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Abstract

This note discusses the mechanism of turbulent energy @ashaough an opportune bifurcations analysis of the
Navier—Stokes equations, and furnishes explanationseomtire significant characteristics of the turbulence. A sta-
tistical property of the Navier—Stokes equations in fuljvdloped turbulence is proposed, and a spatial represenmtat

of the bifurcations is presented, which is based on a progfiniton of the fixed points of the velocity field. The
analysis explains the mechanism of energy cascade thrbegiforementioned property as due to bifurcations, and
gives reasonable argumentation of the fact that the bifiorts.cascade can be expressed in terms of length scales,
and that the local deformation is much more rapid than the Btate variables. These properties, adopted as basic
assumptions in previous works, are here justified throughtiffurcations analysis. Next, the study provides a link
between the order of magnitude of the critical Taylor—sé&gnolds number and the number of bifurcations at the
onset of turbulence.
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1. Introduction

The main aim of the work is to analyze the turbulent mechawisamergy cascade by means of specific properties
of bifurcations of the Navier—Stokes equations. Moreotlmgugh this analysis, we want to corroborate the basic
hypotheses of previous works (de Divitiis (2010, 2013, 2D%here the finite—scale Lyapunov theory is used to de-
scribe the homogeneous isotropic turbulence. There, d@yhwhich leads to the closurelof von Karman & Howlarth
(1938) and Corrsin (1951) equations, is based on the asgumipat the bifurcations cascade law can be expressed in
terms of the characteristic length scales of turbulencg parthe hypothesis that the relative kinematics between two
contiguous particles is much faster than the fluid stateatsées. This latter, justified by the fact that, in turbulence
the kinematics of fluid deformation exhibits a chaotic bebaand huge mixingl (Ottino (1989, 1990)), allows to
express velocity and temperature fluctuations with Na@twkes and temperature equations, through the local fluid
deformation|(de Divitiis| (2010, 2012)). The present worlklgaes only the mechanism of kinetic energy cascade of
an incompressible fluid in an infinite region, whereas doeaosider the phenomenon of temperature cascade.

The work first introduces the bifurcations of the Navierk&®equations (NS—bifurcations), in line with the classi-
cal theory of diferential equations (Ruelle & Takens (1971); Eckmann (198t thereafter studies the phenomenon
of energy cascade through a statistical property of theta@itokes equations in regimes of fully developed chaos.
This property, which represents an important element sfwhrk, is based on basic characteristics of bifurcations.
Next, to found the link between scales of turbulence and 8rdations, the fixed points of the velocity field and the
corresponding bifurcations (u—bifurcations) are propddfined. According to this definition, these u—bifurcasion
are shown to be non—material moving points which representrace of the NS—bifurcations in the fluid domain.

Through these elements, we furnish plausible argumentatitat the NS—bifurcations are responsible for the main
properties of turbulence, such as the chaotic fluid mottomenhergy cascade, the continuous distribution of thetengt
scales, and for the fact that the local fluid strain can be muate rapid than the fluid state variables. In particular, the
aforementioned statistical property gives the link betwl&—bifurcations and energy cascade mechanism, whereas
the u-bifurcations justify the fact that the bifurcatioascade can be expressed in terms of length scales. Moraover,
description of the bifurcations cascade in terms of leng#tes is presented, which is based on properties of the route
toward the chaos, and a relationship between the order ohitoag of the critical Reynolds number and number
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of bifurcationsN at the transition is found. This estimation, based on adedwgpotheses about the length scales,
givesN = 3 and the critical Taylor—scale Reynolds numBgr= 4+14, in agreement with the several theoretical
and experimental sources of the literature. N&tis also determined beginning from the fully developed spit
turbulence with the von Karman—Howarth equation, by ageg the closure equation proposed by de Divitiis (2010)
and a proper condition regarding thieet of the energy cascade. The two procedures give reswdtg@ement with
each other.

