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INCREMENTAL GENERALIZED HOMOGENEITY, OBSERVER
DESIGN AND SEMIGIOBAL STABILIZATION

Stefano Battilotti

ABSTRACT

We introduce the notion of incremental generalized homogeneity, giving
new results on semiglobal stabilization by output feedback and observer design
and putting into a unifying framework the stabilization design for triangular
(feedback/feedforward) and homogeneous systems. A state feedback controller
and an asymptotic state observer are designed separately by dominating the
generalized homogeneity degree of the nonlinearities with the degree of the
linear approximation of the system and an output feedback controller is
obtained according to a certainty-equivalence principle.
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I. INTRODUCTION

Homogeneity and homogeneous approximations
have been investigated by many authors for the analysis
of the stability of an equilibrium point: [6], [5] and [13]
to cite few. This theoretical setup has been exploited
in the design of homogeneous controller/observers ([7],
[8], [9], [1]): the idea is to design a stabilizing controller
for the homogeneous approximation and asymptotic
stability is preserved under any perturbation which does
not change the homogeneous approximation.

In this paper we introduce the notion of generalized
homogeneity (see the preliminary works [3] and [4])
and give conditions based on generalized homogeneity
for semiglobal stabilization by output feedback. These
conditions extend and improve conditions based on
the notion of classical homogeneity ([7], [8], [9], [1])
in such a way that semiglobal stabilization by output
feedback can be achieved for systems

x = Ax + Bu + $(x)

y = Cx + P (x), (1)
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with any function ¢ = (1 d)n)T and \ such

that for all z = (2 xn)T

‘¢Z($)| < (Z;=1) (Dij(xh e ,(Ej)|$j‘, 7= ]., ey
[W(@)] < ¥i(21)|2] 2)
(strict lower triangular ¢) or
|Cl)1(l‘)| < (Z;’L:i+2) ®ij(xi+2, s ,.’Ej)|l’j|, i=1,...,n,
W(x)| < (o) Yilza, .. ozy)legl, i=1,...,n,  (3)

(strict upper triangular ¢) for some continuous
nonnegative functions @;;. While any such functions
¢ and P are homogeneous in our generalized sense,
additional restrictions must be assumed upon requiring
homogeneity in the classical sense. Semiglobal stabi-
lization by non-homogeneous output feedback has been
proved for strict lower triangular ¢ in [14]. Under
this regard and beyond [14], our result allows also for
uncertain output terms like y = cx, where c € (0,1) is
an unknown parameter, or saturated outputs as y =
sat(z). On the other hand, semiglobal stabilization by
non-homogeneous output feedback has been proved for
(non-strict) upper triangular ¢ in [2].

As to non-triangular ¢, our conditions based on
generalized homogeneity extend and improve existing
conditions based on the notion of classical homogeneity
([71, [81, [9], [1], [11], [10]) in such a way that one is
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able to cope with ¢ for which (consider as an example
n = 3)

21| + |z | oo | |23

|b1 (21,72, 23)] < |
21| + |21]72 w7 “)

| <
|b2(x1, 2, 23)] <

with no restrictions on ¢3, where «;, 55, 75, j = 1,2,
and §; are nonnegative reals such that either 0 < 6; < 1
or 1 <d; < % Note that ¢ is not homogeneous
(in the classical sense) if 51 =3, o =1, 11 = % and
Yo = %. Our result improve existing conditions for
semiglobal stabilization by output feedback also with
the introduction of the uncertain term 1 in the output y.

In this paper a state feedback controller and an
asymptotic state observer are designed separately by
dominating the generalized homogeneity degree of ¢
and P with the degree of the linear approximation
of the system and an output feedback controller is
obtained according to a certainty-equivalence principle.
Our result puts into a unifying framework the stabi-
lization problem for triangular (feedforward/feedback)
and homogeneous systems. A novelty introduced
by the notion of generalized homogeneity is the
mixed low/high-gain observer/controller structure, in
combination with saturated controls ([12]) and saturated
state estimates ([14]). The saturation of the state
estimates is a crucial issue of the observer design when
¢ and 1 contain non-homogeneous terms.

II. NOTATION

e R™ (resp. R™*") is the set of n-dimensional real
column vectors (resp. n x n matrices). R, (resp.
R?, R*™) denotes the set of real non-negative
numbers (resp. vectors in R", matrices in R™*",
with real non-negative entries). R. (resp. RZ)
denotes the set of real positive numbers (resp.
vectors in R™ with real positive entries). For any
ce Rset

1:=(1,--- 71)T, T-c=(c--- 7C)T.

* For any G € RP*™ we denote by G;; (or [G];))
the (¢,7)-th entry of G and by G; (or [G]; to
avoid ambiguity) the i—th column of G. We retain
a similar notation for functions.

e We denote by C/(2,%), with j >0, 2 <
R™ and % c RP, the set of j-times continu-
ously differentiable functions f: 2 — %. We
denote by D7(R") the set of functions f e
C’(R™,R™) with decoupled components, viz.
f(l‘) = (fl(xl)v T afn(xn))T Le(R4,R™) is

the set of functions f e C°(R,,R") such that
supi=o| f(t)| < 4+o0 and L' (R, R™) is the set of
f e CO(R,,R") such that SSC [ f(T)||dT < +00.

o the increment Af of fe C°(R",RP) from x €
R"™ to y € R™ is defined as

ANy, z) = fly) — f(x)

When we consider only increments of = along
the [-th coordinate z;, [ = 1, ..., n, we define the
increment A; f of f from x € R™ to y € R™ along
the [-th direction as

(Alf)(y,m)
= f(:vl, .
Set (Aof)(z) = f(2).

* For any vectors z,¢,t € R", we define

amn) - f(m)

L1, Yl, Ti41y - - -

T

et = (et - ,E;")T, e’
ox = (ef'xy, - etra )T

viz. the dilation of a vector x with weight t.
Moreover, for any vectors z,y € R™ we write z <
y (resp. x < y, z = y) if and only if z; < y; (resp.
r; <y, x; =y;) forall i =1,...,n. We retain
a similar notation for pairs of vectors: we write
(z,y) < (z,w) (resp. (z,y) = (z,w)) if and only
ifz; < z;and y; < w; (resp. z; = 2; and y; = w;)
foralli =1,...,n.

