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Abstract A Multivariate Regression Model Based on

the Optimal Partition of Predictors (MRBOP) useful in

applications in the presence of strongly correlated pre-

dictors is presented. Such classes of predictors are syn-

thesized by latent factors, which are obtained through

an appropriate linear combination of the original vari-

ables and are forced to be weakly correlated. Specifi-

cally, the proposed model assumes that the latent fac-

tors are determined by subsets of predictors charac-

terizing only one latent factor. MRBOP is formalized

in a least squares framework optimizing a penalized

quadratic objective function through an alternating least-

squares (ALS) algorithm. The performance of the method-

ology is evaluated on simulated and real data sets.

Keywords Penalized regression model · Partition of

variables · Least squares estimation · Class-correlated

variables · Latent factors

1 Introduction

Applications where several dependent variables (respon-

ses) have to be predicted using a large number of vari-

ables have been considered in various disciplines such

as bioinformatics, brain imaging, data mining, genomics
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and economics (Frank and Friedman, 1993; Waldro et

al., 2011). The standard model that accommodates this

issue is the ordinary multivariate regression model, see

chapter 15 in Krzanowski (2000). Fitting the multivari-

ate regression model to observed data requires estima-

tion of the unknown regression coefficients and the dis-

persion matrix of the error terms. This can be done

by maximum likelihood if normality is assumed for the

error matrix or by least-squares if no distributional as-

sumptions are made. For standard application of the

inferential theory, it is necessary for the sample size

to be greater than the number of predictors plus the

number of responses and for the predictor matrix to be

of full rank. However, when the number of predictors

is large, two important statistical problems, which are

related to each other, may commonly arise:

1. difficulty in interpretation of the (many) regression

coefficients;

2. presence of strongly correlated predictors.

In the latter case, the regression approach may still

be able to determine the ordinary least squares (OLS)

estimators, but it may not be able to distinguish the ef-

fect of each predictor on the responses (multicollinear-

ity). In the literature many proposals and strategies for

dealing with such problems have been proposed, which

can be classified into three categories: standard variable

selection methods, see as an example Hocking (1976),

penalized (or shrinkage) techniques, also known as bias

estimation, see Tibshirani (1996); Hoerl and Kennard

(1970); Frank and Friedman (1993); Zou and Hastie

(2005); Tutz and Ulbricht (2009); Witten and Tibshi-

rani (2009); Yuan and Lin (2006), and dimensionality

reduction methods (DRMs).

In particular, we focus on DRM regression where

a small set of linear combinations of the original vari-
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ables are built and then used as input to the regres-

sion model. DRMs differ in how the linear combina-

tions are built. For example, principal component re-

gression (PCR) (Jolliffe, 1982) performs a PCA on the

explanatory variables and uses the principal compo-

nents as latent predictors in the regression model. It

has been demonstrated that this strategy does not guar-

antee the principal components, which optimally “ex-

plain” the predictors, will be relevant for the predic-

tion of the responses. Canonical correlation regression

(CCR) (Hotelling, 1935) is similar to PCR, but whereas

PCR finds the directions of maximal variance of each

predictor-space, CCR identifies directions of maximal

correlation of both predictor and response spaces. Par-

tial least squares regression (PLSR) (Wold, 1966) repre-

sents a form of CCR where the criterion of maximal cor-

relation is balanced by requiring the model to explain

as much variance as possible in both predictor and re-

sponse spaces. Stone and Brooks (1990) proposed con-

tinuum regression as a unified regression technique em-

bracing OLS, PLSR and PCR. On the other hand, Re-

duced Rank Regression (RRR) (Anderson, 1951; Izen-

man, 1975) minimizes the sum of the squared residuals

subject to a reduced rank condition. It can be seen as

a regression model with a coefficient matrix of reduced

rank. Moreover, it can be shown that the RRR latent

predictors are the same as the ones from the Redun-

dance Analysis (RA), see Van Den Wollenberg (1977).

Yuan et al. (2007) proposed a general formulation for

dimensionality reduction and coefficient estimation in

multivariate linear regression, which includes many ex-

isting DRMs as specific cases. Bougeard et al. (2007)

proposed a new formulation to the multiblock setting

of latent root regression applied to epidemiological data

and Bougeard et al. (2008) investigated a continuum

approach between MR and PLS. However, dimension-

ality reduction methods, such as PCA and Factor Anal-

ysis, may generally suffer from a lack of interpretability

of the resulting linear combinations. Rotation methods

are often used to overcome such a problem. In the re-

gression context, we propose here to simplify the inter-

pretation by partitioning the predictors into classes of

correlated variables synthesized by weakly correlated

factors that best predict the responses in the least-

squares sense. This turns out to be a relevant gain in

the interpretation of the regression analysis, which can

be nicely displayed by a path diagram identifying the

underlying relations between predictors, latent factors

and responses. The model should be used when the re-

searcher does not have a priori hypotheses about the

association patterns present between the manifest vari-

ables.

In this paper a multivariate regression model based

on the optimal partition of predictors (MRBOP) is pro-

posed which optimally predict the responses in the least-

squares sense. In fact, the assumption underlying the

model is the existence of weakly correlated groups of

predictors but the number and the composition of such

possible blocks need to be determined. In the frame-

work of DRMs, the new methodology determines latent

factors as linear combinations of such subsets of pre-

dictors by performing simultaneously the clustering of

the predictors and the estimation of the regression co-

efficients of the derived latent factors. Specifically, the

model proposed aims at defining classes of correlated

predictors, which lead to the construction of weakly cor-

related latent factors. This could be particularly useful

in high dimensional regression studies where strongly

correlated variables might represent an unknown under-

lying latent dimension. In these cases, methods that are

commonly employed as cures for collinearity - in par-

ticular, variable selection - can be inadequate because

important grouping (i.e. latent dimension) information

may be lost. Moreover, in the case of perfect linear re-

lationship among predictors, we can here algebraically

derive the regression coefficient estimators contrarily to

the OLS framework. Finally, an important advantage

of MRBOP is the interpretability of each latent factor

representing only one subset of well-characterized pre-

dictors. In fact, predictors are not allowed to influence

more than one factor as frequently happens in dimen-

sionality reduction methods.

