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INCREMENTAL GENERALIZED HOMOGENEITY, OBSERVER

DESIGN AND SEMIGlOBAL STABILIZATION

Stefano Battilotti

ABSTRACT

We introduce the notion of incremental generalized homogeneity, giving
new results on semiglobal stabilization by output feedback and observer design
and putting into a unifying framework the stabilization design for triangular
(feedback/feedforward) and homogeneous systems. A state feedback controller
and an asymptotic state observer are designed separately by dominating the
generalized homogeneity degree of the nonlinearities with the degree of the
linear approximation of the system and an output feedback controller is
obtained according to a certainty-equivalence principle.

Key Words: Generalized homogeneity, state and output feedback, observers.

I. INTRODUCTION

Homogeneity and homogeneous approximations
have been investigated by many authors for the analysis
of the stability of an equilibrium point: [6], [5] and [13]
to cite few. This theoretical setup has been exploited
in the design of homogeneous controller/observers ([7],
[8], [9], [1]): the idea is to design a stabilizing controller
for the homogeneous approximation and asymptotic
stability is preserved under any perturbation which does
not change the homogeneous approximation.

In this paper we introduce the notion of generalized
homogeneity (see the preliminary works [3] and [4])
and give conditions based on generalized homogeneity
for semiglobal stabilization by output feedback. These
conditions extend and improve conditions based on
the notion of classical homogeneity ([7], [8], [9], [1])
in such a way that semiglobal stabilization by output
feedback can be achieved for systems

9x “ Ax`Bu`φpxq

y “ Cx`ψpxq, (1)
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with any function φ “
`

φ1 ¨ ¨ ¨ φn
˘T and ψ such

that for all x “
`

x1 ¨ ¨ ¨ xn
˘T

|φipxq| ď
´

ři
j“1

¯

Φijpx1, . . . , xjq|xj |, i “ 1, . . . , n,

|ψpxq| ď Ψ1px1q|x1| (2)

(strict lower triangular φ) or

|φipxq| ď
`řn

j“i`2

˘

Φijpxi`2, . . . , xjq|xj |, i “ 1, . . . , n,

|ψpxq| ď
`řn

j“2

˘

Ψjpx2, . . . , xjq|xj |, i “ 1, . . . , n, (3)

(strict upper triangular φ) for some continuous
nonnegative functions Φij . While any such functions
φ and ψ are homogeneous in our generalized sense,
additional restrictions must be assumed upon requiring
homogeneity in the classical sense. Semiglobal stabi-
lization by non-homogeneous output feedback has been
proved for strict lower triangular φ in [14]. Under
this regard and beyond [14], our result allows also for
uncertain output terms like y “ cx, where c P p0, 1q is
an unknown parameter, or saturated outputs as y “
satpxq. On the other hand, semiglobal stabilization by
non-homogeneous output feedback has been proved for
(non-strict) upper triangular φ in [2].

As to non-triangular φ, our conditions based on
generalized homogeneity extend and improve existing
conditions based on the notion of classical homogeneity
([7], [8], [9], [1], [11], [10]) in such a way that one is
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able to cope with φ for which (consider as an example
n “ 3)

|φ1px1, x2, x3q| ď |x1|
α1 ` |x1|

β1 |x2|
γ1 |x3|

δ1

|φ2px1, x2, x3q| ď |x1|
α2 ` |x1|

β2 |x2|
γ2 (4)

with no restrictions on φ3, where αj , βj , γj , j “ 1, 2,
and δ1 are nonnegative reals such that either 0 ď δ1 ď 1
or 1 ă δ1 ă

1´γ1
γ2

. Note that φ is not homogeneous
(in the classical sense) if β1 “ 3, β2 “ 1, γ1 “ 2

3 and
γ2 “

1
4 . Our result improve existing conditions for

semiglobal stabilization by output feedback also with
the introduction of the uncertain term ψ in the output y.

In this paper a state feedback controller and an
asymptotic state observer are designed separately by
dominating the generalized homogeneity degree of φ
and ψ with the degree of the linear approximation
of the system and an output feedback controller is
obtained according to a certainty-equivalence principle.
Our result puts into a unifying framework the stabi-
lization problem for triangular (feedforward/feedback)
and homogeneous systems. A novelty introduced
by the notion of generalized homogeneity is the
mixed low/high-gain observer/controller structure, in
combination with saturated controls ([12]) and saturated
state estimates ([14]). The saturation of the state
estimates is a crucial issue of the observer design when
φ and ψ contain non-homogeneous terms.

II. NOTATION

• Rn (resp. Rnˆn) is the set of n-dimensional real
column vectors (resp. nˆ n matrices). R` (resp.
Rn`, Rnˆn` ) denotes the set of real non-negative
numbers (resp. vectors in Rn, matrices in Rnˆn,
with real non-negative entries). Rą (resp. Rną)
denotes the set of real positive numbers (resp.
vectors in Rn with real positive entries). For any
c P R set

1– p1, ¨ ¨ ¨ , 1qT , 1 ¨ c – pc, ¨ ¨ ¨ , cqT .

• For any G P Rpˆn we denote by Gij (or rGsij)
the pi, jq–th entry of G and by Gi (or rGsi to
avoid ambiguity) the i–th column of G. We retain
a similar notation for functions.

• We denote by CjpX ,Y q, with j ě 0, X Ă

Rn and Y Ă Rp, the set of j-times continu-
ously differentiable functions f : X Ñ Y . We
denote by DjpRnq the set of functions f P
CjpRn,Rnq with decoupled components, viz.
fpxq “ pf1px1q, ¨ ¨ ¨ , fnpxnqq

T . L8pR`,Rnq is

the set of functions f P C0pR`,Rnq such that
suptě0}fptq} ă `8 and L1pR`,Rnq is the set of
f P C0pR`,Rnq such that

ş8

0
}fpτq}dτ ă `8.

• the increment ∆f of f P C0pRn,Rpq from x P
Rn to y P Rn is defined as

p∆fqpy, xq– fpyq ´ fpxq

When we consider only increments of x along
the l-th coordinate xl, l “ 1, . . . , n, we define the
increment ∆lf of f from x P Rn to y P Rn along
the l-th direction as

p∆lfqpy, xq

– fpx1, . . . , xl´1, yl, xl`1, . . . , xnq ´ fpxq.

Set p∆0fqpxq– fpxq.
• For any vectors x, ε, r P Rn, we define

εr – pεr11 , ¨ ¨ ¨ , ε
rn
n q

T , εr

˛x– pεr11 x1, ¨ ¨ ¨ , ε
rn
n xnq

T ,

viz. the dilation of a vector x with weight r.
Moreover, for any vectors x, y P Rn we write x ď
y (resp. x ă y, x “ y) if and only if xi ď yi (resp.
xi ă yi, xi “ yi) for all i “ 1, . . . , n. We retain
a similar notation for pairs of vectors: we write
px, yq ď pz, wq (resp. px, yq “ pz, wq) if and only
if xi ď zi and yi ď wi (resp. xi “ zi and yi “ wi)
for all i “ 1, . . . , n.

III. INCREMENTAL GENERALIZED
HOMOGENEITY DEGREE

3.1. DEFINITIONS
Below we introduce the notion of generalized

homogeneity which generalizes along several directions
the classical notion of homogeneity.