ITII. INCREMENTAL GENERALIZED
HOMOGENEITY DEGREE

3.1. DEFINITIONS

Below we introduce the notion of generalized
homogeneity which generalizes along several directions
the classical notion of homogeneity.

Definition III.1 (Incremental homogeneity in the
generalized sense). A function ¢ € C°(R" R) is said
to be incrementally homogeneous in the generalized
sense (i.g.h.) with triple (v, h, @) if there exist h € R,
vt e R” and ® € C°(R?*", R'*") such that

(A)( oy, o) = (K1) £ Q;(y, ) (y; — 2;15)

foralle > 0 and z,y € R™. A function ¢ € C°(R", R")
is said to be incrementally homogeneous in the
generalized sense (i.g.h.) with quadruple (v,0, b, @) if
there exist 0,h € R, v € R? and ® € CO(R?", R"*")
such that

(Ad;)(e* oy, e o)
= Eai+ti (Z?:l) Eh]d)l](y?w)(yj - x])) 1= 17 e 77@6)
foralle > 0 and z,y € R™.
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Note that if each increment A;$ (resp. A;¢;) from z
to y is homogeneous in the classical sense with degree
b; (resp. 0; + b;) and weights v then ¢ is i.g.h. with
triple (v,h, @) (resp. with quadruple (t,0,bh, D)) for
some function ®@. This does not imply that A is itself
homogeneous in the classical sense.

The function ¢(z) = x1 + x3 is i.g.h. with triple
(t,h, @), where t:= (t1,t2)7, b= (vr1,3r2)7 and
O(y,z) = (1,y3 + 23 + z2y2). *

Incremental homogeneity in the generalized sense
give rise to the following definitions when the increment
Ad is calculated from z € R™ to 0.

Definition II1.2 (Homogeneity in the generalized
sense). A function ¢ e C°(R",R) is said to be
homogeneous in the generalized sense (g.h.) with
triple (v,b, ®) if there exist h € R”, te RZ and @ €
CO(R"™, R**™) such that

Pt o) = (X)) e @ (), ®)

for all e > 0 and x € R™. A function ¢ € C°(R",R")
is said to be homogeneous in the generalized sense
(g.h.) with quadruple (v, 0, b, @) if there exist 0, h € R,
v e R” and ® € C°(R", R"*") such that

di(efox) =%F" (X7)) eV, (x)r;, i =1,...,19)

foralle > 0 and x € R™.

Lg.h. implies g.h. and g.h. generalizes the classical
notion of homogeneity.

There are functions, like sin x, which are not i.g.h.
but their absolute value is bounded by the absolute
value of a function which is i.g.h. In many situations
it is more convenient to have a homogeneous (in the
generalized sense) upper bound. This motivates the
following definitions.

Definition ITII.3 (Incremental homogeneity in the
upper bound in the generalized sense). A function
¢ € CO(R™,R) is said to be incrementally homoge-
neous in the upper bound in the generalized sense

*The functions @ can be readily calculated as

q)ij (ya 17)
(Ajdi)(e* oy, ey, .., 91y 1,e%x;,...,eay)

- EATLN ' %)
e tE it (y; — a5)

as long as 0; and h; can be selected in such a way that the right-
hand function in (7) is independent of €. This is the case when ¢, is
a polynomial function of its arguments.

(i.g.h.b.) with triple (t,h, ®) if there exist h e R", v e
R” and ® € C°(R?",R"}) such that

[(Ad) (™ 0y, e" o a)| < (Xj=1) €™ @y, 2)ly; — 210)

for all €>¢y and z,yeR"™ A function ¢ e
C°(R"™,R") is said to be incrementally homogeneous in
the upper bound in the generalized sense (i.g.h.b.) with
quadruple (t,0,h, @) if there exist 0,h € R", t € RZ,
® € CO(R*",R"*™) and ¢ > 0 such that

[(Adi)(e" oy, g% o)
< gl (2711) My, )y — 4l i =1,

foralle > ¢y andy,z € R".

,@1)

The function ¢(z):=sinz is ighub. with
quadruple (t,0,0,1) but it has no i.g.h. degree. The
function ¢(z) = (z2,22 +25)7, p>1, is ighub.
with triple (¢, 0, b, @), where

o= ()2 (b ) 0= ()

0 1
O(y,r) = (0 1+Z§:é |x2|pj1|y2|j> (12)

forall p > 1.

Without loss of generality one can assume g =
1, otherwise rescale = and y as z=¢jox and,
respectively, w =e¢joy and define new functions

[CD’]j(w,Z) — egiJrl’i*thrhj q)j(gat Qw756r o z) (resp.
[(D’]ij(w,z) . €8i+ti7tj+hjq)ij(€at<>1U,Eat<>Z)).

. X9
The function ¢ = | , .
T3 Sin xq

is i.g.h.ub. with
triple (¢, 9, h, @), where

Tt 0 Tg— T
= (1) =) 0= (00)

0 1
Q(y,z) = <$2|Sinylsmml| |y2+x2|>' (13)

2 [y1—z1]

TFor each 4,5 = 1,...,n the functions ®@;; in (11) are obtained as
long as 0; and b; can be selected in such a way that

[(Ajdi)(ef oy, e yr, ..., e 1y;_1,e% xj,. ..
8071+ri+bj|yj — 2]

T
sup
e=1

< @y5(y, x)

for all z € R™ and y € R. This is the case when

[Ajdi(y, 91, Yj—1,Tj, ., Tn)|
ly; — ;]

is bounded by a polynomial function of = and y.
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3.2. SOME RELATED PROPERTIES

Throughout the paper we assume ¢y > 1 in the

above definitions. We discuss only few properties of
incremental homogeneity (in the generalized sense)
which are extensively used throughout the paper.
(P1) (mixing property) Any ig.h.u.b. function ¢ €
CO(R",R™) with quadruple (t, 0, , ®) and diagonal @
is also i.g.h.u.b. with quadruple (¢v,?’, ', @) for all pairs
(', ) such thatd' + b’ >0+ h.