The model is formalized in a least squares estima-

tion framework optimizing a penalized quadratic objec-

tive function. The paper is organized as follows. Section

2 describes the general DRMs and discusses the possi-

ble specifications, while Section 3 introduces the model

and an alternating least-squares algorithm to estimate

the model parameters. An illustrative example is pre-

sented in Section 3.2.1. In Sections 4 and 5, the results

obtained on simulated and real data sets are discussed.

The last Section is devoted to concluding remarks.

2 Dimensionality reduction methods in

multivariate regression

Let X = [xij ] be a (I ×J) matrix, where xij represents

the value of the j-th predictor observed on the i-th sub-

ject and Y = [yim] be a (I ×M) matrix, where yim is

the value of the m-th response observed on the i-th

subject. Without loss of generality, after a location and

scale transformation, we can assume that all the vari-

ables are centered and standardized. As mentioned in

the Introduction, several methods have been proposed

to overcome problems connected with the presence of a
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relatively large number of predictors. In particular, an

attractive class of methods is represented by the DRMs

where the responses are regressed against a small num-

ber Q ≤ J of latent factors obtained as linear combina-

tions of the original predictors. These methods can be

expressed as follows:

Y = ZC + E (1)

where Z = XṼ represents the (I × Q) matrix of the

latent predictors, Ṽ being the (J ×Q) unknown factor

loading matrix, C is the (Q×M) regression coefficient

matrix and E is the (I×M) matrix of unobserved ran-

dom disturbances. As usual in the least-squares context,

we do not impose any distributional assumption on E.

Clearly, equation (1) can be re-written as

Y = XṼC + E = XB + E (2)

where B = ṼC is the (J ×M) matrix of the regression

coefficients of the Q latent factors in the original space.

Unfortunately, the decomposition B = ṼC is not unique,

since for every invertible (Q×Q) matrix F, we have

B = ṼC = ṼFF−1C = (ṼF)(C′F′−1)′. (3)

In the next section, we discuss different proposals to

solve such an identifiability issue.

2.1 Possible specifications for DRMs

A first raw specification of the model is represented

by PCR, which is based on a two-step procedure. It

first selects the principal component matrix Z = XṼ,

and then uses such latent variables as predictors of the

regression model predicting Y. Hence, the columns of Ṽ

are represented by the first Q eigenvectors normalized

to length one associated with the largest eigenvalues of

X′X. However, this approach does not guarantee that

the principal components, which optimally explain X,

will be relevant for the prediction of Y.

A more refined solution to solve the problem, which is

at the base of many DMRs, is obtained by constraining

Ṽ′X′XṼ = IQ as in PCR, and simultaneously select-

ing the latent factors which best predict the responses

through the following least-squares problem

‖ Y − ZC ‖2 . (4)

It has to be noticed that given matrix Z, the regression

coefficient matrix C turns out to be the OLS solution

of (1), i.e. Ĉ = (Z′Z)−1Z′Y. Therefore, to estimate the

regression coefficients B = Ṽ(Z′Z)−1Z′Y it is sufficient

to estimate Z. The DMRs differ in the way the latent

factors, and therefore Ṽ, are obtained.

A popular example of DMRs methods is represented by

RRR (RA), where the latent predictors are constrained

to be orthogonal to each other and have unit length.

In particular, the columns of Ṽ correspond to a set of

redundant latent variables and are given by the first

Q eigenvectors associated to the largest eigenvalues of

(X′X)−1X′YY′X.

Another model which is closely related to RRR is CCR,

which provides the generalized least-squares solutions

to the RRR model as latent predictors. In details, the

columns of Ṽ are given by the first Q coefficients of the

canonical correlation variables in the predictor space,

that is by the eigenvectors corresponding to the first Q

largest eigenvalues of the matrix (X′X)−1X′Y(Y′Y)−1

Y′X.

A mixture of RRR and PCR (Abraham and Merola,

2005) is represented by PLSR. In the literature different

versions of PLSR exist, see Rosipal and Krmer (2006)

and Abdi (2010). However, PLS produces similar results

to its variant called SIMPLS (De Jong, 1993), and, for

one response, the results are even identical. In particu-

lar, SIMPLS maximizes (ṽ′X′y)2 under the constraint

that the dimensions Xṽ are orthogonal to each other,

and that ṽ′ṽ=1. As it turns out, the loading associ-

ated with the first latent factor (ṽ(1)) is determined

as the first eigenvector of X′YY′X. Subsequent latent

variables may be obtained by iterative deflations. More-

over, it could be demonstrated that for spherically dis-

tributed input data, PLS produces the same result as

RRR.

3 MRBOP model

One of the most important problems related to the

DRMs, but more in general to all reduction methods

based on latent variables, is the interpretation of the

latent factors. A standard way to proceed is to look

at the loadings ṽjq (each q-th latent factor is charac-

terized by the original predictors corresponding to the

highest absolute values of ṽjq) or to look at the corre-

lation coefficients between latent and original variables.

However, those procedures are heuristic and not always

applicable because in practical situations the original

predictors may have more than one high loading (or cor-

relation) value for several latent predictors, especially

when a large number of explanatory variables are con-

sidered and relatively high correlations are present in

the data.

In this respect, the starting point of our proposal is that

Ṽ is assumed to be a column-orthonormal matrix (i.e.

Ṽ′Ṽ = IQ) having a particular structure with only one

non-null element per row. In particular, Ṽ is parame-

terized as follows:

Ṽ = WV (5)
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where W is a (J × J) diagonal matrix which gives

weights to the J predictors and V is a (J ×Q) binary

and row stochastic matrix defining a partition of the

predictors in Q non-empty classes.

