which a 

precipitate of the substance was evident to the unaided eye, in the top agar final mixture or onto 

the plate after pouring the mixture, was discarded and the maximum concentration used in the 

successive assays was that inducing no precipitate (OECD, 1997). 

 

Cytotoxicity and viability assay 

The cytotoxicity of the substances was evaluated as reduction in the number of revertant colonies 

and as change in the auxotrophic background of bacterial growth (background lawn) compared 

with the control plates (Ames, 1975). If the massive cell death occurred, the background lawn on 

the plates test appears sparse in comparison to control plates. In this case, a more quantity of 

histidine will be available to the surviving bacterial cells, which will undergo more cell divisions 

and will appear as small colonies, named “micro-colonies”. These colonies can be confused with 

the revertants if one has failed to observe the absence of a normal background lawn. Micro-

colonies can be discriminated from the revertants, by verifying the selective growth on minimal 

glucose agar containing biotin but not histidine: only the revertants, containing his+ character 

will grow in these conditions (Maron and Ames, 1983). 

To perform the test, different concentrations of the substances (100 μl) were added to the 

overnight culture (100 μl), the S9 mixture or phosphate buffer (0.1 M) (500 μl). The mixture was 

pre-incubated under shaking at 37 °C for 30 min, then added with top agar (2 ml), containing  

his/ bio or trp (10% v/v; 0.5 mM) for S. typhimurium and E. coli strains respectively, and poured 

onto a minimal agar plate. In addition, to evaluate the cell viability, a dilution of the overnight 

culture (about 106 fold, to yield approximately 200 cells/100 μl) was added to sterile top agar (2 

ml) and the mixture was poured onto nutrient agar plates (Maron and Ames, 1983). When 

necessary, to evaluate the survival of the bacteria during treatment procedures, a viability assay 

in the presence of various concentrations of the test substances was also made. For both 

cytotoxicity and viability assay, the plates were incubated at 37 °C for 48 hr and then the 

presence of the bacterial background lawn was verified, and the numbers of histidine- or 

tryptophan-independent revertant and surviving colonies were scored. Results are reported as 

number of revertant and surviving colonies per plate (Maron and Ames, 1983). 
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Mutagenicity assay 

Mutagenicity was assessed as reported by Maron and Ames (1983) and Green and Muriel 

(1976), by using the pre-incubation method. Test solutions were prepared by serial dilution 

(1:1.4) in the solvent DMSO; at least five different concentrations for each substance were 

tested, both with or without metabolic activator; when necessary, further concentrations were 

tested in order to obtain a concentration-response curve. Concurrent positive (mutagen) and 

negative (vehicle) controls, both with and without metabolic activation, were included. The 

positive control was used to verify the bacterial sensitivity to known mutagenic agents. The 

plates of the positive controls were treated with a reference mutagenic substance, at exposure 

levels expected to give a reproducible and detectable increase of the number of revertant 

colonies. The mutagens used in our experiments were: 2-nitrofluorene (2NF in DMSO, 3.6 µM 

for TA98 without S9); sodium azide (SA in deionised water, 5.8 μM for TA100 without S9 and 

380 µM for TA1535 without S9); methyl methanesulfonate (MMS in deionised water, 1.7 mM 

for WP2uvrA without S9); 9-Aminoacridine (9AA in DMSO, 97 µM for TA1536 without S9); 

2-aminoanthracene (2AA in DMSO, 1.9 μM for TA98 and TA100 with S9 and 19 μM for 

TA1535, TA1537 and WP2uvrA with S9) and benzo[a]pyrene (BaP in DMSO, 18.9 mM for 

TA98, TA100 and WP2uvrA with S9 and 37.7 mM for TA1535 and TA1537 with S9). The 

negative control was used to determine the spontaneous revertant colonies per each strain in the 

presence of the vehicle used to dissolve the test compounds. In addition, an untreated control 

(lacking solvent) was used to verify if vehicle induced deleterious or mutagenic effects. 

According to Maron and Ames (1983), to perform this assay, an aliquot of the overnight culture 

(100 μl), test solution (50 μl) and S9 mixture or phosphate buffer (0.1 M; 500 μl), mixed and 

gently vortexed in a sterile tube, were incubated under shaking at 37 °C for 30 min; then the 

tubes were added to top agar (2 ml), containing his/bio or trp (10% v/v; 0.5 mM) (for TA1535, 

TA1537, TA98, TA98NR, TA98 1,8-DNP and TA100 and WP2uvrA and WP2uvrA/pKM101 

respectively), vortexed and poured onto a minimal agar plate. The plates were incubated at 37 °C 

for 72 hr, then the histidine- or tryptophan-independent revertant colonies and viable cells were 

scored and the bacterial background lawn was observed (Figure 15). The experiments were 

repeated at least twice and each concentration was tested in triplicate. 
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Figure 15. Mutagenicity assay 
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Antimutagenicity assay 

Antimutagenicity was assayed as previously described by Edenharder et al. (1993), by using the 

preincubation methods. Plates containing strain-specific mutagen (100% of mutagenic activity) 

or vehicle (lack of mutagenic activity) were included. In order to discriminate cytotoxicity from 

true antimutagenesis, plates containing the strain with the test substance were also included. 

Finally, sterility control plates were prepared in each experiment. The test substance solutions 

were prepared by serial dilution (1:1.4) in the solvent DMSO. Antimutagenic activity was 

evaluated against the mutagens 2-nitrofluorene (10.7 μM, for TA98 without S9); sodium azide 

(29 μM, for TA100 without S9); methyl methanesulfonate (5.8 mM, for WP2uvrA without S9); 

1-nitropyrene (3 μM, for TA98, TA98NR and TA98 1,8-DNP without S9); 1,8-dinitropyrene 

(0.03 μM for TA98 without S9); 4-nitroquinoline N-oxide (1 μM for TA98 without S9); 2-

aminoanthracene (9.8 μM for TA98 and TA100 with S9); 2-aminoanthracene (49 μM for 

WP2uvrA with S9) and cigarette smoke condensate (264 µg/ml for TA98, TA100, WP2uvrA 

and WP2uvrA/pKM101 with S9). 

To perform the test, the bacterial strains were treated by using three different treatment 

protocols, pre-, co- and post-treatment, in order to study the potential mechanism occurred in the 

antimutagenic activity. The pre- and co-treatments allows to evaluate the ability of the substance 

to protect from the genotoxic damage mutagen-induced, or to the directly interfere with the 

mutagen.  

Conversely, the post-treatment highlight the capability of the substance to repair the genotoxic 

damage mutagen-induced. 

1. Pre-treatment 

The bacterial overnight culture (100 μl), the test substance solution (25 μl), and S9 mixture or 

phosphate buffer (0.1 M) (500 μl), were mixed and gently vortexed in a sterile tube and 

incubated under shaking at 37 °C for 30 min. After this time, the mutagen solution (25 μl) and 

top agar (2 ml), containing his/bio or trp (10% v/v; 0.5 mM) were added to the sterile tubes. The 

mixture was vortexed and poured onto a minimal agar plate. 

2. Co-treatment 

Tge bacterial overnight culture (100 μl), the mutagen solution (25 μl), the test substance solution 

(25 μl), and S9 mixture or phosphate buffer (0.1 M) (500 μl), were mixed and gently vortexed in 

a sterile tube and incubated under shaking at 37 °C for 30 min. Then the tubes were added with 

top agar (2 ml), containing his/bio or trp (10% v/v; 0.5 mM), vortexed and poured onto a 

minimal agar plate. 

3. Post-treatment  
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The bacterial overnight culture (100 μl), the mutagen solution (25 μl) and S9 mixture or 

phosphate buffer (0.1 M) (500 μl), were mixed and gently vortexed in a sterile tube and 

incubated under shaking at 37 °C for 30 min. Then the tubes were added with the test substance 

solution (25 μl) and with top agar (2 ml), containing his/bio or trp (10% v/v; 0.5 mM), vortexed 

and poured onto a minimal agar plate.  

For each protocol, control plates were prepared by adding the mutagen or the vehicle of mutagen 

(25 μl) to the vehicle of test substance (25 μl). After incubation at 37 °C for 72 hr, plates were 

scored for his or trp independent revertant colonies and viable cells; the bacterial background 

lawn was also examined (Figure 16). The experiments were repeated at least twice and each 

concentration was tested in triplicate.  

 

Cell survival assay 

In order to exclude that the treatment could reduce cell viability by inducing cytotoxicity, the 

same experimental protocol used for the antimutagenicity assay was repeated in cell survival 

studies. To perform this test, the bacterial overnight culture (100 μl), the mutagen solution (25 

μl), the test substance solution (25 μl) and S9 mixture or phosphate buffer (0.1 M; 500 μl) were 

mixed in a sterile tube, gently vortexed, and preincubated under shaking at 37 °C for 30 min. At 

the end of pre-incubation, each treatment was diluted to obtain a concentration of 2 × 103 

cells/ml, then added to 2 ml of top agar, and plated onto nutrient agar plates. The positive control 

was prepared by adding the solvent of the test substance to the mutagen (25 μl + 25 μl), while the 

negative control was obtained by adding the solvent of the test substance to that of the mutagen 

(25 μl + 25 μl); then both controls underwent the experimental procedure described above. The 

resulting plates were incubated at 37 °C for 72 h. After incubation, plates were scored for the 

colonies originating from viable cells. The reduction of cell viability induced by the treatment 

was evaluated by comparing the number of viable cells of the negative control and those of each 

treatment. A treatment was considered cytotoxic when the cell viability was less than 70% with 

respect to the control. 
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Figure 16. Antimutagenicity assay 
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Statistical analysis 

Results of mutagenicity assay has been expressed as number of revertant colonies per plate. A 

positive response was defined as an increase (at least two-fold above the vehicle) in his- or trp-

independent revertant colonies in each strain, with or without metabolic activation (Figure 17) 

(Ames et al., 1975). 

 
Figure 17. Image of the plates obtained in the Ames test. (A) Plate treated with the vehicle 

(negative control). (B) Plate treated with the mutagen. 
 

Due to the high variance in the revertant plate-count, several statistical procedures (i.e. 2-fold 

rule, t-test, ANOVA + multiple comparison, slope of the initial linear regression etc.) have been 

used to data analyze (Kim and Margolin, 1999). In our experiments, we employed the “2-fold 

rule” method combined with the “ANOVA + multiple comparison Post-test”. When the revertant 

count exceeded twice the spontaneous background rate, according to the two-fold rule, the 

results of the mutagenicity assay were considered positive. The “ANOVA + multiple comparison 

Post-test” method allows to confirm the results and to detect false positive results. The potency 

of a mutagen has been defined, if possible, by the concentration-response curve. 

Results of the antimutagenicity assay have been reported as number of revertant colonies per 

plate treated with the test substance. The number of revertant colonies grown in plates containing 

the mutagen without the test substance was defined as 100 % of mutagenic effect, while this of 

the plate containing the vehicle represented the lack of mutagenicity. The percentage of 

inhibition of mutagenic effect was calculated according to the formula: 100 - [(T/M) × 100] 

where T is the number of revertant colonies per plate in presence of mutagen and test substance, 

and M is the number of revertant colonies per plate in plates containing mutagen without test 

substance. According to Negi et al., (2003) the antimutagenic effect was considered as weak or 

absent (inhibition up to 25 %), moderate (25–40 % inhibition) or strong (inhibition higher than 

40%). The statistically significance was evaluated by using the “ANOVA+ Dunnett's Multiple 

Comparison Post Test”. 
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STUDIES ON EUKARYOTIC CELLS 
 

Human cancer cell lines 

Several cell lines were used: 

- CCRF/CEM (DSMZ Nr. ACC 240), suspended cells from human T cell leukemia, obtained 

from the German Collection of Microorganisms and Cell Cultures GmbH; 

- CEM/ADR5000, doxorubicin-resistant subline from CCRF/CEM, which overexpress MDR1 

gene, provided by Prof. Thomas Efferth (DKFZ, Heidelberg). 

- Caco-2 (DSMZ Nr. ACC169), adherent human colon-rectal adenocarcinoma cells, which are 

epithelial like and grow as monolayer. Caco-2 cells represent an ideal model for studying drug 

transporters, because they highly express ATP-binding cassette (ABC) transporters including 

P-gp/MDR1, MRP1 and BCRP. 

 

Cell cultivation procedures 

All cell lines were cultivated at 0.1-0.2 x 105 cells/cm2 (25 and 75 cm2 culture flasks) and were 

incubated at 37 °C with 5% CO2. All steps requiring to open the culture bottles, plates or media 

were carried out under sterile conditions. The cells were morphologically investigated under 

light microscope, before and after each subculture, in order to determine the cell growth rate. 

The adherent cell lines Caco-2 reached the confluence normally after 3-4 days. After that, the 

cells were washed with PBS, and incubated with trypsin-EDTA solution at 37 °C for about 4 min 

(until the cells detached from the bottom of the culture flask). Then, the fresh medium was added 

to detach the cell suspension and to stop trypsin action. Thus, the cells were collected and 

centrifuged at 2000 rpm, and the fresh medium was added again. In order to separate the cell 

clumps into single cells, the solution was pipetted up and down several times. After counting, the 

cells were seeded in a new culture flask. 

The CCRF/CEM and CEM/ADR5000 cells, were subcultured in suspension every 2-3 days, by 

1:5 dilution in RPMI 1640 medium. 

 

Cell cryopreservation 

For a long term storage, the cells were cryopreserved at low sub-zero temperature. 

Cryopreservation was performed initially by storing the cells at -20 °C for 2 h, then by cooling 

overnight up to -80 °C, thus by introducing into liquid nitrogen (-196 °C). This procedure 

effectively stops any biochemical and biological activity without cell death. Cryopreservation 

was used exclusively for cells that were in their logarithmic growth phase. To perform the 
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procedure, the cell suspension was harvested and centrifuged at 2000 rpm for 10 min. After the 

cell counting, one equal volume of the cell suspension was centrifuged at 2000 rpm. The pellets 

were resuspended in the ice-cold freezing medium and the cell clumps were separed by pipetting 

gently up and down. Some aliquots of the cell suspension were prepared in pre-cooled cryo-vials 

(for each cell lines, one milliliter/cryovial cointained 1-5 x 106 cells). The freezing medium, 

consisting of 70% culture medium (corresponding to the cell line), 20% inactivated FBS and 

10% DMSO, was freshly prepared and sterilized before the use. 

In order to re-cultivate the cells, the cryogenic cultures were thawed in a water bath (37 °C) and 

then rapidely mixed with a 10 ml fresh and warm (37 °C) medium. 

To remove DMSO, the cell suspension was centrifuged at 2000 rpm, the supernatant was 

aspirated and 10 ml of fresh medium was added to the cell pellets. Then the culture was gently 

pipetted up and down to separate the clumps. The cell suspension was transferred into a culture 

flask (25 cm2) and incubated at 37 °C with 5% CO2. 

