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We investigate the structure of the outer automorphism group of the Cuntz algebra
and the closely related problem of conjugacy of maximal abelian subalgebras in On.
In particular, we exhibit an uncountable family of maximal abelian subalgebras,
conjugate to the standard maximal abelian subalgebra Dn via Bogolubov
automorphisms, that are not inner conjugate to Dn.

1. Introduction

The main motivation for the present paper comes from the desire to better under-
stand the structure of the outer automorphism group of the Cuntz algebra On [12,
14]. As the Cuntz algebras are among the most intensely investigated operator alge-
bras, it is not surprising that both their single automorphisms and the structure
of their automorphism groups have attracted a lot of interest. In addition to the
obvious intrinsic value of this line of research, we would also like to point out its
importance for the current efforts within Elliott’s classification programme. In this
context, for example, the question as to whether Aut(O2) is a universal Polish group
is raised in [25, question 9.1].

Our point of departure for the investigations of Out(On) is the recent progress in
the understanding of Aut(On, Dn), the group of those automorphisms of On that
globally preserve the standard maximal abelian subalgebra (MASA) Dn [8, 11].
This group has the structure of a semi-direct product λ(U(Dn)) � λ(Sn)−1, where
λ(U(Dn)) is a maximal abelian subgroup of Aut(On) of those automorphisms that
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fix Dn pointwise (see [13, proposition 1.3]) and λ(Sn)−1 is countable and discrete,
the so-called Weyl group of On. Of particular note here is the relation between the
image of λ(Sn)−1 in Out(On) and the group of automorphisms of the full two-sided
n-shift shown in [10].

The next logical step in the study of Out(On) would be to learn if every auto-
morphism of On has a representative in Out(On) coming from Aut(On, Dn), and,
if not, to classify MASAs of On that are outer, but not inner, conjugate to Dn

(that is, one is mapped onto the other by an outer automorphism but no such inner
automorphism exists). In fact, this question was raised a few years ago by Joachim
Cuntz in a conversation with the third author. In the present paper, we show that
Bogolubov automorphisms either globally preserve Dn or move it to other, not inner
conjugate, MASAs; see theorem 3.7 and corollary 3.8.

Naturally, any investigations of the structure of an outer automorphism group are
significantly helped by classification of single automorphisms up to conjugacy. In
the context of the Cuntz algebras, a great deal of progress has been achieved in this
direction and we would like to specifically call the attention of the reader to [18,19,
21]. By [21, theorem 9] and [24, theorem 3.6], any two aperiodic automorphisms of
On are outer conjugate, which is in nice analogy with the classification of aperiodic
automorphisms of the hyperfinite II1 factor due to Connes [4]. The classification of
non-aperiodic automorphisms of On is also related to the seminal work of Connes [5],
although in this case the C∗-algebraic setting is much more intricate by comparison
with the von Neumann algebraic one. Indeed, non-aperiodic automorphisms of the
hyperfinite II1 factor are completely classified by pairs (k, γ), with k a positive
integer (outer period) and γ a kth root of unity [5, theorem 1.5]. It is shown in
[5, proposition 1.6] that each invariant (k, γ) may be realized in Aut(Ok) by an
automorphim of the form λdλw with d a unitary in the canonical MASA Dn and λw

a Bogolubov permutation. However, there exist automorphisms of O2 with k = 2
and γ = 1 that are not outer conjugate to each other [18, example 5.8]. In the
present paper, classification results for single automorphisms of On are used in the
proofs of several structural properties of Out(On) collected in § 4.

2. Notation and preliminaries

If n is an integer greater than 1, then the Cuntz algebra On is a unital simple purely
infinite C∗-algebra generated by n isometries S1, . . . , Sn satisfying

∑n
i=1 SiS

∗
i =

1 [12]. We denote by W k
n the set of k-tuples μ = (μ1, . . . , μk) with μm ∈ {1, . . . , n},

and by Wn the union
⋃∞

k=0 W k
n , where W 0

n = {0}. If μ ∈ W k
n , then |μ| = k

is the length of μ. If μ = (μ1, . . . , μk) ∈ Wn then Sμ = Sμ1 . . . Sμk
(S0 = 1

by convention) is an isometry with range projection Pμ = SμS∗
μ. Every word in

{Si, S
∗
i | i = 1, . . . , n} can be uniquely expressed as SμS∗

ν for μ, ν ∈ Wn [12,
lemma 1.3].