Definition III.1 (Incremental homogeneity in the
generalized sense). A function φ P C0pRn,Rq is said
to be incrementally homogeneous in the generalized
sense (i.g.h.) with triple pr, h,Φq if there exist h P Rn,
r P Rną and Φ P C0pR2n,R1ˆnq such that

p∆φqpεr ˛ y, εr ˛ xq “
`řn

j“1

˘

εhjΦjpy, xqpyj ´ xjq(5)

for all ε ą 0 and x, y P Rn. A functionφ P C0pRn,Rnq
is said to be incrementally homogeneous in the
generalized sense (i.g.h.) with quadruple pr, d, h,Φq if
there exist d, h P Rn, r P Rną and Φ P C0pR2n,Rnˆnq
such that

p∆φiqpε
r ˛ y, εr ˛ xq

“ εdi`ri
`řn

j“1

˘

εhjΦijpy, xqpyj ´ xjq, i “ 1, . . . , n,(6)

for all ε ą 0 and x, y P Rn.
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Note that if each increment ∆jφ (resp. ∆jφi) from x
to y is homogeneous in the classical sense with degree
hj (resp. di ` hj) and weights r then φ is i.g.h. with
triple pr, h,Φq (resp. with quadruple pr, d, h,Φq) for
some function Φ. This does not imply that ∆φ is itself
homogeneous in the classical sense.

The function φpxq– x1 ` x
3
2 is i.g.h. with triple

pr, h,Φq, where r – pr1, r2qT , h – pr1, 3r2qT and
Φpy, xq “ p1, y22 ` x

2
2 ` x2y2q. ˚

Incremental homogeneity in the generalized sense
give rise to the following definitions when the increment
∆φ is calculated from x P Rn to 0.

Definition III.2 (Homogeneity in the generalized
sense). A function φ P C0pRn,Rq is said to be
homogeneous in the generalized sense (g.h.) with
triple pr, h,Φq if there exist h P Rn, r P Rną and Φ P
C0pRn,R1ˆnq such that

φpεr ˛ xq “
`řn

j“1

˘

εhjΦjpxqxj (8)

for all ε ą 0 and x P Rn. A function φ P C0pRn,Rnq
is said to be homogeneous in the generalized sense
(g.h.) with quadruple pr, d, h,Φq if there exist d, h P Rn,
r P Rną and Φ P C0pRn,Rnˆnq such that

φipε
r ˛ xq “ εdi`ri

`řn
j“1

˘

εhjΦijpxqxj , i “ 1, . . . , n,(9)

for all ε ą 0 and x P Rn.

I.g.h. implies g.h. and g.h. generalizes the classical
notion of homogeneity.

There are functions, like sinx, which are not i.g.h.
but their absolute value is bounded by the absolute
value of a function which is i.g.h. In many situations
it is more convenient to have a homogeneous (in the
generalized sense) upper bound. This motivates the
following definitions.

Definition III.3 (Incremental homogeneity in the
upper bound in the generalized sense). A function
φ P C0pRn,Rq is said to be incrementally homoge-
neous in the upper bound in the generalized sense

˚The functions Φ can be readily calculated as

Φijpy, xq

–
p∆jφiqpε

r ˛ y, εr1y1, . . . , ε
rj´1yj´1, ε

rjxj , . . . , ε
rnxnq

εdi`ri`hj pyj ´ xjq
(7)

as long as di and hj can be selected in such a way that the right-
hand function in (7) is independent of ε. This is the case when φi is
a polynomial function of its arguments.

(i.g.h.b.) with triple pr, h,Φq if there exist h P Rn, r P
Rną and Φ P C0pR2n,Rn`q such that

~p∆φqpεr ˛ y, εr ˛ xq~ ď
`řn

j“1

˘

εhjΦjpy, xq|yj ´ xj |(10)

for all ε ě ε0 and x, y P Rn. A function φ P
C0pRn,Rnq is said to be incrementally homogeneous in
the upper bound in the generalized sense (i.g.h.b.) with
quadruple pr, d, h,Φq if there exist d, h P Rn, r P Rną,
Φ P C0pR2n,Rnˆn` q and ε0 ą 0 such that

~p∆φiqpε
r ˛ y, εr ˛ xq~

ď εdi`ri
`řn

j“1

˘

εhjΦijpy, xq|yj ´ xj |, i “ 1, . . . , n,(11)

for all ε ě ε0 and y, x P Rn.

The function φpxq– sinx is i.g.h.u.b. with
quadruple pr, 0, 0, 1q but it has no i.g.h. degree. The
function φpxq– px2, x2 ` x

p
2q
T , p ě 1, is i.g.h.u.b.

with triple pr, d, h,Φq, where

r –

ˆ

r1
r2

˙

, d “

ˆ

r2 ´ r1
r2pp´ 1q

˙

, h “

ˆ

0
0

˙

,

Φpy, xq–

ˆ

0 1

0 1`
řp´1
j“0 ~x2~

p´j´1~y2~
j

˙

(12)

for all p ě 1.
Without loss of generality one can assume ε0 “

1, otherwise rescale x and y as z “ εr0 ˛ x and,
respectively, w “ εr0 ˛ y and define new functions
rΦ1sjpw, zq– ε

di`ri´rj`hj

0 Φjpε
´r
0 ˛ w, ε´r

0 ˛ zq (resp.
rΦ1sijpw, zq– ε

di`ri´rj`hj

0 Φijpε
´r
0 ˛ w, ε´r

0 ˛ zq).

The function φ “
ˆ

x2
x22 sinx1

˙

is i.g.h.u.b. with

triple pr, d, h,Φq, where

r –

ˆ

r1
r2

˙

, d “

ˆ

0
0

˙

, h “

ˆ

r2 ´ r1
r2 ` r1

˙

,

Φpy, xq–

˜

0 1

x22
~ sin y1´sin x1~

~y1´x1~
~y2 ` x2~

¸

. (13)

:

:For each i, j “ 1, . . . , n the functions Φij in (11) are obtained as
long as di and hj can be selected in such a way that

sup
εě1

~p∆jφiqpε
r ˛ y, εr1y1, . . . , ε

rj´1yj´1, ε
rjxj , . . . , ε

rnxnq~

εdi`ri`hj |yj ´ xj |

ď Φijpy, xq

for all x P Rn and y P R. This is the case when

~∆jφipy, y1, . . . , yj´1, xj , . . . , xnq~

|yj ´ xj |

is bounded by a polynomial function of x and y.
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3.2. SOME RELATED PROPERTIES
Throughout the paper we assume ε0 ě 1 in the

above definitions. We discuss only few properties of
incremental homogeneity (in the generalized sense)
which are extensively used throughout the paper.
(P1) (mixing property) Any i.g.h.u.b. function φ P
C0pRn,Rnq with quadruple pr, d, h,Φq and diagonalΦ
is also i.g.h.u.b. with quadruple pr, d1, h1,Φq for all pairs
pd1, h1q such that d1 ` h1 ě d` h.

In particular, we can swap the degrees pd, hq as
pd1, h1q “ ph, dq or replace pd, hq with their arithmetic
means pd1, h1q “ pd`h

2 , d`h
2 q.