Periodically, in order to exclude any mycoplasma contamination of cell cultures, a specific test 

was carried out by using a VenorGeM® Mycoplasma Detection Kit and according to the 

manufacturer’s instructions. The method reveals, with high sensitivity, the presence of 

mycoplasma and acholeplasma contamination by the polymerase chain reaction (Hopert et al., 

1993). 

 

Trypan blue viability assay 

The Trypan blue measures the percentage of viable cells; this method is based on the principle 

that live (viable) cells, with an intact membrane, are able to exclude the dye while dead (non-

viable) cells, without an intact membrane, take up the staining agent. Trypan Blue is one of 

several stains recommended for the use in dye exclusion procedures for viable cell counting. 

Staining facilitates the visualization of cell morphology. 

To perform the assay, trypan blue stain (100 μl) was added to cell suspension (100 μl), mixed 

thoroughly and shortly incubated. Then, a small amount (10 μl) of the trypan blue-cell 

suspension mixture was carefully transferred on a Neubauer chamber (Figure 18), by touching 

the edge of the cover-slip with the pipette tip and allowing that each chamber filled by capillary 

action. The Neubauer chamber counting grid (3 mm x 3 mm in size) is structured by a reticulum 

(network) drawn in the ridge and divided in nine square subdivisions (1 mm width). Since the 

distribution of the trypan blue-cell suspension mixture on the reticulum is not homogeneous, we 

obtained the value of cell counts from the mean value of the cells counted in at least five squares 

(middle, top left, top right, bottom right, bottom left), as showed in Figure 18. 



 74

 

 
Figure 18. Neubauer chamber 

 

The cell number per ml was obtained by multiplying the count mean by the dilution factor 

(which is 2) and by 104, according to the following equation: 

Viable cells/ml = (viable cell average) x (dil. with trypan blue) x 104 

 

Preliminary cytotoxicity evaluation by MTT assay 

The 3-[4,5-dimethylthiazol-2-yl] -2,5-diphenyl tetrazolium bromide (MTT) assay is a 

colorimetric test used to assess the cell viability. The assay is based on the conversion of the 

yellow water soluble tetrazolium dye MTT into formazan, an insoluble purple compound, due to 

the action of the living cell mitochondrial dehydrogenases (Figure 19). This conversion can take 

place only in the cell populations that have not been damaged at the mitochondrial level. The 

amount of MTT-formazan produced can be determined spectrophotometrically once solubilized 

in a suitable solvent. The adherent cell line was seeded in the fresh media, incubated at 37 °C 

with 5% CO2 for 24 h, so that it was in a logarithmic growth phase, then treated with various 

concentrations of the test substances. The adherent cells were pre-incubated for one day after 
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seeding, in order to achieve a good cell adhesion; otherwise, the results would not indicate the 

actual effect on attached cells. So the medium was aspirated, replaced by medium containing the 

test substance, and further incubated. 

 

 
Figure 19. Reduction of MTT in viable cells. NAD(P)H-dependent cellular oxidoreductase 

mitochondrial enzymes may, reduce the tetrazolium dye MTT to its insoluble purple 
product formazan. 

 
To perform the MTT assay, different experimental procedures were applied.  

Adherent cell line: Caco-2 cells were grown in complete media (see paragraph “MEDIA”), 

seeded in 96-well plates (2 x 104 cells/well density) and incubated for 24 h. The cells were 

treated, in 96-well plates (100 µl/well of a medium), with different concentrations of the test 

substances (up to 10 mM) for a further 24 h. Then, the MTT solution (0.5 mg/ml) was added to 

each well and the plate was incubated again for 4 h. The formed formazan crystals were 

dissolved in DMSO and its absorbance was detected at 570 nm, by a Tecan Safire II™ 

microplate reader (Crailsheimm Germany). 

Suspension cell lines: CCRF/CEM and CEM/ADR5000 were seeded in 96-well plates at about 3 

x 104 cells/well density and incubated with the test substances for 48 h. Then, the MTT assay 

was carried out as mentioned before. 

For each procedure, the concentrations were tested at least in triplicate, also including a vehicle 

control. The cell viability was determined as follow: 

viability % = [(OD treated cells-OD medium control)/( OD untreated cells-OD medium 

control)]% 
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Multidrug resistance (MDR) reversal assay 

The ability of the test substances to restore the cancer cells sensibility to chemotherapeutic drugs, 

i.e. to reverse the multidrug resistance phenomenon, was determined in Caco-2, CCRF/CEM and 

CEM/ADR5000 cells by the MTT assay (see paragraph above). Low concentrations, particularly 

IC10 and IC20 (concentration at which a 10 and 20% cytotoxicity was produced), of the potential 

reversal agent was tested in combination with doxorubic at very, respectively. To perform the 

assay, fully differentiated cells were harvested and seeded in flat-bottom 96-well plates (2 x 104 

cells/well density for Caco-2 cells; 3 x 104 cells/well density for CCRF/CEM and 

CEM/ADR5000 cells). Caco-2 cells were incubated for 24 h at 37 °C to allow their attachment, 

before the addition of the drugs. Different concentrations of doxorubicin or the test substances 

were added to cells, in the absence and presence of the potential reversal agent, then the plates 

were incubated at 37 °C in a fully humidified atmosphere of 5% CO2 for 24 h. Conversely, 

CCRF/CEM and CEM/ADR5000 cells were directly incubated with doxorubicin or the test 

substances. Then the cytotoxicity was evaluated. 

The combination index (CI) and the isobologram analysis (IB) were used to determine the nature 

of the interaction among the substances tested; CI was calculated as follow: 

 

in which CA,X and CB,X are the concentrations of the drugs A and B used in combination to 

produce a mean effect X (IC50). ICX,A and ICX,B are the IC50 values for the compounds A and B 

alone. The interaction is synergistic when CI is less then 1, additive if the value is 1, and 

antagonistic when CI is higher than 1 (Colombo et al., 2010).  

The isobologram analysis defines the interaction extent between the potential reversan agent (A) 

and chemotherapeutical drug (B). The IC50 concentrations of drugs A and B are plotted on the x 

and y axes in a two-coordinate plot, corresponding to (CA, 0) and (0, CB), respectively. The line 

connecting these points represents an additive interaction. The concentrations of the drugs used 

in combination, denoted as CA and CB, are placed in the same plot. The effect was synergistic 

when CA and CB are located below the line, while antagonistic when the values are above the line 

(Zhao et al., 2004). Furthermore, the reversal ratio (RR, synomym cytotoxicity enhancement 

ratio), determined in order to quantify the drug efficacy enhancement in the presence of the 

reversal agent, was calculated as follow: 

 

 

where TS is the substance alone, while CS is the potential chemosensitiser. 

CI = CA,X        CB,X 
ICX,A       ICX,B

+

RR = 
IC50 of TS alone

IC50 of TS in combination with CS
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Interaction between reversal agents and ABC-transporters 

The functional assay for ATP-binding cassette (ABC) transporters measures the active efflux of 

ABCt substrate across the cell membrane. It detects the amount of substrate taken up by the 

cells, after a period of incubation, by fluorimentric measurement. In our experiments, 

Rhodamine 123 (Rho123), a fluorescent dye which is accumulated by mitochondria and is 

subject to P-gp (P-glycoprotein) and MRP- (multidrug resistance protein) dependent extrusion, 

was used as a molecular probe. Thus, Rho123 accumulation in cells provided a measure of P-gp- 

and MRP-dependent transport activity. Accordingly, P-gp and MRP inhibitors, such as 

verapamil, lead to enhanced accumulation of the dye in cells, as they interfere with dye 

extrusion. For this reason, verapamil, at the concentration of 20 µM which completely blocks the 

P-gp- and MRP-mediated efflux of Rho123 from the cells, was used as a positive control (100% 

of inhibition). Moreover, the functional assay requires viable tumor cell suspensions, which are 

difficult to obtain from many adherent cells such as Caco-2. Here we describe a method 

analogous to P-gp functional assay in leukemia. Cell seeding and growth conditions were the 

same as the combination experiments. The use of Rho123 was considered as a useful approach to 

determine P-gp and MRP activity in human cancer cells.  

To perform the test, Caco-2 cells (2 x 103 cells/well density) were seeded in 96-multiwell plates 

and incubated at 37 °C and 5% CO2, until a confluent monolayer was formed (after 4–6 days). 

Then cells were washed twice with PBS and pre-incubated for 30 min at 37 °C with different 

concentrations (from 20 to 1250 µM) of the test substances. The cells were then incubated for 90 

min with Rho123 (1 µg/ml), then washed twice with cold phosphate buffer saline (PBS). Rho123 

fluorescence was measured at excitation/ emission wavelengths of 500/535 nm using a Tecan 

Safire II™ spectrofluorometer (Tecan Crailsheim, Germany). 

As regard CEM/ADR5000, the use of flow cytometer is the method of choice. Fluorescence 

measurement of individual cells was performed using a FACSCalibur™ (Becton-Dickinson) 

fluorescence-activated cell sorter (San Jose. CA) equipped with an ultraviolet argon laser 

(excitation at 488 nm, emission at 530/30 and 570/30 nm band-pass filters). Analysis was gated 

to include single viable cells on the basis of forward and side light-scatter and based on 

acquisition of data from 10000 cells. Log fluorescence was collected and displayed as single-

parameter histograms. 

To perform the test, CEM/ADR5000 cells (1 × 104 cells/ml density) were seeded in 24-multiwell 

plates (1 ml/well of a medium). The test substances were added in various final concentrations 

(10, 50, 100, 250 and 500 µM), and incubated for 2 h at 37 °C. Then the cells were washed twice 

with cold phosphate-buffered saline (PBS), treated with Rho123 (10 µg/ml final concentration) 
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and incubated for 2 h at 37 °C. Afterward, the cells were washed twice and resuspended in PBS 

for measurement. 

The fluorescence intensity of treated cells was normalized by calculating the relative 

fluorescence intensity (inhibitory efficiency) percentage as follow: 

Inhibitory efficiency = [(RFUsubstances-RFUcontrol)/( RFUverapamil-RFUcontrol)] x 100 

where RFUsubstances is the fluorescence in presence of test substance, RFUverapamil is the 

fluorescence in presence of verapamil, and RFUcontrol is the fluorescence in the absence of the 

drug. Only values higher than 10% was considered significant. 

All assays were repeated at least three times. 

 

Statistical analysis 

All data are expressed as mean ± standard error. The IC50 value (substances concentration 

required to produce a 50% inhibition of the ABC-transporter) was determined from dose-

response curves. The dose-response curves were calculated with a four parameter logistic curve 

(Sigma Plot® 10.0), while the graphs were drawn using GraphPad Prism® software (GraphPad 

Prism® 4.0, GraphPad Software, Inc., CA, USA). The one-way analysis of the variance plus the 

Bonferroni’s post test was used to analyze the differences among the sets of data. A p-value less 

than 0.05 was considered significant. 
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ANTIMUTAGENICITY STUDIES ON α-HEXYLCINNAMALDEHYDE (HCA) 
 

RESULTS 
 

When assessed in absence of S9, HCA was cytotoxic at the concentration of 90 μM in TA1535 

and TA1537, and at the concentration of 9000 μM in TA98, TA100 and WP2uvrA strains (Table 

5). In presence of S9, the cytotoxicity was highlighted at 90 μM in TA1535, at 900 μM in 

TA1537 and at 9000 μM in TA98, TA100 and WP2uvrA strains (Table 5).  

 

Table 5. Cytotoxicity of α-hexylcinnamaldehyde (HCA) on Salmonella typhimurium TA1535, 
TA1537, TA98 and TA100, and on Escherichia coli WP2uvrA, in absence and 
presence of the metabolic activator S9. Values are expressed as means ± SEM (n = 6 
plates). 

 

 

 

a In absence of HCA, strains have been exposed to the vehicle DMSO (50 µl/plate). t Toxicity (evaluated as a 
statistically significant reduction in the number of revertant colonies or as a change in the auxotrophic background 
growth vs. vehicle). at Advanced toxicity. - not tested. 

Number of revertant colonies 
Substance μM 

TA1535 TA1537 TA98 TA100 WP2uvrA 

Absence of S9-metabolic activator 

HCA 0 a 133.0 ± 2.6 41.0 ± 7.4 37.3 ± 4.5  84.0 ± 6.9  55.3 ± 5.2 

 18 148.0 ± 28.0 40.5 ± 1.5 - - - 

 90 51.3 ± 7.8 t 40.0 ± 6.3 t 35.2 ± 3.6 87.0 ± 3.0 45.5 ± 3.5 

 180 40.5 ± 0.5 t 24.0 ± 4.0 t 38.7 ± 4.8 82.0 ± 8.3 46.7 ± 3.5 

 900 42.5 ± 8.5 t 25.0 ± 1.9 t 36.0 ± 2.0 87.3 ±  4.7 53.3 ± 3.5 

 1800 29.7 ± 5.4 t 18.0 ± 3.5 t 38.0 ± 5.1 93.0 ± 5.0 52.7 ± 4.0 

 9000 at at 26.3 ± 3.0 t at 41.7 ± 7.2 t 

Presence of S9-metabolic activator 

HCA 0 120.3 ± 5.2 120.0 ± 3.2 50.7 ± 1.3 116.0 ± 6.2 54.7 ± 5.8 

 18 121.3 ± 6.9 121.0 ± 11.0 - - - 

 90 66.5 ± 13.5 t 111.0 ± 3.3 52.5 ± 1.3 121.0 ± 3.3 53.0 ± 3.4 

 180 30.0 ± 7.0 t 112.0 ± 6.0 53.3 ± 5.8 120.4 ± 4.2 52.0 ± 2.3 

 900 88.0 ± 8.0 t 98.5 ± 9.5 t 41.3 ± 3.5 124.1 ± 2.3 62.7 ± 2.7 

 1800 71.0 ± 7.0 t 74.5 ± 9.5 t 43.5 ± 5.4 116.2 ± 2.8 48.3 ± 4.7 

 9000 at at 32.0 ± 5.3 t at 61.0 ± 14.1 t 
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On the basis of these preliminary results, as a maximum concentration to test in the mutagenicity 

assay, we have chosen: 35 μM for TA1535 and TA1537 without S9, 35 and 70 μM for TA1535 

and TA1537 respectively, with S9, and 3500 μM for TA98, TA100 and WP2uvrA both in the 

absence and presence of S9. In the mutagenicity assay, HCA did not increase the number of 

revertant colonies in all strains tested, both in the absence and presence of the metabolic 

activator S9 (Tables 6 and 7). Conversely, the mutagens 2NF, SA, 9AA, MMS, 2AA and BaP 

increased the number of revertant colonies (from 2 to 11 times) with respect to the vehicle 

(Tables 6 and 7), showing that the system was suitable to detect different mechanisms of 

mutagenicity (i.e. frameshift mutations, base substitutions, oxidative damages). Only TA1535 

strain was not sensitive to the BaP-mutagenicity: no increase in the number of revertant colonies 

was highlighted up to the concentration of 762 μM, while cytotoxic effects were produced at 

higher concentrations (Table 7). 

