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HITTING SPHERES ON HYPERBOLIC SPACES

Для гиперболического броуновского движения на полуплоскости
Пуанкаре H2, выходящего их точки z = (η, α) внутри гиперболи-
ческого диска U радиуса η̄, мы получаем вероятность достижения
границы ∂U в точке (η̄, ᾱ). При η̄ → ∞ мы получаем для точки
достижения распределение Коши на ∂H2. В частности, отсюда
следует, что гиперболическое броуновское движение, выходящее из
(x, y) ∈ H2, «достигает» границы полуплоскости Пуанкаре H2 в
точке, которая имеет распределение Коши с параметром масштаба
y′ = y

x2+y2 и параметром сдвига x′ = x
x2+y2 . При малых значениях

η и η̄ мы получаем классическое евклидово ядро Пуассона.
Выводятся вероятности выхода из гиперболического кольца в

H2 с радиусами η1 и η2 и рассматривается переходное поведение ги-
перболического броуновского движения. Сходные вероятности вы-
числяются также для броуновского движения на трехмерной сфере.

В случае гиперболической полуплоскости Hn мы получаем, с
доказательством, основанным на методе разделения переменных,
ядро Пуассона для шара. Для малых областей в Hn мы получаем
n-мерное евклидово ядро Пуассона. Вероятности выхода из кольца
вычисляются также в n-мерном случае.

Ключевые слова и фразы: гиперболические пространства,
гиперболическое броуновское движение, ядро Пуассона, задача
Дирихле, гипергеометрические функции, полиномы Гегенбауэра,
распределение Коши, гиперболическая и сферическая формулы
Карно.

1. Introduction. Hyperbolic Brownian motion has been studied over
the years by several authors on the half-plane H2, on the Poincaré disc D2

and in the n-dimensional hyperbolic space (see, for example, [17], [13], [5],
[4], [2]). Branching Brownian motion has been studied recently by [15], for
example. The hyperbolic half-space Hn is given by

Hn = {z = (x, y): x ∈ Rn−1, y > 0},
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n > 2, with origin O = (0, . . . , 0, 1) endowed with Riemannian metric and
the distance formula

ds2 =
dx21 + ∙ ∙ ∙+ dx2n−1 + dy2

y2
, ch η(z′, z) = 1 +

‖z′ − z‖2

2yy′
. (1.1)

The hyperbolic Brownian motion is a diffusion governed by the generator

Δn
2

=
y2

2

( n−1∑

i=1

∂2

∂x2i
+
∂2

∂y2

)

−
n− 2

2
y
∂

∂y
(1.2)

(see, for example, [13] and [9, p. 265]). Therefore the probability density
p(x1, . . . , xn−1, y, t) of hyperbolic Brownian motion is solution to the Cauchy
problem

∂p

∂t
=
y2

2

( n−1∑

i=1

∂2p

∂x2i
+
∂2p

∂y2

)

−
n− 2

2
y
∂p

∂y

subject to the initial condition

p(x1, . . . , xn−1, y, 0) =
n−1∏

j=1

δ(xj)δ(y − 1).

For our purposes it is important to express the hyperbolic Laplacian Δn in
hyperbolic coordinates (η,α) = (η, α1, . . . , αn−1), η := η(O, z), as follows:

Δn =
∂2

∂η2
+
n− 1

th η

∂

∂η
+

1

sh2 η
ΔSn−1 , (1.3)

where ΔSn−1 is the Laplace operator on the (n− 1)-dimensional unit sphere
(see, for example, [14, p. 158] or [11]).

Section 2.1 concerns the derivation of the Poisson kernel of a hyperbolic
disc in H2 by solving the Dirichlet problem






[
∂2

∂η2
+

1

th η

∂

∂η
+

1

sh2 η

∂2

∂α2

]

u(η, α; η̄, ᾱ) = 0, 0 < η < η̄ <∞,

u(η̄, α; η̄, ᾱ) = δ(α− ᾱ), α, ᾱ ∈ (−π, π],

(1.4)

in hyperbolic coordinates (η, α). The interplay between Dirichlet problems
and hitting probabilities in various contexts is outlined, for example, in [11].
The explicit solution of (1.4) is

u(η, α; η̄, ᾱ) =
1

2π

ch η̄ − ch η

ch η ch η̄ − 1− sh η sh η̄ cos(α− ᾱ)
(1.5)

and represents the hitting distribution on the hyperbolic circumference of
radius η̄ for the hyperbolic Brownian motion starting at (η, α).
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The solution to the Dirichlet problem (1.4) in hyperbolic coordinates
(η, α) is based on the classical method of separation of variables.

We show that for η̄ → ∞ the distribution (1.5) tends to the Cauchy
distribution as was found by means of other arguments in [1].

In particular, it follows that the hyperbolic Brownian motion start-
ing at (x, y) ∈ H2 «hits» the boundary of H2 at a point which is Cauchy
distributed with scale parameter y′ = y/(x2 + y2) and position parameter
x′ = x/(x2 + y2). We also obtain that the probability that the hyperbolic
Brownian motion starting at (η, α) ∈ H2 «hits» ∂H2 at (x̄, 0) is equal to the
probability that a Euclidean Brownian motion starting at (η,−α) hits the
x-axis at (x̄, 0).