When composing two functions the i.g.h.u.b.
degree behaves as follows.
(P2) (chaining rule) For any i.g.h.u.b. functions
φ P C0pRn,Rnq with quadruple pr, d, h,Φq and ψ P
C0pRn,Rnq with quadruple pr,´h, p,Ψq if there exists
Φ0 P C0pR2n,Rnˆn` q such that for each i, j “ 1, . . . , n
and for all y, x P Rn

sup
εě1

Φijpε
´r ˛ψpεr ˛ yq, ε´r ˛ψpεr ˛ xqq ď Φ0

ijpy, xq

then φ ˝ψ is i.g.h.u.b. with quadruple pr, d, p,Φ0Ψq.
Indeed, for all ε ě 1 and y, x P Rn

~p∆pφi ˝ψqqpε
r ˛ y, εr ˛ xq~ “

~p∆φiqpε
r ˛ pε´r ˛ψpεr ˛ yqq, εr ˛ pε´r ˛ψpεr ˛ xqqq~

ď εri`di
`řn

j“1

˘

εpj rΦ0Ψsijpy, xq~yj ´ xj ~,

i “ 1, . . . , n.

After shifting a vector of functions or the vector of
its arguments the i.g.h.u.b. degree of the vector function
transforms as follows.
(P3) (shifting rules) Let pA,Bq be in Brunowski
canonical form. Note that AT is the Moore-Penrose
pseudoinverse of A, viz. ATAAT “ AT , AATA “
A, pATAqT “ ATA and pAAT qT “ AAT . There-
fore I ´AAT “ BBT is the orthogonal projection
onto pImtAuqK “ ImtI ´AAT u while I ´ATA is
the orthogonal projection onto pImtAT uqK “ ImtI ´
ATAu (ImtW u denotes the vector space generated by
the columns of the matrix W ). It is easy to see that
(P3.1)for any w P ImtI ´AAT u (resp. w P ImtI ´
ATAu) and i.g.h.u.b. φ P C0pRn,Rnq with quadruple
pr, d, h,Φq, Aφ (resp. ATφ) is i.g.h.u.b. with quadru-
ple pr, Apd` rq ´ r`w, h, AΦq (resp. pr, AT pd` rq ´
r`w, h, ATΦq).

Indeed, for all ε ě 1 and y, x P Rn and w P
ImtI ´AAT u

~p∆rAφsiqpε
r ˛ y, εr ˛ xq~ “ ~p∆φi`1qpε

r ˛ y, εr ˛ xq~

ď εri`rApd`rq´r`wsi
`
řn
l“1

˘

εhlrAΦsilpy, xq~yl ´ xl~,

i “ 1, . . . , n´ 1.

The proof for ATφ goes likewise.
(P3.2) for any w P ImtI ´ATAu (resp. w P ImtI ´
AAT u) and i.g.h.u.b. φ P C0pRn,Rnq with quadruple
pr, d, h,Φq and constant Φ, φ ˝A (resp. φ ˝AT ) is
i.g.h.u.b. with quadruple pr, d, AT ph´ rq ` r`w,ΦAq
(resp. pr, d, Aph´ rq ` r`w,ΦAT q). Indeed, for all
ε ě 1, and y, x P Rn and w P ImtI ´ATAu

~p∆rφ ˝Asiqpε
r ˛ y, εr ˛ xq~ “

~p∆φiqpε
r ˛ pε´r ˛Apεr ˛ yqq, εr ˛ pε´r ˛Apεr ˛ xqqq~

ď εri`di
`
řn
l“1

˘

εrA
T
ph´rq`r`wslrΦAsil~yl ´ xl~,

i “ 1, . . . , n.

The proof for φ ˝AT goes in the same way.

IV. STATE FEEDBACK STABILIZATION

4.1. Statement of the main result

Consider the system

9x “ Ax`Bu`φpxq, (14)

with state x P Rn, input u P R, pA,Bq a Brunowski
canonical form and φ P C0pRn,Rnq, φp0q “ 0.
Throughout the paper we use the notation x,u for the
functions of time and x, u for their values.

The main result of this section states that if φ
is i.g.h.u.b. with weights and degrees properly related
then the equilibrium x “ 0 of (14) can be semiglobally
stabilized by linear state feedback controller. The class
of stabilizing controllers has been deliberately restricted
to be linear since this is quite natural in the context
of semiglobal stabilization by state feedback. On the
other hand, genuinely nonlinear controllers are more
natural in the context of global stabilization which
is not the aim of this paper. The reader should also
put our stabilization result in perspective with the
observer design result of the next section (theorem
V.1) for obtaining a certainty equivalence principle
for semiglobal stabilization by output feedback which
is the final aim of this paper (theorem VI.1). The
resulting class of stabilizing output feedback controllers
is the composition of linear dynamic controllers with
static nonlinearities, which is enough general as far as
semiglobal stabilization is concerned.

Theorem IV.1 Assume that
(S) (incremental homogeneity) φ P C0pRn,Rnq is
i.g.h.u.b. with quadruple pr, f, f̂,Φq with Φp0, 0q “ 0

and f̂1 :“ f1, f̂j`1 :“ rj`1 ´ rj ´ fj , j “ 1, . . . , n´ 1,
such that fj ď f̂j`1 ď fj`1, j “ 1, . . . , n´ 1.
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For each compact set R Ă Rn around the origin,
there exist a positive definite diagonal Γs P Rnˆn and
ε ě 1 such that

u “ F pxq :“ BTF pnqpxq (15)
F piqpxq– ´ε2f ˛ tΓsrx´A

TF pi´1qpxqsu,

i “ 1, . . . , n, F p0qpxq– 0, (16)

asymptotically stabilizes the equilibrium x “ 0 of (14)
with region of attraction containing R.

Remark IV.1 Assumption Φp0, 0q “ 0 is the simplest
one which guarantees that the linear approximation
of (14) around the origin is stabilizable. The minimal
requirement for this is

´2Γs ` rI ´A
T Γss

´1rA`AT Γ2s `Φp0, 0qpI `A
T Γsqs

`rA`AT Γ2s `Φp0, 0qpI `A
T Γsqs

T rI ´AT Γss
´T ă 0

(17)

which is always satisfied by some positive definite
diagonal Γs for either strict lower triangular or strict
upper triangular ofΦp0, 0q.

Remark IV.2 The controller (16) is homogeneous (in
the classical sense) only if fj “ f0 for all j “ 1, . . . , n,
which corresponds to the choice rj`1 ´ rj “ 2f0 in
(S). In other words the gaps between each pair of
consecutive weights are all equal to 2f0. Under this
restriction, (S) simply says that φ is homogeneous (in
the upper bound) with degree 2f0 and weights r.

4.2. CONSTRUCTIVE PROCEDURE FOR THE
CONTROLLER (16)

Given the desired region of attraction R Ă Rn,
the construction of the state feedback controller (16) is
accomplished according to the following steps:
(I) find a diagonal positive definite Γs P Rnˆn such that
;

;Inequality (18) can be always solved for some diagonal positive
definite Γs P Rnˆn since T can be defined recursively as T “ Tpnq

where

Tpjq :“

„

Tpj´1q Npj´1q

pNpj´1qqT ´2prΓssjj ´ rΓssj´1,j´1q



,

Tp1q :“ ´2rΓss11,

and Npj´1q P C0pRj´1,Rj´1q, j “ 2, . . . , n are suitable functions
of rΓss11, . . . , rΓssj´1,j´1. Therefore, it is sufficient to pick any
rΓss11 ą 0 and for each increasing j ě 2 select rΓssjj ą 0 such that
Tpjq ă 0.