2. Bifurcations of the Navier—Stokes equations

This section studies the elements of the bifurcations oNtaeier—Stokes equations for a homogeneous incom-
pressible fluid in an infinite domain, which are necessarytfempresent analysis. The dimensionless equations are

V.-u=0,

1)
M _yvu- Vp+ Relvay
ot
whereRe= UL/v is the Reynolds numbean=u(x, t), andp=p(x, t) are dimensionless velocity and pressure, whereas
U andL are the reference velocity and length. For sake of converighe momentum Navier—Stokes equations are
formally written by eliminating the pressure field in EdS) {irough the continuity equation

U = N(u; R = No(u) + Re'lLu (2)

whereu is the Eulerian time derivatives of the velocity field,

N : {u} - {(Z—l:} 3)

is the nonlinear operator representing the R.H.S. of the embum Navier—Stokes equations, gofland{du/dt} are

the sets of the fields anddu/at, respectively. In EqL{2)\No(u) is the nonlinear operator which represents the inertia
and pressure forces, whereas the linear opetatogives the viscosity term. In the case of homogeneous fluid in
infinite domain, ifu(x, t) is a solution of Eq.[{R), thea(x + h, t) satisfies Eq.[{2), wheteis an arbitrary displacement,
ie.

u(x,t) = N(u(x,t); R = u(x+h,t) = N(u(x + h,t); Re, Yh 4)

In line with|Ruelle & Takens (1971), we suppose thatcan be replaced by a finite-dimensional manifold, thus
Eq. (2) is here analyzed through the classical theory ofifieréntial equations. Now, to define the bifurcations of the
Navier—Stokes equations, observe thaRé= Re is properly small, the unique steady solutiofiRe) = u(x; Re)
is calculated by inversion of Eq[J(2), whereas for higheugalofRe other steady solutions(Re can be obtained
starting fromu(Re&), by applying the implicit function theorem to Edl (2)

Re 1 ON
u(Re = u(Re) o VuN 6RedRe (5)
whereVyN = dN(u; Re/du is the Jacobian dil with respect tas. The velocity fieldu(Rée can be determined with
Eg. (8) as long a¥N is nonsingular, i.e. when the determinant &gt{) # O.

The bifurcations of the Navier—Stokes equations occur wiagt exhibits at least an eigenvalue with zero real
part (NS-bifurcations). There, d&(N) = 0 thus, following Eq.[{b)u(Ré can degenerate in two or more solutions.
As the consequence of the structure of Eg. (2), we have thenfolg route toward the chaos: For sm&g the
viscosity forces are stronger than the inertia onesMrzkhaves like a linear operator with détfN) # 0. When
the Reynolds number increases, as lon§ s is nonsingularu(Ré exhibits smooth variations with respectR®
whereas at a certalRe this Jacobian becomes singular @hjdReappears to be discontinuous with respedro
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Figure 1: Left: qualitative scheme of NS—bifurcations. IRigqualitative scheme of phase trajectories in the hoggpdane.

(Guckenheimer (1990)). Of course, the route toward theutartte can be of flierent kinds, such as, for example,
those of Ruelle & Takens (1971), of Feigenbaum (1978), aiibofieau & Manneville (1980). In general, the chaotic
motion is observed when the number of encountered bifuncadi about greater than three. Figlire 1 (Left) reports a
qualitative scheme of the bifurcations tree, where a corapbofu(xa, t) is shown in function oRe andx, andt are
assigned position and time. Starting fréta), the diagram is regular, untile>, where the first bifurcation determines
two branches. Increasing agdie other bifurcations occur. In the figurau denotes the distance between two
branches which born from the same bifurcatidRerepresents the distance between two successive bifunsatind

n is the number of the encountered bifurcations starting fiRemn

If the Reynolds number does not exceed the critical vRlgiethe velocity fields satisfying Eq.](5), are limited in
number, thus alsa is moderate. These branches, which give the intermediagestof the route toward the chaos,
form a tree whose overall dimension alomg of the order ofAu;.

Conversely, wheiRe > Re, we have the region of developed turbulence. The diversmitglfields satisfying
Eq. (3), determine an extended complex geometry made byaeu@nts whose minimum distance is very small.
This determines that the equatiblifu, Re =0 is satisfied in a huge number of points of the velocity fiektsnghich
are very close with each other, wheréysl, R§ #0 elsewhere. Therefore, both the operatd@ndV,yN will exhibit
abrupt variations ofu}.

During the fluid motion, multiple solution®can be determined, at each instant, through inversion o{Zq.
u=N(u;Re

Re ON (6)
0(Re = N"I(U; Re = (i(Re) — f VuN! — dRe
Re oRe

If Re << Re€, N behaves like a linear operator, and EQl (6) gifies u(x,t) as unigue solution, whereasReis
properly high,N! is a multivalued operator and Ed] (6) determines severalitglfieldsd. That is, the current
velocity fieldu(x, t) corresponds to several other solutidifs, t; Re which give the same field(x, t). ForRe> Re
a huge number of these solutions are unstable, thus sudiossland the bifurcations determines a situation where
u(x, t) tends to sweep the entire velocity field set, accordingdyrtiotion is expected to be chaotic with a high level
of mixing.