 

Table 6. Effect of α-hexylcinnamaldehyde (HCA) on the number of spontaneous revertant 
colonies of Salmonella typhimurium TA1535, TA1537, TA98 and TA100, and of Escherichia 
coli WP2uvrA, in absence of the metabolic activator S9. Values are expressed as means ± SEM 
(n = 6 plates). 
 

 

a DMSO 50 µl/plate. **p < 0.01 vs. vehicle. - not tested 

 

Number of revertant colonies 
Substance μM 

TA1535 TA1537 TA98 TA100 WP2uvrA 

HCA 3.5 144.5 ± 3.5 40.3 ± 2.5 - - - 

 7 136.0 ± 20.0 34.7 ± 5.8 - - - 

 18 139.0 ± 8.2 38.5 ± 3.5 - - - 

 25 129.0 ± 18.3 36.0 ± 6.3 - - - 

 35   65.0 ± 7.5 t 41.3 ± 5.8 t 34.7 ± 0.9 79.3 ± 9.4 44.0 ± 4.0 

 70 - - 38.3 ± 5.6 87.0 ± 2.4 41.7 ± 2.3 

 350 - - 33.3 ± 2.3 86.0 ± 5.2 53.3 ± 8.1 

 700 - - 38.7 ± 2.4 86.7 ±  4.8 60.0 ± 6.9 

 3500 - - 37.3 ± 2.2 63.0 ± 2.0t 49.5 ± 5.5 

2-NF 3.5 - - 117.3 ± 9.4** - - 

SA 6 1477.0 ± 65.3** - - 197.7 ± 7.2** - 

9-AA 100 - 173.0 ± 22.0** - - - 

MMS 1746 - - - - 132.7 ± 11.4** 

vehicle a  137.5 ± 3.3 39.8 ± 3.4 40.7 ± 2.5  86.5 ± 7.2  52.2 ± 2.2 
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Table 7. Effect of α-hexylcinnamaldehyde (HCA) on the number of spontaneous revertant 
colonies of S. typhimurium TA1535, TA1537, TA98 and TA100, and of E. coli WP2uvrA, in 
presence of the metabolic activator S9. Values are expressed as means ± SEM (n = 6 plates). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a DMSO 50 µl/plate. **p < 0.01 vs. vehicle. - not tested.  

The same concentrations, at which neither cytotoxic nor mutagenic effects were registered, were 

assayed for the antimutagenicity (i.e. the ability of the test substance to reduce the number of 

revertant colonies induced by known mutagens), in the strains TA100, WP2uvrA, TA98, 

TA98NR and TA98 1,8-DNP, by using three different experimental protocols: pre-treatment, co-

treatment and post-treatment. HCA did not significantly affect the mutagenicity of SA in TA100 

strain in the three protocols: a very weak inhibition (12.5% at the highest concentration of 900 

µM) was registered only in the post-treatment (Table 8). A weak even if statistically significant 

inhibition was registered against 2AA reaching, at highest concentration of 900 µM, the 

maximum value of 24.2% and 24.9% in the co- and post-treatment respectively. Conversely, in 

the pre-treatment protocol HCA did not significantly affect the mutagenicity of 2AA (Table 8). 

The test substance also produced a null or weak inhibition of the MMS- and 2AA-mutagenicity 

in WP2uvrA strain in all protocols.  

Only in the post-treatment, HCA produced a moderate (25% < value < 40%) inhibition of MMS-

mutagenicity (34.8% maximum inhibition at highest concentration of 900 µM) (Table 9). 

Number of revertant colonies 
Substance μM 

TA1535 TA1537 TA98 TA100 WP2uvrA 

HCA  3.5 111.0 ± 8.0 117.0 ± 9.0 - - - 

 7 116.3 ± 5.2 110.5 ± 5.5 - - - 

 18 121.3 ± 6.9 126.0 ± 8.5 - - - 

 25 123.2 ± 7.3 119.0 ± 5.3    

 35 120.3 ± 7.7 114.0 ± 6.0 53.3 ± 7.4 107.3 ± 8.7 50.7 ± 1.3 

 70  -    116.0 ± 5.3 42.5 ± 1.3 116.0 ± 6.3 51.2 ± 4.4 

 350  - - 48.5 ± 3.8 115.0 ± 5.3 42.7 ± 3.5 

 700  -  - 45.1 ± 2.7 120.6 ± 3.2 58.3 ± 6.1 

 3500  - - 39.6 ± 1.3 108.0 ± 2.0t 55.7 ± 3.5 

2-AA 2  - - 170.7 ± 15.7 **  250.7 ± 10.2 ** - 

 20 804.0 ± 20.0 ** 446.0 ± 26.0 ** - - 198.7 ± 21.8 ** 

BaP 76 126.9 ± 1.9 -    430 ± 11.0**    693 ± 49.6**    132.5 ± 6.0** 

 152 116.1 ± 2.7 354.0 ± 42.0 ** - - - 

 762 135.0 ± 2.2 - - - - 

Vehicle a  117.9 ± 8.6   113.3 ± 6.2     43.7 ± 3.3    128.0 ± 4.7      51.9 ± 2.8 
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HCA showed to produce a statistically significant and concentration-dependent reduction in the 

number of TA98-revertant colonies induced by 2AA: the inhibition was weak (< 25%) in the 

pre- and post-treatments, while strong in the co-treatment, reaching the maximum value of 

61.9% at the highest concentration (Figure 20). 
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Figure 20. Inhibition (%) by HCA of the 2-aminoanthracene-induced mutagenicity in 
TA98 strain. Mutagen: 2AA (2-aminoanthracene). The effect was reported in 
presence of the S9 metabolic activation system and in the three different 
experimental protocols. Values are expressed as mean ± SEM (n = 6). (A) Percentage 
of inhibition. (B) Cell survival. Strong: inhibition >40%; moderate: inhibition 
between 25% and 40%; weak: inhibition <25%. 
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HCA also reduced, in statistically significant (p < 0.01 or p < 0.001) and concentration-

dependent manner, the number of revertant colonies induced by 2NF in TA98 strain (Figure 21). 

At the highest concentration, the inhibition values were 64.6%, 72.6% and 63.1 in the pre, co- 

and post-treatment respectively. According to Negi et al. (2003), the antimutagenicity was 

considered strong (Figure 21). 
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Figure 21. Inhibition (%) by HCA of the 2-nitrofluorene-induced mutagenicity in TA98 
strain. Mutagen: 2NF (2-nitrofluorene). The effect was reported in absence of the S9 
metabolic activation system and in the three different experimental protocols. Values 
are expressed as mean ± SEM (n = 6). (A) Percentage of inhibition. (B) Cell survival. 
Strong: inhibition >40%; moderate: inhibition between 25% and 40%; weak: 
inhibition <25%. 
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Conversely, the substance produced a null or weak inhibition of 4NQO-mutagenicity in all 

treatments: a statistically significant but weak inhibition was registered in the pre-treatment, 

reaching the maximum value of 20.6% (Figure 22). 
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Figure 22. Inhibition (%) by HCA of the 4-nitroquinoline N-oxide-induced mutagenicity in 
TA98 strain. Mutagen: 4NQO (4-nitroquinoline N-oxide). The effect was reported 
in absence of the S9 metabolic activation system and in the three different 
experimental protocols. Values are expressed as mean ± SEM (n = 6). (A) Percentage 
of inhibition. (B) Cell survival. Strong: inhibition >40%; moderate: inhibition 
between 25% and 40%; weak: inhibition <25%. 
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A statistically significant reduction of revertant colonies (p < 0.001) was registered against 1-

nitropyrene (1NP) in TA98 strain (Figure 23). The inhibitory effect was concentration-

dependent, reaching, at the highest concentration of 900 µM, the maximum value 57.98%, 

82.06% and 65.76% in the pre-, co- and post-treatment, respectively. 
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Figure 23. Inhibition (%) by HCA against the 1-nitropyrene-induced mutagenicity in TA98 
strain. Mutagen: 1NP (1-nitropyrene). The effect was reported in absence of the S9 
metabolic activation system and in the three different experimental protocols. Values 
are expressed as mean ± SEM (n = 6). (A) Percentage of inhibition. (B) Cell survival. 
Strong: inhibition >40%; moderate: inhibition between 25% and 40%; weak: 
inhibition <25%. 
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The treatment with HCA also significantly reduced the number of TA98-revertant colonies 

induced by 1,8-dinitropyrene (1,8-DNP) (Figure 24). The effect was moderate in the pre- and 

post-treatments, reaching the maximum inhibition of 27.96% and 37.35%, at highest 

concentration of 900 µM, respectively; while, a strong inhibition (50.7%) was produced in the 

co-treatment, at 900 µM. 
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Figure 24. Inhibition (%) by HCA of the 1,8-Dinitropyrene-induced mutagenicity in TA98 
strain. Mutagen: 1,8-DNP (1,8-Dinitropyrene). The effect was reported in absence 
of the S9 metabolic activation system and in the three different experimental 
protocols. Values are expressed as mean ± SEM (n = 6). (A) Percentage of inhibition. 
(B) Cell survival. Strong: inhibition >40%; moderate: inhibition between 25% and 
40%; weak: inhibition <25%. 
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In our experiments, we also included TA98NR and 1,8-DNP strains, in order to better define the 

mechanisms (particularly the role of the mutagen-bioactivation mediated by nitroreductase and 

O-acetyltransferase enzymes) involved in the strong antimutagenicity observed in TA98. In 

TA98NR, HCA produced a statistically significant (p < 0.001) inhibition of 1NP-mutagenicity in 

absence of S9. The maximum effect was registered at the highest concentration of 900 µM, 

reaching the values of 46.9%, 85.6% and 42.1% in the pre-, co- and post-treatment protocols, 

respectively (Figure 25): so the antimutagenicity was considered strong. 
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Figure 25. Inhibition (%) by HCA of the 1-Nitropyrene-induced mutagenicity in TA98NR 

strain. Mutagen: 1-NP (1-Nitropyrene). The effect was reported in absence of the S9 
metabolic activation system and in the three different experimental protocols. Values 
are expressed as mean ± SEM (n = 6). (A) Percentage of inhibition. (B) Cell survival. 
Strong: inhibition >40%; moderate: inhibition between 25% and 40%; weak: 
inhibition <25%. 
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The 1NP-mutagenicity was also significantly inhibited in TA98 1,8-DNP strain. The maximum 

effect was registered at the highest concentration of 900 µM, resulting moderate (31.3%) in the 

co-treatment and strong (86.3%) in the post-treatment (Figure 26). In the pre-treatment the 

inhibition was almost null.  

In the cell survival experiments, none of the concentrations tested was cytotoxic in the presence 

of mutagens, being the viability, with respect to the control, from 85% to 120% for TA98, from 

96% to 105% for TA98NR and from 97% to 116% for TA98 1,8-DNP (Figures 20, 21, 22, 23, 

24, 25 and 26). 
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Figure 26. Inhibition (%) by HCA of the 1-Nitropyrene-induced mutagenicity in TA98 1,8-
DNP strain. Mutagen: 1-NP (1-Nitropyrene). The effect was reported in absence of 
the S9 metabolic activation system and in the three different experimental protocols. 
Values are expressed as mean ± SEM (n = 6). (A) Percentage of inhibition. (B) Cell 
survival. Strong: inhibition >40%; moderate: inhibition between 25% and 40%; 
weak: inhibition <25%. 
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DISCUSSION 
α-Hexylcinnamaldehyde is a compound widely used as additive in medical and consumer 

products, in foods, beverages, and sweetmeat. Chemically, it is a synthetic aldehyde, 

characterized by the presence of a carbonyl group containing a polarized carbon–oxygen double 

bond. The marked difference in the electronegativity between the oxygen and the carbon atoms 

makes this group able to react with electron-rich biological macromolecules (i.e. DNA and 

proteins), and to induce adverse health effects, including general toxicity, allergenic reactions, 

mutagenicity, and carcinogenicity (Feron et al., 1991; Patlewicz et al., 2002; Garaycoechea et al., 

2012).  

HCA is potentially more reactive than a simple aldehyde, as it possesses a double bond between 

carbons 2 and 3 (α and β respectively). The conjugation of the unsaturated function with the 

carbonyl group makes the α -carbon positively polarized and consequently the preferred site for a 

nucleophilic attack (Feron et al., 1991). Because of its potentially reactive α,β-unsaturated 

structure, HCA has been listed on the EFSA CEF Panel, in order to collect additional 

genotoxicity data for safety assessment (EFSA, 2008). Several aldehydes are found to be 

released as pollutants in the environment during combustion process, such as car exhausts, 

tobacco smoke, and flue gases, so increasing the carcinogenic hazard for humans (Seaman et al., 

2007; Abraham et al., 2011; Kabir and Kim, 2011). For instance, acetaldehyde, a typical indoor 

air pollutant, and crotonaldehyde, a component of the cigarette smoke, are potential genotoxic 

carcinogens (Stein et al., 2006), while the flavouring agent isobutyraldehyde resulted inactive as 

carcinogen (Benigni et al., 2005). Among α,β-unsaturated aldehydes, although cinnamaldehyde 

and citral were found to be not cancerogenic (Benigni et al., 2005), acrolein and its alkyl 

derivatives, p-nitro cinnalmaldehyde and o-methoxycinnamaldehyde are classified as potentially 

genotoxic/mutagenic compounds (Eder et al., 1991; Eder and Deininger, 2001; Adams et al., 

2004). Due to the widespread and often involuntary human exposure to HCA, it is very 

important to verify that when used as intended, this aldehyde does not represent a health hazard 

for humans and environment. In present study, the potential genotoxic effects of this aldehyde 

have been evaluated by the bacterial reverse mutation assay to study point mutations in bacteria. 

Moreover, including TA100 bacterial strain increases the sensitivity of the test to the aldehydes 

mutagenicity (Dillon et al., 1998).  

Present results show that HCA does not induce genotoxic effects in S. typhimurium TA1535, 

TA1537, TA98 and TA100 strains and in E. coli WP2uvrA strain, also in presence of the 

exogenous metabolic activation system, suggesting that no genotoxic derivatives were produced 

by the CYP450-mediated biotransformations. The presence of the metabolic activator reduced in 
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some cases the toxicity of the tested substances: a partial detoxification of the aldehydes by 

reaction with the nucleophilic components of the S9 could occur. To our knowledge no 

evaluation of the potential genotoxic effects has been carried out for HCA up to now; thus our 

results can contribute to assess the risk of exposition to this aldehyde and its safety profile. 

HCA also exhibited interesting antimutagenic properties. Antimutagens are defined as 

chemicals, both natural and synthetic agents, able to block the effects of mutagens, acting in the 

extracellular or intracellular compartment, by physical, chemical or enzymatically catalysed 

reactions with the mutagen or by stimulating the DNA repair systems (De Flora, 1998). The 

antimutagens, which induce extra- or intracellular inhibiting interferences with the mutagen, are 

defined as desmutagenic agents (Shammon and Pezzato, 1994), while those acting in 

intracellular compartment as bioantimutagens (Shammon and Pezzato, 1994). Under our 

experimental conditions, test substance strongly inhibited the mutagenic effect of 2NF and 1NP 

in all experimental protocols and of 1,8-DNP particularly in the post-treatment. In addition, a 

singular antimutagenicity was highlighted only in TA98 strain and in the co-treatment. 