T – ´2Γs ` rI ´A
T Γss

´1rA`AT Γ2s s

`rA`AT Γ2s s
T rI ´AT Γss

´T ă 0. (18)

(II) Find cs,αs ą 0 such that for all x˝ P Bs – tz P
Rn : }z}2 ď 2csu

Rspx
˝q– ´2Γs `Φspx

˝q `ΦT
s px

˝q ď ´αsI, (19)

where

Φspx
˝q– rI ´AT Γss

´1rA`AT Γ2s `Φ
X
s px

˝qs

`rA`AT Γ2s `Φ
X
s px

˝qsT rI ´AT Γss
´T , (20)

and ΦX
s is any continuous function such that for all

z : }z} ď }x˝}

ΦX
s px

˝q

ě ΦpAT Γsz, x
˝q `ΦpAT Γsz,´A

T ΓszqA
T Γs. (21)

The number cs always exists on account of step (I) and
sinceΦp0, 0q “ 0 (ifΦp0, 0q ‰ 0, in order to find Bs is
enough to satisfy (17)).
(III) Pick ε ě 1 such that
`řn

j“1

˘

p
`

řj
l“1

˘

rpI ´AT Γsq
´1sjlε

´rl ~xl~q
2 ď 2cs

@x P R. (22)

An estimate of the region of attraction C Ą R
of (14)-(16) as a function of ε and c can be
given as follows. Let d P Rną be such that }pI ´
AT Γsq

´1d}2 ď 2cs. Therefore, C “ tx P Rn : |xl| ď
dlε

rl , l “ 1, . . . , nu for each ε ą 1.

4.3. PROOF OF THE MAIN RESULT

Proof of theorem IV.1. Let I P Rnˆn be the identity
matrix and Gs P Rnˆn a diagonal positive definite
matrix and identify (whenever necessary) Gs, I and A
with linear maps Gs, I P D1pRnq and A P C1pRn,Rnq.
In particular, select Gs in such a way that it is i.g.h.
with quadruple pr, f, f, Γsq with Γs P Rnˆn is a diagonal
positive definite matrix chosen as pointed out in (18)
(constructive step (I)).

Let Xs – I ´ATGs. Perform the change of
coordinates

x̂ “ X´1
s x (23)

After some calculations the closed-loop system (14)-
(16) in the new coordinates is

9̂x “ ´Gsx̂` ρpx̂q (24)
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with

ρpx̂q “ rI ´ATGss
´1rpA´ATG2

sqx̂`φpXsx̂qs (25)

By lemma VIII.2 ρ is g.h.u.b. with quadruple
pr, f, f,Φsq where Φs is defined in (20). With Vspx̂q–
1
2}ε

´r ˛ x̂}2 and x˝ :“ ε´r ˛ x̂ it follows that

BVs
Bx̂
px̂qt´Gsx̂` ρpx̂qu

“ ´pε´2r ˛ x̂qTGsx̂` pε
´2r ˛ x̂qTρpx̂q

“ ´pε´r ˛ x˝qTGspε
r ˛ x˝q ` pε´r ˛ x˝qTρpεr ˛ x˝q

ď ´pεf ˛ x˝qT ΓIpε
f ˛ x˝q ` pεf ˛ x˝qTΦspx

˝qpεf ˛ x˝q

ď ´pεf ˛ x˝qT rΓI `Φspx
˝qspεf ˛ x˝q

“
1

2
pεf ˛ x˝qTRspx

˝qpεf ˛ x˝q (26)

By constructive step (II)

BVs
Bx̂
px̂qt´Gsx̂` ρpx̂qu ď ´αs}ε

f´r ˛ x̂}2(27)

for all x̂ : Vspx̂q ď cs. With Wspxq– VspX´1
s xq it

follows that

9Ws|p14q´p16q “
BWs

Bx
pxqrAx`BBTUpnqpxqs

ď ´αs}ε
f´r ˛X´1

s x}2 (28)

for all x :Wspxq ď cs. Since Ws is positive definite
on Rn, this proves that for each ε ě 1 the equilibrium
x “ 0 of the closed-loop system (14)-(16) is locally
asymptotically stable with region of attraction contain-
ing tz P Rn :Wspzq ď csu. To complete the proof of
the theorem, we only need show that for each compact
set R Ă Rn we can pick ε ě 1 in such a way that R Ă

tz P Rn :Wspzq ď csu (viz. the given compact set R is
contained in the region of attraction of the equilibrium
x “ 0 of (14)-(16)). We will do this by showing that
if ε is selected as pointed out in (22) (constructive
step (III)) then maxxPR Wspxq ď cs. Indeed, since f1 ď
f2 ď ¨ ¨ ¨ ď fn is an increasing sequence by (S), we have
on account of (22)

max
xPR

Wspxq ď
1

2
max
xPR

}ε´r ˛X´1
s pxq}

2

ď
1

2

`řn
j“1

˘

´

`

řj
l“1

˘

rX´1
s sjlε

´rl max
xPR

~xl~
¯2

“
1

2

`řn
j“1

˘

´

`

řj
l“1

˘

rpI ´AT Γsq
´1sjlε

´rl max
xPR

~xl~
¯2

“ď cs.

V. OBSERVER DESIGN

5.1. STATEMENT OF THE MAIN RESULT

Consider the system

9x “ Ax`φpxq, y “ Cx`ψpxq, (29)

with state x P Rn, output y P R, A in Brunowski
canonical form with

C “
`

1 0 ¨ ¨ ¨ 0
˘

φ P C0pRn,Rnq, φp0q “ 0, and ψ P C0pRn,Rq,
ψp0q “ 0. Also, let xp¨, x0q (or simply by x when there
is no ambiguity) and yp¨, x0q (or simply by y) denote
the state and, respectively, the output trajectory of (29)
ensuing from x0. We say that σph, ¨q P D0pRnq is a
saturation function with levels h “

`

h1 ¨ ¨ ¨ hn
˘T ,

h1, . . . , hn ą 0, if for each i “ 1, . . . , n, σiph, siq “ si
for all s : ~si~ ď hi and σiph, siq “ signpsiqhi for all
s : ~si~ ą hi (signpsiq is 1 if si ą 0 and ´1 if si ă 0).

Theorem V.1 Assume that
(O1) (incremental homogeneity) CTψ and φ are
i.g.h.u.b. with quadruple pr,´g, g, CTΨq and, respec-
tively, pr, ĝ, g,Φq with Φp0, 0q “ 0, Ψp0, 0q “ 0 and
ĝn :“ gn, ĝj :“ rj`1 ´ rj ´ gj`1, j “ 1, . . . , n´ 1,
such that 2gj`1 ´ gj ď ĝj ď gj ,
(O2) (boundedness of state trajectories) there exist
two compact sets R,C Ă Rn such that xpt, x0q P C for
all t ě 0 and for all x0 P R.

