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Abstract. Retrieval of a distribution of raindrop sizes from measured drop spectra is critically influenced by the tail of 
the distribution. The influence of various tail-types is studied with reference to four parameterisations fitted both to the 
large dropsonlyand to the entire sample of the disdrometer-measured spectra. Results of this preliminary analysis show 
that the Weibull distribution with a shape parameter greater than oneseems to fit the highest percentages of the measured 
drop spectra. 
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INTRODUCTION 

The knowledge of drop size distribution(DSD) of rain, namely the frequency distribution of drop equivolume 
diameters has a wide range of applications in earth sciences such as precipitation physics, hydrology and agricultural 
and soil sciences.DSDis also important in precipitation remote sensing, especially in radar meteorology for 
relationshipsamong rainfall rate and radar measurements such as the radar reflectivity factor. DSD is the result of 
different physical processes, such as coalescence, aggregation and breakup involved in the formation and evolution 
of rain. Consequently, DSD is characterised by a great variability both in space and time. DSD can be defined as 
 ���� � ��	
���� (1) 

where nc is the raindropconcentration (i.e. the zerothraw moment of DSD), andfD(D) is a probability density 
function (pdf).Various pdfshave been proposed in the literature, such as Exponential [1], Weibull [2], Lognormal 
[3], and Gamma [4],assuming that a parametric form can describe DSD variability.To date, the commonly most used 
distributionis the three-parameter gamma [4], usually written as 
 ���� � ��� 
��������� (2) 

where N0(mm-1-� m-3), � and � (mm-1) are called intercept, shape, and slope parameter, respectively. A common 
technique for deriving thethree parameters from drops spectra collected by a disdrometer is the method of moments, 
consisting of equating sample moments with unobservable population moments and then solving those equations for 
the parametersof (2) to be estimated.To accomplish this aim, different sets of rawmoments have been proposed (e.g., 
[5] used the third, fourth, and sixth moments, MM346, whereas [6] considered the zeroth, first and second moments, 
MM012, which usually perform better than the former in parameter estimation) depending also onthe relevance of a 
moment for a specific application (for example, the second moment is relevant for visibility study, the liquid water 
content is given by the third moment and is relevant to the attenuation of telecommunication links, the sixth moment 
is proportional to the reflectivity factor and plays a central role in the radar meteorology, etc.). However, the method 
of moments can determine an excessive and somehow unrealistic variability of the retrieved parameters [7]. 

In general, retrieval of parametric DSDswould aim to best model the largest portion of drop spectra with a single 
fD. As a consequence, there is no guarantee that the selected distribution willadequately model some DSD portions, 
such as the tail.For characterising physical quantities such asthe liquid water content and radar reflectivity which, 
respectively, depend on D3and D6, the right tail is criticalbecause large drops play a much more important role 
thansmall droplets.Very large drops (say D>5 mm in diameter) occur quite rarely but can be significant duringthe 
very early stage of convective rainfall where a low number of large dropscan be recorded[8]. Despite usually 
occurringdrop breaks for large diameters (D�8 mm) [9],the most popular DSD models existing in the literature, such 
as (2), have no upper limit. 
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To investigate possible limitations in modelling DSD with a single function,we fit the following four different 
one-sided continuous distributions to the 1-min measured spectra: the Pareto, the Lognormal, theGamma and the 
Weibulldistributions.The fittingsare performedboth on the tail of the spectrum only and on the whole spectrum. 

EXPERIMENTALDATASET 

Observational data consist of 1-min spectra collected by a two-dimensional video disdrometer (2DVD) during 
the first special observation period of the hydrological cycle in the Mediterranean experiment (HyMeX) field 
campaign in Rome fromSeptember toNovember, 2012.The 2DVD is an optical device that measures the equivalent 
diameter (D in mm), the volume, the fall speed, the axis ratioand the cross-sectional area of each drop that falls in 
the virtual measuring area of 10 × 10 cm2[10]. From these measurements the empirical DSD istypically obtained by 
partitioningobserved diameters Dinto 50 bins with a constant width, as 
 ����� � � �

����� �
�

����
��
���  (3) 

where the time span�t (s) is 60 s, the width of the bin �D (mm) is 0.2 mm, the terminal fall velocity vk (mms-1) is 
given by [11],Mi is the total number of drops in the i-bin and Ak is the cross sectional area (m2). To remove the 
spurious drops due to splashing or wind effect the filter criterion of [12] was adopted, while we assumed a threshold 
equal to 10 drops to identify a rainy minute. 

FITTING METHOD 

DSDs were studied subdividingspectra into sectors based on thresholds such as small drops (D< 1 mm), midsize 
drops (1 mm <D< 3 mm) and large drops (D> 3 mm) [8].We identifythe upper part of eachspectrum with a Dthreshold, 
which is defined to be the 90th percentile of drop diameters of hydrometeors measured in a given 
minute.Consequently, the upper part of the DSD is N(D � Dthreshold). To assure an adequate sample size of large 
drops, only spectra with a minimum 100 drops in totaland at least one drop with diameter greater than 3.5 mm are 
retained, obtaining 485 1-min spectra. 

Once the Dthreshold is set, the distribution fittingrequires the minimisationof the modified mean square error (MSE) 
norm N1defined as [13]: 

 �� �� � � !"#$$$$����"%$$$$����
� �&

'(
��() *�  (4) 

where,if the fit is performed only on the upper part of the distribution, N is the number of drops with D � 
Dthreshold,otherwiseN=n is the total number of drops;+�,$$$$����and +�-$$$$����are the theoretical and the empirical 
exceedance probability functions (EPFs), respectively, computed for each single drop measured in a given minute. 
To estimate the +�-$$$$����, first the EPF 
 +�-$$$$�.�� � �� ��� /�

(0
(
���  (5) 

 .� � � �
�����������

 (6) 
is computed; since the variable X is inversely proportional to D, then the +�-$$$$���� � �� � +�-$$$$�.��. The +,$$$���� 

was computed considering the four different distributions described above [13]. The Pareto is the distribution with 
the heaviest tail, while the Weibull with shape parameter >1 is the one with the lightest tail [14]. The practical 
implication of a light tail is that it predicts less frequent larger drops compared toheaviertails. All the distributions 
are expressed as a function of two parameters: the scale parameter (�) and the shape parameter (�).The proposed 
approach allows fitting of the theoretical distribution only to the largest drops of each spectrum. The fitted 
distribution would thus provide the best possible description of the tail. The norm N1 (4) considers the relative error 
between the theoretical and empirical values, consequently the advantage of N1 over classical square error norms is 
the ability to properly “weights” each values of the sum. In Sect. 6 of [13], there is a comprehensive analysis 
regarding the performance of N1 and the comparison of the latter with the commonly used norms; the authors 
believe that the classical norms are more sensible to the contribution of the extreme values, and this behaviour can 
affect the fitting, particularly a heavy tail distribution can generate very high values compared to the mode values 
and in the classical norms, this high values will contribute a lot to the total error and thus to the fitting results. 
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