2NF is a direct-acting mutagen for Salmonella strains; it is indeed metabolized by the 

cytoplasmic bacterial nitroreductases to electrophilic intermediates which form adducts with 

cellular DNA, and induce mutations of frameshift type (Rosenkranz and Mermelstein, 1983). 

HCA could protect against the mutation 2NF-induced by chemical deactivation of the mutagen 

or by inhibiting the nitroreductases and/or O-tranferases enzymatic activation of the mutagen 

(Horn and Ferrao Vargas, 2003), and thus blocking the DNA-damage. Also, HCA could interfer 

with the frameshift mutations at GC sequence level (DeMarini, 2000). Alternatively, HCA, being 

antimutagen also in the post-treatment protocol when the mutation has already occurred, could 

act as bioantimutagens: it might stimulate the DNA repair systems, so interfering with the 

fixation process of mutation; this hypothesis seems to be unlikely because TA98 is a plasmid-

containing strain with an enhanced error-prone DNA repair. 

Noteworthy, in S. typhimurium strains employed in the Ames test, nitroreductases play an 

important role in the metabolic activation of several nitrocompounds (McCoy et al., 1981). Two 

nitroreductases are identified in S. typhimurium: snrA and cnr. They belong to the type of 

oxygen-insensitive NRs involved in nitrocompound bioactivation into mutagens (Koder et al., 

2002). The strains employed in the Ames test are not identical in relation to the presence of snrA 

and cnr. Moreover, it has been proposed that snrA and cnr might exhibit different activity 

towards nitro-substituted compounds (McCoy et al., 1981). Yamada et al. (1997) showed that 

cnr nitroreductase was the major enzyme involved, although snrA activated almost all the 

compounds tested. Accordingly, the mutagenicity of a given chemical may differ in the various 
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Ames tester strains, these being not isogenic in relation to the presence of snrA and cnr genes. 

Even more, Porwollik et al. (2001), showed that hisD3052 (TA1538 and TA98) strains possessed 

a snrA gene deletion. Thus, the 1,8-DNP mutagenicity observed in our experiments was due 

probably by O-acetyltransferase enzymes-mediated activation. As regard 1NP, Salamanca-

Pinzón et al. (2010) demonstred that it was more efficiently activated by cnr nitroreductases. 

Furthermore, results with O-acetyltransferase-overproducing and O-acetyltransferase-deficient 

strains (Watanabe et al., 1990; Espinosa-Aguirre et al., 1999) indicate that 1-NP also undergo O-

acetylation facilitating the formation of a DNA-reactive intermediate. 

In this context, in order to better define the involvemnent of the enzymatic inhibition 

(particularly, the cytoplasmic enzymes nitroreductases and O-acetyltransferases) in the HCA-

antimutagenicity, the substance was also tested in the isogenic TA98NR and TA98 1,8-DNP 

strains against the mutagen 1NP. HCA was able to strongly inhibit the 1-nitropyrene-

mutagenicity in both strains and in almost all treatments. However, the strongest antimutagenic 

activity of HCA was observed in the co-treatment protocol for both strains. According to the 

results obtained in TA98NR (which lacks the “classical” nitroreductase) and TA98 1,8-DNP 

(which lacks O-acetyltransferase) strains, we can suppose that HCA protect against the 

mutagenicity of 1NP mainly by inhibiting both nitroreductase and O-acetyltranferase enzymes, 

but also by chemical reaction with the mutagen. Furthermore, HCA could exert its antimutagenic 

effects by alterating the bacterial membrane permeability (Di Sotto et al., unpublished data). 

At present, further experiments are necessary to explain the mechanisms involved in the 

antimutagenicity of HCA. Taking into account that it has been little investigated and no 

evaluation of the potential effects on DNA have been carried out up to now, our results obtained 

by the bacterial reverse mutation assay can be considered as a starting point for evaluating the 

protective properties of this substance. 
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ANTIMUTAGENIC ACTIVITY OF β-CARYOPHYLLENE (CRY) AND  β-

CARYOPHYLLENE OXIDE (CRYO) AGAINST THE MUTAGENICITY OF 

THE CIGARETTE SMOKE CONDENSED (CSC) 
 

RESULTS 
In line with previuos published study (Di Sotto et al., 2008), the substances was assayed in 

TA98, TA100, WP2uvrA and WP2uvrA/pKM101 strains, in presence of S9, by three different 

experimental protocols (pre-, co- and post-treatment). In preliminary studies, at 700 μg/plate 

(265 μg/ml), the CSC-mutagenicity was submaximal (about 70% mutagenicity), so this 

concentration was used for the antimutagenicity test. β-caryophyllene was able to reduce, in 

statistically significant (p < 0.01 vs. mutagen) and concentration dependent manner, the number 

of CSC-induced revertant colonies in TA98 strain in all treatments (Figure 27).  
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Figure 27. Inhibition (%) by CRY of the CSC-induced mutagenicity in TA98 strain. 
Mutagen: CSC (cigarette smoke condensed). The effect was reported in presence of 
the S9 metabolic activation system and in the three different experimental protocols. 
Values are expressed as mean ± SEM (n = 6). (A) Percentage of inhibition. (B) Cell 
survival. Strong: inhibition >40%; moderate: inhibition between 25% and 40%; 
weak: inhibition <25%. 



 97

According to Negi et al. (2003), the effect was strong in pre- and post-treatment (maximum 

inhibition of 46.2% and 40.9% at the highest concentration of 8 mM), while weak (22.5% 

maximum inhibition) in co-treatment. 

The substance also significantly inhibited the CSC-mutagenicity in TA100 strain; the effect was 

particularly strong in the post-treatment, being the inhibition between 47.09% and 65.96% in the 

range of concentrations tested; the antimutagenicity was also strong, at the highest concentration 

of 8 mM, in the pre- and co-treatment, reaching the inhibition values of 46.2% and 46.4%, 

respectively (Figure 28).  
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Figure 28. Inhibition (%) by CRY of the CSC-induced mutagenicity in TA100 strain. 
Mutagen: CSC (cigarette smoke condensed). The effect was reported in presence of 
the S9 metabolic activation system and in the three different experimental protocols. 
Values are expressed as mean ± SEM (n = 6). (A) Percentage of inhibition. (B) Cell 
survival. Strong: inhibition >40%; moderate: inhibition between 25% and 40%; 
weak: inhibition <25%. 
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A statistically significant (p < 0.05 or p < 0.01 vs. mutagen) inhibition of CSC-mutagenicity was 

also registered in WP2uvrA: the effect was strong in all experimental conditions, reaching, at the 

highest concentration of 8 mM, the inhibition values of 40.9%, 48.0% and 42.2% in the pre-, co- 

and post-treatment, respectively (Figure 29). 
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Figure 29. Inhibition (%) by CRY of the CSC-induced mutagenicity in WP2uvrA strain. 
Mutagen: CSC (cigarette smoke condensed). The effect was reported in presence of 
the S9 metabolic activation system and in the three different experimental protocols. 
Values are expressed as mean ± SEM (n = 6). (A) Percentage of inhibition. (B) Cell 
survival. Strong: inhibition >40%; moderate: inhibition between 25% and 40%; 
weak: inhibition <25%. 
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Finally, β-caryophyllene significantly inhibited the CSC-mutagenicity in WP2uvrA/R strain, 

(Figure 30): the antimutagenic effect was strong in all experimental conditions, reaching, at the 

highest concentration of 8 mM, the inhibition values of 58.9%, 57.9% and 52.1% in the pre-, co- 

and post-treatment respectively.  

In cell survival experiments, none of the concentrations tested were cytotoxic in the presence of 

mutagens, being the viability, with respect to control, from 86% to 104% for TA98, from 82% to 

101% for TA100, from 94% to 102% for WP2uvrA, and from 96% to 104% for WP2uvrA/R 

(Figures 27, 28, 29 and 30). 
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Figure 30. Inhibition (%) by CRY of the CSC-induced mutagenicity in WP2uvrA/R strain. 

Mutagen: CSC (cigarette smoke condensed). The effect was reported in presence of 
the S9 metabolic activation system and in the three different experimental protocols. 
Values are expressed as mean ± SEM (n = 6). (A) Percentage of inhibition. (B) Cell 
survival. Strong: inhibition >40%; moderate: inhibition between 25% and 40%; 
weak: inhibition <25%. 
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Also the ability of β-caryophyllene oxide (CRYO) to inhibit the mutagenicity of the condensed 

smoke from standard 3R4F cigarettes (CSC) in TA98, TA100, WP2uvrA and WP2uvrA/R 

strains, in the presence of the S9-metaboli activator and by using three different experimental 

protocols (pre-treatment, co-treatment and post-treatment), was evaluated. 

CRYO was able to reduce, in statistically significant and concentration dependent manner, the 

number of CSC-induced revertant colonies in TA98 strain in all treatments (Figure 31). 

According to Negi et al. (2003), the effect was strong in the post-treatment (maximum inhibition 

of 49.0% at the highest concentration of 1.5 mM), while moderate in the pre- and co-treatments 

(at the highest concentration of 1.5 mM, 34.4% and 25.6% maximum inhibition respectively).  
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Figure 31: Inhibition (%) by CRYO of the CSC-induced mutagenicity in TA98 strain. 

Mutagen: CSC (cigarette smoke condensed). The effect was reported in presence of 
the S9 metabolic activation system and in the three different experimental protocols. 
Values are expressed as mean ± SEM (n = 6). (A) Percentage of inhibition. (B) Cell 
survival. Strong: inhibition >40%; moderate: inhibition between 25% and 40%; 
weak: inhibition <25%. 
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The substance also significantly inhibited, the CSC-mutagenicity in TA100 strain; the effect was 

strong in all experimental conditions, reaching, at the highest concentration of 1.5 mM, the 

maximum inhibition values of 59.0%, 52.8% and 68.4% in the pre-, co- and post-treatment 

respectively (Figure 32).  
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Figure 32:  Inhibition (%) by CRYO of the CSC-induced mutagenicity in TA100 strain. 

Mutagen: CSC (cigarette smoke condensed). The effect was reported in presence of 
the S9 metabolic activation system and in the three different experimental 
protocols. Values are expressed as mean ± SEM (n = 6). (A) Percentage of 
inhibition. (B) Cell survival. Strong: inhibition >40%; moderate: inhibition between 
25% and 40%; weak: inhibition <25%. 
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A statistically significant inhibition of CSC-mutagenicity was also registered in WP2uvrA: the 

effect was strong in all experimental conditions, reaching, at the highest concentration of 1.5 

mM, the inhibition values of 50.8%, 68.4% and 55.4% in the pre-, co- and post-treatment, 

respectively (Figure 33).  
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Figure 33:  Inhibition (%) by CRYO of the CSC-induced mutagenicity in WP2uvrA strain. 

Mutagen: CSC (cigarette smoke condensed). The effect was reported in presence of 
the S9 metabolic activation system and in the three different experimental protocols. 
Values are expressed as mean ± SEM (n = 6). (A) Percentage of inhibition. (B) Cell 
survival. Strong: inhibition >40%; moderate: inhibition between 25% and 40%; 
weak: inhibition <25%. 
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Finally, β-caryophyllene oxide significantly inhibited the CSC-mutagenicity in WP2uvrA/R 

strain, (Figure 34): the antimutagenic effect was strong in all experimental conditions, reaching, 

at 1.5 mM highest concentration, the inhibition values of 67.4%, 60.3% and 56.4% in the pre-, 

co-, and post-treatment respectively.  

In cell survival experiments, none of the concentrations tested were cytotoxic in the presence of 

mutagens, as the viability, with respect to control, was from 86% to 106% for TA98, from 85% 

to 102% for TA100, from 90% to 101% for WP2uvrA, and from 86% to 109% for WP2uvrA/R 

(Figures 31, 32, 33 and 34). 
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Figure 34: Inhibition (%) by CRYO of the CSC-induced mutagenicity in WP2uvrA/R 

strain. Mutagen: CSC (cigarette smoke condensed). The effect was reported in 
presence of the S9 metabolic activation system and in the three different 
experimental protocols. Values are expressed as mean ± SEM (n = 6). (A) Percentage 
of inhibition. (B) Cell survival. Strong: inhibition >40%; moderate: inhibition 
between 25% and 40%; weak: inhibition <25%. 
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DISCUSSION 
Tobacco smoke is one of the greatest threats to human health as it is responsible for 

malignancies and precancerous lesions in different organs and tissues (Huang and Chen, 2011). 

Although smoking cessation is the better strategy to avoid the development of cancer, former 

smokers continue to have an elevated risk for years after quitting. In this context, 

chemoprevention represents a highly sought-after approach to reduce the risk of smoking 

damage, and the identification of new chemopreventive agents is a very desirable goal.  

Considering that β-caryophyllene and β-caryophyllene oxide are used as cigarette ingredients 

and that, in our previous studies, they showed to be able to inhibit the genotoxicity of some 

environmental carcinogenes, such as 2-nitrofluorene and 2-amino anthracene (Di Sotto et al., 

2010, 2011), in present study, the natural sesquiterpenes β-caryophyllene (CRY) and β-

caryophyllene oxide (CRYO) were evaluated for their potential antimutagenic activity against a 

condensed smoke from standard 3R4F cigarettes (CSC), in the bacterial reverse mutation assay 

on Salmonella typhimurium TA98, TA100 and on Escherichia coli WP2uvrA and 

WP2uvrA/pKM101 strains. 

Preliminary studies were carried out to identify the concentration of CSC to use in the 

antimutagenicity assay. At 700 μg/plate (265 μg/ml), the mutagenic effect of CSC was 

submaximal so this concentration was used for the antimutagenicity test. Three different 

experimental protocols were used to investigate the potential mechanism involved in the 

antimutagenicity of CRY and CRYO (pre-, co- and post-treatment). Antimutagens that are active 

in pre- or co-treatment are defined as desmutagens (De Flora et al., 1988), whereas those active 

in post-treatment are defined as bioantimutagens (De Flora et al., 1998). 

In TA98 strain, β-caryophyllene produced a strong antimutagenic activity against CSC in the 

pre- and post-treatment protocols. Also β-caryophyllene oxide showed, in the same strain, a 

strong antimutagenicity against the CSC in the post-treatment protocols, higher than the other 

sesquiterpene. The antimutagenic effects exerted against CSC by both compounds could be due 

to a physical-chemical or enzymatic interaction of the sesquiterpenes with the mutagen. 