There exist K, co ą 0 and a diagonal positive
definite Γo P Rnˆn such that the solution xp¨, x0q,
ξp¨, x0q of (29) coupled with

9ξ “ Aξ`φpσpcoε
r,ξqq

`Kpnqpy ´ Cξ´ψpσpcoε
r,ξqqq, ξp0, x0q “ 0,(30)

where

Kpiq – ε2g ˛ tKCT `AT ΓoK
pi´1qu,

i “ 1, . . . , n, Kp0q – 0, (31)

are defined and bounded over r0,`8q for all x0 P
R. Moreover, limtÑ`8 }xpt, x0q ´ ξpt, x0q} “ 0 for all
x0 P R.

Remark V.1 Assumption (O2) is restrictive even for
linear system (29). However, theorem V.1 is per se an
interesting result on the observer design for systems
with bounded state trajectories.
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Remark V.2 Note that Φp0, 0q “ 0 and Ψp0, 0q “ 0
are required. This is the simplest assumption which
guarantees that the linear approximation of (29) around
the origin is observable. The minimal requirement for
this is

´2pKCTC `AT ΓoAq `
´

2pI `AT ΓoqΦp0, 0q

`2KC TΨp0, 0q `A`AT Γ2o

¯

pI ´AT Γoq
´1

`pI ´AT Γoq
´T

´

2pI `AT ΓoqΦp0, 0q

`2KC TΨp0, 0q `A`AT Γ2o

¯T

ă 0 (32)

which is always satisfied by some positive definite
diagonal Γo for either strict lower triangular or strict
upper triangularΦp0, 0q and CTΨp0, 0q.

Remark V.3 The observer gain matrix KpnqC is
homogeneous (in the classical sense) only if gj “ g0
for all j “ 1, . . . , n, which corresponds to the choice
rj`1 ´ rj “ 2g0 in (O1). Therefore, the gaps between
each pair of consecutive weights are all equal to 2g0.
Under this restriction, (A2) simply says that φ (resp.
ψ) is homogeneous (in the upper bound) with degree
2g0 (resp. 0) and weights r. Under this regard, it
is important to say that the saturation function σ is
a crucial design issue only when φ and ψ are not
homogeneous in the classical sense and, moreover,
the saturation levels are directly proportional to the
maximal gap between two consecutive weights.

5.2. CONSTRUCTIVE PROCEDURE FOR THE
OBSERVER (30)

The construction of the state observer (30) is
accomplished according to the following steps:
(IV) Find a diagonal positive definite Γo P Rnˆn and
K ą 0 such that §

S – ´2pKCTC `AT ΓoAq

`pA`AT Γ2o qpI ´A
T Γoq

´1

`pI ´AT Γoq
´T pA`AT Γ2o q

T ă 0. (33)

§Inequality (33) can be solved for some K and Γo on account of the
fact that S can be defined recursively as S “ Spnq where

Spjq :“

„

´2prΓosn´j,n´j ´ rΓosn´j`1,n´j`1q Mpj´1q

pMpj´1qqT Spj´1q



,

Sp1q :“ ´2rΓosn´1,n´1, rΓos00 – K,

and Mpj´1q P C0pRn´j ,Rq, j “ 2, . . . , n, are suitable functions
of rΓssn´j`1,n´j`1, . . . , rΓosn´1,n´1. Therefore, it is sufficient to
pick any rΓosn´1,n´1 ą 0 and for each increasing j “ 2, . . . , n select
rΓosn´j,n´j ą 0 such that Spjq ă 0.

(V) Find co,αo ą 0 such that

Ro – ´2pKCTC `AT ΓoAq `Ωo `Ω
T
o ď ´αo (34)

whereΩo is a matrix such that for all z : }z}, }w} ď nco

Ωo ě

´

2pI `AT ΓoqΦpz, wq

`2KC TΨpz, wq `A`AT Γ2o

¯

pI ´AT Γoq
´1. (35)

The number co always exists on account of (33) and
since Φ and Ψ are continuous and Φp0, 0q “ 0 and
Ψp0, 0q “ 0 (if either Φp0, 0q ‰ 0 or Ψp0, 0q ‰ 0 for
finding co it is enough to satisfy (32)).
(VI) Pick ε ě 1 such that ~xi~ ď coε

ri for all i “
1, . . . , n and x P C .

5.3. PROOF OF THE MAIN RESULT

Proof of theorem V.1. Let I P Rnˆn be the iden-
tity matrix, Go P Rnˆn a diagonal positive definite
matrix and H ą 0 and identify (whenever necessary)
Go, I,HC

TC and A with linear maps Go, I,HCTC P
D1pRnq. In particular, let Go be i.g.h. with quadruple
pr, Ag, Ag, Γoq and H be such that HCTC is i.g.h. with
quadruple pr, g, g,KCTCq, where K and Γo are chosen
as pointed out in (33) (constructive step (IV)). Pick
co ą 0 as pointed out in (32) (constructive steps (V)).

Let e– ξ´ x be the estimation error and Xo –
pI ´ATGoq

´1. Perform the change of coordinates

ê “ X´1
o e (36)

On account of (O2),

σpcoε
r,xpt, x0qqq “ xpt, x0q

for all x0 P R and for all t ě 0. Using this fact, after
some calculations the estimation error system in the
new coordinates is

9̂e “ ´Koê` ζpê,xq (37)

with

Ko “ HCTC `ATGoA (38)
ζpê, xq “ ´KoC

T rψpσpcoε
r,Xoê` xqq

´ψpσpcoε
r, xqqs

`p´KoA
T ` Iqrφpσpcoε

r,Xoê` xqq

´φpσpcoε
r, xqqs ` rATGoAA

TGo `AsXoê

By lemma VIII.3 Ko is g.h. with quadruple
ps, g, g,KCTC `AT ΓoAq and ζ is g.h.u.b. with
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quadruple ps, g, g,Ωoq where Ωo is defined as in (35).
Let Vopêq– 1

2}ε
´s ˛ ê}2. With e˝ “ ε´s ˛ ê and x˝ “

ε´s ˛ x it follows that for all ê

BVo
Bê
pêqt´Koê` ζpê,ξqu

“ ´pε´2s ˛ êqTKoê` pε
´2s ˛ êqTζpê, xq

“ ´pε´s ˛ e˝qTKopε
s ˛ e˝q

`pε´s ˛ e˝qTζpεs ˛ e˝, εs ˛ x˝q

ď ´pεg ˛ e˝qT pKCTC `AT ΓoAqpε
g ˛ e˝q

`pεg ˛ e˝qTΩopε
g ˛ e˝q

ď ´pεg ˛ e˝qT rKCTC `AT ΓoA´Ωoqpε
g ˛ e˝q

“
1

2
pεg ˛ e˝qTRopε

g ˛ e˝q (39)

From (34) (constructive step (V))

BVo
Bê
pêqt´Koê` ζpê, xqu ď ´αo}ε

g´s ˛ ê}2 (40)

for all ê. With Wopeq– VopX´1
o eq it follows that

9Wo|p29q´p30q “
BWo

Be
peqrAe`φ ˝ σpcoε

r,ξq ´φpxq

`Gpnqpe´ψ ˝ σpcoε
r,ξq `ψpxqqs

ď ´αo}ε
g´s ˛X´1

o e}2 (41)

Since Wo is positive definite on Rn and radially
unbounded, this proves that for each ε ě 1 and for
each fixed trajectory xp¨, x0q of (36) with x0 P R, the
solution ξp¨, x0q of (30) coupled with (29) is defined and
bounded over r0,`8q. Moreover, limtÑ`8 }xp¨, x0q ´
ξp¨, x0q} “ 0 for all x0 P R.