By including (5) into model (2), the proposed MRBOP

model is specified by

Y = XWVC + E, (6)

subject to

vjq ∈ {0, 1}, j = 1, ..., J ; q = 1, ..., Q;∑Q
q=1 vjq = 1, j = 1, ..., J ;

W is a diagonal weight matrix, such that (WV)′WV =

IQ.

Note that the factor loading matrix Ṽ can be rotated

without affecting the model, provided that the regres-

sion coefficient matrix is counter-rotated by the inverse

transformation.

Model (6) implies that the Q latent factors are easily

interpretable in terms of the J original variables be-

cause each of the latent factors is a linear combination

of only one subset of the correlated predictors.

Furthermore, it is worthwhile to note that matrix V,

being binary and row stochastic, univocally defines a

partition of the predictors that should be identified: i)

to best predict the responses; ii) to include correlated

predictors within classes and weakly correlated predic-

tors between classes.

In order to specify mathematically property ii), model

(6) needs some requirements to force the solution to-

wards such a direction. In particular, given a partition

identified by a matrix V, let the correlation matrix of

X

R =
1

I
X′X

be decomposed into matrix RW, whose non-null entries

are the correlations between predictors within classes,

RW =

Q∑
q=1

diag(vq)Rdiag(vq)

and matrix RB, where the non-null entries are the cor-

relations between predictors belonging to different classes,

RB =

Q∑
q,p=1,q 6=p

diag(vq)Rdiag(vp).

Thus, resulting in the formula

R = RW + RB.

The trace of the squared covariance matrix is the scalar-

valued variance (denoted by V AV ) and the trace of

the product of two covariance matrices is the scalar-

valued covariance, denoted by COVV (Escoufier, 1973).

Therefore, the following three measures

‖ R ‖2= tr(RR) =
1

I2
‖ X′X ‖2= V AV (X); (7)

Q∑
q=1

‖ diag(vq)Rdiag(vq) ‖2= tr(RWRW) = (8)

=

Q∑
q=1

V AV (Xdiag(vq));

Q∑
q,p=1,q 6=p

‖ diag(vq)Rdiag(vp) ‖2= tr(RBRB) =(9)

=

Q∑
q,p=1,q 6=p

COV V (Xdiag(vq),Xdiag(vp));

are multivariate measures of the variance of all the

predictors, X, of the predictors within the same class,

Xdiag(vq), and, of the covariance of the predictors be-

longing to different classes, Xdiag(vq) and Xdiag(vp),

respectively.

Note that the term in the sum in (8)

RWq = diag(vq)Rdiag(vq)

is just the covariance matrix of the predictors within the

q-th class. Since (8) increases as the class sizes increase,

we may want to weigh each class by taking into account

its size:

1

nq
RWq

=
1

nq
diag(vq)Rdiag(vq)

where nq denotes the size of the q-th cluster. Hence,

writing N = diag(VV′)−11J , the weighted versions of

(7), (8) and (9) are

‖ RN ‖2= tr(NRRN); (10)

Q∑
q=1

‖ diag(vq)Rdiag(vq)N ‖2= (11)

= tr(NRWRWN);

Q∑
q,p=1,q 6=p

‖ diag(vq)Rdiag(vp)N ‖2= (12)

= tr(NRBRBN).

Therefore, to achieve our goal of partitioning the predic-

tors into classes formed by strongly correlated variables

belonging to the same class or, equivalently, formed by
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weakly correlated variables in different classes, we spec-

ify the least-squares estimation of model (6) as the so-

lution of the following constrained quadratic problem:

min
W,V,C

F (·) = min
W,V,C

[‖ Y −XWVC ‖2

‖ Y ‖2
]

(13)

subject to constraints

a) vjq ∈ {0, 1}, j = 1, ..., J ; q = 1, ..., Q;

b)
∑Q
q=1 vjq = 1, j = 1, ..., J ;

c) W is a diagonal weight matrix, such that

(WV)′WV = IQ;

d) P =

∑Q

q,p=1,q 6=p
‖diag(vq)Rdiag(vp)N‖2

‖RN‖2 =

= tr(NRBRBN)
tr(NRRN) ≤ S

where S is a specified parameter. There is a one-to one

correspondence between S in d) and parameter λ in the

following penalized function:

min
W,V,C

F (·) = min
W,V,C

[‖ Y −XWVC ‖2

‖ Y ‖2
+ λP

]
(14)

where the first term represents the non-penalized least-

squares problem normalized in [0,1] and λ is the positive

penalty parameter. Note that, the higher value of λ is,

the stronger the penalty is. The idea behind the penalty

function d) is to force the non-penalized MRBOP func-

tion to identify classes formed by strongly correlated

predictors or equivalently, classes having weak between

correlations. The penalty function P approaches 0 when

correlations between predictors in different classes ap-

proach 0; it assumes value 1 when correlations between

predictors in the same group are null, while a value

P = 0.5 means that the within correlations in matrix

(RW) and the between correlations (RB) contribute

equally to R.

Given λ and Q, the minimization of the penalized prob-

lem (14) can be solved by using an alternating least-

squares (ALS) algorithm, which iterates three main steps:

0. Initialization of V and W

1. Updating V (Variable allocation step)

2. Updating W (Weighting step)

3. Updating C (Regression step)

3.1 Alternating least-squares (ALS) algorithm

– Initialization

Choose starting values for V and W randomly or

in a rational way.

– Updating V

As far as the allocation step is concerned, the min-

imization of the penalized function (14) is achieved

by solving an assignment problem with respect to

V, given Ŵ and Ĉ, which is sequentially solved for

the different rows of V by taking:

v̂jq =

{
1 if F (·, vjq = 1) = minh F (·, vjh = 1)

0 otherwise
(15)

j = 1, ..., J , q, h = 1, ..., Q and q 6= h. When V̂ is

updated, a check to prevent from having possible

empty classes is carried out.