We denote by Fk
n the C∗-subalgebra of On spanned by all words of the form

SμS∗
ν , μ, ν ∈ W k

n , which is isomorphic to the matrix algebra Mnk(C). The norm
closure Fn of

⋃∞
k=0 Fk

n is the uniformly hyperfinite algebra (UHF-algebra) of type
n∞ [16], called the core UHF-subalgebra of On [12]. We denote by τ the unique
normalized trace on Fn. Subalgebra Fn is the fixed-point algebra for the gauge
action γ : U(1) → Aut(On), such that γz(Sj) = zSj for z ∈ U(1) and j = 1, . . . , n.



On conjugacy of maximal abelian subalgebras 271

For an integer m ∈ Z, we define

O(m)
n := {x ∈ On : γz(x) = zmx ∀z ∈ U(1)},

a spectral subspace for γ. Then O(0)
n = Fn and for each positive integer m and each

α ∈ Wm
n we have O(m)

n = FnSα and O(−m)
n = S∗

αFn. Furthermore,

Em(x) =
∫

z∈U(1)
z−mγz(x) dz

is a completely contractive projection from On onto O(m)
n , such that Em(xay) =

xEm(a)y for all a ∈ On, x, y ∈ Fn. In particular, E := E0 is the faithful conditional
expectation from On onto Fn given by averaging action γ over U(1) with respect
to the Haar measure.

The C∗-subalgebra of On generated by projections Pμ, μ ∈ Wn, is a MASA
in On. We call it the diagonal and denote it by Dn, also writing Dk

n for Dn ∩ Fk
n .

The spectrum of Dn is naturally identified with Xn, the full one-sided n-shift space
(a Cantor set). Occasionally, we will view Xn as a metric space equipped with the
metric dist(x, y) = n−k, where k = min{m ∈ N | xm �= ym}.

As shown by Cuntz in [13], there exists the following bijective correspondence
between unitaries in On (whose collection is denoted by U(On)) and unital ∗-endo-
morphisms of On (whose collection we denote by End(On)), determined by

λu(Si) = uSi, i = 1, . . . , n.

Composition of endomorphisms corresponds to the ‘convolution’ multiplication of
unitaries: λu ◦ λw = λλu(w)u. In the case u, w ∈ U(F1

n), this formula simpli-
fies to λu ◦ λw = λuw and, in particular, there exists an imbedding u 	→ λu of
U(n) ∼= U(F1

n) into Aut(On) [15]. If A is either a unital C∗-subalgebra of On or
a subset of U(On), then we denote λ(A) = {λu ∈ End(On) : u unitary in A} and
λ(A)−1 = {λu ∈ Aut(On) : u unitary in A}.

We denote by ϕ the canonical shift on the Cuntz algebra

ϕ(x) =
n∑

i=1

SixS∗
i , x ∈ On.

Clearly, ϕ(Fn) ⊂ Fn and ϕ(Dn) ⊂ Dn. We denote by σ : Xn → Xn the shift on Xn.
Then we have ϕ(f)(x) = f(σ(x)) for all f ∈ C(Xn) and x ∈ Xn.

For all u ∈ U(On), we have Ad(u) = λuϕ(u∗). If u ∈ U(On), then for each positive
integer k we define

uk = uϕ(u) · · ·ϕk−1(u). (2.1)

Here, ϕ0 = id, and we agree that u∗
k stands for (uk)∗. If α and β are multi-indices

of length k and m, respectively, then λu(SαS∗
β) = ukSαS∗

βu∗
m. This is established

through a repeated application of the identity Six = ϕ(x)Si, valid for all i = 1, . . . , n
and x ∈ On.