VI. OUTPUT FEEDBACK STABILIZATION

In this section we consider

9x “ Ax`Bu`φpxq, y “ Cx`ψpxq, (42)

with state x P Rn, input u P R, output y P R, φ P
C0pRn,Rnq, φp0q “ 0, and ψ P C0pRn,Rq, ψp0q “ 0.
We assume that pA,Bq is in Brunowski form and

C “
`

1 0 ¨ ¨ ¨ 0
˘

The main result of the paper is the following.

Theorem VI.1 Assume (S) and (O1)-(O2) with g ą
f. For each compact set R Ă Rn around the origin
there exist K, co ą 0, diagonal positive definite Γs, Γo P
Rnˆn, ε ě 1 and a saturation function σ P D0pRnqwith

levels coεr such that the output feedback controller (30)
with

u “ F pσpcoε
r,ξqq (43)

where F is defined in (16), asymptotically stabilize
the equilibrium x “ 0 of (42) with region of attraction
containing R.

Remark VI.1 The condition g ą f can be interpreted
as a “fast state-recovery” condition for the state
observer (30).

6.1. CONSTRUCTIVE PROCEDURE FOR THE
OUTPUT FEEDBACK CONTROLLER (43)-(30)

The construction of the output feedback controller
(43)-(30) is accomplished by following the constructive
steps (I), (II), (IV), selecting co according to (V) and
ε ě 1 in such a way that

pVIIq mintcs,
c2o

2}Xs}2
u ě max

x0PR

#

}X´1
s }2}ε´r ˛ x0}

2

`
8c2orΓss

2
nnr

řn
j“1

řn
l“1rX

´1
s snjrXosjls

2

αsαo
¨

¨ε2pfn´gnq
”

ln
´

}X´1
o }2}ε´r ˛ x0}

2ε4pg1´gnq

c2o

¯

`1
ı

+

(44)

with Xs – I `AT Γs, X´1
s – pI ´AT Γsq

´1, Xo –
pI ´AT Γoq

´1, X´1
o – I `AT Γo and αs,αo ą 0 such

that Rs ď ´αsI and Ro ď ´αoI , Rs defined in (19)
and Ro in (34). Inequality (VII) can be satisfied on
account of fn ă gn which follows from the assumption
f ă g.

VII. CONCLUSIONS

We introduced the notion of incremental gener-
alized homogeneity, giving new results on semiglobal
stabilization by output feedback and observer design
and putting into a unifying framework the stabilization
design for triangular (feedback/feedforward) and
homogeneous systems. A state feedback controller and
an asymptotic state observer are designed separately
by dominating the generalized homogeneity degree
of the nonlinearities with the degree of the linear
approximation of the system and an output feedback
controller is obtained according to a certainty-
equivalence principle. Future research will be devoted
to the global aspects of the stabilization problem.
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VIII. APPENDIX

Lemma VIII.1 If σph, ¨q P A0pRnq is a saturation
function with levels h, for each i “ 1, . . . , n and for all
y, x P R

~∆ph, ¨qpy, xq~ ď 2σiph, ~y ´ x~q ď 2~y ´ x~. (45)

Proof: Case A). For all y, x such that ~y~ ě hi and
~x~ ě hi we have

~∆σiph, ¨qpy, xq~ “ 0 ď 2σiph, ~y ´ x~q if yx ą 0,

~∆σiph, ¨qpy, xq~ “ 2hi ď 2σiph, ~y ´ x~q if yx ă 0.

Case B). For all y, x such that ~y~ ě hi and ~x~ ď hi

~∆σiph, ¨qpy, xq~ “ ~hi ´ x~ “ hi ´ ~y~` ~y ´ x~

ď ~y ´ x~ “ σip~y ´ x~q if ~y ´ x~ ď hi,

~∆σiph, ¨qpy, xq~ “ ~hi ´ x~ ď 2hi

“ 2σip~y ´ x~q if ~y ´ x~ ě hi.

Case C). For all y, x such that ~y~ ď hi and ~x~ ě hi
follow the steps of case B).

Lemma VIII.2 The function ρ, defined in (25), is
g.h.u.b. with quadruple pr, f, f,Φsq with Φs defined as
in (20).

Proof: We break up the proof in several claims.
Claim #1. Xs – I ´ATGs (resp. ATGs) is

i.g.h.u.b. with quadruple pr, f,´f,Xsq where Xs – I `
AT Γs (resp. AT Γs). By assumption (S) and the shifting
rule (P3.1) with w – pI ´ATAqr, ATGs is i.g.h.u.b.
with quadruple pr, AT pI ´Aqr`AT f, f, AT Γsq. Since
AT pI ´Aqr ď ´2AT f on account of (S), ATGs is
g.h.u.b. with quadruple pr,´AT f, f, AT Γsq. There-
fore, by virtue of the shifting rule (P3.1) with
w – ´pI ´AAT qf, AATGs g.h.u.b. with quadru-
ple pr, Ar´ r´ f, f, AAT Γsq. Since AAT Γs is diag-
onal, by the mixing property (P1) with d1 – Ar´
r` f and h1 – ´f, AATGs g.h.u.b. with quadru-
ple pr, Ar´ r` f,´f, AAT Γsq. Applying once more
the shifting rule (P3.1) with w – pI ´ATAqpr`
fq, ATAATGs “ ATGs is g.h.u.b. with quadruple
pr, AT f` pI ´ATAqf,´f, AT Γsq. Since AT f` pI ´
ATAqf ď ATAf` pI ´ATAqf “ f on account of (S),
it follows that ATGs is g.h.u.b. with quadruple
pr, f,´f, AT Γsq and, therefore, Xs – I ´ATGs is
g.h.u.b. with quadruple pr, f,´f,Xsq with Xs – I `
AT Γs.

Claim #2. ATGs is g.h.u.b. with quadruple
pr, 0, 0, AT Γsq. On account of (S) and since Γs is
diagonal, by the mixing property (P1) with d1 – 2f

and h1 – 0, Gs is g.h.u.b. with quadruple pr, 2f, 0, Γsq.
Therefore, by the shifting rule (P3.1) with w – pI ´
ATAqr, ATGs is g.h.u.b. with quadruple pr, 2AT f´
AT pA´ Iqr, 0, AT Γsq. Since 2AT f ď AT pA´ Iqr by
(S), ATGs is g.h.u.b. with quadruple pr, 0, 0, AT Γsq.