It is possible to obtain analogous results by considering the Poincaré disc
model D2 of the hyperbolic plane instead of the half-plane model H2. In D2

the Poisson kernel of a hyperbolic disc is easily derived from the Euclidean
case and is linked with (1.5) by the conformal mapping f : H2 → D2 such
that f(z) = (iz + 1)/(z + i).

In [5] the Poisson kernel of a ball in the n-dimensional Poincaré disc
Dn, where n > 2, is obtained in formula (16) by combining the results
of Theorems 2.2, 3.1, and 3.2 therein. We obtain the same result, up to
a conformal mapping, for the half-plane model Hn by means of a simple
alternative proof based on the method of separation of variables. Its explicit
form in hyperbolic coordinates reads

u(η, α1; η̄, ᾱ1) =
Ωn−1
Ωn

∞∑

k=0

(
2k

n− 2
+ 1

)
thk(η/2)Fk(th

2(η/2)

thk(η̄/2)Fk(th
2(η̄/2))

×C
(n−22 )
k (cos(α1 − ᾱ1)) sinn−2(α1 − ᾱ1), (1.6)

where n > 2, 0 < η < η̄ < ∞, α1 − ᾱ1 ∈ (0, π], Ωn = 2πn/2/Γ(n/2)
is the surface area of the n-dimensional Euclidean unit sphere, Fk(z) =
F (k, 1 − n

2
; k + n

2
; z) is the hypergeometric function and C

(ν)
k (x) are the

Gegenbauer polynomials. The analysis presented in this paper shows that
the two-dimensional case substantially differs from the multidimensional one,
in particular, the expression (1.6) of the Poisson kernel cannot be reduced
to a fine form as (1.5). However, for sufficiently small domains, we extract
from (1.6) the n-dimensional Euclidean Poisson kernel.

Section 3 is devoted to the exit probabilities Pz{Tη1 < Tη2} from a
hyperbolic annulus of radii η1 and η2. We examine both the planar and the
higher dimensional case discussing also the transient behavior of hyperbolic
Brownian motion. We obtain in fact that for a planar hyperbolic Brownian
motion the probability that the process goes to infinity before hitting the
hyperbolic circle of radius η1 is strictly less then one:

Pz{Tη1 <∞} =
ln th(η/2)

ln th(η1/2)
< 1,
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while it is well known that for a planar Euclidean Brownian motion this
probability is one.

In the last section the hitting probabilities on a spherical circle for a
spherical Brownian motion starting from p = (ϑ, ϕ) are considered. In par-
ticular, the most interesting result here is that

Pp{BS(Tϑ̄) ∈ dϕ̄} =
1

2π

cosϑ− cos ϑ̄

1− cos θ cos ϑ̄− sinϑ sin ϑ̄ cos(ϕ− ϕ̄)
dϕ̄,

0 < ϑ < ϑ̄ < π, ϕ, ϕ̄ ∈ (0, 2π].

We note that H2 can be viewed formally as a sphere with imaginary
radius, so by replacing in the last formula ϑ with iϑ we obtain (1.5).

2. Hitting distribution on a hyperbolic sphere in Hn.

2.1. Two-dimensional case. We study here the Poisson kernel of
the circle in the hyperbolic plane H2 = {(x, y): x ∈ R, y > 0} endowed with
the hyperbolic metric.

The relationship between hyperbolic coordinates (η, α) and the cartesian
coordinates (x, y) in the two dimensional case is given by

x =
sh η cosα

ch η − sh η sinα
, y =

1

ch η − sh η sinα
. (2.1)

For information on hyperbolic coordinates (see [16], [6], [7]). We have now
our first theorem.

We have now our first theorem.

Theorem 2.1. Let U = {(η, α): η < η̄} be a hyperbolic disc in H2 with
radius η̄ and center in O. Then the solution to the Dirichlet problem





[
∂2

∂η2
+

1

th η

∂

∂η
+

1

sh2 η

∂2

∂α2

]

u(η, α; η̄, ᾱ) = 0, 0 < η < η̄ <∞,

u(η̄, α; η̄, ᾱ) = δ(α− ᾱ), α, ᾱ ∈ (−π, π],

(2.2)

is given by

u(η, α; η̄, ᾱ) =
1

2π

ch η̄ − ch η

ch η ch η̄ − 1− sh η sh η̄ cos(α− ᾱ)
. (2.3)

P r o o f. Our proof is based on the classical method of separation of
variables. We assume that

u(η, α; η̄, ᾱ) = E(η)Θ(α) (2.4)

and we arrive at the following ordinary equations:
{

Θ′′(α) + μ2Θ(α) = 0,

sh2 ηE′′(η) + ch η sh ηE′(η)− μ2E(η) = 0,
(2.5)
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where μ2 is an arbitrary constant. The first equation has general solution

Θ(α) = A cos(μα) +B sin(μα) (2.6)

and becomes periodic with period 2π for μ = m ∈ N. The second equation
necessitates some further treatment. We start with the change of variable
w = ch η which transforms the second equation of (2.5) into

(1− w2)G′′(w)− 2wG′(w)−
m2

1− w2
G(w) = 0. (2.7)

The general solution to (2.7) can be conveniently written as

G(w) = C1

∣
∣
∣
∣
w + 1

w − 1

∣
∣
∣
∣

m/2

+ C2

∣
∣
∣
∣
w − 1

w + 1

∣
∣
∣
∣

m/2

, m 6= 0 (2.8)

