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Abstract. Miscalibration of radar determines a systematic error (i.e., bias) that is observed in radar estimates of rainfall. 
Although a rain gauge can provide a pointwise rainfall measurement, weather radar can cover an extended area. To 
compare the two measurements, it is necessary to individuate the weather radar measurements at the same location as the 
rain gauge. Bias is measured as the ratio between cumulative rain gauge measurements and the corresponding radar 
estimates. The rainfall is usually cumulated, taking into account all rainfall events registered in the target area. The 
contribution of this work is the determination of the optimal number of rainfall events that are necessary to calibrate 
rainfall radar. The proposed methodology is based on the entropy concept. In particular, the optimal number of events 
must fulfil two conditions, namely, maximisation of information content and minimisation of redundant information. To 
verify the methodology, the bias values are estimated with 1) a reduced number of events and 2) all available data. The 
proposed approach is tested on the Polar 55C weather radar located in the borough area of Rome (IT). The radar is 
calibrated against rainfall measurements of a couple of rain gauges placed in the Roman city centre. Analysing the 
information content of all data, it is found that it is possible to reduce the number of rainfall events without losing 
information in evaluating the bias.  

INTRODUCTION 

Rainfall radar estimates are affected by errors due to many causes that include, among others, radar 
miscalibration, range degradation (including beam broadening and sampling of precipitation at an increasing 
altitude), attenuation, ground clutter, variability of drop size distribution, vertical air motion, anomalous propagation 
and beam-blocking, variability of Z-R relationships, where Z is the radar reflectivity factor and R is the rainfall 
intensity [1]. Therefore, spatial and temporal averaging of radar and rain gauge data has always been used to reduce 
the measurement errors and the discrepancy between radar and rain gauge estimates. This work in particular focuses 
only on the calibration bias error, a systematic error affecting radar estimates of rainfall independently from both the 
instant of measurement and the location of the sampling volume. Calibration bias error is ascribed to a systematic 
error converting the power received by the radar receiver into radar reflectivity factor that requires either an a-priori 
knowledge or a difficult measurement on site of systems parameters, such as power transmission and antenna pattern 
that can vary, although slowly, with time. In the literature, several radar calibration methods can be combined to 
assess this bias such as the use of standard targets, the receiver static calibration, the use of the sunlight as a source 
of energy, the calibration using the self-consistency principle and the calibration with rain gauges [2, 3, 4]. The aim 
of this paper is to compare two methods to estimate the bias that affects radar estimates of rainfall: 1) a gauge-based 
radar calibration and 2) an information theory-based method. In the following section, the former method is 
described, followed by a description of the latter. Finally, results are presented and discussed and conclusions are 
drawn. 

CASE STUDY  

The rainfall monitoring system considered in this work is represented by the polarimetric Doppler radar Polar 
55C located in the southeast of Rome and by a rain gauge network. Polar 55C is a C-band (5.6 GHz) Doppler dual 
polarised coherent weather radar with polarisation agility managed by the Institute of Atmospheric Sciences and 
Climate (ISAC), Rome (Italy). The radar is capable of transmitting and receiving horizontally and vertically 
polarised signals on alternate pulses, which measure the reflectivity factor (Zh), the differential reflectivity (Zdr) and 
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the differential phase shift ( dp). Radar measurements are obtained by averaging 64 pulses with a range-bin 
resolution of 75 m covering a 120 km radius from the radar site. This study considers a 1.5° elevation angle both to 
minimise the influence of ground clutter and to keep the radar beam low to sample precipitation close to the ground 
[5] .The elapsed time between two consecutive acquisitions with 1.5° elevation is approximately 5 min. Rain gauge 
data are provided by the Ostiense and the Via Marchi rain gauges located approximately 15 km away from the radar 
location inside the radar scanning area. These rain gauges are selected for the purpose of this work because radar 
errors at these gauge sites are due mainly to radar miscalibration (in addition to the variability of the Z-R 
relationship) as in [5, 1]. The influence of other types of errors (such as range degradation, urban clutter or beam-
blocking) is negligible [5, 1]. Analyses are performed on a data set of 19 rainfall events aggregated at 30 min 
sampling time and collected by the two devices during the years 2008 and 2009 because differences between radar 
and gauge rainfall can depend on event characteristics (e.g., stratiform or convective). 