– Updating W

Concerning the estimation of the diagonal weight

matrix W, given V̂ and Ĉ, different cases can be

considered depending on possible restrictions on the

entries of W due to parsimony requirements. In

the simplest case the predictors in the same class

q of size nq have the same weights ŵqjj = 1√
nq

,

q = 1, ..., Q and j = 1, ..., J . A second case could be

that predictors in the same class have same weights

but possibly different signs, as for example under

the constraints wqjj={ −1√nq ,
+1√
nq
} (j = 1, ..., J and

q = 1, ..., Q). The estimation can be performed by

sequentially assigning ŵqjj = { 1√
nq

, if F (·, wqjj =

{ 1√
nq

) = min{F (·, wqll) : l = 1, ..., J} and ŵqjj =

{ −1√nq otherwise (q = 1, ..., Q and j = 1, ..., J).

For the unconstrained weight matrix, where the pre-

dictors are free (in strength and sign) to differen-

tially weigh in determining the new latent variables,

the estimation of the diagonal values of W, given V̂

and Ĉ is done by rewriting the model

F (·) ∝‖ Y −XWVC ‖2= (16)

= ‖ Y −
J∑
j=1

xjwjj c̃′j ‖2=

= ‖ vec(Y)−
J∑
j=1

(c̃j ⊗ xj)wjj ‖2

where xj is the j-th column vector of X, c̃j is the

(M × 1) column vector representing the j-th row

of VC, and vec(·) and ⊗ denote the column vec-

torization of a matrix and the Kronecker product,

respectively. The minimization of (14) is obtained to

find the optimal diagonal entries wjj (j = 1, ..., J)

by solving an ordinary regression problem

F (w) =‖ vec(Y)−Aw ‖2

where A is the (IM × J) matrix having the Kro-

necker products of the corresponding columns of

VC and X (i.e. the j-th column of A is c̃j ⊗ xj)
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as columns and w is the J-dimensional vector con-

taining the elements wjj . Clearly, the minimization

problem is equivalent because the diagonal elements

of W are the very elements of w and the optimal ŵ

can be found as

ŵ = (A′A)−1A′vec(Y),

whence the optimal Ŵ is determinated by simply

setting ŵ as its diagonal. In order to ensure column

orthonormality of ˆ̃V = ŴV̂, the diagonal entries of

Ŵ need to be class-normalized: ŵqjj ←−
ŵq
jj∑J

l=1
(ŵq
ll
)2

(q = 1, ..., Q,; j = 1, ..., J) so that the constraint

(13c) is fulfilled.

– Updating C

Finally, the estimation of the regression coefficient

matrix C, given Ŵ and V̂, is performed easily be-

cause the problem turns into an ordinary uncon-

strained regression framework

Ĉ = (V̂′ŴX′XŴV̂)−1V̂′ŴX′Y. (17)

Given Q and λ, the three steps are alternated repeat-

edly until convergence, obtained with a sequence of val-

ues of the function F (·), which is bounded from below.

To avoid the well known sensitivity of the ALS algo-

rithms to the choice of starting values and to increase

the chance of finding the global minimum, the algo-

rithm should be run several times starting from dif-

ferent initial (random or rational) estimates of V and

retaining the best solution, i.e. the one minimizing (14).

Finally, to determine the appropriate values of Q

and λ, we use a cross-validation technique as described

in Section 3.2.

3.2 Prediction ability of the model

For practical purposes, the final model is obtained by

choosing simultaneously the optimal number of classes

Q and the penalty parameter λ through a validation

technique such as cross-validation (Stone, 1974). Specif-

ically, similarly to Tutz and Ulbricht (2009), we refer to

a cross-validation that consists of splitting the data set

into three subsets: the training set, which is used to esti-

mate the model parameters, the validation set to select

λ and Q, and the test set to compute the prediction

ability of the model. For each Q and λ (Q = Q1, .., Qr,

λ = λ1, ...., λh, where r and h are the different values of

Q’s and λ’s considered, respectively), the model is fitted

on the training set only, obtaining the estimates ŴQ
λ ,

V̂Q
λ , ĈQ

λ , corresponding to the minimum value of (14)

over 100 random starting points. Then, we compute the

Mean Square Error MSE
(Q)
λ , on the validation set of

size nval as follows:

MSE
(Q)
λ =‖ Yval −XvalŴ

Q
λ V̂

Q
λ Ĉ

Q
λ ‖

2 1

nvalM
.

In this way, we build a grid of MSE
(Q)
λ values tuning

λ and Q simultaneously. Thus, we select the smallest

λ∗ and Q∗ for which MSE
(Q)
λ is minimum and we can

assess the model performance by using the Mean Square

Error (MSE
(Q∗)
λ∗ ) on the test set of size ntest, as follows:

MSE
(Q∗)
λ∗ =‖ Ytest −XtestŴ

∗V̂∗Ĉ∗ ‖ 1

ntestM
,

where Ŵ∗, V̂∗ and Ĉ∗ are the estimates obtained on

the training set with λ∗ and Q∗.

Once predictors are partitioned into classes, a path

diagram can be used to graphically display the rela-

tionships among the variables. Without loss of gener-

ality, as shown in Figure 1, predictors xi are clustered

into Q classes and connected to only one latent factor

zq (q = 1, ..., Q), which in turn is connected to sev-

eral responses (y1, ..., yM ). Relations between variables

are indicated by lines and the lack of a line indicates

no relationship. A line with one arrow represents a di-

rected relationship between two variables, where the ar-

row points toward the dependent variable. Dotted lines

indicate weak relationships between latent factors.

3.2.1 Illustrative example

We now show an example to better describe the penal-

ized procedure, which is crucial in MRBOP estimation.
Let us consider a simulated data set with M = 2 re-

sponses, J=10 predictors partitioned into 3 classes (the

first three predictors in class 1, the second three in class

2 and the remaining four in class 3): the pairwise corre-

lations between predictors in the same class have been

set to 0.90 and the pairwise correlations between pre-

dictors in different classes have been set to 0.04 (Figure

2). Moreover, we have set

C =

 0.19 0.28

0.29 0.35

0.48 0.42

 ,

w = (0.49, 0.57, 0.66,−0.57,−0.77,−0.29, 0.40, 0.56,

0.65, 0.32)′, I =800 and E ∼MVN(0, I).