From another point of view, wheReis given, a single NS-bifurcation corresponds to severabplirajectories
bifurcations in the hodograph space and to a growth of thecitylgradien®,u. To show this, consider now the two
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velocity fieldsu = u(x,t) andu’” = u(x + r,t), wherer is assigned. Their @lierence¢ = u’ - u varies withx andt.
Taking into account the propertyl (4) (homogeneous fluid fimite space)u andu’ are both solutions of Eq}(2), thus
the evolution equation &f coincides with that of perturbation of the velocity field.rl& |r| is properly small, this
equation reads as

£=VuN§ (7)
whereV,N depends oni(x, t) which in turn varies according to
U = N(u; Re (8)

For sake of convenience, we suppose that, at the onset ofdtiermall the eigenvalues &f,N exhibit negative real
part, and that the NS—bifurcation happenstfert* > 0. There, at least an eigenvalue crosses the imaginaryaads,
the phase trajectories, initially contiguous, therealteerge. Figur&]l (Right) shows three pairs of phase trajis

in the hodograph planei, uy), each representing the velocity components in the paimufts &1, X1 + r), (X2,

X2 + ) and s, X3 + r), where the arrows denote increasing time. Continuous asldetl lines represent the velocities
calculated irxy, X2, X3 andxy +r, X2+ 1, X3+, respectively, whereas the poifdg, B,, B3 give the velocities at = t*,
thus these are the image of the NS—bifurcation in the hogidguiane. After the NS—bifurcatiaf (t), £,(t) andés(t)
diverge, and this means that a bifurcation causes a losfafirations with respect to the initial valugg(0), £,(0)
andé;(0) (Prigoginel(1994)). In particular, for what concerns #ingle trajectorg—B,, afterB; it degenerates in the
two branche8, — C andB, — D which represent two possible phase trajectories, #oét =0 in B,. After By, Eq.
(@) does not indicate which of the branches the fluid will ckmdhus very small variations on the initial condition
or little perturbations, are of paramount importance fer ¢hoice of the branch that the fluid will follow (Prigogine
(1994)).

2.1. Local fluid deformation

This section gives reasonable argumentations that, inuembe, the fluid deformation can be much more rapid
than the fluid state variables. To show this, observegltatrresponds to variations of the velocity gradigpt which
changes according to Ed] (7).

oVyu
6: = VuN Vyu 9)
whereVyu is formally expressed by
t
Vxu(x,t) = exp(f Vuth)qu(x, 0) (10)
0

This is the formal solution of Eq[{9), where the exponerd@&iotes the series expansion of operators

t t
exp(f Vuth) =1 +f VuNdt+ ... (12)
0 0

V«u(x, 0) is the initial condition, andl is the identity map. The bifurcations determine abruptataons ofVyN which
in turn produces an exponential growth of the velocity geatlaccording to Eq[{1.0). Thus, for 0, Viu can exhibit
non-smooth spatial variations, ajfiéul| is very high in a myriad of points of the fluid domain.

On the other hand, the local fluid deformation is related &rtative kinematics between two contiguous parti-
cles, and this link can be expressed through the Lyapun@ryh&his kinematics is represented by the infinitesimal
separation vectaix between the particles, which varies according to

dx = V,u dx (12)

The Lyapunov analysis of EJ._{{L2) gives the local deformmiicterms of the maximal Lyapunov exponént- O

5_;‘0 ~ M) (13)
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wherey : xg — X is the function which gives the current positiwof a fluid particle located at the referential position
Xp att = to. As||VyU|| >> 0, the exponeni = ||VU|| is expected to be high, thus according to Eqg] @3)9x, can be
much faster thaiW,u andu, and can exhibit non—smooth spatial variations.

Remark. This property can have implications for what concerns thresequences of the basic formulation for
deriving the Navier—Stokes equations. In fact, the NaBé&vkes equations are derived from an integral formulation
of balance equations by means of the Green theorem, andttés tan be applied to regions which exhibit smooth
boundaries during the motion (Truesdell (1977) and refegeitherein). Now, ix/dxq is much more rapid than
and exhibits abrupt spatial variations, the boundariesuid flegion become irregular in very short times, and this
implies that the Navier—Stokes equations could requiretimsideration of very small scales and times for describing
the fluid motion.