(see, for example, [19, Section 2.1.2, formula 233 for a = 1, b = −1, λ = 0,
and μ = −m2]). From (2.8) we have that

E(η) = C1

(
ch η + 1

ch η − 1

)m/2
+ C2

(
ch η − 1

ch η + 1

)m/2

= C1

(
ch η + 1

sh η

)m
+ C2

(
ch η − 1

sh η

)m
. (2.9)

We disregard the first term of (2.9), since our aim is to extract finite-valued
and increasing solutions to (2.2), so that we have

E(η) = C

(
ch η − 1

sh η

)m
= C thm

η

2
. (2.10)

In light of (2.4), (2.6), and (2.10) we can write

u(η, α; η̄, ᾱ) =
∞∑

m=0

Θm(α)Em(η)

= A0 +
∞∑

m=1

[Am cos(mα) +Bm sin(mα)]

(
ch η − 1

sh η

)m
. (2.11)

If we take the Fourier expansion of the Dirac delta function

δ(α− ᾱ) =
1

2π
+

1

π

∞∑

m=1

[cos(mα) cos(mᾱ) + sin(mα) sin(mᾱ)], (2.12)

then by comparing (2.11) with (2.12) we obtain the Fourier coefficients Am
and Bm so that we can write

u(η, α; η̄, ᾱ) =
1

2π
+

1

π

∞∑

m=1

[cos(mα) cos(mᾱ) + sin(mα) sin(mᾱ)]
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×
(

ch η̄ − 1

sh η̄

)−m(ch η − 1

sh η

)m

=
1

2π

[

1 +
∞∑

m=1

[(

ei(α−ᾱ)
sh η̄

ch η̄ − 1

ch η − 1

sh η

)m

+

(

e−i(α−ᾱ)
sh η̄

ch η̄ − 1

ch η − 1

sh η

)m]]

=
1

2π

(
ch η̄−1
sh η̄

)2
−
(
ch η−1
sh η

)2

(
ch η̄−1
sh η̄

)2
+
(
ch η−1
sh η

)2
− 2 ch η̄−1

sh η̄
ch η−1
sh η

cos(α− ᾱ)
.

(2.13)

The expression in (2.13) can be substantially simplified by observing that

(ch η̄ − 1)2 sh2 η − (ch η − 1)2 sh2 η̄

= (ch η̄ − 1)(ch η − 1)[2 ch η̄ − 2 ch η]

and

(ch η̄ − 1)2 sh2 η + (ch η − 1)2 sh2 η̄

− 2(ch η̄ − 1)(ch η − 1) sh η̄ sh η cos(α− ᾱ)

= (ch η̄ − 1)(ch η − 1)[2 ch η ch η̄ − 2− 2 sh η sh η̄ cos(α− ᾱ)].

In view of all these calculations we have that the hyperbolic Poisson kernel
takes the form (2.3).

Theorem 2.1 is proved.
R e m a r k 2.1. By applying the hyperbolic Carnot formula we note

that it is possible to write the hyperbolic Poisson kernel (2.3) in a new form.
We construct a hyperbolic triangle with sides of length η, η̄ and η̂, and angle
between the two sides of length η and η̄ equal to θ = α− ᾱ, see Fig. 1. The
hyperbolic Carnot formula

ch η̂ = ch η ch η̄ − sh η sh η̄ cos(α− ᾱ),

permits us to write (2.3) as

u(η, α; η̄, ᾱ) =
1

2π

ch η̄ − ch η

ch η̂ − 1
, (2.14)

where the dependence of u from α and ᾱ is hidden in η̂.
R e m a r k 2.2. We observe that the hyperbolic Poisson kernel (2.3)

is a proper probability law. In fact:
– it is nonnegative, because, for η̄ > η, we have ch η̄ − ch η > 0 and by

the hyperbolic Carnot formula

ch η ch η̄ − 1− sh η sh η̄ cos(α− ᾱ) = ch η̂ − 1 > 0;
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– it integrates to one, since it is well known that

∫ 2π

0

dθ

a+ b cos θ
=

2π
√
a2 − b2

, (2.15)

where, in this case, a = ch η ch η̄ − 1 and b = − sh η sh η̄.

Fig. 1. Hyperbolic triangle in H2 with sides of length η, η̄ and η̂.

R e m a r k 2.3. The kernel appearing in formulas (2.3) and (2.14)
represents the law of the position occupied by the hyperbolic Brownian mo-
tion {BH2(t): t > 0} on H2 starting from z = (η, α) ∈ H2 when it hits for
the first time the boundary ∂U of the hyperbolic disc U . In other words,

Pz{BH2(Tη̄) ∈ dᾱ} =
1

2π

ch η̄ − ch η

ch η ch η̄ − 1− sh η sh η̄ cos(α− ᾱ)
dᾱ,

ᾱ ∈ [0, 2π),

where Tη̄ = inf{t > 0: BH2(t) ∈ ∂U}, see Fig. 2.