When model (6) is fitted with no penalty andQ = 3, the

three variables in the true class 1 are allocated to three

different groups, while the other predictors are clustered

together in class 1. The correlations between the corre-

sponding latent factors are respectively: corr(z1, z2) =

0.14, corr(z1, z3) = 0.85 and corr(z2, z3) = 0.92. It

seems that the model tries to explain the largest part
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Fig. 1: Path diagram of MRBOP model
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Fig. 2: Heat map of the correlation matrix of the simulated
data set

of the total variance of the data by using a single latent

factor z1, and creating two redundant correlated classes

(classes 2 and 3) to predict the responses. Moreover,

the model does not care about the relationships among

predictors within the same class (they could be strongly

or weakly correlated). Finally, the penalized MRBOP

model has been fitted by using the cross-validation pro-

cedure as in Section 3.2 run on a grid tuning λ and Q

simultaneously (the best solution retained over 100 ran-

dom starting partitions). The training, validation, test

sets were 85%, 10%, 5% of the whole sample, respec-

tively, Q ∈ {2, 3, 4, 5, 6} and λ ∈ [0.1, 1.6] with incre-

ment of 0.10. Table 1 displays the MSE values from

the test sets (for brevity, results for greater λ are not

shown).

λ Q = 2 Q = 3 Q = 4 Q = 5 Q = 6
0.1 0.0567 0.0529 0.0525 0.0526 0.0525
0.2 0.0567 0.0528 0.0525 0.0525 0.0525
0.3 0.0528 0.0528 0.0525 0.0525 0.0525
0.4 0.0528 0.0525 0.0525 0.0525 0.0525
0.5 0.0528 0.0525 0.0525 0.0525 0.0525
0.6 0.0528 0.0525 0.0525 0.0525 0.0525
0.7 0.0528 0.0525 0.0525 0.0525 0.0525
0.8 0.0528 0.0525 0.0525 0.0525 0.0525
0.9 0.0528 0.0525 0.0525 0.0526 0.0525
1.0 0.0528 0.0525 0.0526 0.0525 0.0525
1.1 0.0528 0.0525 0.0525 0.0525 0.0525
1.2 0.0528 0.0525 0.0525 0.0525 0.0525
1.3 0.0528 0.0525 0.0525 0.0526 0.0525
1.4 0.0528 0.0525 0.0525 0.0526 0.0525
1.5 0.0528 0.0525 0.0525 0.0526 0.0525
1.6 0.0528 0.0525 0.0525 0.0526 0.0525

Table 1: MSE for (λ, Q) from the cross-validation procedure
on the illustrative simulated data set (best choice in bold)

As evident, the best choice for λ and Q corresponds to

the smallest values of λ and Q where MSE is minimum

in the table, i.e. λ∗ = 0.4 and Q∗ = 3. Such a solution

is able to recover the block structure of the predictors
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with correlations between the three latent factors equal

to −0.004, 0.001 and 0.005, respectively.

4 Simulation studies

In this section, we have evaluated the performance of

the MRBOP model compared to OLS, PCR and PLSR

on a set of 27 simulated data sets. The underlying true

regression model is given by (6) with M = 2 and E ∼
MVN(0, d2I), (d = 0.1, 1, 2) where the constant d al-

lows for different error levels. In the simulations all

variables have been centered and standardized. Follow-

ing the cross-validation procedure described in Section

3.2, each simulated data set is splitted into three sub-

sets: Xtrain, Xval and Xtest of sizes ntrain|nval|ntest,
respectively. Let X̄train = (x̄1,train, ..., x̄J,train)′ de-

note the (J × 1) mean vector of the predictors and

Ȳtrain = (ȳ1,train, ..., ȳM,train)′ the (M × 1) mean vec-

tor of the responses in the training set. Thus, the model

is fitted on the training set only by setting Q = 3, re-

taining the best solution over 100 different starts and

obtaining the estimates Ŵλ, V̂λ, Ĉλ for each λ ∈ (0, 10]

with increment of 0.10. Then, the corresponding MSEλ
are computed on the validation set as follows:

MSEλ =‖ (XvalWVC− Ȳtrain+

+(Xval − X̄train)ŴV̂Ĉ) ‖2 1

nvalM

and the smallest λ∗ for which MSEλ is minimum is

selected. By using Ŵ∗, V̂∗ and Ĉ∗ corresponding to

λ∗, the model performance is measured by:

– The test error,

MSEλ∗ =‖ (XtestWVC− Ȳtrain +

+ (Xtest − X̄train)Ŵ∗V̂∗Ĉ∗) ‖2 1

ntestM
;

– The L2-distance between the true and the estimated

coefficients to evaluate the accuracy of the estima-

tors,

L2 =‖WVC− Ŵ∗V̂∗Ĉ∗ ‖2;

– The Modified Rand Index (MRand) (Hubert and

Arabie, 1985) which measures the degree of agree-

ment between the true and the estimated partitions,

MRand =

=

(
J
2

)
(a+ f)− [(a+ b)(a+ c) + (c+ f)(b+ f)](
J
2

)2 − [(a+ b)(a+ c) + (c+ f)(b+ f)]

where

– a - pairs of variables that are in the same class

in V and in the same class in V̂∗;

– b - pairs of variables that are in the same class

in V and in different classes in V̂∗;

– c - pairs of variables that are in the same class

in V̂∗ and in different classes in V;

– f - pairs of variables that are in different classes

in both V̂∗ and V.

The index is equal to 1 in case of perfect agreement.

– Percentage of successes to recover the exact parti-

tion, i.e. MRand = 1 (in Table 2 it is indicated as

%=1).