3. Fully developed chaos and energy cascade

To analyze the mechanism of energy cascade, this sectieemigea simple statistical property of the Navier—
Stokes equations in the regime of fully developed chaoss pidperty, arising from basic elements of the bifurcations
is here applied to the Navier—Stokes equations in the fo)nil@this purpose, consider now Fid. 2, where a scheme
of two contiguous phase trajectories in the hodograph pigis@own in proximity of the trajectory bifurcatidB.
These phase trajectories correspond to velocity varigiiotwo assigned points, andx, = X3 +r, wherer = |r| > 0

O }

/

Figure 2: Scheme of the velocities variations near a bifionan the hodograph plane.

is arbitrarily small. The figure shows the velocity arradisandP, which describe the two phase trajectories, initially
close with each other, that thereafter diverge becauseedfithrcation. Let™ andt™ instants for which bott; and
P, approach td and move away from it, respectively. As the phase trajessativerge

luy — uj| >> |u; — ug] (14)

and, thanks to the bifurcation, d€{(N) = 0, therefore we expect that

il = lugl, luzl =~ |us| (15)
The inequality[(T4) and Eql_(IL5) imply that
up - (U3 - ug) <<ug - (u; —up) (16)
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The condition[(IB) is frequentely satisfied in the chaotgimes, whereas the opposite inequality is possible but not
probable. Hence, it is reasonable that

% (u- (U —u)) <0, Vrsmall (17)

Moreover, for relatively high values of due to the numerous phase trajectory bifurcations in batweandx,, the
inequality [26) will be satisfied in average, therefore weuase that

fvg(w(u’—u)) dvV <0, VV (18)

where(.) denotes the average over the velocity ensembledifid= dr,drydr; is the elemental volume wittr =
(dry, dry, dr). Taking into account Eq[{2), Eq$.(18) andl(17) are bothtemiin terms oN

(N-Au+u-AN) <0, VYrsmall

(19)
f(N-Au+u~AN) dv' <0, VvV
\%

where nowu = ug, U’ = Uz, N = N, AN = N’ — N1, Au = U’ — u. Observe that Eq[{19) has been obtained from Eq.
(@), for arbitraryRe > Re'. Due to this arbitrarily and considering that the bifuroas are caused by the nonlinear
terms of the Navier—Stokes equations, EQs] (19) read as

(No-Au+u-ANg) <0, Vrsmall

(20)
f(No-AU+U-ANo) dv' <0, VvV
\%

Equations[(200) express the influence of bifurcations on thd fhotion.

At this stage of the analysis, we furnish adequate explanstihat the bifurcations determine the transfer of
kinetic energy from large to small scales. This is shown Beaaf homogeneous isotropic turbulence, by means of the
evolution equation of the velocity correlation. This eqoiais obtained through the Navier—Stokes equations wrritte
in two pointsx andx’ = x +r, taking into account that, in such conditiddou) = 0 (von Karman & Howarih (1938))

9 (u-u)=Rel(2¢u-Lu)+(Lu - Au+LAu-u))

+(Np - AU + ANg - U)
The firstintegral of Eq.[(21) is the von Karman & Howaith 889 equation, the evolution equation of the longitudinal
velocity correlation function. First and second terms atfhH.S. of Eq. [(21) give respectively, the rate of kinetic
energy and the spatial variations of the velocity corretatiue to the viscosity, whereas the third one, arising from

the inertia forces, is responsible for the mechanism of@neascade and identifies the term with the third—order
statistical moment of velocity fierencel(von Karman & Howarth (1938))

(Ng-Au+ANg-uy = V- ((u-u’)(u—u’)) (22)
where

lim (Ng-Au+u-ANg) =0, V-{(u-u)(u-u’))=0(r?nearr =0 (23)

r—oo

In homogeneousisotropic turbulen®e((u - u’)(u — u’)y is an even function afwhich vanishes for =0 (von Karman & Howarth
(1938)). According to the present analysis, Eq] (20) std@s(u - u’)(u; — uf)) and the skewness of the longitudinal
velocity difference are both negative, and that the turbulent kinetioggrftows continuously from large to small
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scales, in agreement with the accepted idea of the mecharfikimetic energy cascade (Batchelor (1953)). In fact,

in line withlvon Karman & Howarih (1938)
19
r2 or

(r*K(1) = V- ((u- u)(u - u)) (24)

whereK(r) is an even function of directly related to the longitudinal triple correlatiomiztionk(r) = (uu;)/ud,
according to