In particular, we can swap the degrees (0,h) as
(0,4") = (h,0) or replace (9,h) with their arithmetic
means (0/,h) = (%, %)

When composing two functions the i.g.h.u.b.

degree behaves as follows.
(P2) (chaining rule) For any i.g.h.u.b. functions
¢ € C°(R",R") with quadruple (t,0,h, ®) and { €
CO(R", R™) with quadruple (v, —b,p, V) if there exists
®° e CO(R*",R"*™) such that for eachi,j =1,...,n
and for all y, x € R"

sup @i5(e~F o P(eF 0 y), e oY (e o)) < DL (3, )
e=1
then ¢ o is i.g.h.u.b. with quadruple (x, 0, p, ©°¥).

Indeed, forall e > 1 and y,z € R™

[(A(di o)) (" oy, et ox)| =

[(Ad:)(e" o (e o(et o y)),e" o (67  oP(et 0 1))
< ehit0 (3)) P [@OW]i (y, @)y — w4,
t=1,...,n

After shifting a vector of functions or the vector of
its arguments the i.g.h.u.b. degree of the vector function
transforms as follows.

(P3) (shifting rules) Let (A, B) be in Brunowski
canonical form. Note that AT is the Moore-Penrose
pseudoinverse of A, viz. ATAAT = AT, AATA =
A, (ATA)T = ATA and (AAT)T = AAT. There-
fore I — AAT = BBT is the orthogonal projection
onto (Im{A})* =Im{I — AAT} while T — ATA is
the orthogonal projection onto (Im{A”})*+ = Im{I —
AT A} (Im{W} denotes the vector space generated by
the columns of the matrix W). It is easy to see that
(P3.1)for any to € Im{I — AAT} (resp. o € Im{I —
AT A}) and i.g.h.ub. ¢ € C°(R",R") with quadruple
(t,0,h, D), Ad (resp. AT ) is i.g.h.u.b. with quadru-
ple (v, A +t) —t + 1, b, AD) (resp. (v, AT (d + ) —
v+, h, ATD)).

Indeed, for all ¢ >
Im{l — AAT}

(A[AG]) (" oy, e" 0 2)] = [(Adi1)(e" oy, 0 )
< et tlARTR TRl (S0 Y D AD]y (y, @) |y — il
i=1,....,n—1.

1 and y,xz€R™ and te

The proof for A7 ¢ goes likewise.

(P3.2) for any v € Im{I — AT A} (resp. o € Im{I —
AATY) and i.g.h.ub. ¢ € C°(R", R"™) with quadruple
(t,0,bh,®) and constant ®, ¢ o A (resp. ¢ o AT) is
i.g.h.u.b. with quadruple (t,0, AT(h —t) + v + 1o, DA)
(resp. (v,0,A(h —t) + v+ 1w, DAT)). Indeed, for all
e >1,and y,r € R" and to € Im{I — AT A}

[(A[d o Ali)(e" 0 y,e" o x)| =

[(Adi)(e* o (e T 0 A(e" 0 y)),e" o (67 0 A(e" 0 x)))]
< en T (Ny) T OIFERL @ Ay — ),
1=1,...,n

The proof for ¢ o AT goes in the same way.

IV. STATE FEEDBACK STABILIZATION

4.1. Statement of the main result

Consider the system
x = Ax + Bu + ¢(x), (14)

with state = € R™, input u € R, (A, B) a Brunowski
canonical form and ¢ e CO(R™,R"), ¢(0) = 0.
Throughout the paper we use the notation x, u for the
functions of time and x, u for their values.

The main result of this section states that if ¢
is i.g.h.u.b. with weights and degrees properly related
then the equilibrium x = 0 of (14) can be semiglobally
stabilized by linear state feedback controller. The class
of stabilizing controllers has been deliberately restricted
to be linear since this is quite natural in the context
of semiglobal stabilization by state feedback. On the
other hand, genuinely nonlinear controllers are more
natural in the context of global stabilization which
is not the aim of this paper. The reader should also
put our stabilization result in perspective with the
observer design result of the next section (theorem
V.1) for obtaining a certainty equivalence principle
for semiglobal stabilization by output feedback which
is the final aim of this paper (theorem VI.1). The
resulting class of stabilizing output feedback controllers
is the composition of linear dynamic controllers with
static nonlinearities, which is enough general as far as
semiglobal stabilization is concerned.

Theorem IV.1 Assume that

(S) (incremental homogeneity) ¢ € CO(R™,R") is
i.g.h.u.b. with quadruple (t, f f, ) with ®(0,0) =0
and fl = fl, fj+1: tj+1 fj,j=1,...,n71,
such that f; < fjH < fjﬂ,j = 1, o,n—1L
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For each compact set % — R"™ around the origin,
there exist a positive definite diagonal Ty € R™*™ and
¢ = 1 such that

u = F(x):= BTF™(x) (15)
F® (z) = =2 o {T[z — ATF(FD(J:)]},
i=1,...,n, FO(z) =0, (16)

asymptotically stabilizes the equilibrium x = 0 of (14)
with region of attraction containing % .

Remark IV.1 Assumption ©(0,0) = 0 is the simplest
one which guarantees that the linear approximation
of (14) around the origin is stabilizable. The minimal
requirement for this is

=20, + [I — AT A+ ATTZ + ©(0,0)(1 + A™T)]
+[A+ ATT2 + ©(0,0)(1 + ATT)]T[I — ATT,]"T <0
(17)

which is always satisfied by some positive definite
diagonal T for either strict lower triangular or strict
upper triangular of ®(0,0). o

Remark IV.2 The controller (16) is homogeneous (in
the classical sense) only if f; = fo forall 5 =1,...,n,
which corresponds to the choice tji1 —t; = 2fy in
(S). In other words the gaps between each pair of
consecutive weights are all equal to 2fo. Under this
restriction, (S) simply says that ¢ is homogeneous (in
the upper bound) with degree 2§, and weights t. o

4.2. CONSTRUCTIVE PROCEDURE FOR THE
CONTROLLER (16)

Given the desired region of attraction Z < R",
the construction of the state feedback controller (16) is
accomplished according to the following steps:

(I) find a diagonal positive definite I's € R™*™ such that
1

tInequality (18) can be always solved for some diagonal positive
definite T's € R™*"™ since T can be defined recursively as T = g(n
where

TG-1) nG-1)
MEU=INT | —2([Ts]j5 — [Tslj—1,-1) |’
T .= —2[T )11,

() .=

and MG-1 ¢ CO(RI—L RI~L), j = 2,...,n are suitable functions
of [Ts]11,...,[Ts]j—1,j—1. Therefore, it is sufficient to pick any
[Ts]11 > 0 and for each increasing j > 2 select [Is];; > 0 such that
TG <o.