The procedure is repeated B = 100 times and the re-

sulting measures of performance are averaged over the

replications. The experimental design has been set as

follows. Each data set is of 300|300|200 units, J = 10

predictors partitioned in Q = 3 groups of sizes 3,3,4,

respectively, w = (0.49, 0.57, 0.65,−0.57,−0.77,

−0.29, 0.40, 0.56, 0.65, 0.32), C =

 0.24 0.35

0.37 0.45

0.62 0.53

 , three

error levels (low d = 0.1, medium d = 1, high d = 2),

and correlation matrix given by

rjj′ =

{
ρwit + 0.01U(0, 1) if (j, j′) ∈ q (j 6= j′)

ρbet + 0.01U(0, 1) otherwise
,

where q = 1, 2, 3 and U(0, 1) is a uniform distribution in

[0,1], ρbet defines the correlation between predictors in

different groups, while ρwit is the correlation between

predictors in the same group. Four different settings

have been considered:

1. Setting 1: ρwit = 0.90, ρbet = {0.10, 0.30, 0.60}. This

setting generates 9 experimental cells by crossing

the three error levels with three correlation levels

for ρbet.

2. Setting 2: ρwit = 0.70, ρbet = {0.10, 0.30, 0.60}, so

that 9 experimental cells are generated.

3. Setting 3: ρwit = 0.50, ρbet = {0.10, 0.30}. This set-

ting generates 6 experimental cells.

4. Setting 4: ρwit = 0.30, ρbet = 0.10. This setting

generates 3 experimental cells.

Thus, in each setting X is drawn from a multivari-

ate Normal distribution with mean vector 0 and cor-

relation matrix R = [rjj′ ]. The simulation results are

reported in Table 2 where the best performance is given

in boldface. In all settings the increasing error level does

not affect considerably the recovery of the true parti-

tion of predictors. In fact, when d increases, the aver-

age MRand values and the percentages of successes in

recovering the true partition remain quite stable and

exhibit acceptable values, even in the worst cases cor-

responding to settings 2 and 4, where the block cor-

relation matrix generated is not well-defined (ρwit is
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not much larger than ρbet). In particular, in setting 2

with ρwit=0.70 and ρbet=0.60, the average MRand is

0.79 and the algorithm is still able to recover the true

structure of the predictors 52 times (out of 100). On

the other hand, as expected, the error level influences

the accuracy of the estimates in all settings: the higher

the values of d, the higher the values of average L2.

Moreover, the error affects more the accuracy when the

correlations within groups are strong, i.e. even though

the average L2 shows better results in setting 1 than

in setting 4 for low error, when the error increases, the

L2 values get worse faster in setting 1 than in setting 4.

The error level, instead, has a weak influence on the pre-

diction performance: the increasing of d does not mean-

ingfully affect the MSE values and its performance is

slightly worse in setting 4, where the correlations within

and between groups are both weak (ρwith = 0.30 ρbet
= 0.10). The algorithm converges quickly in a few it-

erations even in the worst case (i.e. 6 on average). Fi-

nally, it can be noticed that even when the error level is

high, the general performance of the algorithm is good

for all settings (i.e. low values of MSE and L2) and

MRBOP outperforms both PCR and PLSR. In partic-

ular, we can observe that OLS results are similar to

the ones from MRBOP; this assures that the proposed

model not only leads to a dimensionality reduction of

the problem but also guarantees an optimal prediction

and estimation accuracy. The three dimensionality re-

duction methods (MRBOP, PCR, PLSR) have been ap-

plied given the true number (Q = 3) of latent factors,

to better compare the performance of the prediction.

Obviously, a greater number of latent factors both for

PCR and PLSR could have resulted in a better fit, but

at the expense of the parsimony in terms of dimension-

ality reduction.

5 Application to Epidemiological data

The MRBOP model has been applied to epidemiologi-

cal data in order to predict variables related to animal

health from variables related to breeding environment,

alimentary factors and farm management, among oth-

ers. It is an important analysis which allows breeders

to reduce disease at multiple points in the transmission

cycle. The data set (Chauvin et al., 2005) consists of

the measurements on I = 659 turkey flocks and M = 2

variables related to animal health (Y): the farmer loss

in terms of mortality (y1) and condemnation at slaugh-

terhouse (y2). The J = 19 predictors (risk factors) are

organized into 2 blocks: X1 and X2, where X1 includes

14 variables pertaining to farming features, while X2

includes 5 variables referred to technical and economi-

cal results of the flocks (variable description in Table 3).

Since all variables are measured on different scales, they

have been centered and scaled to unit variance. The

data set has already been investigated by Bougeard et

al. (2007) and Bougeard et al. (2008). In particular, the

multiblock latent root regression proposed by Bougeard

et al. (2007) shows that the most variance is accounted

for by two out of five latent selected components. Such

components are formed by all the predictors with differ-

ent weights. In particular, the first component is mainly

characterized by MOYVET, DENSI, VET, DWG, RI,

KGM2 and TCI and the second one by ECI and TCI.

Moreover, in their analysis the predictors that have the

most influence on COMDEMN are SANPB, MOYVET

and VET while MORT is mainly predicted by ECI,

TCI and RI. On the other hand, Bougeard et al. (2008)

compared the results of Redundancy Analysis (RA) and

PLS regression. They also focus only on the first two

latent components and show that only a few predictors

(RI and DWG) are related to the first RA component

while PLS regression manages to explain most of the

predictors. RA achieves a better fitting of the responses,

especially CONDEMN, whereas the latent components

from PLS regression seem to be more linked to the pre-

dictors. Actually, CONDEMN is strongly related to the

first component while MORT is best predicted by the

second one. Critical to both approaches is the inter-

pretability of the latent components which are not ex-

clusively defined by only one set of predictors - for ex-

ample TCI characterizes both components in Bougeard

et al. (2007).