19
r4 or

K(r
ey = < (25
whereu = +/(U2) = V(u-u)/3, andu, = u-r/r. Now, integrating Eq.[{24) with respect to the voluMand taking
into account Eq.[{20) and th&t(0) = 0, we haveK(r) < 0 Vr > 0, where due to isotropgdV’ = drdrydr, = 4xr?dr.
Next, integrating Eq.[(25) witk(0) = 0, we obtairk(r) < 0 Vr > 0. Accordingly, the skewness ai and ofdu, /dr
are both negative

_ (Auwd 6k(r)
M) = auyo? = - fO)7? o
(26)
- kIII 0
H3(0) = lim Hs(r) = W <0

wheref = (u,u/)/u? is the longitudinal correlation function, and the supamdRoman numerals denote derivatives
with respect ta'. Furthermore, a¥ - {(u - u’)(u — u’)) = O(r?) near the originHs(0) < 0 assumes a finite value.

In conclusion, the phenomenon of kinetic energy cascaderesdxplained with the proposed propeftyl (20) which
deals with the bifurcations in the fully developed chaotigime, and through the fact thidp(u) really depends on
the velocity gradient. Therefore, EQ. {20) provides th& etween bifurcations and energy cascade mechanism and
states that the bifurcations are the driving force of tuehake. Moreover, the condition th&t ((u - u’)(u — u’))=0in
the origin, means that the bifurcations do not modify theage kinetic energy, but only influence the kinetic energy
distribution at the dferent scales.

4. Fixed points and bifurcations of velocity fields

In order to analyze the link between NS-bifurcations andtleiscales of turbulence, the fixed points associated
to the current velocity fieldi(x, t) € C* ({x} x {t}) are first introduced. These fixed points are defined as thegiin
satisfying

G(X;R8 =0, 27)

wherel(X; Re is calculated with Eq.[{6). To study these points, we rettalt u(x,t) corresponds tdi(x; Re =
N~1(u; Re which is not unique and depends on the Reynolds number. KEhanthis non—unicity and to the time
variations ofu(x, t), these points continuously vary with the time. These poaiso depend oRe and if X(Rey)
represents the fixed points calculatedRey << Re’, X(Ré can be formally obtained with the implicit function
theorem

Re

X(Re = X(Re) + f Vyu VNt %dRe (28)

Re
whereRe> Re). X(R€ can be determined with Eq.(28) if d&t,N V«u) # 0. If we exclude the cases where &gt

= 0, the u—bifurcations are defined as those fixed points wiereperatoW N admits at least one eigenvalue with
zero real part. Hence, the u-bifurcations are the imageefN8—bifurcations in the fluid domain, and the previous
considerations concerning the route toward the chaos capfi&d to Eq.[(28).
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Figure 3: Qualitative scheme of bifurcations of a given ulofield.

Figure[3 shows a situation at a given instaqualitatively similar to that of Fid.J1 (Right), where a coamgnt of
X is reported in terms dRefollowing Eq. (28). In the figureAX is the bifurcation scale, a length associated to each
bifurcation which expresses the distance between branghieh born from the same bifurcation. Such branches
form a complex geometry which exhibits self—similarityRsincreases, whose overall dimension at the transition
can be expressed as= AX; — AXy (Mandelbrat [(2002); Mainzer (2005)). Whéte < R€, the bifurcations are
limited in number, and the sum of the distances betweengaontis branches does not exceed

Z AXn < AXq — AXN (29)

nzl

Vice versa, folRe > R€, the bifurcations frequentely happen and the severalci@jes tend to describe the entire
physical domain. As the result, the bifurcations tree withibit fractional dimension and self—similarity (Mandedt
(2002);l Mainzer|(2005)), whereas the distance betweenubeessive u—bifurcations is very small, and the sum of
AX is greater thaiX (see for instance Mandelbrot (1967, 2002) and refereneegsiti), i.e.