We often consider elements of On of the form w =
∑

(α,β)∈J cα,βSαS∗
β , where J

is a finite collection of pairs (α, β) of words α, β ∈ Wn and cα,β ∈ C. In particular,
we consider the group Sn of those unitaries in On that can be written as finite
sums of words, i.e. in the form w =

∑
(α,β)∈J SαS∗

β . Each w ∈ Sn normalizes Dn,
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and hence λw(Dn) ⊆ Dn [13, proposition 1.4]. We define Pn := Sn ∩ U(Fn) and
Pk

n := Sn ∩U(Fk
n). It is known that S2 is isomorphic to the Thompson group V [22,

proposition 9.6].
For algebras A ⊆ B we denote by NB(A) = {u ∈ U(B) : uAu∗ = A} the normal-

izer of A in B and by A′ ∩ B = {b ∈ B : (∀a ∈ A) ab = ba} the relative commutant
of A in B. We also denote by Aut(B, A) the collection of all those automorphisms
α of B such that α(A) = A, and by AutA(B) those automorphisms of B that fix A
pointwise. Likewise, we denote by EndA(B) the collection of those endomorphisms
of B that fix pointwise subalgebra A.

3. Conjugacy of MASAs

If A1 and A2 are two MASAs in B, then we say they are conjugate if there exists
an α ∈ Aut(B) such that α(A1) = A2. We say A1 and A2 are inner conjugate if
there exists a u ∈ U(B) such that uA1u

∗ = A2.

Proposition 3.1. Let z ∈ U(On) be such that λz ∈ Aut(On). Then there exists a
u ∈ U(On) such that

λz(Dn) = Ad(u)(Dn) (3.1)

if and only if there exist u ∈ U(On) and w ∈ Sn such that

λz(d) = Ad(u)λw(d) ∀d ∈ Dn. (3.2)

Proof. Suppose that (3.1) holds. Then Ad(u∗)λz ∈ Aut(On, Dn), and thus there
exist v ∈ U(Dn) and w ∈ Sn such that Ad(u∗)λz = λvλw [8, theorem 2.1]. Since
λv|Dn

= id and λw(Dn) = Dn, for each d ∈ Dn we have Ad(u∗)λz(d) = λvλw(d) =
λw(d), and identity (3.2) holds.

Conversely, suppose that (3.2) holds. Then λ−1
z Ad(u)λw ∈ EndDn(On), and thus

there exists a v ∈ U(Dn) such that λ−1
z Ad(u)λw = λv (see [6, proposition 3.2]).

Since λ(Dn) ⊆ Aut(On) (see [13, proposition 1.3]), λw is an automorphism of On.
Since λw(Dn) ⊆ Dn and Dn is a MASA in On, we may conclude that λw(Dn) = Dn,
and identity (3.1) follows.

Before proving our main result, theorem 3.7, we need some preparation.

Lemma 3.2. If x ∈ On, x � 0, and xDn = Dnx, then x ∈ Dn.

Proof. We may assume that 0 � x � 1. Let Φ be the faithful conditional expectation
from On onto Dn. Since 0 � x2 � x, we have 0 � Φ(x2) � Φ(x). Let d ∈ Dn be
such that dΦ(x) = 0. Then 0 � dΦ(x2)d∗ � dΦ(x)d∗ = 0, and hence Φ(dx2d∗) =
dΦ(x2)d∗ = 0. Consequently, dx = 0. Now, for an arbitrary a ∈ Dn, let b ∈ Dn be
such that xa = bx. Then (a − b)Φ(x) = 0, and thus (a − b)x = 0. This shows that
x is in the commutant of Dn, and therefore x ∈ Dn.

Remark 3.3. The conclusion of lemma 3.2 remains valid if Dn ⊆ On are replaced
by any C∗-algebras D ⊆ A such that D is a MASA in A and there exists a faithful
conditional expectation from A onto D. However, it may fail if x is merely self-
adjoint but not positive. For example, simply take A = M2(C), D the diagonal
matrices and x the matrix with both off-diagonal entries equal to 1 and the diagonal
ones both 0.
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Lemma 3.4. Let z ∈ U(F1
n)\NF1

n
(D1

n) and x ∈ Fn. If λz(Dn)x = xDn, then x = 0.