We have fitted a MRBOP model for different values

of Q (from 1 to 10) and λ (0.1-10, with increments

of 0.10), by using the cross-validation procedure de-

scribed in Section 3.2, (training, validation and test

sets were 85%, 10%, 5% of the whole sample, respec-

tively) and 100 different starting points to avoid local

minima. The algorithm converged in 9 iterations lead-

ing to the choice of three latent factors (correspond-

ing to MSE
(Q∗=3)
λ∗=0.9 = 0.5933), which are weakly cor-

related (0.174, 0.003, 0.244, respectively) as displayed

in the path diagram of the estimated model (Figure

3). It turns out that the latent factor z1 is formed by

the economical and technical results of the flocks (ex-

cept for ECI) together with MOYVET, REMOV, OTH-

SPEC, DENSI, VET, strongly correlated to the eco-

nomical aspects and it is mainly characterized by the

variables DWG, RI and TCI. Latent factor z2 mainly

reflects the remaining farming characteristics as biose-

curity (through the variable DISINF), surface avail-

ability (SURF) and other general features related to

the farms as FEED, PAREMPTY, LITTER and ECI

(the largest normalized weights are in boldface in Fig-

ure 3). Finally, z3 corresponds to one single binary
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Setting 1 d = 0.1 d = 1 d = 2

ρwit = 0.90 Model MSEλ∗ L2 MRand %=1 MSEλ∗ L2 MRand %=1 MSEλ∗ L2 MRand %=1

ρbet = 0.10 MRBOP 0.0012 0.0010 1.00 99 0.0012 0.0019 1.00 99 0.0014 0.0046 0.98 95
Ols 0.0012 0.0010 - - 0.0013 0.0028 - - 0.0015 0.0079 - -
PCR 0.0033 0.0495 - - 0.0033 0.0499 - - 0.0034 0.0488 - -
PLSR 0.0031 0.0442 - - 0.0031 0.0447 - - 0.0031 0.0436 - -

ρbet = 0.30 MRBOP 0.0012 0.0011 1.00 99 0.0011 0.0020 1.00 99 0.0012 0.0052 0.97 93
Ols 0.0012 0.0011 - - 0.0012 0.0030 - - 0.0014 0.0089 - -
PCR 0.0035 0.0566 - - 0.0036 0.0559 - - 0.0035 0.0562 - -
PLSR 0.0032 0.0498 - - 0.0033 0.0490 - - 0.0031 0.0491 - -

ρbet = 0.60 MRBOP 0.0006 0.0016 0.96 88 0.0008 0.0031 0.97 94 0.0012 0.0079 0.92 82
Ols 0.0006 0.0010 - - 0.0008 0.0035 - - 0.0013 0.0108 - -
PCR 0.0037 0.0719 - - 0.0039 0.0727 - - 0.0040 0.0708 - -
PLSR 0.0030 0.0567 - - 0.0033 0.0579 - - 0.0033 0.0562 - -

Setting 2 d = 0.1 d = 1 d = 2

ρwit = 0.70 Model MSEλ∗ L2 MRand %=1 MSEλ∗ L2 MRand %=1 MSEλ∗ L2 MRand %=1

ρbet = 0.10 MRBOP 0.0011 0.0015 1.00 98 0.0012 0.0018 1.00 98 0.0012 0.0026 0.96 91
Ols 0.0010 0.0011 - - 0.0012 0.0019 - - 0.0013 0.0038 - -
PCR 0.0093 0.0599 - - 0.0098 0.0607 - - 0.0094 0.0592 - -
PLSR 0.0063 0.0387 - - 0.0067 0.0392 - - 0.0064 0.0386 - -

ρbet = 0.30 MRBOP 0.0010 0.0015 0.98 94 0.0010 0.0019 0.97 92 0.0012 0.0031 0.96 89
Ols 0.0009 0.0012 - - 0.0010 0.0020 - - 0.0014 0.0043 - -
PCR 0.0114 0.0715 - - 0.0113 0.0706 - - 0.0117 0.0736 - -
PLSR 0.0067 0.0398 - - 0.0066 0.0392 - - 0.0068 0.0409 - -

ρbet = 0.60 MRBOP 0.0008 0.0033 0.79 52 0.0009 0.0039 0.82 57 0.0012 0.0051 0.80 55
Ols 0.0004 0.0013 - - 0.0006 0.0023 - - 0.0011 0.0051 - -
PCR 0.0191 0.1255 - - 0.0191 0.1238 - - 0.0182 0.1177 - -
PLSR 0.0042 0.0258 - - 0.0042 0.0255 - - 0.0044 0.0264 - -

Setting 3 d = 0.1 d = 1 d = 2

ρwit = 0.50 Model MSEλ∗ L2 MRand %=1 MSEλ∗ L2 MRand %=1 MSEλ∗ L2 MRand %=1

ρbet = 0.10 MRBOP 0.0014 0.0021 0.97 91 0.0012 0.0021 0.96 89 0.0014 0.0026 0.97 92
Ols 0.0014 0.0018 - - 0.0012 0.0020 - - 0.0016 0.0033 - -
PCR 0.209 0.0800 - - 0.0214 0.0821 - - 0.0208 0.0798 - -
PLSR 0.0081 0.0284 - - 0.0081 0.0293 - - 0.0080 0.0289 - -

ρbet = 0.30 MRBOP 0.0012 0.0024 0.93 84 0.0013 0.0026 0.95 87 0.0016 0.0039 0.92 78
Ols 0.0009 0.0017 - - 0.0012 0.0025 - - 0.0016 0.0040 - -
PCR 0.0286 0.1118 - - 0.0283 0.1104 - - 0.0273 0.1050 - -
PLSR 0.0070 0.0258 - - 0.0070 0.0256 - - 0.0066 0.0231 - -

Setting 4 d = 0.1 d = 1 d = 2

ρwit = 0.30 Model MSEλ∗ L2 MRand %=1 MSEλ∗ L2 MRand %=1 MSEλ∗ L2 MRand %=1

ρbet = 0.10 MRBOP 0.0016 0.0029 0.92 79 0.0016 0.0029 0.91 79 0.0020 0.0037 0.94 83
Ols 0.0014 0.0023 - - 0.0013 0.0024 - - 0.0021 0.0040 - -
PCR 0.0515 0.1420 - - 0.0508 0.1402 - - 0.0484 0.1335 - -
PLSR 0.0064 0.0165 - - 0.0062 0.0162 - - 0.0066 0.0168 - -