Alternatively, they might aid the reparation of DNA-damage, by promoting the excision system 

repair; however this effect seems unlikely because TA98 is a plasmid-containing strain with an 

enhanced error-prone DNA repair (DeMarini, 2000). β-Caryophyllene exerted an interesting 

antimutagenicity in TA100 strain, particularly strong in the post-treatment. In this context, we 

can hypothesize that CRY was able not only to prevent mutagen-induced damage, but also to 

interact with the mutagen and to stimulate repairing the mutagen-induced damage. Likewise, a 

strong antimutagenicity was produced in WP2uvrA and WP2uvrA/R strains, in protocols 
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applied. Regarding β-caryophyllene oxide, a strong CSC-antimutagenicity was observed in all 

experimental protocols in TA100, WP2uvrA and WP2uvrA/R strains. These results are 

noteworthy, because they show that CRYO it was able not only to prevent the genotoxic damage, 

but also to directly interfere with the mutagen at the intra- or extracellular level and to repair the 

mutagen-induced damage. 

It is important to underline that WP2uvrA/pKM101 is a mutant strains of WP2, in which the 

uvrA marker induces a DNA-repair deficiency (Wilcox et al., 1990). In this strain, the 

susceptibility to mutations is increased by the presence of plasmid pKM101, as this factor 

enhances error-prone repair. As a consequence, it is very sensitive to damage induced by cross-

linking and pro-oxidant mutagens (Mortelmans et al., 2000). The plasmid pKM101 (viz., R 

factor) is related to an increased susceptibility of the strain to both base substitution and 

frameshift mutagenesis by a variety of chemicals and by an increased spontaneous mutation rate 

(Walker, 1985). In WP2uvrA/pKM101, both sesquiterpenes showed the highest antimutagenic 

activity, suggesting a potential protective role of these substances against cross-linking and pro-

oxidant mutagens. Moreover, considering the lipophilic nature of these sesquiterpenes it is 

plausible to hypothesize an interaction with biological membranes by inhibiting the mutagen 

permeability. The unique structure and the presence of a sesquiterpene epoxide function in the β-

caryophyllene oxide could justify an interaction of chemical species with the mutagen. Last, but 

not least, we can also hypothesize the ability of these sesquiterpenes to inhibit the metabolic 

activation of pro-carcinogens present in smoke condensate of cigarettes, in particular aromatic 

amines and nitroarenes (Oda et al., 2001). On the basis of these results, we hypothesize that 

aspecific mechanisms should be involved in the antimutagenicity of CRY and CRYO, being the 

substances effective in strains sensitive to different genotoxic damages (i.e. frameshift and base-

substitution mutations, oxidative stress and DNA alkylation), and in all experimental conditions, 

so acting both as desmutagenic and bioantimutagenic agents (Kada and Shimoi, 1987). The 

hypotheses on the bio-anti-mutagenic mechanisms are more complex and could range from the 

induction of bacterial systems involved in repair of DNA damage (SOS and Ada) to activation of 

specific intracellular signaling pathways (De Flora, 1998). 

The antimutagenic effect of β-caryophyllene and β-caryophyllene oxide here found deserves 

attention; if it should be confirmed in in vivo studies, it could open up new prospects for the use 

of this natural substances in the field of human health, as chemopreventer (Wall et al., 1990; Yen 

and Chen, 1994) or in preventing other diseases linked with occurrence of mutation. 
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MULTIDRUG RESISTANCE (MDR) REVERSAL ASSAY                                 
AND                                                                                       

ABC-TRANSPORTER INHIBITION 
 

RESULTS 
Preliminary cytotoxicity assays 

The CCRF/CEM was the most sensitive cell line to the treatment with the test substances. The 

IC50 values were 212.95 ± 6.36, 311.59 ± 14.36 and 235.18 ± 5.18 µM for α-

hexylcinnamaldehyde (HCA), β-caryophyllene (CRY) and β-caryophyllene oxide (CRYO), 

respectively. The positive control doxorubicin showed an IC50 value of 0.41 ± 0.02 µM. 

Also in P-gp overexpressing CEM/ADR5000 cells, the test substances showed to significantly 

reduce the viability of cells. In this cell line, the IC50 values were 256.52 ± 2.27, 368.48 ± 2.23 

and 297.98 ± 3.33 µM for HCA, CRY and CRYO, respectively. It is noteworthy that the 

resistant cell line CEM/ADR5000 showed a significantly decreased sensitivity when treated with 

the positive control doxorubicin (IC50 = 74.28 ± 0.35 µM) but not when treated with the other 

test substances. CEM/ADR5000 cells were 181.2 fold resistant to doxorubicin but only 1.2 or 1.3 

fold resistant to HCA, CRY and CRYO compared to CCRF/CEM wild-type cells. 

Among the different cell lines, Caco-2 were found to be the more resistant cells to the treatment 

with HCA, CRY and CRYO, but not to the treatment with doxorubicin. Moreover, CRY resulted 

to be less cytotoxic (IC50 = 1103.34 ± 17.32 µM) than HCA (IC50 = 315.66 ± 4.75 µM) and 

CRYO (IC50 = 332.30 ± 3.97 µM). The positive control showed an IC50 value of 5.24 ± 0.66 µM. 

Dose-response curves of the various test substances divided for cell lines are reported in Figures 

35, 36 and 37. 
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Figure 35.  Dose response curve of α-hexylcinnamaldehyde (A), β-caryophyllene (B) and β-
caryophyllene oxide (C) on viability of CCRF/CEM cells using MTT assay. 
Values are expressed as mean ± SEM (n = 9). 
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Figure 36.  Dose response curve of α-hexylcinnamaldehyde (A), β-caryophyllene (B) and β-
caryophyllene oxide (C) on viability of CEM/ADR5000 cells using MTT assay. 
Values are expressed as mean ± SEM (n = 9). 
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Figure 37.  Dose response curve of α-hexylcinnamaldehyde (A), β-caryophyllene (B) and β-

caryophyllene oxide (C) on viability of Caco-2 cells using MTT assay. Values are 
expressed as mean ± SEM (n = 9). 
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α-Hexylcinnamaldehyde 

Co-incubation of doxorubicin with non-toxic concentrations of α-hexylcinnamaldehyde (IC10 = 

50 µM and IC20 = 100 µM) resulted in a significant (p < 0.001) and synergistic increase in its 

cytotoxicity in sensitive CCRF/CEM cell line (Figure 38). 

The IC50 value of doxorubicin decreased 6-fold (from 0.42 ± 0.02 to 0.06 ± 0.004 µM) and 47-

fold (from 0.42 ± 0.02 to 0.008 ± 0.0002 µM) when combined with non-toxic concentrations of 

α-hexylcinnamaldehyde (Figure 39). The combination index (CI) was 0.41 ± 0.02 and 0.49 ± 

0.01 for the lower and highest concentration, respectively. The corresponding isobolograms are 

reported in Figure 40. 
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Figure 38.  Doxorubicin dose response curve on viability of CCRF/CEM cells with and 

without α-hexylcinnamaldehyde. Values are expressed as mean ± SEM (n = 9). 
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Figure 39.  Enhancement of doxorubicin cytotoxicity by combination with α-

hexylcinnamaldehyde in CCRF/CEM cells. A ratio greater than 1 indicates higher 
cytotoxicity enhancement factors. Values are expressed as mean ± SEM (n = 3). 
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Figure 40.  Isobologram analyses in CCRF/CEM cells: IC50 concentrations of doxorubicin are 
plotted on x-axis and IC50 values of α-hexylcinnamaldehyde on y-axes. The line 
connecting these two points is the line of additivity. Points located below the line 
indicate synergy or above the line antagonism, respectively. 
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Furthermore, α-hexylcinnamaldehyde was able to sensitize CCRF/CEM cells to the cytotoxicity 

of β-caryophyllene and β-caryophyllene oxide (Figure 41A and B). 

The combination with α-hexylcinnamaldehyde 50 and 100 µM determined a significant (p < 

0.001) reduction of β-caryophyllene IC50 equal to 2-fold (IC50 decrease from 311.59 ± 14.36 to 

202.44 ± 0.02 µM, CI 0.85 ± 0.03) and 10-fold (IC50 decrease from 311.59 ± 14.36 to 31.47 ± 

0.50 µM, CI 0.55 ± 0.02), respectively. 

Also the β-caryophyllene oxide cytotoxicity was enhanced by combination: the IC50 value was 

reduced from 235.18 ± 5.18 to 81.65 ± 0.85 µM (CI 0.57 ± 0.01) and to 21.38 ± 0.35 µM (CI 

0.54 ± 0.01) by the lower and highest concentration. 

The corresponding reversal ratio and isobolograms are reported in Figures 42 and 43. 
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Figure 41.  β-caryophyllene 
(A) and β-caryophyllene oxide 
(B) dose response curves on 
viability of CCRF/CEM cells 
with and without α-
hexylcinnamaldehyde. Values 
are expressed as mean ± SEM 
(n = 9). 
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Figure 42.  Enhancement of β-caryophyllene (A) and β-caryophyllene oxide (B) cytotoxicity 
by combination with α-hexylcinnamaldehyde in CCRF/CEM cells. A ratio greater 
than 1 indicates higher cytotoxicity enhancement factors. Values are expressed as 
mean ± SEM (n = 3). 
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Figure 43.  Isobologram analyses in CCRF/CEM cells: IC50 concentrations of β-
caryophyllene (A) and β-caryophyllene oxide (B) are plotted on x-axis and IC50 
values of α-hexylcinnamaldehyde on y-axes. The line connecting these two points 
is the line of additivity. Points located below the line indicate synergy or above 
the line antagonism, respectively. 

 

Also leukemia cells (CEM/ADR5000) were significantly sensitized by the combination with IC10 

(100 µM) and IC20 (141 µM) of α-hexylcinnamaldehyde (Figure 44). The IC50 of doxorubicin 

was enhanced 4-fold (IC50 decrease from 74.28 ± 0.35 to 18.22 ± 0.56 µM, CI 0.65 ± 0.01) and 

7-fold (IC50 decrease from 74.28 ± 0.35 to 10.08 ± 0.21 µM, CI 0.70 ± 0.01) respect to the 

doxorubicin alone (Figure 45). According to the combination index, the isobologram analysis 

showed synergistic effect (Figure 46). 
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Figure 44.  Doxorubicin dose response curve on viability of CEM/ADR5000 cells with and 

without α-hexylcinnamaldehyde. Values are expressed as mean ± SEM (n = 9). 
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Figure 45.  Enhancement of doxorubicin cytotoxicity by combination with α-
hexylcinnamaldehyde in CEM/ADR5000 cells. A ratio greater than 1 indicates 
higher cytotoxicity enhancement factors. Values are expressed as mean ± SEM (n 
= 3). 
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Figure 46.  Isobologram analyses in CEM/ADR5000 cells: IC50 concentrations of doxorubicin 
are plotted on x-axis and IC50 values of α-hexylcinnamaldehyde on y-axes. The 
line connecting these two points is the line of additivity. Points located below the 
line indicate synergy or above the line antagonism, respectively. 

 
 

In CEM/ADR5000 cells, co-incubation of β-caryophyllene and β-caryophyllene oxide with non-

toxic concentrations of α-hexylcinnamaldehyde (IC10 = 100 µM and IC20 = 141 µM) resulted in a 

significant (p < 0.001) and synergistic increase in their cytotoxicity (Figure 47A and B).  

The IC50 value of β-caryophyllene decreased 3-fold (from 368.48 ± 2.23 to 126.42 ± 1.12 µM) 

and 7-fold (from 368.48 ± 2.23 to 51.04 ± 1.81 µM) when combined with IC10 and IC20 of α-

hexylcinnamaldehyde (Figure 48A). The combination index (CI) was 0.75 ± 0.003 and 0.71 ± 

0.001 for the lower and highest concentration, respectively. 
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Regarding β-caryophyllene oxide, the IC50 values decreased from 297.98 ± 3.33 to 72.22 ± 0.70 

µM (CI 0.65 ± 0.004) and to 37.67 ± 0.07 µM (CI 0.69 ± 0.006) in combination with non toxic 

concentrations of α-hexylcinnamaldehyde. The cytotoxicity enhancement was equal to 4 and 8-

fold, respectively (Figure 48B). 

According to the combination index, the isobologram analysis showed synergistic effect (Figure 

49). 
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Figure 47.   β-caryophyllene (A) and β-caryophyllene oxide (B) dose response curves on 
viability of CEM/ADR5000 cells with and without α-hexylcinnamaldehyde. 
Values are expressed as mean ± SEM (n = 9). 
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Figure 48.   Enhancement of β-caryophyllene (A) and β-caryophyllene oxide (B) cytotoxicity 
by combination with α-hexylcinnamaldehyde in CEM/ADR5000 cells. A ratio 
greater than 1 indicates higher cytotoxicity enhancement factors. Values are 
expressed as mean ± SEM (n = 3). 
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Figure 49.   Isobologram analyses in CEM/ADR5000 cells: IC50 concentrations of β-
caryophyllene (A) and β-caryophyllene oxide (B) are plotted on x-axis and IC50 
values of α-hexylcinnamaldehyde on y-axes. The line connecting these two points 
is the line of additivity. Points located below the line indicate synergy or above 
the line antagonism, respectively. 

 

 

In Caco-2 cell line, the IC50 value of doxorubicin in combination with IC10 (100 µM) and IC20 

(181 µM) of α-hexylcinnamaldehyde statistically decreased of 3-fold (IC50 decrease from 5.24 ± 

0.66 to 1.86 ± 0.14 µM, CI 0.69 ± 0.01) and 6-fold (IC50 decrease from 5.24 ± 0.66 to 0.82 ± 

0.05 µM, CI 0.74 ± 0.02 and) respect to the doxorubicin alone (Figure 50 and 51). Regarding the 

isobologram analysis, it was in agreement with the combination index and showed a synergistic 

effect (Figure 52). 



 120

Concentration [μM]

0.05 0.1 0.5 1 5 10 50 100 500

Vi
ab

ilit
y 

(%
)

0

25

50

75

100

125

Doxorubicin 
Doxorubicin + α-hexyl cinnamaldehyde 100 μM (IC10)
Doxorubicin + α-hexyl cinnamaldehyde 181 μM (IC20)

 
 

Figure 50.   Doxorubicin dose response curve on viability of Caco-2 cells with and without α-
hexylcinnamaldehyde. Values are expressed as mean ± SEM (n = 9). 
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Figure 51.   Enhancement of doxorubicin cytotoxicity by combination with α-
hexylcinnamaldehyde in Caco-2 cells. A ratio greater than 1 indicates higher 
cytotoxicity enhancement factors. Values are expressed as mean ± SEM (n = 3). 
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Figure 52.   Isobologram analyses in Caco-2 cells: IC50 concentrations of doxorubicin are 
plotted on x-axis and IC50 values of α-hexylcinnamaldehyde on y-axes. The line 
connecting these two points is the line of additivity. Points located below the line 
indicate synergy or above the line antagonism, respectively. 

 

The co-incubation of β-caryophyllene with non-toxic concentrations of α-hexylcinnamaldehyde 

(IC10 = 100 µM and IC20 = 181 µM), in Caco-2 cell line, resulted in a significant (p < 0.01 or p < 

0.001) increase in its cytotoxicity (Figure 53A). 