T= 2T, + [I — AT A + ATT?]
+[A+ AT 1 - ATT) 7T <. (18)

(II) Find ¢, s > 0 such that for all 2° € B; = {z €
R™ : | 2|2 < 2¢4}

R, (2°) = —2T, + O (2°) + T (2°) < —a 1, (19)
where

@, (2°) = [I = ATT] ' [A+ ATT2 + ©F (2°)]
A+ ATT? + OF (2°)]7[1 - ATT] 7T, (20)

and ®F is any continuous function such that for all
2 2] < 2]

O (2°)
> O(ATT, 2z, 2°) + O(ATT,2, —ATT,2)ATT,. (21)

The number ¢, always exists on account of step (I) and
since ®(0,0) = 0 (if ®(0,0) # 0, in order to find H; is
enough to satisfy (17)).

(IIT) Pick € > 1 such that

(X7=1) (Z7y) [ = ATT) ™ e ) < 2¢4
VreZ. (22)

An estimate of the region of attraction 4 > %
of (14)-(16) as a function of ¢ and ¢ can be
given as follows. Let d € RZ be such that |(I —
ATT)71d|? < 2¢cs. Therefore, € = {x e R": |z;] <
el =1,...,n} foreache > 1.

4.3. PROOF OF THE MAIN RESULT

Proof of theorem IV.1. Let I € R™*™ be the identity
matrix and G5 e R™™™ a diagonal positive definite
matrix and identify (whenever necessary) G, I and A
with linear maps G, I € D*(R") and A € C*(R",R").
In particular, select G5 in such a way that it is i.g.h.
with quadruple (t, f, f, ) with T, € R"*™ is a diagonal
positive definite matrix chosen as pointed out in (18)
(constructive step (I)).

Let X,:=1— ATG,. Perform the change of
coordinates

R S (23)

After some calculations the closed-loop system (14)-
(16) in the new coordinates is

x = —G% + p(R) (24)
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with

p(&) = [I — ATGL| M [(A = ATG)i + d(X.)] (25)
By lemma VIIL2 p is ghub. with quadruple
(v,f,f, @s) where @ is defined in (20). With Vi (z) ==

3]e7" o &|? and 2° := eF o & it follows that

S @G+ (@)}

= (o) G + (e o) p(2)

= (e o) G ("0 x°) + (e oa®) T p(ef 0 2°)
< —(M0a®)TTr(ef 0 2°) + (€T 0 2°) T D (2°) (eF 0 2°)
< = (Mo x®) Iy + @ (2°)] (e 0 2°)

- %(Ef 0 2°) R, (2%) (7 0 2°) (26)

By constructive step (II)

Vs
0z

(@) {~Gsi + p(2)} < —asfeT" 0 2 %27)
for all & : V(%) <c,. With W,(x) = V(X 12) it
follows that

ow,

Ws‘(14)7(16) = a—;(x)[Ax + BBTM(n)(ﬂf)]

—o e T o x| (28)

for all x: Ws(z) < c¢s. Since W is positive definite
on R", this proves that for each ¢ > 1 the equilibrium
x = 0 of the closed-loop system (14)-(16) is locally
asymptotically stable with region of attraction contain-
ing {z € R": W,(z) < ¢s}. To complete the proof of
the theorem, we only need show that for each compact
set Z < R™ we can pick € > 1 in such a way that Z
{z € R": W,(2) < ¢s} (viz. the given compact set Z is
contained in the region of attraction of the equilibrium
x = 0 of (14)-(16)). We will do this by showing that
if € is selected as pointed out in (22) (constructive
step (IIT)) then max,e Ws(x) < ¢s. Indeed, since f; <
fa < --- < f, is an increasing sequence by (S), we have
on account of (22)

1
max W (z) < 7 max e o X ()2

we%
( S o )jie” " max |z |)2
2 = 1 s ]l TER !
1 —y 2
5 ( Zl 1 [({ - AT Is)™ ]JlE I&%ﬂxﬂ)
=<c

V. OBSERVER DESIGN
5.1. STATEMENT OF THE MAIN RESULT

Consider the system
X =Ax+ $(x), y = Cx +P(x), (29)

with state z € R™, output y € R, A in Brunowski
canonical form with

c=(1 0 - 0

$ e CO(R™",R"), ¢(0) =0, and e CO(R",R),
P(0) = 0. Also, let x(-, z) (or simply by x when there
is no ambiguity) and y (-, zo) (or simply by y) denote
the state and, respectively, the output trajectory of (29)
ensuing from zo. We say that o(h,-) € D°(R") is a
saturation function with levels h = (hy hn)T,
hi,..., hy, >0, if for each i = 1,...,n, 0;(h,s;) = s;
for all s:|s;| < h; and o;(h,s;) = sign(s;)h,; for all
s:|si| > hy (sign(s;) is 1if s; > 0 and —1 if s; < 0).

Theorem V.1 Assume that
(O1) (incremental homogeneity) C71 and ¢ are
i.g.h.u.b. with quadruple (t,—g,9, CTV) and, respec-
tively, (v,8,9,®) with ©(0,0) =0, ¥(0,0) =0 and
On i=0ns 8 :=T41 - —Gj+1, j=1,...,n—1
such that 2g;1 — g; < §; < g;,
(02) (boundedness of state trajectories) there exist
two compact sets Z,% < R™ such that x(t, xo) € € for
allt > 0 and for all xoy € Z%.