Z AXn > AXq — AXn (30)

nzl

This situation corresponds to the current velocity fia(d, t), whereu(x,t) follows the Navier—Stokes equations.
As the result, we observe an unsteady motion dependinBe@nSpecifically, immediately before the transition
(Re < R€), the motion is quasi—periodic characterized by a disadét&ibution of independent basic scaleX
and frequencies, each associated to a single bifurcatickn{gnn [(1981) and refs. therein), whereasRer> R€,
the fluid motion is chaotic with a high level of mixing, the bi€ations behave like continuous transitions, whexe
and frequencies play the role of real variables (EckmanB1)18nd refs. therein).

This spatial representation of NS-bifurcations and theitimuous variations with respecttigustify the contin-
uous distribution of wavenumbers of the energy spectrum th@ assumption that the bifurcations cascade law can
be expressed in terms of length scales (de Divitiis (2010)).

5. Bifurcations cascade in terms of length scales

The previous analysis justifies the fact that the bifurcetioascade can be expressed in terms of the saXes
As these latter vary with time, their average valleare considered in function of Figure[4 qualitatively showis,
immediately before the transitioRRé < Re, filled symbols), wheré\ is the number of encountered bifurcations at
Re'. These independent basic scales, discretely distribatedepresented by a given succession.
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Figure 4: Filled symbols: Bifurcations cascade lawR&< Re. Dashed line: scales distribution fRe> Re

Conversely, to represent the continuous schlagleveloped turbulencéjs in terms of¢, a real variable which
replaces and that expresses the continuous progress of the bifansith developed turbulence, where [1, N] ¢
R, with [£] = n, and [] denotes the integer part. Hence

I =1(), é€[L,N]cR (31)

andl(¢) d¢ represents the elemental distance between neighborgisaadranches in developed turbulence.

For Re << Re, the flow is characterized by given frequency and spatiaictire. RisingRe < R€, when
the first bifurcation occurs, a new frequency, independemhfthe first one, appears together to the corresponding
flow structure |[(Eckmann (1981); Gollub & Swinney (1975)). tAe transition Re = R€), the power spectra tend
to become continuous, while their peaks preserve the fresiegimmediately after the transitian (Eckmann (1981);
Gollub & Swinney (1975); Libchaber & Maurer (1979); Crutctfl et £1/(1980)). As these frequencies are associated
to spatial structures af through the Navier—Stokes equations, such preservatipeal frequencies corresponds to
the keeping of the caracteristic scales of the velocity filetdugh the transition. Therefore, the scdlegbtained for
Re < R€ maintain their values fdrRe > Re andé=n. Accordingly, the functior(¢) is chosen in such a way that

) =ln, n=1,2,..,N (32)

Next, because of the aforementioned self—similakitgnd|(£) are supposed to be, respectively, a geometric progres-
sion and an exponential function, i.e.

1

Ih=—7, n=212,.,N, forRe< R€
qn*l
(33)
I(¢) = % £€e[1,N] c R, forRe> Re
whereq > 1.
Now, the inequality[(29) states that, fRe < Re, the sum of the distanceésX does not excee}, i.e.
N 1
Dlla<h-In=l(1- = (34)
h2 q

On the contrary, foRe > Re, the sum of such these distances is much greaterXh@ee ineq.[(30)), and this can
be expressed taking into account that R

N 1
fl 1(£)de > 11 — Iy zll(l—w) (35)
9



Table 1: Critical Taylor—scale Reynolds number calculdtedN = 2, 3, and 4, for dierent values of.

q Re(N=2) Re(N=3) Re(N=4)
2.000 1.03 413 16.52
2.250 1.31 6.62 33.50

a~2503  1.62 10.13 63.49
e~2718  1.91 14.10 104.16

As{l,,n = 1,2, ...} is a geometric succession, the inequalifyl (34) is satisfied| £~ 2 andN arbitrary, whereas the
condition [35) is satisfied fay < e, that is

2<qg<e (36)

6. Estimation of the critical Taylor—scale Reynolds number

In fully developed turbulence, the Taylor-scale Reynolaisiber is defined by

_ udr

Ri = (37)

v

wheredr = 1/ /- f"(0) is the Taylor scaleR,;, At andu are linked by means of the relation (Batchelor (1953))

%T = 15" Ry, (38)

where? is the Kolmogorov microscale.

The critical Taylor—scale Reynolds numiris first estimated starting from the route toward the chasisgthe
bifurcations cascade seen at the previous section, anchagsan opportune property of the length scales. Thereafter
R} is also estimated beginning from the fully developed iguitdurbulence, adopting the closure equation presented
inlde Divitiis (2010) for the von Karman—Howarth equatiand a plausible condition fdf.