The IC50 value of β-caryophyllene decreased from 1103.34 ± 17.32 to 907.53 ± 23.56 µM (CI 

1.2 ± 0.01) and from 1103.34 ± 17.32 to 633.34 ± 21.68 µM (CI 1.2 ± 0.01) when combined with 

both concentrations of α-hexylcinnamaldehyde. The reversal ratio indicated a cytotoxicity 

enhancement equal to 1 and 2-fold in presence of IC10 and IC20 of chemosensitizer (Figure 54A). 

Once again, the isobologram analysis was in agreement with the combination index and it 

showed antagonistic effect (Figure 55A). 
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Also the cytotoxicity of β-caryophyllene oxide was statistically (p < 0.001) enhanced by the 

combination with IC10 and IC20 of α-hexylcinnamaldehyde (Figure 53B). The IC50 value of β-

caryophyllene oxide decreased from 332.30 ± 3.97 to 157.99 ± 2.25 µM (RR 2, CI 0.8 ± 0.003) 

and from 332.30 ± 3.97 to 122.03 ± 1.62 µM (RR 2.7, CI 0.9 ± 0.01) when combined with both 

concentrations of α-hexylcinnamaldehyde (Figure 54B). 

The combination index (CI) was 0.80 ± 0.003 and 0.95 ± 0.001 for the lower and highest 

concentration, respectively. The isobologram analysis, according to the combination index, 

showed a synergistic effect (Figure 55B). 
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Figure 53.   β-caryophyllene (A) and β-caryophyllene oxide (B) dose response curves on 
viability of Caco-2 cells with and without α-hexylcinnamaldehyde. Values are 
expressed as mean ± SEM (n = 9). 

 



 123

HCA 100 μM HCA 181 μM
0

1

2

3

4

5

6

7
R

ev
er

sa
l R

at
io

 HCA 100 μM HCA 181 μM
0

1

2

3

4

5

6

7

R
ev

er
sa

l R
at

io

 
 

Figure 54.   Enhancement of β-caryophyllene (A) and β-caryophyllene oxide (B) cytotoxicity 
by combination with α-hexylcinnamaldehyde in Caco-2 cells. A ratio greater than 
1 indicates higher cytotoxicity enhancement factors. Values are expressed as mean 
± SEM (n = 3). 
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Figure 55.   Isobologram analyses in Caco-2 cells: IC50 concentrations of β-caryophyllene (A) 
and β-caryophyllene oxide (B) are plotted on x-axis and IC50 values of α-
hexylcinnamaldehyde on y-axes. The line connecting these two points is the line 
of additivity. Points located below the line indicate synergy or above the line 
antagonism, respectively. 
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The cytotoxicity and reversal data presented above suggest that α-hexylcinnamaldehyde 

effectively interfere with at least one mechanism of drug inactivation, especially drug export. To 

explore this possibility, rhodamine123 retention assay was performed to determine ABC-

transporter activity in the cells.  

The intracellular fluorescence of Rho123 was significantly increased in a dose-dependent 

manner, as shown in Figure 56, in Caco-2 cells treated with the test substance. Results were 

expressed as % inhibition of P-gp relative to the positive control verapamil (100%). The α-

hexylcinnamaldehyde was more active than verapamil to inhibite the MDR efflux pumps. At the 

same concentration of the positive control (20 µM), the fluorescence intensity was 134.6 ± 5.5. 

These results indicate that α-hexylcinnamaldehyde is inhibitor of ABC-transporters. 

In addition, efflux assays were quantified using flow cytometry in CEM/ADR5000 cells. The 

intracellular fluorescence of Rho123 was significantly increased in a dose-dependent manner in 

CEM/ADR5000 cells when treated with α-hexylcinnamaldehyde. Similar to Caco-2 cells, the α-

hexylcinnamaldehyde was active as a P-gp inhibitor, as shown in Figure 57. At the concentration 

of 10 µM, the fluorescence intensity for the test compound was 106.8 ± 5.32 %. The figure 58 

shows flow cytometry histograms of α-hexylcinnamaldehyde. 
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Figure 56.   Effect of α-hexylcinnamaldehyde on Rho 123 retention in Caco-2 cells. 
Fluorescence intensity was measured by spectrofluorometry. Data are presented as 
means ± ES of fluorescence intensity % related to verapamil as positive control 
(dotted line). 

 

 

 



 125

Fl
uo

re
sc

en
ce

 in
te

ns
ity

 %

0

50

100

150

200

250

300

350

10 μM 50 μM 100 μM 250 μM 500 μM  
 

Figure 57.   Effect of α-hexylcinnamaldehyde on Rho 123 retention in CEM/ADR5000 cells. 
Fluorescence intensity was measured using FACS. Data are presented as means ± 
ES of fluorescence intensity % related to verapamil as positive control (dotted 
line). 
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Figure 58.  Flow cytometry 
histograms of α-hexylcinnamaldehyde (A-
E). The fluorescence intensity was shifted 
to the right side indicating that the 
resistance cell line CEM/ADR5000 retain 
the Rho 123 as response to treatment with 
MDR1 inhibitors. Fluorescence intensity 
was measured using FACS. 
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β-Caryophyllene  

Co-incubation of doxorubicin with very low and non-toxic concentrations of β-caryophyllene 

(IC10 = 185 µM and IC20 = 224 µM), in sensitive CCRF/CEM cell line, resulted in a reduction, 

but not statistically significant, of doxorubicin IC50 (from 0.42 ± 0.02 to 0.35 ± 0.005 and to 0.31 

± 0.007 µM, for the lower and the highest concentrations, respectively) (Figure 59).  
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Figure 59.   Doxorubicin dose response curve on viability of CCRF/CEM cells with and 

without β-caryophyllene. Values are expressed as mean ± SEM (n = 9). 
 

Conversely, the combination of α-hexylcinnamaldehyde and β-caryophyllene oxide with IC10 

and IC20 of β-caryophyllene resulted in a significant (p < 0.001) increase in their cytotoxicity 

(Figure 60A and B). 

The IC50 value of α-hexylcinnamaldehyde decreased 2.5-fold (from 212.95 ± 6.36 to 83.50 ± 

1.81 µM) and 4-fold (from 212.95 ± 6.36 to 51.92 ± 0.22 µM) when combined with non-toxic 

concentrations of β-caryophyllene (Figure 61A). The combination index (CI) was 0.97 ± 0.03 

and 0.93 ± 0.03 for the lower and highest concentrations, respectively; it indicates an additive 

effect. 

Also the IC50 value of β-caryophyllene oxide decreased from 235.18 ± 5.18 to 186.45 ± 1.54 and 

to 136.25 ± 4.93 µM in combination with IC10 and IC20 of β-caryophyllene (Figure 61B). In this 

context, the combination index indicates an antagonistic affect, being equal to 1.3 ± 0.03  and 1.3 

± 0.02 for the lower and highest concentrations of β-caryophyllene. 

The corresponding isobolograms are reported in Figure 62. 
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Figure 60.   α-hexylcinnamaldehyde (A) and β-caryophyllene oxide (B) dose response curves 
on viability of CCRF/CEM cells with and without β-caryophyllene. Values are 
expressed as mean ± SEM (n = 9). 
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Figure 61.   Enhancement of α-hexylcinnamaldehyde (A) and β-caryophyllene oxide (B) 
cytotoxicity by combination with β-caryophyllene in CCRF/CEM cells. A ratio 
greater than 1 indicates higher cytotoxicity enhancement factors. Values are 
expressed as mean ± SEM (n = 3). 
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Figure 62.   Isobologram analyses in CCRF/CEM cells: IC50 concentrations of α-
hexylcinnamaldehyde (A) and β-caryophyllene oxide (B) are plotted on x-axis and 
IC50 values of β-caryophyllene on y-axes. The line connecting these two points is 
the line of additivity. Points located below the line indicate synergy or above the 
line antagonism, respectively. 

 

 

 

Also leukemia cells (CEM/ADR5000) were significantly (p < 0.001) sensitized by the 

combination with IC10 (180 µM) and IC20 (234 µM) of β-caryophyllene (Figure 63). The IC50 of 

doxorubicin was enhanced 1.5-fold (IC50 decrease from 74.28 ± 0.35 to 47.23 ± 0.86 µM, CI 1.1 

± 0.02) and 2-fold (IC50 decrease from 74.28 ± 0.35 to 35.35 ± 1.33 µM, CI 1.1 ± 0.02) respect 

to the doxorubicin alone (Figure 64). According to the combination index, the isobologram 

analysis showed antagonistic effect (Figure 65). 
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Figure 63.   Doxorubicin dose response curve on viability of CEM/ADR5000 cells with and 

without  β-caryophyllene. Values are expressed as mean ± SEM (n = 9). 
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Figure 64.   Enhancement of doxorubicin cytotoxicity by combination with β-caryophyllene in 

CEM/ADR5000 cells. A ratio greater than 1 indicates higher cytotoxicity 
enhancement factors. Values are expressed as mean ± SEM (n = 3). 
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Figure 65.   Isobologram analyses in CEM/ADR5000 cells: IC50 concentrations of doxorubicin 
are plotted on x-axis and IC50 values of β-caryophyllene on y-axes. The line 
connecting these two points is the line of additivity. Points located below the line 
indicate synergy or above the line antagonism, respectively. 

 

In CEM/ADR5000 cells, co-incubation of α-hexylcinnamaldehyde and β-caryophyllene oxide 

with non-toxic concentrations of β-caryophyllene (IC10 = 180 µM and IC20 = 234 µM) resulted in 

a significant (p < 0.001) and synergistic increase in their cytotoxicity (Figure 66A and B).  

The IC50 value of α-hexylcinnamaldehyde decreased 3-fold (from 256.52 ± 2.27 to 86.31 ± 0.27 

µM) and 3.4-fold (from 256.52 ± 2.27 to  73.98 ± 2.11 µM) when combined with EC10 and EC20 

of β-caryophyllene (Figure 67A). The combination index (CI) was 0.84 ± 0.001 and 0.93 ± 0.001 

for the lower and highest concentration, respectively.  

As regarding β-caryophyllene oxide, the IC50 values decreased from 297.98 ± 3.33 to 95.98 ± 

2.40 µM (CI 0.84 ± 0.001) and to 80.65 ± 1.71 µM (CI 0.93 ± 0.001) in combination with non 

toxic concentrations of β-caryophyllene. The cytotoxicity enhancement was equal to 3 and 3.5-

fold, respectively (Figure 67B). 

According to the combination index, the isobologram analysis showed synergistic effect (Figure 

68A and B). 
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Figure 66.   α-hexylcinnamaldehyde (A) and β-caryophyllene oxide (B) dose response curves 

on viability of CEM/ADR5000 cells with and without β-caryophyllene. Values 
are expressed as mean ± SEM (n = 9). 
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Figure 67.   Enhancement of α-hexylcinnamaldehyde (A) and β-caryophyllene oxide (B) 
cytotoxicity by combination with β-caryophyllene in CEM/ADR5000 cells. A 
ratio greater than 1 indicates higher cytotoxicity enhancement factors. Values are 
expressed as mean ± SEM (n = 3). 
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Figure 68.   Isobologram analyses in CEM/ADR5000 cells: IC50 concentrations of α-
hexylcinnamaldehyde (A) and β-caryophyllene oxide (B) are plotted on x-axis and 
IC50 values of β-caryophyllene on y-axes. The line connecting these two points is 
the line of additivity. Points located below the line indicate synergy or above the 
line antagonism, respectively. 

 

 



 134

In Caco-2 cell line, only the combination with IC20 (644 µM) of β-caryophyllene determined a 

statistically (p < 0.001) decrease of the IC50 value of doxorubicin (from 5.24 ± 0.66 to 1.15 ± 

0.003 µM, CI 0.81 ± 0.03). Also the combination with IC10 of β-caryophyllene reduced the IC50 

value of doxorubicin, but not in a statistically significant manner (from 5.24 ± 0.66 to 3.71 ± 

0.05 µM) (Figure 69). The enhancement of cytotoxicity of the antitumoral agent in combination 

with 644 µM of β-caryophyllene was equal to 4.5-fold (Figure 70). As regarding the isobologram 

analysis, it was in agreement with the combination index and it showed a synergistic effect 

(Figure 71). 
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Figure 69.   Doxorubicin dose response curve on viability of Caco-2 cells with and without β-

caryophyllene. Values are expressed as mean ± SEM (n = 9). 
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Figure 70.   Enhancement of doxorubicin cytotoxicity by combination with β-caryophyllene in 
Caco-2 cells. A ratio greater than 1 indicates higher cytotoxicity enhancement 
factors. Values are expressed as mean ± SEM (n = 3). 
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Figure 71.   Isobologram analyses in Caco-2 cells: IC50 concentrations of doxorubicin is 
plotted on x-axis and IC50 values of β-caryophyllene on y-axes. The line 
connecting these two points is the line of additivity. Points located below the line 
indicate synergy or above the line antagonism, respectively. 

 

 

The co-incubation of α-hexylcinnamaldehyde with non-toxic concentrations of β-caryophyllene 

(IC10 = 470 µM and IC20 = 644 µM), in Caco-2 cell line, resulted in a significant (p < 0.001) 

increase in its cytotoxicity (Figure 72A). 

The IC50 value of α-hexylcinnamaldehyde decreased from 315.66 ± 4.75 to 200.83 ± 4.09 µM 

(CI 1.1 ± 0.01) and from 315.66 ± 4.75 to 184.33 ± 3.36 µM (CI 1.2 ± 0.01) when combined 

with both concentrations of β-caryophyllene. The reversal ratio indicated a cytotoxicity 

enhancement equal to 1.5 and 1.6-fold in presence of IC10 and IC20 of chemosensitizer (Figure 

73A). In this context, the isobologram analysis was in agreement with the combination index and 

it showed antagonistic effect (Figure 74A). 

Also the cytotoxicity of β-caryophyllene oxide was enhanced by the combination with IC10 and 

IC20 of β-caryophyllene, but just in the second case it was statistically significant (p < 0.001) 

(Figure 72B). The IC50 value of β-caryophyllene oxide decreased from 332.30 ± 3.97 to 297.07 ± 

4.89 µM (RR 1.1) and from 332.30 ± 3.97 to 246.21 ± 9.78 µM (RR 1.3 , CI 1.4 ± 0.01) when 

combined with both concentrations of β-caryophyllene (Figure 73B). 
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The isobologram analysis, according to the combination index, showed an antagonistic effect 

(Figure 74B). 