CALIBRATION OF POLAR 55C RADAR WITH RAIN GAUGE 

After removing background noise and ground clutter [5], radar reflectivity (Zh) corresponding to meteorological 
returns is converted into rainfall intensity (R) by using the following relationship [6]: 
 � �10/Z0.5358 h100.19055 ��=R  (1) 

Polar coordinates are then transformed into Cartesian coordinates, and the 2 km x 2 km grid was overlaid with 
the map area. For each time interval, rainfall values are obtained at each pixel, and radar rainfall is then cumulated 
with a time resolution of 30 min to minimise the effects of mismatches in time and space due to sampling 
differences between radar and rain gauges [7, 8]. For each observed event, pairs of rainfall time series are obtained, 
coupling radar and rain gauge data. In particular, radar series refers only to the pixel of the Cartesian grid where the 
rain gauges are located. For each data set, the bias B is obtained as follows [5, 1]: 
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where Gij and Rij are rain gauge and radar rainfall amounts, respectively, M is the number of rainfall events, and 
N is the length of the events. B is a dimensionless multiplicative bias that is applied uniformly to each rainfall value 
estimated by the radar to obtain the corresponding measurement collected by the gauge. When the number N of 
events is that of the whole data set (i.e., 19), the value of B equals 0.333 and 0.326 for the Ostiense and the Via 
Marchi rain gauges, respectively.  

THE ENTROPY-BASED METHOD 

The so-called heuristic entropy was introduced by Shannon [9] as a measure of the uncertainty associated with a 
certain event. Heuristic entropy was used to solve a wide range of issues and applied to several fields ranging from 
mathematics to computer science, from ecology to economics. Heuristic entropy was also applied to hydrologic and 
water resources fields. For instance, entropy was used to define rainfall threshold values through the minimisation of 
a risk entropy-based function [10], to optimise location of water level monitors [11, 12], to design a water 
monitoring sensor network for flood monitoring purposes [13] and to find the maximum non-redundant information 
content of a rain gauge network [14]. An extensive review of other applications to hydraulic issues is reported by 
Singh [15]. In particular, the marginal entropy of a discrete random vector (RV) is defined as: 
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where p(xi) is the probability that the RV X assumes the value x. The joint entropy of M RVs is: 
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where pi1...iM is the joint probability of the M variables. As in this work, if the logarithm is base 2, entropy is 
measured in bits. In this paper, an entropy-based method is used to choose the optimal set of events to estimate the 
bias. In this case, X1, X2,…XM are the decision variables that represent the difference between rainfall radar estimates 
and rain gauge measurements or the difference between rainfall events measured by radar and by the Ostiense rain 
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gauge. This set, in particular, should have maximum joint entropy (as a measure of the information content) and 
minimum total correlation (as a measure of redundancy). The latter is evaluated as: 

 � �
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The optimisation issue is posed as a Multi-Objective Optimization Method (MOOP) [16], and the issue is solved by 
the Non-dominated Sorting Genetic Algorithm (NSGA-II) [17]. The two objective functions are: 
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where C and JH are the total correlation and the joint entropy, respectively, of the M variables. To evaluate the total 
correlation of discrete random vectors, the grouping property of mutual information is adopted [18]. A further 
explanation of this method can be found in [19]. The optimal solutions are plotted on a Pareto front (Fig. 1) 
considering a number of events ranging from 2 to 8. Each point in the graph represents a potential solution, 
consisting of a set of rainfall events to calibrate the radar estimates. 
 

 
FIGURE 1.  Pareto front of optimal set of solutions, considering an increasing number of events. 

 
Fig. 1 shows that the curves converge to the maximum joint entropy value (i.e., log2N, where N is the RVs 

length) as soon as the number of events is equal to 5. Fig. 1 demonstrates that it is possible to choose a subset of 
events that are as much informative as the complete data set. The bias value is then estimated for all solutions 
through Eq. (2). In particular, results highlight that the set of 5 events is characterised by a bias value equal to 0,331, 
close to the value computed with the complete data set. To compare the two bias values, the Fractional Standard 
Error (FSE) is used. FSE is defined as follows: 
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The mean FSE values considering 19 and five events are, respectively, equal to 1.840 and 1.839. To validate the 
events selection procedure through entropy, radar data are calibrated against the Via Marchi measurements using the 
same subset of events. Results show the same performance as the previous case: the bias value equals 0.310. The 
entropy can therefore be considered a valid support in radar calibration, detecting a significant sample of events (i.e., 
only informative ones). The procedure leads to minimisation of the computational time and the amount of data 
required for the process. 

CONCLUSIONS 

This paper evaluates the information content of rainfall events registered by weather radar and by the 
corresponding rain gauge for validation. First, the radar is calibrated considering all rainfall events, and then the 
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optimal number of events is defined through an entropy-based approach. In particular, the selected subset should 
fulfil the two conditions of maximising joint information and minimising total redundancy. The best solutions are 
plotted on a Pareto front. Analyses show that a number of five events satisfies the two objective functions. Bias 
values estimated using these five events and the 19 events available are slightly different, but the average error 
values, computed through the FSE, are the same for the two cases. Results are confirmed by repeating the procedure 
using data provided by another rain gauge. Results show that radar calibration, through bias estimation, can be 
performed by lowering the number of rainfall events without any loss of information content.  
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