There exist K,c, >0 and a diagonal positive
definite T, € R™*™ such that the solution x(-,zg),
&(-, o) of (29) coupled with

&= AL + d(0(coe", &)
+E M (y — CE —P(0(coe", £))), £(0,20) = 0,(30)

where

KW =2 o (KCT 4+ ATT, K1Y,
i=1,...,n, KO =0, (31)

are defined and bounded over [0,+0c0) for all xg €
. Moreover, lim;_, o |x(t, 20) — &(¢, z0)|| = 0 forall
X € Z.

Remark V.1 Assumption (O2) is restrictive even for
linear system (29). However, theorem V.1 is per se an
interesting result on the observer design for systems
with bounded state trajectories. o
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Remark V.2 Note that ©(0,0) =0 and ¥(0,0) =0
are required. This is the simplest assumption which
guarantees that the linear approximation of (29) around
the origin is observable. The minimal requirement for
this is

—o(KCTC + AT, A) + (2(1 + ATT,)®(0,0)
12K 0TW(0,0) + A + ATrf) (I — ATT,)~!
+(I— ATT,)~T (2(1 + ATT,)®(0,0)

+2K CTW(0,0) + A + ATFE)T <0 (32)

which is always satisfied by some positive definite
diagonal T, for either strict lower triangular or strict
upper triangular ®(0,0) and CTY(0,0). o

Remark V.3 The observer gain matrix K™C is
homogeneous (in the classical sense) only if g; = go
for all j =1,...,n, which corresponds to the choice
tjt1 —t; = 2go in (O1). Therefore, the gaps between
each pair of consecutive weights are all equal to 2gy.
Under this restriction, (A2) simply says that ¢ (resp.
) is homogeneous (in the upper bound) with degree
290 (resp. 0) and weights v. Under this regard, it
is important to say that the saturation function o is
a crucial design issue only when & and \ are not
homogeneous in the classical sense and, moreover,
the saturation levels are directly proportional to the
maximal gap between two consecutive weights. o

5.2. CONSTRUCTIVE PROCEDURE FOR THE
OBSERVER (30)

The construction of the state observer (30) is
accomplished according to the following steps:
(IV) Find a diagonal positive definite T, € R™*" and
K > 0 such that

G = 2(KCTC + A'T,A)
+(A+ ATT2)(1 - ATT,) !
+(I = ATT)"T(A+ ATT2)T < 0. (33)

$Inequality (33) can be solved for some K and I, on account of the
fact that & can be defined recursively as & = &(™) where

&) . [=2(Toln—jin—j = Moln—js1n—jsr) | MUY
T (mG-IHT ‘ sUG-O |’

&M = —2[T,]n_1.n-1, [To]oo = K,

and MU-1 e CO(R"7,R), j =2,...,n, are suitable functions
of [Ts]n—j+1,n—j+1s---5[To]ln—1,n—1. Therefore, it is sufficient to
pick any [I'6]n—1,n—1 > Oand for each increasing j = 2, ..., n select
[Folrn—jn—j > 0 such that &) < 0.

(V) Find ¢, &, > 0 such that
R, = —2(KCTC + ATT,A) + Q, + OF < —, (34)
where Q) , is a matrix such that forall z : | z|, |w] < nc,
Q, > (2(1 + ATT) D (2, w)
+2K CTW (2, w) + A + ATrg) (I — ATT,)1. (35)

The number ¢, always exists on account of (33) and
since @ and ¥ are continuous and ®(0,0) =0 and
W(0,0) =0 (@f either ®(0,0) # 0 or W(0,0) # 0 for
finding ¢, it is enough to satisfy (32)).

(VI) Pick € >1 such that |z;| < coe® for all i =
1,...,nand x € €.

5.3. PROOF OF THE MAIN RESULT

Proof of theorem V.1. Let I € R™ "™ be the iden-
tity matrix, G, € R™*" a diagonal positive definite
matrix and H > 0 and identify (whenever necessary)
G,,I, HCTC and A with linear maps G,, I, HCTC ¢
D!(R"). In particular, let G, be i.g.h. with quadruple
(v, Ag, Ag,T,) and H be such that HCT'C is i.g.h. with
quadruple (t, g, 9, KCTC), where K and T, are chosen
as pointed out in (33) (constructive step (IV)). Pick
¢, > 0 as pointed out in (32) (constructive steps (V)).

Let e := & — x be the estimation error and X, :=
(I — ATG,)~L. Perform the change of coordinates

é=%"1le (36)

o

On account of (02),
0-(cogta X(tv .1?0))) = X(t7 l‘o)

for all xg € #Z and for all ¢ > 0. Using this fact, after
some calculations the estimation error system in the
new coordinates is

é=—Koé + ((&,x) (37)
with
K,=HCTC + ATG,A (38)
((é,2) = —K,OT[W(0(coe®, Xoé + 2))
—P(0(coe’, 7))
+ (=K AT + D[d(0(coet, Xoé + )
—d(o(coe’, 2))] + [ATGL,AAT G, + AlX,é

By lemma VIIL3 K, is g.h. with quadruple
(5,0,0, KCTC + ATT,A) and ( is ghub. with

© 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

Prepared using asjcauth.cls



8 Asian Journal of Control, Vol. 00, No. 0, pp. 1-12, Month 0000

quadruple (s, g, g, Q,) where Q, is defined as in (35).
Let V,(é) = e o é[% With e> = %o ¢é and 2° =
€% o x it follows that for all é

+(e%0e°)TQ,y(e% 0 )

< (90T [KCTC + ATT,A — Q,)(e% o €°)
1
= (80 e?) Ry(f o e?) (39)

From (34) (constructive step (V))

(78‘20 (E){—Koé + ((é,2)} < —ox,[e97% 0 ¢]? (40)

for all é&. With W, (e) = V, (X, te) it follows that

. ow, .
Wol(20)—(30) = 2 (e)[Ae + o o(coe™, &) — d()

+GM (e =1 o o(coe, &) + ()]

< =o€ 0 X te? 41)

Since W, is positive definite on R™ and radially
unbounded, this proves that for each £ > 1 and for
each fixed trajectory x(-, zp) of (36) with xg € %, the
solution &(-, zg) of (30) coupled with (29) is defined and
bounded over [0, +00). Moreover, lim;_, o |x(-, o) —
&(, )| = 0forall zp € Z.a

VI. OUTPUT FEEDBACK STABILIZATION

In this section we consider
x=Ax+ Bu+ ¢(x), y =Cx+VP(x), (42)

with state z € R™, input v e R, output ye R, ¢ e
CO(R™, R"), $(0) = 0, and P € CO(R™, R), 1(0) = 0.
We assume that (A, B) is in Brunowski form and

cC=(1 0 - 0)
The main result of the paper is the following.