Proof. Since z ∈ U(F1
n) \ NF1

n
(D1

n), there exist a minimal projection p ∈ D1
n and a

δ > 0 such that, for all m ∈ N, all projections e ∈ Dm
n and all h ∈ Dn, we have

‖eλz(ϕm(p)) − h‖ � δ. (3.3)

Indeed, since z �∈ NF1
n
(D1

n), there exists an i ∈ W 1
n such that λz(Pi) �∈ Dn. By

the Hahn–Banach theorem, there exists a functional ω of norm 1 on On such that
ω(λz(Pi)) = δ > 0 and ω|Dn = 0. Now, take m ∈ N, a projection e ∈ Dm

n and an
h ∈ Dn, and let α ∈ Wm

n be such that ePα = Pα. Then

‖eλz(ϕm(Pi)) − h‖ = ‖eϕm(λz(Pi)) − h‖
� ‖Pαϕm(λz(Pi)) − Pαh‖
= ‖Sα(λz(Pi) − S∗

αhSα)S∗
α‖

= ‖λz(Pi) − S∗
αhSα‖

� |ω(λz(Pi) − S∗
αhSα)|

= δ.

Now suppose there is an x �= 0 in Fn such that λz(Dn)x = xDn. We may assume
that ‖x‖ = 1. Since x∗λz(Dn) = Dnx∗ as well, we have x∗xDn = Dnx∗x, and thus
x∗x ∈ Dn by lemma 3.2.

Take a small ε > 0. For some l ∈ N, there exists a y0 ∈ F l
n such that ‖x−y0‖ < ε.

Then ‖x∗x − y∗
0y0‖ < ε(2 + ε). For some k � l there exists a d ∈ Dk

n such that
‖x∗x − d‖ < ε and d � 0. Then ‖y∗

0y0 − d‖ < ε(3 + ε), and hence ‖|y0| −
√

d‖ <√
ε(3 + ε) due to operator monotonicity of the square root function. Indeed, since

y∗
0y0 � d + ε(3 + ε), we have |y0| =

√
y∗
0y0 �

√
d + ε(3 + ε) �

√
d +

√
ε(3 + ε)

and, likewise,
√

d � |y0| +
√

ε(3 + ε). Now, write y0 = w|y0| with w a unitary in
F l

n ⊆ Fk
n . Setting y := w

√
d, we have y ∈ Fk

n , y∗y = d ∈ Dk
n and

‖x − y‖ � ‖x − y0‖ + ‖w|y0| − w
√

d‖ < ε +
√

ε(3 + ε) =: ε′.

Let p be the projection in D1
n and let δ > 0 be such that identity (3.3) holds.

Let g ∈ Dn satisfy λz(ϕk(p))x = xg. Also, let q be the spectral projection of d
corresponding to eigenvalue ‖d‖. Then we have

0 = ‖λz(ϕk(p))x − xg‖
= ‖(λz(ϕk(p))y − yg) + (λz(ϕk(p))(x − y) − (x − y)g)‖
> ‖y(λz(ϕk(p)) − g)‖ − ε′(1 + ‖g‖)

� 1
1 + ε′ ‖y∗y(λz(ϕk(p)) − g)‖ − ε′(1 + ‖g‖).

We have y∗y = d, dq = ‖d‖q and ‖d‖ � ‖x∗x‖ − ε = 1 − ε. Thus,

1
1 + ε′ ‖y∗y(λz(ϕk(p)) − g)‖ − ε′(1 + ‖g‖)

� 1 − ε

1 + ε′ ‖q(λz(ϕk(p)) − g)‖ − ε′(1 + ‖g‖)

� 1 − ε

1 + ε′ δ − ε′(1 + ‖g‖)



274 R. Conti, J. H. Hong and W. Szymański

by (3.3). Since ε and ε′ can be simultaneously arbitrarily small, this is a contradic-
tion, which shows that x = 0.

Remark 3.5. MASAs of the form λz(Dn), z ∈ U(F1
n), are called standard and

are used to compute non-commutative topological entropy of certain endomor-
phisms [17,26,27]. They are abstractly characterized in [1].

For lemma 3.6, note that, given any partial isometry SαS∗
β with |α|, |β| � 1, there

exists a w ∈ Sn of the form w = SαS∗
β +

∑
(μ,ν) SμS∗

ν . This is easily verified with
help of the pigeonhole principle. Recall also that E denotes the faithful conditional
expectation from On onto Fn.

Lemma 3.6. Let a ∈ On. If E(av) = 0 for all v ∈ Sn, then a = 0.