6.1. Estimation of Rthrough the route toward the chaos

To estimateR; through the route toward the turbulence, the relationskipvbenR; andN is searched. Now, to
obtain this link, itis worth to remark that, féte > Re', the minimum length(N), can not be less than the Kolmogorov
scalet, wheread(1) = A7 (see Fig[#), thus < I, < A7 for Re< Re, and

At AT
|n = F, = W (39)
Combining Egs.[(39) an@ (B8), we have
q2N—2
Ry = N (40)

which expresses the searched relationship. With referentable[1, all the values @R, calculated folN = 2, and

g € [2, €], are of the order of the unity and this is not compatible withwhich represents the correlation scale, while
the valuesR;, = 4 + 14 obtained folN = 3 andq € [2, €], are acceptable. In particular,dfis assumed to be equal
to the second Feigenbaum constant{2.502..), R} ~ 10. ForN = 4, all the values oR seem to be quite high in
comparison with a plausible minimum valuesR)yf expecially for high values di.

These orders of magnitude Bf calculated folN = 3, agree with the dlierent theoretical routes to the turbulence
(Ruelle & Takens (1971); Feigenbaum (1978); Pomeau & Maitiedt 980); Eckmann (1981)), and with the diverse
experimental data (Gollub & Swinney (1975); Giglio etlal 819;/Libchaber & Maurer (1979)) which state that the
transition occurs wheN > 3.
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6.2. Estimation of Rthrough the fully developed turbulence

Next, to estimatdR; starting from the regime of fully developed homogeneousagic turbulence, the solutions
of the von Karman-Howarth equation are considered intfanoof R;. To determineR;, we need an auxiliary
condition which defines the lower limit for the existence bistregime of turbulence. To found this condition,
observe that the homogeneous isotropic turbulence is araghsregime, where andAt change witht according to
(von Karman & Howarthi (1938); Batchelor (1953))

ﬁ __10uzv a1
d a2 “1)
5 1dit 7 7
= === k") + =vEV(0
2@ d e ©)+3»77(0) (42)

where Egs. [(41) and(#2) are the equations for theffimients of the powers® andr?, respectively, of the von
Karman—-Howarth equation. The term responsible for trergncascade is the first one at the R.H.S. of Eq] (42),
whereas the second one is due to the viscosity. Accordingjio[&), if the energy cascade isfBciently stronger
than the viscosity féects, therdAr/dt < 0. Hence, a reasonable condition to estinRitean consist in to search the
value ofR; for which

dir

dt
This value ofR; depends on the adopted closure equatiofifolf we use the results of the Lyapunov theory proposed
bylde Divitiis (2010) K is in terms off andaf /or

=0 (43)

1-fof
K=u{—— 44
N2 (44)
thus Eq.[(4B) is satisfied far (Batchelor (1953))
7 fV(0)
R, =R =2|=-¢-5| wherep = 45
=R (390 ) Y= 11 0) (45)

Following such estimatiorR; is related to the behavior df near the origin througl > 15/7. For instance, wheh
is a gaussian function

2
f= exp(f” (0)%), theng = 3, R, = 4. (46)

whereas if, according to the Kolmogorov lafvbehaves like
f~1-cr?3, c¢>0,theng =48, R, =124 (47)

wheref'(17/V2) andf! (17 / V2) are assumed to be equal to the corresponding derivafiteslg 2} r2+1/41f)Vr?

inr = A7/ V2. These values are in qualitatively good agreement witsetaf the previous analysis based on the
bifurcations.

7. Conclusion

We conclude this work by observing that the proposed siEdigtroperty of fully developed turbulence based on
bifurcations, explains the energy cascade phenomenorr@eagent with the literature, and motivates the fact that
the local fluid deformation can be much faster than the viidi@ld. Furthermore, the spatial representation of the
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bifurcations justifies that the bifurcations cascade caexpeessed in terms of length scales, and allows to argue that
the scales are continuously distributed in developed tertme. The proposed preservation of the bifurcation scales
through the transition, leads to a link between critical iRggls number and number of bifurcations at the transition,
resultingN=3 andR; ~ 4 + 14 in line with the literature.R; is also estimated as that value of the Taylor—scale
Reynolds number which determingsr /dt = O in the isotropic turbulence. The two procedures provideesofR;

in agreement with each other.
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