Theorem VI.1 Assume (S) and (01)-(02) with g >
f. For each compact set # — R" around the origin
there exist K, ¢, > 0, diagonal positive definite T's, T, €
R™ ", ¢ > 1 and a saturation function o € D°(R") with

levels c et such that the output feedback controller (30)
with

u= F(0(c,c, §)) (43)

where F' is defined in (16), asymptotically stabilize
the equilibrium x = 0 of (42) with region of attraction
containing %.

Remark VI.1 The condition g > § can be interpreted
as a “fast state-recovery” condition for the state
observer (30). o

6.1. CONSTRUCTIVE PROCEDURE FOR THE
OUTPUT FEEDBACK CONTROLLER (43)-(30)

The construction of the output feedback controller
(43)-(30) is accomplished by following the constructive
steps (I), (IT), (IV), selecting ¢, according to (V) and
€ = 1 in such a way that

2
. € —1)2|—t 2
NERTI
(VII) mm{CSvQHXSHQ} £2§{|X§ I*e™" o 2o
+8012)[r8]31n[22=1 20 [X5 g [ Kol
g0
20a—an[ 1y (1Ko P o mo|Petter o)
5 n 2

+1] } (44)

with X, =1+ ATT,, X7 1= (I —-ATT)™, X, =
(I —ATT,)™, X;t=1T+ ATT, and o, &, > 0 such
that R, < —« 1 and R, < — 1, R, defined in (19)
and R, in (34). Inequality (VII) can be satisfied on
account of §,, < g,, which follows from the assumption

f<g.

VII. CONCLUSIONS

We introduced the notion of incremental gener-
alized homogeneity, giving new results on semiglobal
stabilization by output feedback and observer design
and putting into a unifying framework the stabilization
design for triangular (feedback/feedforward) and
homogeneous systems. A state feedback controller and
an asymptotic state observer are designed separately
by dominating the generalized homogeneity degree
of the nonlinearities with the degree of the linear
approximation of the system and an output feedback
controller is obtained according to a certainty-
equivalence principle. Future research will be devoted
to the global aspects of the stabilization problem.
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VIII. APPENDIX

Lemma VIIL1 If o(h,-) e A°(R") is a saturation
function with levels h, for eachi = 1,...,n and for all
y,xr € R

Proof: Case A). For all y,z such that |y| > h; and
|x| = h; we have
|Aoi(h, ) (y, z)]
|A0i(h7 )(y,x)l

0 < 20;(h, |y — x|) if yz > 0,
2h; < 20;(h, |y — z|) if yz < 0.

Case B). For all y, = such that |y| > h; and |z| < h;

|Aoi(h, ) (y, )| = |hi — x| = hi — |y + |y — =]
<ly—=| = o5y — 2|) if |y — 2| < hs,
|Ac;(h, ) (y,z)| = |hi — x| < 2N,

=20;(ly — 2|) if |y — | = hy.

Case C). For all y,z such that |y| < h; and |z| = h;
follow the steps of case B). o

Lemma VIILI.2 The function p, defined in (25), is
g.h.u.b. with quadruple (t,f,f, ®,) with @ defined as
in (20).

Proof: We break up the proof in several claims.

Claim #1. X, =1—-ATG, (resp. ATG,) is
i.g.h.u.b. with quadruple (v, f, —f, X;) where X, = I +
ATT, (resp. ATT,). By assumption (S) and the shifting
rule (P3.1) with 1o := (I — AT A)t, ATG, is i.g.h.ub.
with quadruple (v, AT(I — A)v + AT§,§, ATT,). Since
AT(I — A)r < —2AT§ on account of (S), ATG, is
g.hub. with quadruple (v, —AT¥, §, ATTy). There-
fore, by virtue of the shifting rule (P3.1) with
= —(I - AAT)f, AATG, ghub. with quadru-
ple (v, Av —v—f,f, AATT,). Since AATT, is diag-
onal, by the mixing property (P1) with 0’ := Av—
t+f and b = —f, AATG, ghub. with quadru-
ple (tv,Av—tv+f,—f, AATT,). Applying once more
the shifting rule (P3.1) with = (I — ATA)(x +
f), ATAATG, = ATG, is gh.ub. with quadruple
(v, AT§ + (I — AT A)f, —f, ATT,). Since AT§+ (I —
AT A)f < ATAf+ (I — AT A)f = § on account of (S),
it follows that ATG, is gh.ub. with quadruple
(v, f,—f, ATT;) and, therefore, X, :=1— ATG, is
g.h.ub. with quadruple (v,f, —f, X5) with Xg =1+
ATT,.

Claim #2. ATG, is gh.ub. with quadruple
(t,0,0, ATT,). On account of (S) and since T is
diagonal, by the mixing property (P1) with 0" := 2f

and b’ == 0, G, is g.h.u.b. with quadruple (¢, 2f,0,T%).
Therefore, by the shifting rule (P3.1) with 1o = (I —
AT A)e, ATG, is g.hub. with quadruple (t,2A47f —
AT(A — D), 0, ATT,). Since 2AT§ < AT(A — It by
(S), AT G, is g.h.ub. with quadruple (¢, 0,0, ATT}).