Proof. For each projection Pβ ∈ Dn, β ∈ Wn, we have 0 = E(av)Pβ = E(a(vPβ)).
Thus E(aSαS∗

β) = 0 for all α, β, with |α|, |β| � 1. Since the linear span of such
elements SαS∗

β is dense in On and E is faithful, we conclude that a = 0.

Theorem 3.7. If z ∈ U(F1
n) \ NF1

n
(D1

n) and a ∈ On is such that λz(Dn)a =
aDn, then a = 0. In particular, there is no unitary u ∈ On such that λz(Dn) =
Ad(u)(Dn).

Proof. Suppose, by way of contradiction, that λz(Dn)a = aDn. Then, since uni-
taries from Sn normalize Dn, for any v ∈ Sn we have λz(Dn)av = avDn. Since
λz(Dn) ⊆ Fn, this implies that λz(Dn)E(av) = E(av)Dn. Therefore, E(av) = 0 by
lemma 3.4, and consequently a = 0 by lemma 3.6.

An immediate consequence of theorem 3.7 is the existence of two MASAs of the
Cuntz algebra On that are outer, but not inner, conjugate. In fact, theorem 3.7
implies the following stronger fact.

Corollary 3.8. There exists an uncountable family of MASAs in On, indexed by
the cosets U(F1

n)/NF1
n
(D1

n), such that each of them is outer conjugate to Dn but no
two of them are inner conjugate.

To the best of our knowledge, corollary 3.8 exhibits the very first example of
two MASAs in a simple purely infinite C∗-algebra that are outer, but not inner,
conjugate1.

It was shown in [8] that

{v ∈ U(On) | λv ∈ Aut(On, Dn)}
= {dw | d ∈ U(Dn), w ∈ Sn such that λw ∈ Aut(On)}.

On the other hand, the set {uϕ(u∗) | u ∈ U(On)} is dense in U(On) by [24,
theorem 3.6]. Furthermore, Ua(On) := {v ∈ U(On) | λv ∈ Aut(On)} is a dense
Gδ-subset of U(On) such that U(On) \ Ua(On) is also dense [2, proposition 7]. In
this context, we mention the following corollary.

1The authors are grateful to Mikael Rørdam for his comments on this point.
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Corollary 3.9. The following inclusion is proper:

{udwϕ(u∗) | u ∈ U(On), d ∈ U(Dn), w ∈ Sn such that λw ∈ Aut(On)} ⊂ Ua(On).

Proof. Suppose this is not that case. Then, for each α ∈ Aut(On), there exist
u ∈ U(On), d ∈ U(Dn) and w ∈ Sn such that α = λudwϕ(u∗) = Ad(u)λdw. Since
dw normalizes Dn, we have λdw(Dn) = Dn [13, proposition 1.4]. But then α(Dn) =
Ad(u)(Dn), contradicting theorem 3.7.

We close this section by posing the following question. Suppose that z ∈ U(Fn)
is such that λz ∈ Aut(On) and that there exists a u ∈ U(On) such that λz(Dn) =
Ad(u)(Dn). Does this imply the existence of a v ∈ U(Fn) such that λz(Dn) =
Ad(v)(Dn)?

4. The outer automorphism group of On

In this section, we collect a few observations about the structure of the outer auto-
morphism group of On. We denote by π : Aut(On) → Out(On) the canonical sur-
jection.

Proposition 4.1. If d ∈ U(Dn) and u ∈ Sn, then λdλu ∈ Inn(On) if and only if
there exist v ∈ U(Dn) and y ∈ Sn such that λd = Ad(v) and λu = Ad(y).

Proof. If λdλu = Ad(w) for some w ∈ U(On), then w normalizes Dn, and thus
w = vy, for some v ∈ U(Dn) and y ∈ Sn [23, lemma 5.4]. Hence, Ad(v∗)λd =
Ad(y)λ−1

u and, consequently, λd = Ad(v) and λu = Ad(y), since the intersection of
λ(U(Dn)) and λ(Sn)−1 is trivial.

The semi-direct product decomposition in proposition 4.2 is a special case of [20,
theorem 6.5] pertaining to a broader class of algebras. We include a short self-
contained proof, different from Matsumoto’s argument.

Recall that an automorphism is aperiodic if its image in the outer automorphism
group has infinite order. A Bogolubov automorphism λz of On is aperiodic if and
only if the corresponding unitary z has infinite order. Thus, in particular, a gauge
automorphism γt is aperiodic if and only if t is not a root of unity.