Fig. 2. Brownian motion on H2 starting at (η, α) and hitting the boundary of the hyper-
bolic disc U .
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R e m a r k 2.4. For small values of η and η̄ the hyperbolic Poisson
kernel (2.3) is approximated by the Euclidean Poisson kernel

u(η, α; η̄, ᾱ) ∼
1

2π

1 + η̄2/2− (1 + η2/2)

(1 + η̄2/2)(1 + η2/2)− 1− ηη̄ cos(α− ᾱ)

=
1

2π

η̄2 − η2

η̄2 + η2 − 2ηη̄ cos(α− ᾱ)

that represents the law of the position occupied by the Euclidean Brownian
motion {B(t), t > 0} on R2 starting from a point z = (η, α) when it hits for
the first time the boundary ∂U of the Euclidean disc U = {(η, α), η < η̄}
with Euclidean radius η̄. This is a consequence of the fact that in sufficiently
small domains of the Lobachevskian space, the Euclidean geometry is in
force.

R e m a r k 2.5. We also note that:
– for η = 0 formula (2.3) becomes the uniform distribution as expected;
– for η̄ →∞ we have that

ũ(η, α; ᾱ) := lim
η̄→∞

u(η, α; η̄, ᾱ) =
1

2π

1

ch η − sh η cos(α− ᾱ)
. (2.16)

The limiting distribution (2.16) can also be written as

ũ(η, α; ᾱ) =
1

2π

1

ch η − sh η cos(α− ᾱ)

=
1

2π

[

1 + 2
∞∑

n=1

(
ch η − 1

sh η

)n
cosn(α− ᾱ)

]

.

We note that ũ represents the hitting distribution of the hyperbolic Brownian
motion, starting at z = (η, α), on the horizontal axis ∂H2 = {(η̄, ᾱ): η̄ =
∞} = {(x̄, ȳ): ȳ = 0}, see Fig. 3. We observe that the boundary ∂H2

represents the point at infinity of H2. We can write the «hitting» probability
on ∂H2 in the following form

Pz{BH2(T∞) ∈ dᾱ} =
1

2π

1

ch η − sh η cosα cos ᾱ− sh η sinα sin ᾱ
dᾱ.

(2.17)
We write now the distribution (2.17) in Cartesian coordinates. In view
of (2.1) we have that

x

y
= sh η cosα, tgα =

x2 + y2 − 1

2x
. (2.18)

The first relation is an immediate consequence of (2.1) and for a proof of the
second equality, see [7]. From (1.1) and (2.18) it follows that

sh η sinα =
√

ch2 η − 1
tgα

√
1 + tg2 α

=
x2 + y2 − 1

2y
. (2.19)
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Letting η̄ → ∞ we note, in view of (2.1), that for a point (x̄, ȳ) ∈ ∂H2 it
holds that 





x̄ =
cos ᾱ

1− sin ᾱ
,

ȳ = 0.

(2.20)

Formula (2.20) implies that x̄ − cos ᾱ = x̄
√

1− cos2 ᾱ and this leads to the
following relations:

cos ᾱ =
2x̄

1 + x̄2
, sin ᾱ =

1− x̄2

1 + x̄2
. (2.21)

In view of (2.18), (2.19) and (2.21) and since dᾱ = (2/(1 + x̄2)) dx̄, we can
write ũ(η, α; ᾱ) dᾱ in cartesian coordinates as follows:

ũ(x, y; x̄) dx̄ =
1

2π

1
x2+y2+1
2y

− x
y
2x̄
1+x̄2

− x2+y2−1
2y

1−x̄2

1+x̄2

2

1 + x̄2
dx̄

=
1

π

y

x̄2(x2 + y2)− 2xx̄+ 1
dx̄

=
1

π

y

x2+y2
[
x̄− x

x2+y2

]2
+
[

y

x2+y2

]2 dx̄. (2.22)

Fig. 3. Brownian motion on H2 starting at (η, α) and hitting the boundary of the hyper-
bolic plane.

Formula (2.22) says that the hyperbolic Brownian motion starting at
(x, y) ∈ H2 hits the boundary of H2 at a point (x̄, 0) which is Cauchy
distributed with scale parameter y′ = y/(x2 + y2) and position parameter
x′ = x/(x2 + y2) depending on the starting point. In particular, if the hy-
perbolic Brownian motion starts at the origin O of H2, we obtain a standard
Cauchy. We note that (2.16) can be viewed as a Cauchy density in hyperbolic
coordinates.
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R e m a r k 2.6. In view of formula (2.22), we also note that the prob-
ability that the hyperbolic Brownian motion starting at z = (x, y) = (η, α) ∈
H2 hits ∂H2 at (x̄, 0) is equal to the probability that a Euclidean Brownian
motion starting at z′ = (x′, y′) = (η, α′) hits the x-axis at (x̄, 0), where z
and z′ have the same hyperbolic distance η from the origin but α′ = −α, see
Fig. 4. In fact

ch η′ =

x2

(x2+y2)2
+ y2

(x2+y2)2
+ 1

2y
x2+y2

=
x2 + y2 + 1

2y
= ch η,

tgα′ =

x2

(x2+y2)2
+ y2

(x2+y2)2
− 1

2x
x2+y2

=
1− x2 − y2

2x
= − tgα.

Formula (2.22) is in accordance with formula (1.2) in [1]. In [1] the hitting
distribution on the horizontal axis, for the hyperbolic Brownian with hor-
izontal and vertical drift, is obtained from the hitting distribution on the
horizontal lines Ha = {(x, y) ∈ H2: y = a > 0} when a→ 0.

Fig. 4. Hyperbolic Brownian motion starting at z and Euclidean Brownian motion start-
ing at z′.