10 19 39 78 156 312 625 1250 2500 5000

0

25

50

75

100

125

α-hexyl cinnamaldehyde
α-hexyl cinnamaldehyde + β-caryophyllene 470 μM (IC10)

α-hexyl cinnamaldehyde + β-caryophyllene 644 μM (IC20)

Concentration [μM]

Vi
ab

ili
ty

 (%
)

A

 

Concentration [μM]

10 19 39 78 156 312 625 1250 2500 5000

Vi
ab

ilit
y 

(%
)

0

25

50

75

100

125B

β-caryophyllene oxide
β-caryophyllene oxide + β-caryophyllene 470 μM (IC10)
β-caryophyllene oxide + β-caryophyllene 644 μM (IC20)  

Figure 72.   α-hexylcinnamaldehyde (A) and β-caryophyllene oxide (B) dose response curves 
on viability of Caco-2 cells with and without β-caryophyllene. Values are 
expressed as mean ± SEM (n = 9). 

 

 

CRY 470 μM CRY 644 μM
0

1

2

3

4

5

6

7A

R
ev

er
sa

l R
at

io

 

CRY 470 μM CRY 644 μM
0

1

2

3

4

5

6

7B

R
ev

er
sa

l R
at

io

 
 

Figure 73.   Enhancement of α-hexylcinnamaldehyde (A) and β-caryophyllene oxide (B) 
cytotoxicity by combination with  β-caryophyllene in Caco-2 cells. A ratio greater 
than 1 indicates higher cytotoxicity enhancement factors. Values are expressed as 
mean ± SEM (n = 3). 
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Figure 74.   Isobologram analyses in Caco-2 cells: IC50 concentrations of α-
hexylcinnamaldehyde (A) and β-caryophyllene oxide (B) are plotted on x-axis and 
IC50 values of β-caryophyllene on y-axes. The line connecting these two points is 
the line of additivity. Points located below the line indicate synergy or above the 
line antagonism, respectively. 
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The cytotoxicity and reversal data presented above suggest that β-caryophyllene effectively 

interfere with at least one mechanism of drug inactivation, especially drug export. To explore 

this possibility, rhodamine123 retention assay was performed to determine ABC-transporter 

activity in the cells.  

The intracellular fluorescence of Rho123 was significantly increased in a dose-dependent 

manner, as shown in Figure 75, in Caco-2 cells which were treated with the test substance. 

Results were expressed as % inhibition of P-gp relative to the positive control verapamil (100%). 

β-Caryophyllene was able to inhibite the MDR efflux pumps. At the same concentration of the 

positive control (20 µM), the fluorescence intensity was 99.2 ± 2.4%. These results indicate that 

the test compound is an inhibitor of ABC-transporters. 

In addition, efflux assays were quantified using flow cytometry in CEM/ADR5000 cells. The 

intracellular fluorescence of Rho123 was significantly increased in CEM/ADR5000 cells when 

treated with CRY. β-caryophyllene (Figure 76) inhibited the P-gp pump, but with less potency 

respect to the positive control verapamil. At the concentration of 10 µM, the fluorescence 

intensity was 79.0 ± 3.4% for β-caryophyllene. The figure 77 shows flow cytometry histograms 

of β-caryophyllene. 
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Figure 75.   Effect of β-caryophyllene on Rho 123 retention in Caco-2 cells. Fluorescence 
intensity was measured by spectrofluorometry. Data are presented as means ± ES 
of fluorescence intensity % related to verapamil as positive control (dotted line). 
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Figure 76.   Effect of β-caryophyllene on Rho 123 retention in CEM/ADR5000 cells. 
Fluorescence intensity was measured using FACS. Data are presented as means ± 
ES of fluorescence intensity % related to verapamil as positive control (dotted 
line). 
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Figure 77.   Flow cytometry 

histograms β-caryophyllene (A-E). 

The fluorescence intensity was shifted 

to the right side indicating that the 

resistance cell line CEM/ADR5000 

retain the Rho 123 as response to 

treatment with MDR1 inhibitors. 

Fluorescence intensity was measured 

using FACS. 
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β-Caryophyllene oxide 

Co-incubation of doxorubicin with very low and non-toxic concentrations of β-caryophyllene 

oxide (IC10 = 50 µM and IC20 = 100 µM), in sensitive CCRF/CEM cell line, resulted in a 

significant (p < 0.001) increase of doxorubicin cytotoxicity (Figure 78).  

The IC50 value of doxorubicin decreased 4-fold (from 0.42 ± 0.02 to 0.10 ± 0.01µM) and 6-fold 

(from 0.42 ± 0.02 to 0.06 ± 0.001 µM) when combined with non-toxic concentrations of β-

caryophyllene oxide (Figure 79). The combination index (CI) was equal to 0.49 ± 0.05 and 0.58 

± 0.01 for the lower and highest concentration, respectively, and it indicated synergistic effect. 

The corresponding isobolograms are reported in Figure 80. 
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Figure 78.   Doxorubicin dose response curve on viability of CCRF/CEM cells with and 
without  β-caryophyllene oxide. Values are expressed as mean ± SEM (n = 9). 
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Figure 79.   Enhancement of doxorubicin cytotoxicity by combination with β-caryophyllene 

oxide in CCRF/CEM cells. A ratio greater than 1 indicates higher cytotoxicity 
enhancement factors. Values are expressed as mean ± SEM (n = 3). 
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Figure 80.   Isobologram analyses in CCRF/CEM cells: IC50 concentrations of doxorubicin are 
plotted on x-axis and IC50 values of β-caryophyllene on y-axes. The line 
connecting these two points is the line of additivity. Points located below the line 
indicate synergy or above the line antagonism, respectively. 

 

 

 

Also, the combination of α-hexylcinnamaldehyde and β-caryophyllene with IC10 and IC20 of β-

caryophyllene oxide resulted in a significant (p < 0.001) increase in their cytotoxicity (Figure 

81A and B). 

The IC50 value of α-hexylcinnamaldehyde decreased 3-fold (from 212.95 ± 6.36 to 68.04 ± 1.15 

µM) and 5-fold (from 212.95 ± 6.36 to 36.52 ± 2.28 µM) when combined with non-toxic 

concentrations of β-caryophyllene (Figure 82A). The combination index (CI) was 0.52 ± 0.01 

and 0.60 ± 0.01 for the lower and highest concentrations, respectively; CI indicated a synergistic 

effect, as the isobolograms (Figure 83A). 

Furthermore, the IC50 value of β-caryophyllene decreased from 311.59 ± 14.36 to 276.17 ± 4.03 

and to 253.89 ± 2.91 µM (RR , CI 1.2 ± 0.04) in combination with IC10 and IC20 of β-

caryophyllene oxide (Figure 82B), but only in the second case was statistically significant. In 

this context, the combination index indicated an antagonistic affect and it was in agreement with 

the isobologram analysis (Figure 83B). 
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Figure 81.   α-hexylcinnamaldehyde (A) and β-caryophyllene (B) dose response curves on 
viability of CCRF/CEM cells with and without β-caryophyllene oxide. Values are 
expressed as mean ± SEM (n = 9). 
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Figure 82.   Enhancement of α-hexylcinnamaldehyde (A) and β-caryophyllene (B) 

cytotoxicity by combination with β-caryophyllene oxide in CCRF/CEM cells. A 
ratio greater than 1 indicates higher cytotoxicity enhancement factors. Values are 
expressed as mean ± SEM (n = 3). 
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Figure 83.   Isobologram analyses in CCRF/CEM cells: IC50 concentrations of α-
hexylcinnamaldehyde (A) and β-caryophyllene (B) are plotted on x-axis and IC50 
values of β-caryophyllene oxide on y-axes. The line connecting these two points 
is the line of additivity. Points located below the line indicate synergy or above 
the line antagonism, respectively. 
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Also leukemia cells (CEM/ADR5000) were significantly (p < 0.001) sensitized by the 

combination with IC10 (158 µM) and IC20 (200 µM) of β-caryophyllene oxide (Figure 84). The 

IC50 of doxorubicin was enhanced 1.6-fold (IC50 decrease from 74.28 ± 0.35 to 45.79 ± 1.12 µM, 

CI 1.2 ± 0.03) and 2.6-fold (IC50 decrease from 74.28 ± 0.35 to 29.44 ± 0.70 µM, CI 1.1 ± 0.02) 

respect to the doxorubicin alone (Figure 85). According to the combination index, the 

isobologram analysis showed an antagonistic effect (Figure 86). 
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Figure 84.   Doxorubicin dose response curve on viability of CEM/ADR5000 cells with and 
without  β-caryophyllene oxide. Values are expressed as mean ± SEM (n = 9). 
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Figure 85.   Enhancement of doxorubicin cytotoxicity by combination with β-caryophyllene 

oxide in CEM/ADR5000 cells. A ratio greater than 1 indicates higher cytotoxicity 
enhancement factors. Values are expressed as mean ± SEM (n = 3). 
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Figure 86.   Isobologram analyses in CEM/ADR5000 cells: IC50 concentrations of doxorubicin 
are plotted on x-axis and IC50 values of β-caryophyllene oxide on y-axes. The line 
connecting these two points is the line of additivity. Points located below the line 
indicate synergy or above the line antagonism, respectively. 

 

 

In CEM/ADR5000 cells, co-incubation of α-hexylcinnamaldehyde and β-caryophyllene with 

non-toxic concentrations of β-caryophyllene oxide (IC10 = 158 µM and IC20 = 200 µM) resulted 

in a significant (p < 0.001) increase in their cytotoxicity (Figure 87A and B).  

The IC50 value of α-hexylcinnamaldehyde decreased 2.8-fold (from 256.52 ± 2.27 to 84.80 ± 

2.94 µM) and 3.5-fold (from 256.52 ± 2.27 to 73.26 ± 0.06 µM) when combined with IC10 and 

IC20 of β-caryophyllene oxide (Figure 88A). The combination index (CI) was 0.90 ± 0.002 and 

0.97 ± 0.01 for the lower and highest concentration, respectively.  

Regarding as β-caryophyllene, the IC50 values decreased from 368.48 ± 2.23 to 255.08 ± 3.05 

µM (CI 1.3 ± 0.002) and to 194.13 ± 3.98 µM (CI 1.2 ± 0.001) in combination with non toxic 

concentrations of β-caryophyllene oxide. The cytotoxicity enhancement was equal to 1.4 and 

1.8-fold, respectively (Figure 88B). 

According to the combination index, the isobologram analysis showed synergistic effect for the 

combination between α-hexylcinnamaldehyde and β-caryophyllene oxide, and antagonistic effect 

for the combination between β-caryophyllene and β-caryophyllene oxide (Figure 89A and B). 
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Figure 87.   α-hexylcinnamaldehyde (A) and β-caryophyllene (B) dose response curves on 
viability of CEM/ADR5000 cells with and without β-caryophyllene oxide. Values 
are expressed as mean ± SEM (n = 9). 
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Figure 88.   Enhancement of α-hexylcinnamaldehyde (A) and β-caryophyllene (B) 
cytotoxicity by combination with β-caryophyllene oxide in CEM/ADR5000 cells. 
A ratio greater than 1 indicates higher cytotoxicity enhancement factors. Values 
are expressed as mean ± SEM (n = 3). 
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Figure 89.   Isobologram analyses in CEM/ADR5000 cells: IC50 concentrations of α-
hexylcinnamaldehyde (A) and β-caryophyllene (B) are plotted on x-axis and IC50 
values of β-caryophyllene oxide on y-axes. The line connecting these two points 
is the line of additivity. Points located below the line indicate synergy or above 
the line antagonism, respectively. 

 

 

In Caco-2 cell line, the combination with IC10 (100 µM) and IC20 (248 µM) of β-caryophyllene 

oxide determined a statistically (p < 0.01 and p < 0.001) decrease of the IC50 value of 

doxorubicin (Figure 90). The enhancement of the antitumoral agent cytotoxicity was equal to 2-

fold (IC50 decrease from 5.24 ± 0.66 to 2.57 ± 0.04 µM, CI 0.82 ± 0.06) and 4.7-fold (IC50 

decrease from 5.24 ± 0.66 to 1.02 ± 0.06 µM, CI 0.96 ± 0.03) in combination with the lower and 

the highest concentrations of β-caryophyllene oxide, respectively (Figure 91). Regarding as the 



 149

isobologram analysis, it was in agreement with the combination index and it showed a 

synergistic effect (Figure 92). 
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Figure 90.   Doxorubicin dose response curve on viability of Caco-2 cells with and without β-

caryophyllene oxide. Values are expressed as mean ± SEM (n = 9). 
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Figure 91.   Enhancement of doxorubicin cytotoxicity by combination with β-caryophyllene 

oxide in Caco-2 cells. A ratio greater than 1 indicates higher cytotoxicity 
enhancement factors. Values are expressed as mean ± SEM (n = 3). 
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Figure 92.   Isobologram analyses in Caco-2 cells: IC50 concentrations of doxorubicin is 
plotted on x-axis and IC50 values of β-caryophyllene oxide on y-axes. The line 
connecting these two points is the line of additivity. Points located below the line 
indicate synergy or above the line antagonism, respectively. 

 

 

The co-incubation of α-hexylcinnamaldehyde with non-toxic concentrations of β-caryophyllene 

oxide (IC10 = 100 µM and IC20 = 248 µM), in Caco-2 cell line, resulted in a significant (p < 

0.001) increase in its cytotoxicity (Figure 93A). 

The IC50 value of α-hexylcinnamaldehyde decreased from 315.66 ± 4.75 to 189.30  ± 4.10 µM 

(CI 0.93 ± 0.01) and from 315.66 ± 4.75 to 174.32 ± 4.03 µM (CI 1.3 ± 0.01) when combined 

with both concentrations of β-caryophyllene oxide. The reversal ratio indicated a cytotoxicity 

enhancement equal to 1.6 and 1.7-fold in presence of IC10 and IC20 of chemosensitizer (Figure 

94A). In this context, the isobologram analysis was in agreement with the combination index and 

it showed synergistic effect for the combination with the lower concentration and antagonistic 

effect with the highest concentration (Figure 95A). 

Also the cytotoxicity of β-caryophyllene was enhanced by the combination with IC10 and IC20 of 

β-caryophyllene oxide, but just in the second case it was statistically significant (p < 0.001) 

(Figure 93B). The IC50 value of β-caryophyllene decreased from 1103.34 ± 17.32 to 1034.01 ± 

18.97 µM (RR 1) and from 1103.34 ± 17.32 to 814.21 ± 15.77 µM (RR 1.3 , CI 1.5 ± 0.01) when 

combined with both concentrations of β-caryophyllene oxide (Figure 94B). 

The isobologram analysis, according to the combination index, showed an antagonistic effect 

(Figure 95B). 
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Figure 93.   α-hexylcinnamaldehyde (A) and β-caryophyllene (B) dose response curves on 

viability of Caco-2 cells with and without β-caryophyllene oxide. Values are 
expressed as mean ± SEM (n = 9). 
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Figure 94.   Enhancement of α-hexylcinnamaldehyde (A) and β-caryophyllene (B) 
cytotoxicity by combination with β-caryophyllene oxide in Caco-2 cells. A ratio 
greater than 1 indicates higher cytotoxicity enhancement factors. Values are 
expressed as mean ± SEM (n = 3). 
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Figure 95.   Isobologram analyses in Caco-2 cells: IC50 concentrations of α-
hexylcinnamaldehyde (A) and β-caryophyllene (B) are plotted on x-axis and IC50 
values of β-caryophyllene oxide on y-axes. The line connecting these two points 
is the line of additivity. Points located below the line indicate synergy or above 
the line antagonism, respectively. 
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The cytotoxicity and reversal data presented above suggest that β-caryophyllene oxide 

effectively interfere with at least one mechanism of drug inactivation, especially drug export. To 

explore this possibility, rhodamine123 retention assay was performed to determine ABC-

transporter activity in the cells. 