Proposition 4.2. The subgroup π(Aut(On, Dn)) of Out(On) is not normal, and
has the structure of a semi-direct product

π(Aut(On, Dn)) = π(λ(U(Dn))) � π(λ(Sn)−1).

Proof. Since all aperiodic automorphisms of On are outer conjugate (see [21, theo-
rem 9] and [24, theorem 3.6]), a normal subgroup of Out(On) contains either none
or all of them. Clearly, λ(U(F1

n)) contains aperiodic automorphisms λz such that
z does not normalize D1

n. Thus, theorem 3.7 implies that π(Aut(On, Dn)) contains
some, but not all, aperiodic automorphisms of On. Consequently, it is not a normal
subgroup of Out(On).

For the semi-direct product decomposition, it suffices to note that π(λ(U(Dn)))
and π(λ(Sn)−1) have trivial intersection. Indeed, suppose that d ∈ U(Dn), w ∈ Sn,
λw ∈ Aut(On) and u ∈ U(On) are such that λd = Ad(u)λw. Then, for each
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p ∈ Dn, we have p = λd(p) = uλw(p)u∗, and thus u ∈ NOn(Dn). Hence, there exist
d1 ∈ U(Dn) and w1 ∈ Sn such that u = d1w1 [23, lemma 5.4]. But then Ad(d∗

1)λd =
Ad(w1)λw, and equivalently λd∗

1dϕ(d1) = λw1wϕ(w∗
1 ). This yields d∗

1dϕ(d1) = 1 =
w1wϕ(w∗

1), and thus both λd = Ad(d1) and λw = Ad(w∗
1) are inner.

We have seen in proposition 4.2 that the subgroup π(Aut(On, Dn)) is not normal
in Out(On). It follows from proposition 4.3 that the smallest normal subgroup of
Out(On) containing π(Aut(On, Dn)) is quite large.

Proposition 4.3. If G is a normal subgroup of Out(On) containing at least one
aperiodic element, then

π(Z(Out(On)) ∪ λ(U(Fn))−1 ∪ {α ∈ Aut(On) | α aperiodic}) ⊆ G. (4.1)

In particular, (4.1) holds with G, the commutator subgroup of Out(On).

Proof. Since all aperiodic automorphisms of On are outer conjugate to one another
(see [21, theorem 9] and [24, theorem 3.6]), group G contains classes of all of them.
Now, let α ∈ Aut(On) and suppose that there exists an aperiodic β ∈ Aut(On)
such that αβ is aperiodic. Then there exists a ψ ∈ Aut(On) such that π(αβ) =
π(ψβψ−1), and consequently π(α) = π(αββ−1) = π(ψβψ−1)π(β−1) belongs to G.
Now, let α ∈ Aut(On) be such that either π(α) ∈ Z(Out(On)) or α ∈ λ(U(Fn))−1.
Take an aperiodic gauge automorphism γt such that π(γm

t ) �= π(α−m) for all
m ∈ N. Since π(α) commutes with π(γt), the product αγt is again aperiodic. This
shows the first claim of the proposition. For the remaining one, simply note that if
θ ∈ Aut(On) is aperiodic, then θ2 is outer conjugate to θ. Thus, π(θ2) = π(ψθψ−1)
for some ψ ∈ Aut(On), and hence π(θ) = π(θ2)π(θ−1) = π(ψθψ−1θ−1) belongs to
the commutator subgroup [Out(On), Out(On)].

Remark 4.4. No class of non-trivial gauge automorphism of On belongs to the
centre of Out(On). Indeed, consider the unitary u = S11S

∗
121 + S121S

∗
11 + P122 + P2

in S2, discussed in [11, theorem 5.2]. Then λu is an automorphism of O2 such that
λ2

u = id. For 1 �= t ∈ U(1) we have λuγtλ
−1
u γ−1

t = λw, with w = tλu(P121) +
t̄λu(P11) + P122 + P2. The automorphism λw of O2 is outer, for otherwise there
exists a d ∈ U(D2) such that w = dϕ(d∗). But then w, viewed as a function on X2,
would take value 1 at the infinite word 111 . . . (fixed by the shift on X2). However,
this is not the case. A similar argument applies to all n, with a suitably modified
u ∈ Sn (cf. [11, theorem 5.2]).