R e m a r k 2.7. The Poisson kernel (2.3) can be conveniently written
also in Cartesian coordinates by exploiting the relations (2.18), (2.19) and
the hyperbolic distance formula

ch η =
x2 + y2 + 1

2y
.

We have that

u(x, y; x̄, ȳ) =
1

2π

x̄2+ȳ2+1
2ȳ

− x2+y2+1
2y

x2+y2+1
2y

x̄2+ȳ2+1
2ȳ

− 1− x
y
x̄
ȳ
− x2+y2−1

2y
x̄2+ȳ2−1
2ȳ

=
1

2π

(x̄2 + ȳ2)y − (x2 + y2)ȳ + y − ȳ
(x− x̄)2 + (y − ȳ)2

.
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In the special case, where ȳ = 0, the previous expression becomes

u(x, y; x̄, 0) =
1

2π

(1 + x̄2)y

(x− x̄)2 + y2

and thus multiplying by 2/(1 + x̄2) we get the Cauchy density as expected.

It is possible to obtain the same results, up to a conformal mapping,
by considering a different model of the hyperbolic space: the Poincaré disc
model D2. The half-plane H2 can be mapped onto the disc D2 = {(r, θ): r ∈
[0, 1), θ ∈ (−π, π]} by means of the conformal mapping f : H2 → D2 such
that

f(z) =
iz + 1

z + i
. (2.23)

The x-axis of H2 is mapped onto ∂D2 while the origin O = (0, 1) of H2 is
mapped into the origin O = (0, 0) of D2. An arbitrary point z = (x, y) ∈ H2

is mapped into a point Q = (r, θ) ∈ D2 such that






x =
2r cos θ

1 + r2 − 2r sin θ
,

y =
1− r2

1 + r2 − 2r sin θ

(2.24)

(for details see [16]). In view of (2.1) and (2.24) we have

x

y
= sh η cosα =

2r cos θ

1− r2
.

Fig. 5. Brownian motion on H3 starting at (η,α) and hitting the boundary of the hy-
perbolic ball.
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Since we have that

cosα = cos θ and sh η =
2r

1− r2
,

for θ, α ∈ (−π, π], we easily arrive at






r =
ch η − 1

sh η
=

√
ch η − 1

ch η + 1
= th

η

2
,

θ = α.

The hyperbolic metric and the distance formula in D2 become

ds2 =
4

(1− r2)2
dr2, d(O,Q) = ln

1 + r

1− r
.

By means of (2.24) the hyperbolic Laplacian is converted into

(1− r2)2
[

1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2
∂2

∂θ2

]

.

Since (1 − r2)2 > 0 it is possible to derive the Poisson kernel related to the
Dirichlet problem from the Euclidean case:

u(r, θ; r̄, θ̄) =
1

2π

r̄2 − r2

r̄2 + r2 − 2rr̄ cos(θ − θ̄)
. (2.25)

(see also [14, p. 34]). Alternatively it is possible to obtain formula (2.25)
from the Poisson kernel in H2 (2.13) with a change of coordinates.

We note that for r̄ → 1 we have

ũ(r, θ; θ̄) := lim
r̄→1
u(r, θ; r̄, θ̄) =

1

2π

1− r2

1 + r2 − 2r cos(θ − θ̄)
, r < 1. (2.26)

We can write (2.26) in hyperbolic coordinates as follows:

1

2π

1− r2

1 + r2 − 2r cos(θ − θ̄)
=

1

2π
+

1

π

∞∑

n=1

(
ch η − 1

sh η

)n
cosn(θ − θ̄)

=
1

2π

1

ch η − sh η cos(θ − θ̄)
,

which coincides with (2.16). On the other hand it is well known that under
the conformal mapping (2.23) the Poisson kernel (2.26) takes the form of the
Cauchy distribution as it is shown in formula (2.22).
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2.2. Multidimensional case. Let Hn = {z = (x, y): x ∈ Rn−1, y >
0} be the n-dimensional hyperbolic plane, n > 2, with origin O = (0, . . . , 0, 1)
endowed with the hyperbolic metric.

In Lemma 2.1 we evaluate the hyperbolic Laplacian of the distance η
in Hn. This result permits us, in Remark 2.8, to determine the hyperbolic
Laplacian of a smooth function f(η). The statement of this result is given,
for example, in [10, p. 117] (where ch ρ must be replaced by cth ρ), without
proof.

Lemma 2.1. For z = (x, y) and z′ = (x′, y′) in Hn we have that the
hyperbolic distance η(z, z′) is a solution of

Δnη(z, z
′) =

n− 1

th η(z, z′)
.

P r o o f. Since

cth(arcosh x) =
x

√
x2 − 1

, η(z, z′) = arcosh
‖x− x′‖2 + y2 + y′2

2yy′
,

we have to prove that

Δnη(z, z
′) = (n− 1)

‖x− x′‖2 + y2 + y′2
√

[‖x− x′‖2 + (y + y′)2][‖x− x′‖2 + (y − y′)2]
.

By performing the first and the second derivative of η(z, z′) with respect
to y and xi, for i = 1, . . . , n − 1, we obtain Δnη(z, z

′) (for more details on
the calculations, see [8]).

Lemma 2.1 is proved.
R e m a r k 2.8. In view of Lemma 2.1, if f is a smooth function on

R, it holds that

Δnf(η) = f ′′(η) +
n− 1

th η
f ′(η).