Claim #3. φ ˝XI `A´ATG2
s is g.h.u.b. with

quadruple pr, f, f,ΦX
s `A`A

T Γ2s q, ΦX
s defined

in (21). By (S) and the shifting property (P2.1)
with w – r´ f, ATGs is g.h.u.b. with quadruple
pr,´pI ´ATAqf´AT pAr´ r´ fq, f, AT Γsq.
On account of (S), claim #2 and using the
chaining rule (P2), φ ˝ p´ATGsq is g.h.u.b.
with quadruple pr, f, f,ΦX

2 q where ΦX
2 px̂q–

maxz:|zj |ď|x̂j |ΦpA
T Γsz,´A

T ΓszqA
T Γs. Also on

account of (S), claim #2 and using the definition
of i.g.h.u.b. degree, φ ˝Xs ´φ ˝ p´ATGsq
is g.h.u.b. with quadruple pr, f, f,ΦX

1 q where
ΦX

1 px̂q– maxz:|zj |ď|x̂j |ΦpA
T Γsz, x̂q. Therefore,

φ ˝Xs is g.h.u.b. with quadruple pr, f, f,ΦX
s q where

ΦX
s – ΦX

1 `Φ
X
2 .

By virtue of claim #1, the chaining rule (P2)
and on account of (S), we conclude also that ATG2

s

is g.h.u.b. with quadruple pr, f, f, AT Γ2s q. Moreover,
since ATA is g.h.u.b. with quadruple pr, 0, 0, ATAq and
ATA is diagonal, by the mixing property (P1) with
d1 – ´f and h1 – f, ATA is g.h.u.b. with quadruple
pr,´f, f, ATAq. By the shifting rule (P3.1) with w –

r` f and on account of (S), AATA “ A is g.h.u.b.
with quadruple ppr, f, fq, Aq. This concludes the proof
of claim #3.

Claim #4. X´1
s – pI ´ATGsq

´1 is g.h.u.b. with
quadruple pr, f,´f,X´1q, X´1 – rI ´AT ΓI s

´1.
Note that by definition of Xs for all x we
have X´1

s pxq “ x`ATGsX´1
s pxq. Therefore,

X´1
s “

řn´1
j“0 pA

TGsq
j . Clearly, pATGsq

0 “ I is
g.h.u.b. with quadruple pr, 0, 0, Iq. Therefore, since
I is diagonal and invoking the mixing property (P1)
with d1 – f and h1 – ´f, pATGsq0 is g.h.u.b. with
quadruple pr, f,´f, Iq. Assume by induction that
pATGsq

j is g.h.u.b. with quadruple pr, f,´f, pAT Γsqjq
for all j “ 1, . . . , i and for some i ă n´ 1. Since
pATGsq

i`1 “ pATGsq
ipATGsq and both pATGsqi and

ATGs are g.h.u.b. with quadruple pr, f,´f, pAT Γsqiq
and, respectively, pr, f,´f, AT Γsq, by claim #2 and
using the chaining rule (P2), pATGsqi`1 is g.h.u.b.
with quadruple pr, f,´f, pAT Γsqi`1q. By induction
it follows that pATGsq

j for all j “ 0, . . . , n´ 1
is g.h.u.b. with quadruple pr, f,´f, pAT Γsqjq.
Therefore, X´1

s “
řn´1
j“0 pA

TGsq
j is g.h.u.b. with

quadruple pr, f,´f,X´1
s q, X´1

s –
řn´1
j“0 pA

T Γsq
j “

rI ´AT ΓI s
´1.
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By claims #3 and #4 and using the chaining rule
(P2), we conclude that φI – pI ´ATGsq

´1rφ ˝XI `
A´ATG2

ss is g.h.u.b. with quadruple pr, f, f,Φsq, Φs

defined in (20). This concludes the proof of the lemma.

Lemma VIII.3 The functions Ko and ζ, defined in
(38), are g.h. with quadruple ps, g, g,KCTC `AT ΓoAq
and, respectively, g.h.u.b. with quadruple ps, g, g,Ωoq,
Ωo defined in (35).

Proof: We break up the proof in several claims.
Claim #1. X´1

o (resp. Xo) is i.g.h.b. with
quadruple pr,´g, g,X´1

o q (resp. pr,´g, g,Xoq). This
claim follows on account of (O1) using the chaining
rule (P2) and the shifting rule (P3.1).

Claim #2. Ko is i.g.h. with quadruple
ps, g, g,KCTC `AT ΓoAq. By the shifting rules
(P3.1) and (P3.2) with w – pI ´ATAqg and on
account of (O1), ATGoA is i.g.h. with quadruple
pr, g´ pI ´AT qr, g` pI ´AT qr, AT ΓoAq. Since
ATGoA is diagonal, by the mixing property (P1) with
d1 – g and h1 – g, ATGoA is i.g.h. with quadruple
pr, g, g, AT ΓoAq. On account of (O1) Ko is i.g.h.
with quadruple pr, g, g,KCTC `AT ΓoAq but by the
linearity of Ko it follows that Ko is also i.g.h. with
quadruple ps, g, g,KCTC `AT ΓoAq.

Claim #3. σ (resp. σ ˝Xo and σ ˝X´1
o ) is

i.g.h.u.b. with quadruple ps,´g, g, 2Iq (resp. (
s,´g, g, 2Xoq and ps,´g, g, 2X´1

o q). On account
of lemma VIII.1 with h– coε

r, σ is i.g.h.u.b. with
quadruple ps, 0, 0, 2Iq. By the mixing property (P1)
with d1 – ´g and h1 – g, σ is also i.g.h.u.b. with
quadruple ps,´g, g, 2Iq. Finally, by virtue of the
chaining rule (P2) and claim #1 σ ˝Xo is i.g.h.u.b.
with quadruple ps,´g, g, 2Xoq.

Claim #4. A is i.g.h.u.b. with quadruple
pr, g, g, Aq. Note that I is i.g.h.u.b. with quadruple
pr, 0, 0, Iq, therefore by the mixing property (P1)
with d1 – ´g and h1 – g, I is also i.g.h.u.b. with
quadruple pr,´g, g, Iq. Since A “ AI , by the shifting
rule (P3.1) with v “ r` g, A is i.g.h.u.b. with
quadruple pr, Ar´AAT r´Ag` pI ´AAT qg, g, Aq.
Upon noting that Ar´AAT r “ AAT pAr´ rq ď
AAT pAg` gq “ Ag`AAT g by (A3), A is i.g.h.u.b.
with quadruple pr, g, g, Aq.

Claim #5. ATGo is i.g.h.u.b. with quadruple
pr,´g, g, AT Γoq. Since on account of (O1) Go
is i.g.h.u.b. with quadruple pr, Ag, Ag, Γoq and Γo
is diagonal, by the mixing property (P1) with
d1 – 2Ag´ g and h1 – g, Go is i.g.h.u.b. with
quadruple pr, 2Ag´ g, g, Γoq. By the shifting rule (P3.1)

with w “ pI ´ATAqpr´ gq, ATGo is i.g.h.u.b. with
quadruple pr, AT p2Ag´ g` rq ´ r` pI ´ATAqpr´
gq, g, AT Γoq. On account of (O1) AT p2Ag` rq ď
ATAr´AT pAg´ gq. Therefore, ATGo is i.g.h.u.b.
with quadruple pr,´g, g, AT Γoq. This ends the proof of
claim #5.

We are ready to prove that ζ is g.h. with quadruple
ps, g, g,Ωoq by using the above claims. Since σ has
saturation levels coεr we find out that for each i, j “
1, . . . , n

sup
εě1

Φijpε
´r ˛ σpcoε

r,Xopyqq, ε
´r ˛ σpcoε

r,Xopxqqq

ď max
}z}ďnco,
}w}ďnco

Φijpz, wq :“ Φ
0
ij .