This is in stark contrast with what happens for the weak closure M of On in the
Gelfand–Naimark–Segal representation of the canonical Kubo–Martin–Schwinger
state ω = τ ◦E, which is the approximately finite-dimensional factor of type III1/n.
Indeed, gauge automorphisms of On extend to M = πω(On)′′ [7], thereby provid-
ing the (2π/ log(n)-periodic) modular automorphisms (with respect to the normal
extension of ω), which then lie in the centre of Out(M) by the Connes–Radon–
Nikodým theorem [3, theorem 1.2.8]. It also follows from this argument that the
automorphism λu above does not extend to M (i.e. it is not normal).

Remark 4.5. Those classes under inner equivalence of all automorphisms of O2
known to us at the moment belong to the commutator subgroup of Out(O2). For
example, consider the unitary u ∈ S2 discussed in remark 4.4. Then, for an aperiodic
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gauge automorphism γt, the automorphism λuγt is aperiodic as well. Indeed, since
λu has order 2, it suffices to show that all even powers of λuγt are outer. But
we have λuγtλuγt = λv, with v = t3λu(P121) + tλu(P11) + P122 + P2, and λv is
aperiodic for the same reason as given in remark 4.4. Now, the same argument as
in proposition 4.3 gives the conclusion that λu is a commutator modulo an inner
automorphism of O2.

We close this paper with a few simple, albeit potentially useful, observations
about the outer automorphism group of O2. First of all, it is worth noting that by
combining some of the results from [21] and [8] one easily obtains the following.

Proposition 4.6. Every element of infinite order in Out(O2) is a product of two
involutions in the commutator subgroup. In particular, both [Out(O2), Out(O2)] and
Out(O2) are generated by elements of finite order.

Proof. We consider the inner equivalence classes of the automorphisms λA and λF

defined in [8, § 5.3]. As shown therein, the commutator λF λAλF λ−1
A has infinite

order in Out(O2) and is a product of two involutions. The conclusion follows imme-
diately, as every aperiodic automorphism is a conjugate of such commutator.

We believe that the same result holds true for Out(On) for all n � 2, with a
suitable modification of the lengthy computations in [8]. As this falls outside the
scope of the present work, we leave the task to the interested reader.

Corollary 4.7. The normal subgroup of Out(O2) generated by λ(S2)−1 is gener-
ated by elements of finite order.

Proof. There are two possible cases.

(1) If π(λ(S2)−1) is not contained in the commutator subgroup of Out(O2), then
there is an element in π(λ(S2)−1) but not in the commutator subgroup, say g,
necessarily of finite order. Moreover, gh must have finite order for any h of infinite
order in π(λ(S2)−1). Accordingly, any h of infinite order in π(λ(S2)−1) can be
written as g−1(gh), a product of finite order elements.

(2) On the other hand, if π(λ(S2)−1) is in [Out(O2), Out(O2)], then any element
of infinite order in π(λ(S2)−1) is a product of two conjugates of involutions in
π(λ(P2)−1), by proposition 4.6.

To the best of our knowledge, the following result provides the first non-trivial
structural result about the rather mysterious group λ(S2)−1. Recall that a group
G is called almost simple if there exists a non-abelian simple group H such that
H ⊆ G ⊆ Aut(H).

Proposition 4.8. The group λ(S2)−1|S2 is almost simple.

Proof. Clearly, any automorphism of the form λw, with w ∈ S2, restricts to an
automorphism of S2. Also, S2, being isomorphic to the Thompson group V , is
simple [22, proposition 9.6] and, in particular, its centre is trivial. Thus, one has
inclusions

S2 � Inn(S2) ⊆ λ(S2)−1|S2 ⊆ Aut(S2),

and the conclusion follows.
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Of course, one might wonder whether the kernel of the restriction map λ(S2)−1 →
λ(S2)−1|S2 is trivial. The analogous statement for Pn has been discussed in [9] (see
the paragraph following proposition 3.6 therein).
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(1973), 133–252.

4 A. Connes. Outer conjugacy classes of automorphisms of factors. Annales Scient. Éc. Norm.
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