In fact we have

Δnf(η(z, z
′))

= y2
[ n−1∑

i=1

∂2

∂x2i
f(η(z, z′)) +

∂2

∂y2
f(η(z, z′))

]

− (n− 2)y
∂

∂y
f(η(z, z′))

=
∂2f

∂η2
y2
[ n−1∑

i=1

(
∂η

∂xi

)2
+

(
∂η

∂y

)2]

+
∂f

∂η
Δnη.

Since it holds that
n−1∑

i=1

(
∂η

∂xi

)2
+

(
∂η

∂y

)2

=
4‖x− x′‖2y2 + [‖x− x′‖2 + y′2 − y2]2

y2[‖x− x′‖2 + (y + y′)2][‖x− x′‖2 + (y − y′)2]
=

1

y2
,

from Lemma 2.1 we obtain the final result.
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We denote by {BHn(t), t > 0} the hyperbolic Brownian motion on Hn

with starting point z = (η,α) ∈ Hn, where α = (α1, . . . , αn−1) ∈ [0, π]n−2 ×
[0, 2π), and we assume that z is inside the n-dimensional hyperbolic ball U
with hyperbolic radius η̄.

We obtain the solution to the Dirichlet problem (2.28) in hyperbolic
coordinates (η,α) by means of the classical method of separation of variables.
Byczkowski and Ma lecki [5, Theorem 3.2], obtain, with a different method,
the Poisson kernel for the Poincaré model Dn. Our result and formula (16)
in [5] are related.

In particular, we obtain the law of the position occupied by the hyper-
bolic Brownian motion on Hn when it hits the boundary ∂U for the first
time. Since the Laplace operator is invariant under rotations (see, for ex-
ample, [14, Proposition 2.4]), without loss of generality we can assume that
the starting point is z = (η, α1, 0, . . . , 0) and the process hits the boundary
of the ball U at some point z̄ = (η̄, ᾱ1, 0, . . . , 0), where α1 − ᾱ1 is the angle
between the vectors z and z̄. For a function on the (n− 1)-dimensional unit
sphere Sn−1 depending only on one angle θ we have

ΔSn−1 =
1

sinn−2 θ

∂

∂θ

(

sinn−2 θ
∂

∂θ

)

=
∂2

∂θ2
+
n− 2

tg θ

∂

∂θ
. (2.27)

In view of (1.3) and (2.27) we have that the hitting distribution on ∂U is
obtained from the solution of the following Dirichlet problem:






[
∂2

∂η2
+
n− 1

th η

∂

∂η
+

1

sh2 η

(
∂2

∂α21
+
n− 2

tgα1

∂

∂α1

)]

u(η, α1; η̄, ᾱ1) = 0,

0 < η < η̄ <∞,

u(η̄, α1; η̄, ᾱ1) = δ(α1 − ᾱ1), α1 − ᾱ1 ∈ (0, π].
(2.28)

Theorem 2.2. The solution to the Dirichlet problem (2.28) is given by

u(η, α1; η̄, ᾱ1) =
Ωn−1
Ωn

∞∑

k=0

(
2k

n− 2
+ 1

)
thk(η/2)Fk(th

2(η/2))

thk(η̄/2)Fk(th
2(η̄/2))

×C
(n−22 )
k (cos(α1 − ᾱ1)) sinn−2(α1 − ᾱ1), (2.29)

where n > 2, 0 < η < η̄ < ∞, and α1 − ᾱ1 ∈ (0, π] and Fk(z)
= F (k, 1− n

2
; k + n

2
; z).

P r o o f. As in Theorem 2.1, our proof is based on the method of
separation of variables. We assume that

u(η, α1; η̄, ᾱ1) = Θ(α1)E(η).
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Since we have that

Θ(α1)E
′′(η) + Θ(α1)

n− 1

th η
E′(η) +

E(η)

sh2 η

[

Θ′′(α1) +
n− 2

tgα1
Θ′(α1)

]

= 0,

there exists a constant μ2 such that

{
Θ′′(α1) + (n− 2) cotα1Θ

′(α1) + μ2Θ(α1) = 0,

sh2 ηE′′(η) + (n− 1) ch η sh ηE′(η)− μ2E(η) = 0.
(2.30)

With the change of variable ω = cosα1 and for μ2 = k(k + n− 2), the first
equation in (2.30) can be reduced to

(1− ω2)G′′(ω)− (n− 1)ωG′(ω) + k(k + n− 2)G(ω) = 0. (2.31)

that is a particular case of the Jacobi equation for α = β = n−3
2

(see, e.g., [18,
Chap. IV, p. 60]). The Jacobi equation admits two linearly independent
solutions P

(α,β)
k (ω) and Q

(α,β)
k (ω) called Jacobi functions of the first and

second kind. We disregard Q
(α,β)
k (ω) since it is defined in the complex plane

cut along the segment [−1, 1] and we note that P
(n−32 ,

n−3
2 )

k (ω) = C
(n−22 )
k (ω)

where C
(ν)
k (ω) are the Gegenbauer polynomials (see, e.g., [18, p. 84]). This

implies that

Θ(α1) = AC
(n−22 )
k (cosα1). (2.32)

We transform the second equation of (2.30) into a hypergeometric equation.
The first step is based on the change of variable ζ = th(η/2). Since

d

dη
=

1

2 ch2(η/2)

d

dζ
,

d2

dη2
=

1

4 ch4(η/2)

d2

dζ2
−

sh(η/2)

2 ch3(η/2)

d

dζ

and sh η = 2 sh(η/2) ch(η/2), ch η = 2 ch2(η/2) − 1, the second equation of
(2.30) becomes

4 sh2
η

2
ch2
η

2

[
1

4 ch4(η/2)

d2

dζ2
−

sh(η/2)

2 ch3(η/2)

d

dζ

]

E(ζ)

+ (n− 1) ∙ 2 sh
η

2
ch
η

2

(

2 ch2
η

2
− 1

)

×
1

2 ch2(η/2)

d

dζ
E(ζ)− μ2E(ζ) = 0.