Claim #3. $oX; + A— ATG? is g.h.u.b. with

quadruple  (v,f,§, ®@* + A+ ATT2), ®F defined
in (21). By (S) and the shifting property (P2.1)
with to:=1t—f, ATG, is ghub. with quadruple
(v, —(I — ATA)f — AT (Av — v — ), f, ATT).
On account of (S), claim #2 and using the
chaining rule (P2), ¢o(—ATG,) is ghub.
with  quadruple (t,f,f, @) where @ (%) =
maxzz|zg|<|ij‘ (D(ATFS,Z, —ATFSZ)ATFS. Also on
account of (S), claim #2 and using the definition
of ighub. degree, $oX,—Po(—ATG,)
is ghub. with quadruple (v,f,f,®F) where
OF (&) = max,,., <)z, P(ATTsz, 2). Therefore,
¢ o X, is ghub. with quadruple (t,f,§, ®F) where
O = OFf + ©F.

By virtue of claim #1, the chaining rule (P2)
and on account of (S), we conclude also that ATG?
is g.h.ub. with quadruple (,f,f, ATT2). Moreover,
since AT A is g.h.u.b. with quadruple (r, 0,0, AT A) and
AT A is diagonal, by the mixing property (P1) with
o :==—f and b’ =f, ATA is ghub. with quadruple
(v, —f,f, AT A). By the shifting rule (P3.1) with tv =
t+f and on account of (S), AATA = A is gh.ub.
with quadruple ((t,f,f), A). This concludes the proof
of claim #3.

Claim #4. X1 = (I — ATG,)"! is gh.u.b. with
quadruple  (v,f,—f, X°1), X~ 1:=[I-ATT;]" L.
Note that by definition of X, for all = we
have  X;1(z) =2+ ATG X (2). Therefore,
X1 =Y (ATG,). Clearly, (ATG,)° =1 s
g.h.ub. with quadruple (v,0,0,7). Therefore, since
I is diagonal and invoking the mixing property (P1)
with o = f and B = —f, (ATG,)° is ghub. with
quadruple (v,f,—f,I). Assume by induction that
(ATG,)7 is gh.ub. with quadruple (v, f, —f, (ATTs)%)
for all j=1,...,7 and for some i <n — 1. Since
(ATG,)*! = (ATG,) (AT Gy) and both (ATG,)* and
ATG, are ghub. with quadruple (t,f, —f, (ATT,)?)
and, respectively, (v,f,—f, ATT,), by claim #2 and
using the chaining rule (P2), (ATG,)**! is g.h.ub.
with quadruple (,f, —f, (A”T,)**1). By induction
it follows that (ATG,)’ for all j=0,...,n—1
is ghub. with quadruple (v, f,—f, (ATT,)%).
Therefore, X;! = Z;:& (ATG,)7 is ghub. wit
quadruple (v, f, —f, X, 1), X;!= Z;.:é(ATFS)j =
[I — ATr[]_l.
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By claims #3 and #4 and using the chaining rule
(P2), we conclude that ¢; = (I — ATG,) "o Xr +
A — ATG?] is g.h.ub. with quadruple (t,f,§, @), O
defined in (20). This concludes the proof of the lemma.

[m}

Lemma VIIL3 The functions K, and (, defined in
(38), are g.h. with quadruple (s, 9,9, KCTC + ATT,A)
and, respectively, g.h.u.b. with quadruple (s, g, 9, Q,),
Q) defined in (35).

Proof: We break up the proof in several claims.

Claim #1. X;' (resp. X,) is ig.h.b. with
quadruple (v,—g,g, X, ') (resp. (tv,—g,9,X,)). This
claim follows on account of (O1) using the chaining
rule (P2) and the shifting rule (P3.1).

Claim +#2. K, 1is 1igh. with quadruple
(s,9,9, KCTC + ATT,A). By the shifting rules
(P3.1) and (P3.2) with 1 := (I — ATA)g and on
account of (O1), ATG,A is i.g.h. with quadruple
(t,g— (I — AT)e,g+ (I — AT)x, ATT,A). Since
ATG, A is diagonal, by the mixing property (P1) with
o:=gand b =g, ATG,A is i.gh. with quadruple
(t,9,8,A'T,A). On account of (O1) K, is i.gh.
with quadruple (v,g,g9, KCTC + ATT,A) but by the
linearity of K, it follows that K, is also i.g.h. with
quadruple (s, 9,9, KCTC + ATT,A).

Claim #3. o (resp. 00X, and ocoX;!) is
i.g.hub. with quadruple (s,—g,9,2I) (resp. (
$,—9,9,2X,) and (s,—g,9,2X,!)). On account
of lemma VIII.1 with h = c,e*, o is i.g.h.u.b. with
quadruple (s,0,0,27). By the mixing property (P1)
with ' .= —g and ' =g, o is also i.g.h.u.b. with
quadruple (s,—g,g,2I). Finally, by virtue of the
chaining rule (P2) and claim #1 oo X, is i.g.h.u.b.
with quadruple (s, —g, g,2X,).

Claim #4. A is ighub. with quadruple
(v,9,9,A4). Note that I is i.g.h.u.b. with quadruple
(v,0,0,1), therefore by the mixing property (P1)
with ?':= —g and b’ :=g, I is also i.g.h.ub. with
quadruple (t,—g,g,I). Since A = AI, by the shifting
rule (P3.1) with v =t+g, A is ighub. with
quadruple (v, Av — AATv — Ag + (I — AAT)g, g, A).
Upon noting that Av— AATv= AAT(Av —1) <
AAT(Ag+g) = Ag + AATg by (A3), A is i.gh.ub.
with quadruple (¢, g, g, A).

Claim #5. ATG, is igh.u.b. with quadruple
(t,—g,9,ATT,). Since on account of (O1) G,
is i.g.h.uwb. with quadruple (v, Ag, Ag,T,) and T,
is diagonal, by the mixing property (P1) with
:=2Ag—g and b =g, G, is ighub. with
quadruple (tv,2Ag — g, g, [,). By the shifting rule (P3.1)

with v = (I — ATA)(x — g), ATG, is i.g.h.ub. with
quadruple (v, AT(2Ag—g+v)—v+ (I —ATA)(x—
9),9,ATT,). On account of (0O1) AT(2Ag+1t) <
AT Av — AT (Ag — g). Therefore, ATG, is i.gh.ub.
with quadruple (t, —g, g, ATT,). This ends the proof of
claim #5.