Moreover, on account of claim #3 and since s´
r “ 1 ¨ pg1 ´ gnq, σ ˝Xo is i.g.h.u.b. with quadruple
pr,´g, g, 2Xoq. Also, on account of (O1) φ is i.g.h.u.b.
with quadruple pr, g, g,Φq. By virtue of the chaining
rule (P2), it follows that φ ˝ σpcoεr,Xoq is i.g.h.u.b.
with quadruple pr, g, g, 2Φ0Xoq. Therefore, since s´
r “ 1 ¨ pg1 ´ gnq, φ ˝ σpcoεr,Xoq is i.g.h.u.b. with
quadruple ps, g, g, 2Φ0Xoq.

Moreover, by claims #1 and #4 and the
chaining rule (P2), A ˝Xo is i.g.h.u.b. with quadruple
ps, g, g, AXoq and, since s´ r “ 1 ¨ pg1 ´ gnq, is
i.g.h.u.b. with quadruple ps, g, g, AXoq. Therefore,
AXo `φ ˝ σpcoεr,Xoq is i.g.h.u.b. with quadruple
ps, g, g,Φoq and Φo – pA` 2Φ0qXo.

By (O1) and the shifting rule (P3.1) with w “
pI ´ATAqpr´ gq, ATφ is i.g.h.u.b. with quadruple
ps,´g, g, ATΦq. Using claims #1 and #5 and the
chaining rule, we conclude that CTψ ˝ σpcoεr,Xoq `
ATφ ˝ σpcoε

r,Xoq `GoXo is i.g.h.u.b. with quadruple
ps,´g, g,Ψoq, Ψo – r2CTΨ0 `AT p2Φ0 ` ΓoqsXo and
for each j “ 1, . . . , n

Ψ0
j – max

}z}ďnco,
}w}ďnco

Ψjpz, wq.

Therefore, using claim #2 and the chaining rule
we obtain that Koψo is i.g.h.u.b. with quadru-
ple ps, g, g, pKCTC `AT ΓoAqΨoq. Upon noting that
ACT “ 0, CCT “ 1 and AT ΓoAA

T “ AT Γo, we
conclude that ζ is g.h.u.b. with quadruple ps, g, g,Ωoq

andΩo defined in (35).
The fact that Ko is g.h. with quadruple

ps, g, g,KCTC `AT ΓoAq follows directly from
claim #2.

(Proof of theorem VI.1). Select Gs, Γs and cs
according the constructive steps (I) and (II), Go, Γo, co
and ε according the constructive steps (IV), (V) and
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(VII). Let Xs, Xo, x̂, Vs,Ws, ê, Vo,Wo be as in the proof
of theorems IV.1 and V.1. Denote by xpt, x0q,ξpt, x0q
(or simply x,ξ) the state trajectories of the closed-loop
system (42)-(43)-(30) with initial conditions x0 and
ξ0 – 0, with ept, x0q :“ ξpt, x0q ´ xpt, x0q (or simply
e). In px̂, êq coordinates (42)-(43)-(30) reads as

9̂x “ ´Gsx̂` ρpx̂q

`BF pσpcoε
r,Xopêq ` Xspx̂qq ´ Xspx̂qq (46)

9̂e “ ´Koê` ζpê,xq (47)

Following the same steps for the proof of theorem V.1,
we obtain the existence of αo ą 0 such that for each
x0 P R

9Vo|p47q ď ´αo}ε
g´s ˛ ê}2. (48)

From (48) and since g1 ě g2 ě ¨ ¨ ¨ ě gn, it follows that

Vopêpt, x0qq ď Vopêp0, x0qq exp
´αOε

2gn t

ď }ε´s ˛X´1
o px0q}

2 exp´αOε
2gn t (49)

for all t ě 0 and x0 P R. Therefore, ê P L8pR`,Rnq
and êpt, x0q Ñ 0 as tÑ `8 if x0 P R.

Define C – tz P Rn : ~zi~ ď coε
ri , i “ 1, . . . , nu.

Note that

x̂ : Xspx̂q P C ñ σpcoε
r,Xspx̂qq “ Xspx̂q(50)

Using claim #1 of lemma VIII.2 and f1 ď f2 ď ¨ ¨ ¨ ď
fn, it follows that

}ε´r ˛Xspx̂q}
2 ď 2}Xs}

2Vspx̂q ď c2o

for all x̂ : Vspx̂q ď
c2o

2}Xs}2
, which implies that Vspx̂q ď

c2o
2}Xs}2

ñ Xspx̂q P C . Therefore,

x̂ : Vspx̂q ď
c2o

2}Xs}2
ñ σpcoε

r,Xspx̂qq “ Xspx̂q(51)

Following the same steps of the proof of theorem IV.1,
using claims #1 of lemmas VIII.2 and VIII.3 and
lemma VIII.1 with h– coε

r, we obtain the existence
of αs ą 0 such that

9Vs|p46q ď ´αs}ε
f´r ˛ x̂}2 `

αs
2
ε2pfn´rnqx̂2n

`
8rΓss

2
nn

αs
ε2fnp

n
ÿ

j“1

rX´1
s snj mintco, ε

´rj ~rXosj ê~uq
2

ď ´
αs
2
}εf´r ˛ x̂}2

`
8rΓss

2
nnr

řn
j“1

řn
l“1rX

´1
s snjrXosjls

2

αs
¨

¨ε2fn mintc2o, ε
4pg1´gnqVopêqu (52)

for all px̂, êq : Vspx̂q ď mintcs,
c2o

2}Xs}2
u.

By integrating (52) over r0, ts, t ě 0, and on
account of (49) we obtain

Vspx̂pt, x0qq ď mintcs,
c2o

2}Xs}2
u (53)

for all x0 such that

mintcs,
c2o

2}Xs}2
u ě }ε´r ˛X´1

s px0q}
2

`
8c2orΓss

2
nnr

řn
j“1

řn
l“1rX

´1
s snjrXosjls

2

αsαo
¨

¨ε2pfn´gnq
”

ln
´

}ε´s ˛X´1
o px0q}

2ε4pg1´gnq

c2o

¯

` 1
ı

(54)

By claim #4 of lemma VIII.2 and claim #1 of lemma
VIII.3 and since f1 ď f2 ď ¨ ¨ ¨ ď fn and gn ď ¨ ¨ ¨ ď g1,
for each x0

}ε´r ˛X´1
s px0q} ď }X

´1
s }}ε´r ˛ x0}

}ε´s ˛X´1
o px0q} ď }X

´1
o }}ε´r ˛ x0} (55)

As a consequence of the constructive step (VII) any
x0 P R satisfies the inequality (54). Therefore, (53)
holds for all x0 P R. It follows that x̂ P L8pR`,Rnq
for all x0 P R. The Ω-limit set of x̂p¨, x0q and êp¨, x0q
is non-empty, compact and invariant and it is contained
in the set of points tpx̂, êq : ê “ 0u. This, on account of
(52), implies that x̂pt, x0q, êpt, x0q Ñ 0 (and therefore
xpt, x0q,ξpt, x0q Ñ 0) as tÑ `8 if x0 P R. This
proves that the output feedback controller (43)-(30)
asymptotically stabilize the equilibrium x “ 0 of (42)
with region of attraction containing R.
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