And since

−
2 sh3(η/2)

ch(η/2)
+ (n− 1)

sh(η/2)

ch(η/2)

(

2 ch2
η

2
− 1

)

= th
η

2

[

1 + (n− 2)
1 + th2(η/2)

1− th2(η/2)

]



Hitting spheres on hyperbolic spaces 575

we can write

ζ2E′′(ζ) + ζ

[

1 + (n− 2)
1 + ζ2

1− ζ2

]

E′(ζ)− μ2E(ζ) = 0. (2.33)

We now assume that

E(ζ) = ζkf(ζ2)

after some manipulations (for details see [8]) we arrive at the following equa-
tion

ζ2(1− ζ2)f ′′(ζ2) +

[

k +
n

2
−
(

k + 2−
n

2

)

ζ2
]

f ′(ζ2)

+ k

(
n

2
− 1

)

f(ζ2) = 0. (2.34)

Equation (2.34) coincides with the hypergeometric equation

t(1− t)f ′′(t) + [γ − (α+ β + 1)t]f ′(t)− αβf(t) = 0

for t = ζ2, α = k, β = 1 − n/2, and γ = k + n/2. In view of the position
E(ζ) = ζkf(ζ2) and ζ = th(η/2), we conclude that a solution to the second
equation of (2.30) is given by

E(η) = thk
η

2
F

(

k, 1−
n

2
; k +

n

2
; th2

η

2

)

. (2.35)

Equations (2.32) and (2.35) imply that

u(η, α1; η̄, ᾱ1) =
∞∑

k=0

Ek(η)Θk(α1) =
∞∑

k=0

Ak thk
η

2
Fk

(

th2
η

2

)

×C
(n−22 )
k (cosα1).

In order to determine the coefficients Ak, by applying the boundary condi-
tions we have that

u(η̄, α1; η̄, ᾱ1) = δ(α1 − ᾱ1) =
∞∑

k=0

Ak thk
η̄

2
Fk

(

th2
η̄

2

)

×C
(n−22 )
k (cosα1).

By multiplying both members by C
(n−22 )
m (cosα1) sinn−2 α1 and then integrat-

ing we have that

∫ π

0

δ(α1 − ᾱ1)C
(n−22 )
m (cosα1) sinn−2 α1 dα1
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=
∞∑

k=0

Ak thk
η̄

2
Fm

(

th2
η̄

2

)

×
∫ π

0

C
(n−22 )
k (cosα1)C

(n−22 )
m (cosα1) sinn−2 α1 dα1

= Am thm
η̄

2
Fk

(

th2
η̄

2

)

×
π ∙ 23−nΓ(m+ n− 2)

m!(m+ (n− 2)/2)Γ((n− 2)/2)2
,

because the functions C
(ν)
k (x) form an orthogonal system on the interval

x ∈ (−1, 1) (see [12, formula 7.313]). This implies that

Am =
C

(n−22 )
m (cos ᾱ1) sinn−2 ᾱ1

thm(η̄/2)Fm(th2(η̄/2))

×
m!(m+ (n− 2)/2)Γ((n− 2)/2)2

π23−nΓ(m+ n− 2)
.

We finally obtain

u(η, α1; η̄, ᾱ1) =
Γ((n− 2)/2)2 sinn−2 ᾱ1

23−nπ

×
∞∑

k=0

k!(k + (n− 2)/2)

Γ(k + n− 2)

thk(η/2)Fk(th
2(η/2))

thk(η̄/2)Fk(th
2(η̄/2))

×C
(n−22 )
k (cos ᾱ1)C

(n−22 )
k (cosα1).

By rotational invariance, without loss of generality, we can assume ᾱ1 = 0,
we then have

u(η, α1; η̄, ᾱ1) =
Γ((n− 2)/2)2 sinn−2 ᾱ1

23−n π

×
∞∑

k=0

k!(k + (n− 2)/2)

Γ(k + n− 2)

thk(η/2)Fk(th
2(η/2))

thk(η̄/2)Fk(th
2(η̄/2))

×C
(n−22 )
k (1)C

(n−22 )
k (cos α̃1),

where α̃1 = α1 − ᾱ1. Since C
(n−22 )
k (1) =

(
n+k−3
k

)
(see, e.g., [12, for-

mula 8.937.4]) the last expression reduces to

u(η, α1; η̄, ᾱ1) =
Γ((n− 2)/2)2 sinn−2(α1 − ᾱ1)

23−n(n− 3)!π

×
∞∑

k=0

(

k +
n− 2

2

)
thk(η/2)Fk(th

2(η/2))

thk(η̄/2)Fk(th
2(η̄/2))

C
(n−22 )
k (cos α̃1).
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We arrive at formula (2.29) by observing that