Table 2: Simulation results

Fig. 3: Epidemiological data: path diagram

variable (SANPB), representing health problems dur-

ing farming. Both responses (CONDEMN and MORT)

are mainly explained by z1, even though for the car-

casses condemnation (CONDEMN) the effect is much

stronger (the corresponding coefficients are c11 = 7.230

vs c12 = −0.381). CONDEMN is also influenced by z3
while MORT by z2. In other words, particular care for

the technical performance of the flocks and the health

problems during farming should be taken in order to

reduce the number of carcasses condemned at slaugh-

terhouse. On the other hand, to reduce the mortality

(MORT), technical performance and some farm char-

acteristics of the flocks need to be improved. Table 4

displays the regression coefficients of the single predic-

tors (given by Ŵ∗V̂∗Ĉ∗) together with the 90% con-

fidence intervals computed by a bootstrap procedure
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Variables ID Description

Y
y1 CONDEMN Percentage of carcasses condemned at slaughterhouse
y2 MORT Mortality percentage for the flock
X1

x1 FEED Meat and bone meal-free feeding (1 = yes, 0 = no)
x2 COSTDIS Disinfection costs
x3 MOYVET Average veterinary costs for the last three flocks
x4 PAREMPTY Partial emptying (1 = yes, 0 = no)
x5 DEMPTY Duration of the empty period before chick arrival
x6 REMOV Number of removal to slaughterhouse per flock
x7 OTHSPEC Last flock with the same species (1 = yes, 0 = no)
x8 SANPB Serious health problem during farming (1 = yes, 0 = no)
x9 DISINF Disinfection labour (1 = skilled labour, 0 = yourself)
x10 CLEAN Cleaning labour (1 = skilled labour, 0 = yourself)
x11 LITTER Quantity of litter used for the flock
x12 DENSI Chick density at the beginning of farming
x13 SURF Surface area on which the flock is farmed
x14 VET Total amount of veterinary costs for the flock
X2

x15 DWG Daily weight gain
x16 ECI Economical consumption index
x17 RI Result index
x18 KGM2 Total flock weight slaughtered related to the surface area
x19 TCI Technical consumption index

Table 3: Epidemiological data: variable description (Chauvin et al., 2005)

VARIABLE COMDEMN LOWER UPPER MORT LOWER UPPER
LIMIT LIMIT LIMIT LIMIT

FEED -0.0155 -0.0789 0.0054 -0.0916 -0.1881 -0.0025
COSTDIS -0.0042 -0.0588 0.0219 -0.0251 -0.0410 0.1021
MOYVET -0.0144 -0.0663 0.1037 0.0008 -0.0040 0.2646
PAREMPTY -0.0209 -0.0321 0.0321 -0.1238 -0.1436 0.0008
DEMPTY 0.0033 -0.0113 0.0641 0.0192 -0.0527 0.0465
REMOV 0.0351 -0.0420 0.0494 -0.0019 -0.2135 0.0018
OTHSPEC 0.0392 -0.0265 0.0818 -0.0021 -0.1176 0.0064
SANPB 0.1504 0.0764 0.1871 0.1023 0.0104 0.1771
DISINF 0.0077 -0.0345 0.0340 0.0456 -0.0125 0.1277
CLEAN -0.0036 -0.0713 0.0043 -0.0215 -0.1184 0.0267
LITTER -0.0272 -0.1229 -0.0024 -0.1610 -0.1899 0.0034
DENSI -0.1722 -0.3481 0.0910 0.0091 -0.2345 0.0800
SURF 0.0163 -0.0135 0.0637 0.0963 0.0014 0.2250
VET 0.0678 -0.0829 0.1231 -0.0036 -0.3384 0.0070
DWG 5.3549 4.8340 5.7154 -0.2823 -0.4533 0.8100
ECI 0.0558 -0.0257 0.1374 0.3299 0.2626 0.4308
RI -4.6328 -4.9680 -4.1939 0.2443 -0.6963 0.3990
KGM2 -0.4211 -0.6143 -0.0473 0.0222 -0.4329 0.0316
TCI -1.3865 -1.5568 -1.0549 0.0731 -0.2036 0.1152

Table 4: Epidemiological data: MRBOP regression coefficients and 90% bootstrap confidence intervals

with 1000 bootstrap samples. Looking more in details

at the regression coefficient estimates and their corre-

sponding confidence intervals, we can observe that the

percentage of carcasses condemned at slaughterhouse is

influenced mainly by the technical results of the flocks

(DWG, RI, TCI, KGM2), presence of health problem

(SANPB) and quantity of litter (LITTER). As far as

MORT concerns, FEED has a significant negative ef-

fect, while ECI, SANPB and SURF have significant

positive coefficients. We can conclude that a reduction

of the percentage of carcasses can be achieved mainly

by improving technical results of the flocks, while in

order to reduce the mortality percentage, some farm-

ing (mainly related to sanitary and environmental) fea-

tures and economical results of the flocks need to be

controlled.
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6 Conclusions

In this paper a new model MRBOP for multivariate re-

gression based on a small set of weakly correlated latent

factors is presented, where each of the latent factors is a

linear combination of a subset of correlated predictors.

MRBOP is particularly appropriate in a regression con-

text where strongly correlated predictors might repre-

sent unknown underlying latent dimensions easy to be

interpreted. The performance of the proposed approach

has been discussed on both simulated and real data sets

and generally exhibits accuracy of the estimates and ca-

pability to recover the block correlation structure of the

original predictors. As suggested by one referee, further

developments could extend the linear factor regression

based on an “ignoring errors” strategy (since the loss

function does not include the error matrix) to an ap-

proach able to fit the model with the errors being part

of the loss function.
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