We are ready to prove that ( is g.h. with quadruple
(s,9,8,Q,) by using the above claims. Since o has
saturation levels ¢, we find out that for each i,j =
1,...,n

sup @;;(e7" o 0(coe’, Xo(y)), 7 0 0(coe’, Xo(x)))

e=1

@O

< max @Qgi(z,w) := Oy
[zl<nco,
lwl<neco

Moreover, on account of claim #3 and since s —
t=1-(g1 —gn), 00X, is i.g.h.ub. with quadruple
(v,—g,0,2X,). Also, on account of (O1) ¢ is i.g.h.u.b.
with quadruple (t, g, g, ®). By virtue of the chaining
rule (P2), it follows that ¢ o o(c.e%, X,) is i.g.h.ub.
with quadruple (t,g,g,2®°X,). Therefore, since s —
t=1:(g1—gn), doo(ce’,X,) is i.ghub. with
quadruple (s, g, g,20°X,).

Moreover, by claims #1 and #4 and the
chaining rule (P2), A o X, is i.g.h.u.b. with quadruple
(s,9,9,AX,) and, since s—v=1-(g3 —g,), is
i.g.hub. with quadruple (s,g,9,AX,). Therefore,
AX, + $ o o(coe’, X,) is i.ghub. with quadruple
(5,9,9,D,) and @, == (A + 20°) X,,.

By (01) and the shifting rule (P3.1) with to =
(I — ATA)(x—g), ATd is i.g.h.ub. with quadruple
(s, —g,9, AT®). Using claims #1 and #5 and the
chaining rule, we conclude that CTY o o(c,e%, X,) +
AT ¢ o 0(coe’, Xo) + GoX, is i.g.h.ub. with quadruple
(5,-9,0,¥), ¥, = [2CTY0 + AT (20° +T,)] X, and
foreachj=1,...,n

Y= max Y;(z,w).
|z]|<nco,
Jwl<nco

Therefore, using claim #2 and the chaining rule
we obtain that K, is i.g.h.ub. with quadru-
ple (s,g,9,(KCTC + ATT,A)¥,). Upon noting that
ACT =0, CCT =1 and ATT,AAT = A'T,, we
conclude that ¢ is g.h.u.b. with quadruple (s, g, g, Q,)
and Q), defined in (35).

The fact that K, is g.h. with quadruple
(5,9,9, KCTC + ATT,A) follows directly from
claim #2. o

(Proof of theorem VI.I). Select G, Iy and c;
according the constructive steps (I) and (II), G,, T, ¢,
and ¢ according the constructive steps (IV), (V) and
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(VID). Let X, X,, &, Vi, W, é,V,, W, be as in the proof
of theorems IV.1 and V.1. Denote by x(¢, zo), &(t, 2o)
(or simply x, &) the state trajectories of the closed-loop
system (42)-(43)-(30) with initial conditions zy and
&o =0, with e(t, zo) := &(t,x0) — x(t, zo) (or simply
e). In (z, é) coordinates (42)-(43)-(30) reads as

x = —Gek + p(®)
+BF(0(coe’, Xo(€) + Xs5(X)) — X5(X))  (46)
é=—Koé+ ((8,x) (47)
Following the same steps for the proof of theorem V.1,
we obtain the existence of &, > 0 such that for each
o € 574
Volgar) < — |92 o 8. (48)

From (48) and since g1 > g2 = - - - = @, it follows that

V,(8(t, z0)) < V,(&(0, zg)) exp @0 "
< 7% 0 X, (mo) |? exp o (49)

for all ¢t > 0 and xo € #Z. Therefore, é € L*(R,R")
and é(t,z9) > 0ast — +wif zg € Z.

Define € = {z € R": |z;| < coe®,i=1,...,n}.
Note that

B X (2) €€ = 0(coc”, Xo(2)) = X,(2)(50)

Using claim #1 of lemma VIII.2 and f; < f2 < --- <
fn, it follows that

le™% o X4(2)] < 2| Xo|?Va(2) < &2

for all & : Vi(2) < ﬁ, which implies that V,(#) <
ﬁ = X,(&) € €. Therefore,

62

S = Ol X(@) = X,(5D

& Vi(2) <

Following the same steps of the proof of theorem IV.1,
using claims #1 of lemmas VIIL.2 and VIII.3 and
lemma VIII.1 with A := c,e®, we obtain the existence
of ocy > 0 such that

. .o
Vilae) < —aslel o 2° + ?Ezm o) 32
8 rs 2 n
i Sebin o (3311, i, 5 1)
S =1

(08
e CARE

N 8Tl 2071 20 [ XS g [Xo] 0]
Ks
2 min{c?, =9y, (8)} (52)

for all (Z,¢é) : Vi(2) < min{cs, ﬁ}
By integrating (52) over [0,t], t >0, and on
account of (49) we obtain

2

C
Vs (fi(ta 1:0)) < min{csv 70} (53)
2] X2
for all z¢ such that
min{c 675} > e "o X5 (z0)]?
X 7 IE o
+863[r5]31n[2?21 Z;l[Xs_l]nJ [XO]jZ]Q .
XsXo
2(Fn—gn |72 0 X5 (o) P (01 ~0n)
e 1 (0Kl ) +1]
(54)

By claim #4 of lemma VIII.2 and claim #1 of lemma
VIIL.3 and since f; < fo <--- <fpand g, <--- < gy,
for each x

le™ o X (wo)| < [ X lle™ o o
le™ 0 X5 (@o)| < IX5 e ool (55)

As a consequence of the constructive step (VII) any
xg € Z satisfies the inequality (54). Therefore, (53)
holds for all zo € Z. It follows that x € L® (R, R™)
for all 2y € #. The Q-limit set of X(-, z¢) and &(-, x¢)
is non-empty, compact and invariant and it is contained
in the set of points {(&, é) : é = 0}. This, on account of
(52), implies that x(¢,xq), &(t,z¢) — 0 (and therefore
x(t,z0), &(t, zg) — 0) as ¢t — oo if xge Z. This
proves that the output feedback controller (43)-(30)
asymptotically stabilize the equilibrium x = 0 of (42)
with region of attraction containing % .o
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