The intracellular fluorescence of Rho123 was significantly increased in a dose-dependent 

manner, as shown in Figure 96, in Caco-2 cells which were treated with the test substances. 

Results were expressed as % inhibition of P-gp relative to the positive control verapamil (100%). 

β-caryophyllene oxide was able to inhibite the MDR efflux pumps. At the same concentration of 

the positive control (20 µM), the fluorescence intensity was 101.6 ± 3.4%. These results indicate 

that the test compound is inhibitor of ABC-transporters. 

In addition, efflux assays were quantified using flow cytometry in CEM/ADR5000 cells. The 

intracellular fluorescence of Rho123 was significantly increased in CEM/ADR5000 cells when 

treated with β-caryophyllene oxide. At the concentration of 10 µM, CRYO (Figure 97) inhibited 

the P-gp pump with the same potency respect to the positive control verapamil. The fluorescence 

intensity was 108.4 ± 2.08 % for β-caryophyllene oxide. The figure 98 shows flow cytometry 

histograms of β-caryophyllene oxide. 
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Figure 96.   Effect of β-caryophyllene oxide on Rho 123 retention in Caco-2 cells. 
Fluorescence intensity was measured by spectrofluorometry. Data are presented as 
means ± ES of fluorescence intensity % related to verapamil as positive control 
(dotted line). 
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Figure 97.   Effect of β-caryophyllene oxide on Rho 123 retention in CEM/ADR5000 cells. 
Fluorescence intensity was measured using FACS. Data are presented as means ± 
ES of fluorescence intensity % related to verapamil as positive control (dotted 
line). 
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Figure 98. 

Flow cytometry histograms 
of β-caryophyllene oxide (A-
E). The fluorescence 
intensity was shifted to the 
right side indicating that the 
resistance cell line 
CEM/ADR5000 retain the 
Rho 123 as response to 
treatment with MDR1 
inhibitors. Fluorescence 
intensity was measured using 
FACS. 
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DISCUSSION 
α-Hexylcinnamaldehyde 

α-Hexylcinnamaldehyde is a synthetic α,β-unsaturated aldehyde naturally-derived and 

used as ingredient in many personal care (perfumes, creams, shampoos, etc.) and household 

products, and as additive in food and pharmaceutical industry (Schnuch et al., 2007). 

In the present study, we have first tested the potential cytotoxicity of α-hexylcinnamaldehyde in 

human sensitive (CCRF/CEM) and resistant (CEM/ADR5000 and Caco-2) cancer cell lines. The 

substance did not cause substantial cell growth inhibition in sensitive and resistant cell lines 

(IC50 values between 212.95 and 315.66 µM). CCRF/CEM and Caco-2 cells were the more and 

less sensitive lines to HCA-cytotoxicity. 

Furthermore, α-hexylcinnamaldehyde was able to synergistically enhance the doxorubicin-

cytotoxicity, acting as a chemosensitizer. Particularly, in CCRF/CEM, doxorubicin-cytotoxicity 

was enhanced 6-fold and 47-fold. These results is notherworty because a reduction in the dose of 

antitumoral drug, while maintaining the same clinical effect, allows to reduce the toxicity often 

associated with chemotherapy.  

The highest cytotoxicity showed in combination experiments could be caused by a multiple 

target attack of HCA. In fact, from a chemical point of view, α-hexylcinnamaldehyde is a 

synthetic α,β-unsaturated aldehyde, characterized by the presence of a carbonyl group containing 

a polarized carbon–oxygen double bond. The marked difference in the electronegativity between 

the oxygen and the carbon atoms makes this group able to react with electron-rich biological 

macromolecules, such as phospholipids, proteins and DNA, while their mediated effects vary 

from physiological and homeostatic to cytotoxic, mutagenic or carcinogenic (Voulgaridou et al., 

2011). Besides, HCA is potentially more reactive than a simple aldehyde, as it also possesses a 

double bond between carbons 2 and 3 (α and β respectively). The conjugation of the unsaturated 

function with the carbonyl group makes the α-carbon positively polarized and consequently the 

preferred site for a nucleophilic attack (Feron et al., 1991). Moreover, α-hexylcinnamaldehyde 

can influence the membrane stability (Di Sotto et al., unpublished data). When combined with 

other lipophilic compounds, its effect on the membrane permeability might be potentiated.  

The chemosensitizing ability of HCA with doxorubicin could be due to the inhibition ABC- 

transporters, which reduces the export of cytotoxic drugs through the cells.  

The potential inhibition of ABC-transporters was studied in Caco-2 and CEM/ADR5000 cell 

lines, which represent ideal model to study MDR protein and particularly P-gp (synonym 

MDR1) for CEM/ADR5000 (Efferth et al., 2003; Gillet et al., 2004). Also, Rho123 was chosen 

as a fluorescent dye because it is a known Pgp- and MRP-substrate. 
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α-Hexylcinnamaldehyde inhibited the MDR efflux pumps in both CEM/ADR5000 and Caco-2 

cell lines, resulting more potent than the standard verapamil. So we could hypothesizes that HCA 

is able to inhibit both Pgp and MRP pumps. Wortelboer et al. (2005) reported that compounds 

containing an α,β-unsaturated moiety can modulate MRP1- and MRP2-mediated transport 

processes via different mechanisms, including (i) formation of glutathione (GSH) conjugates 

which can competitively inhibit MRP1 and MRP2, (ii) depletion of GSH, or (iii) direct inhibition 

of the MRP1 and/or MRP2 mediated transport process through interaction of the parent 

compound with the MRP molecule. Also cinnamaldehyde, the natural HCA-precursor 

electrophilic showed to react with thiol groups and GSH, and to inhibit the MRP1-mediated 

transport of calcein in cells (Wortelboer et al., 2005).  

Thereafter, we can suppose that α-hexylcinnamaldehyde could inhibit ABC-transporters activity 

by interfering with GSH pathway or by direct reacting with Pgp and MRP protein. Although 

some appear likely to explaining this synergism, further studies are required to understand the 

true mechanisms involved in the chemosensitizing effect of HCA.  



 158

β-Caryophyllene 

β-Caryophyllene is a bi-cyclic sesquiterpene with a rare 1,1-dimethylcyclobutane ring fused in a 

trans configuration to a nine-membered ring containing a 1,5-diene. Several biological activities 

are ascribed to β-caryophyllene. It has been described as a potential anti-carcinogenic agent, due 

to its capability to induce the detoxifying enzymes or to improve, in vitro and in vivo, the natural 

killer cell activity. β-Caryophyllene has also been reported to increase the anticancer activity of 

α-humulene, isocaryophyllene and paclitaxel against tumour cell lines. Finally, it exhibited 

antiproliferative activity in human renal adenocarcinoma and amelanotic melanoma cells (Di 

Sotto et al., 2010). In the present study, we have first tested the potential of β-caryophyllene 

cancer cell lines. 

β-Caryophyllene did not cause substantial cytotoxicity in both human sensitive (CCRF/CEM) 

and resistant (CEM/ADR5000 and Caco-2) cancer cells. CCRF/CEM and Caco-2 cells were the 

more and less sensitive cells to CRY-cytotoxicity, respectively. These results are in agreement 

with those of Legault et al. (2003), who did not detect cytotoxicity for β-caryophyllene in 

different cancer cell lines. When tested at low concentrations with doxorubicin, β-caryophyllene 

potentiated doxorubicin-cytotoxicity, although just in few cases the effect was synergistic. It is 

important to highlight that a combined effect greater than each drug alone does not necessarily 

indicate synergism. Sometimes this can be a results of an additive effect or even a slight 

antagonism (Chou, 2010). In addiction, CRY also resulted able to interfere with ABC-

transporters: this effect could be due to its lipophilicity, according to the results obtained with 

other terpenoids (Wink et al., 2012).  

The interaction between β-caryophyllene and P-gp was already reported. Zhang and Lim (2007) 

highlighted that β-caryophyllene significantly modulate the [3H]digoxin-transport in Caco-2 cell 

monolayer, without affecting P-gp transporter. This hypothesis was in agreement with Legault et 

al. (2007). It supposed that β-caryophyllene was accumulated in cancer cell membranes, 

increasing the membrane permeability; this membrane alteration could facilitate the passage of 

bioactive compounds through the cytoplasmic membrane. As a consequence, β-caryophyllene 

could increase the intracellular accumulation of antitumor drugs, potentiating their activity. 

We can also suppose that terpenoids target the lipophilic core of proteins, which leads to a 

disturbance of the interaction of membrane proteins with membrane lipids, and changes the three 

dimensional conformation of the protein, resulting in modulated protein function (Wink 2008; 

Eid et al., 2012). 
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β-Caryophyllene oxide 

β-Caryophyllene oxide did not cause a considerable cytotoxicity in all cell tested. Althought 

these results agree with some published data (Kaneda et al., 1992; Legault et al., 2003),  other 

evidences suggested an antiproliferative activity of β-caryophyllene oxide in different cancer cell 

lines (Kubo et al., 1996; Sibanda et al., 2004; Jun et al., 2011). These conflicting results may be a 

consequence of some solubility problems of β-caryophyllene oxide in hydrophilic media  (Jun et 

al., 2011). When tested at low concentrations with doxorubicin, β-caryophyllene oxide 

potentiated doxorubicin-cytotoxicity, mainly by synergistic effects. These results is notherworty 

because a reduction in the dose of antitumoral drug, while maintaining the same clinical effect, 

allows to reduce the toxicity often associated with chemotherapy. CRYO also interfered with 

ABC-transporters, with a potency similar to verapamil. P-gp modulators act as competitive 

inhibitors by binding to the membrane protein or by indirect mechanisms related to the 

expression of the P-gp gene and/or phosphorylation of the transport protein (Wink 2008, 2012). 

Eid et al. (2013) assumed that lipophilic terpenoids (thymol, menthol, aromadendrene, β-

sitosterol-O-glucoside, and β-carotene) probably act as competitive inhibitors of P-gp in cancer 

cells (Wink, 2008; Wink et al., 2012). However, lipophilic compounds can effectively interact 

directly with P-gp by forming hydrogen and ionic bonds with aminoacid side chains of the 

protein, thus interfering with the 3D structure of P-gp (conformation) and inhibiting its activity 

(Wink, 2008). β-Caryophyllene oxide is a biciclic sesquiterpene with an epoxide group in its 

molecular structure. Epoxides are reactive functional groups that can bind to amino groups and 

SH-groups of proteins (Wink and Schimmer, 2010). We therefore postulate, that β-caryophyllene 

oxide not only could serves as a competitive inhibitor, but might alkylate the transporter protein 

and thus inhibit it irreversibly. Moreover, most terpenoids are substrates for P-gp and other ABC 

transporters because of their lipophilicity. If administered as a chemosensitizers in combination 

with a cytotoxic agent they function as competing inhibitors for binding to the active site of the 

transporters (Wink et al., 2012).  

In conclusion, our results show that low concentrations of CRYO increase the growth inhibition 

induced by doxorubicin on tumor cell lines. The potentiating effect of β-caryophyllene oxide 

could be due in part to alteration of membrane permeability, but also could be due to its reactive 

group epoxide. These data suggest further investigations in order to better establish the 

mechanism involved in the chemosesitizing effects of β-caryophyllene oxide.  
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GENERAL CONCLUSIONS 
 

Chemopreventive agents can modulate all multiple pathways leading to genotoxic 

damage and, then, to cancer or other mutation-related diseases. Considering that mutations in 

somatic cells play a key role in cancer initiation and other stages of the carcinogenesis process, 

the identification of chemopreventive compounds becomes of particular interest. Among 

chemopreventive compounds, antimutagens are able to interfere with the mutagen by extra- or 

intracellular mechanisms before DNA-injury (desmutagenic agents) or to prevent fixation and 

progression of DNA-damage, by the involvement of repair and/or reversion systems 

(bioantimutagens) (Shamon and Pezzato 1994). In addition to antimutagenicity, some 

chemopreventive agents can also exert chemosensitizing properties, by increasing the 

effectiveness of cancer chemotherapy and radiotherapy, when used in combination with 

chemotherapeutical agents. This approach is useful to prevent the development of multidrug 

resistance (MDR), which makes cancer cells not-sensitive to a broad range of drugs, with 

different chemical structures and mechanisms of action. Finally, synergistic interactions between 

a chemopreventive compound and a chemotherapeutic drug can occur: this is a very desirable 

goal because it allows to use low dose of anticancer agents, so minimizing the chemotherapy 

toxicity.  

In this study, we evaluated the potential chemopreventive properties of some natural and 

naturally-derived compounds, particularly the sesquiterpenes β-caryophyllene (CRY) and β-

caryophyllene oxide (CRYO), and the aldehyde α-hexylcinnamal (HCA). 

We found that the sesquiterpenes tested, especially CRYO, are able to protect the cells from the 

DNA-injuries of cigarette smoke. The compounds were active in all strains and treatment 

protocols (pre-, co-, post-): this allows to hypothesize the involvement of multiple mechanisms, 

among which the inhibition of the smoke-induced oxidative stress. These results suggest further 

investigations on CRY and CRYO as potential chemopreventive compounds against smoking 

damage, to use as tobacco ingredients. For instance, the addition of the sesquiterpenes to tobacco 

or to filter tip could block the cancerogens before they induce DNA-damage, so representing a 

useful preventive strategy against smoke-toxicity.  

A remarkable antimutagenicity was registered for α-hexylcinnamaldehyde against various 

nitroarenes and in different experimental conditions. Taking into account that nitroarenes are 

environmental pollutants and food toxicants, identified as carcinogen in rodents (Moller et al., 

1989) and possibly carcinogenic to humans (IARC, 1989), the HCA-antimutagenicity suggests 

further investigations in order to well establish its potential application as a protective additive in 
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commercial products, particularly cosmetics, households and food. HCA also resulted able to 

enhance the cytotoxicity of the antitumor drug doxorubicin, and to inhibit the Pgp and MRP 

pumps in both sensitive and resistant cancer cells. At our knowledge, the evidences for a 

chemopreventive potential of HCA have not been described up to now. These results suggest a 

potential application of this compound as a chemosensitizer, both to overcome multidrug 

resistance, and to reduce the chemotherapy toxicity without affecting its efficacy. Restoring drug 

sensitivity in multidrug resistant cancer cells, particularly by inhibiting the ABC-transporter 

function or by modulating the activity of chemotherapics, is a very important goal to overcome 

cancer. 
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