Γ((n− 2)/2)2

23−n(n− 3)!π
=

2

n− 2

Ωn−1
Ωn

where Ωn = 2πn/2

Γ(n/2)
is the surface area of the n-dimensional Euclidean unit

sphere.
Theorem 2.2 is proved.
R e m a r k 2.9. We note that for small values of η and η̄ we obtain

the Euclidean Poisson kernel. In fact, since th(η/2) ∼ η/2, C
(n)
1 (t) = 2nt,

C
(n)
0 (t) = 1, and kC

(n)
k (t) = 2n[tC

(n+1)
k−1 (t)− C(n+1)k−2 (t)], we have that

∞∑

k=0

(
2k

n− 2
+ 1

)
thk(η/2)Fk(th

2(η/2))

thk(η̄/2)Fk(th
2(η̄/2))

C
(n−22 )
k (cos(α1 − ᾱ1))

'
2

n− 2

[ ∞∑

k=2

k

(
η

η̄

)k
C

(n−22 )
k (cos(α1 − ᾱ1)) + (n− 2)

η

η̄
cos(α1 − ᾱ1)

+
n− 2

2

∞∑

k=0

(
η

η̄

)k
C

(n−22 )
k (cos(α1 − ᾱ1))

]

= 2

[

cos(α1 − ᾱ1)
∞∑

k=2

(
η

η̄

)k
C

(n2 )
k−1 (cos(α1 − ᾱ1))

−
∞∑

k=2

(
η

η̄

)k
C

(n2 )
k−2 (cos(α1 − ᾱ1)) +

η

η̄
cos(α1 − ᾱ1)

+
1

2

∞∑

k=0

(
η

η̄

)k
C

(n−22 )
k (cos(α1 − ᾱ1))

]

= 2

[
η

η̄
cos(α1 − ᾱ1)

∞∑

k=0

(
η

η̄

)k
C

(n2 )
k (cos(α1 − ᾱ1))

−
(
η

η̄

)2 ∞∑

k=0

(
η

η̄

)k
C

(n2 )
k (cos(α1 − ᾱ1))

+
1

2

∞∑

k=0

(
η

η̄

)k
C

(n−22 )
k (cos(α1 − ᾱ1))

]

= 2

[(

1−
2η

η̄
cos(α1 − ᾱ1) +

η2

η̄2

)−n/2(η

η̄
cos(α1 − ᾱ1)−

η2

η̄2

)

+
1

2

(

1−
2η

η̄
cos(α1 − ᾱ1) +

η2

η̄2

)−(n−2)/2]

=
1− η2/η̄2

(
1− 2η

η̄
cos(α1 − ᾱ1) + η2

η̄2

)n/2 .

R e m a r k 2.10. The kernel (2.29) represents the marginal, with re-
spect to ᾱ2, . . . , ᾱn−1, of the distribution of the position occupied by the
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hyperbolic Brownian motion {BHn(t), t > 0} starting from z = (η,α) ∈ Hn

when it hits for the first time the boundary ∂U of the n-dimensional hy-
perbolic hypersphere of radius η̄. For z = (η,0), such distribution is given
by

Pz{BHn(Tη̄) ∈ dᾱ} =
∞∑

k=0

(
2k

n− 2
+ 1

)
thk(η/2)Fk(th

2(η/2))

thk(η̄/2)Fk(th
2(η̄/2))

×C
(n−22 )
k (cos ᾱ1)f(ᾱ) dᾱ, (2.36)

where n > 2, η < η̄ , ᾱ1 ∈ [0, π) is the angle between z and z̄, and

f(ᾱ) = (1/Ωn) sinn−2 ᾱ1 sinn−3 ᾱ2 ∙ ∙ ∙ sin ᾱn−2

is the uniform density on Sn−1.
R e m a r k 2.11. We observe that (2.36) is a proper probability law.

In fact:
– the nonnegativity is due to the nonnegativity of solutions of Dirichlet

problems with nonnegative boundary conditions;
– it integrates to one, in fact

∫ π

0

. . .

∫ π

0

∫ 2π

0

Pz{BHn(Tη̄) ∈ dᾱ}

=
Ωn−1
Ωn

∞∑

k=0

(
2k

n− 2
+ 1

)
thk(η/2)Fk(th

2(η/2))

thk(η̄/2)Fk(th
2(η̄/2))

×
∫ π

0

C
(n−22 )
k (cos ᾱ1) sinn−2 ᾱ1 dᾱ1

=
Ωn−1
Ωn

F0(th
2(η/2))

F0(th
2(η̄/2))

∫ π

0

C
(n−22 )
0 (cos ᾱ1) sinn−2 ᾱ1 dᾱ1

=
Ωn−1
Ωn

∫ π

0

sinn−2 ᾱ1 dᾱ1 = 1,

since, if k > 0, we have
∫ π

0

C
(n)
k (cos θ) sinn−2 θ dθ = 0

(see [12, formula 7.311.1]), and F (0, β; γ; z) = 1, C
(n)
0 (x) = 1,

∫ π

0

sinn−2 θ dθ = B

(
1

2
,
n− 1

2

)

.

R e m a r k 2.12. We also note that:
– for η → 0 (i.e., when the starting point is the center of the hyperbolic

hypersphere) formula (2.36) becomes the uniform distribution on Sn−1 as
expected;
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– for η̄ →∞, since th(η̄/2)→ 1 and

F (α, β; γ; 1) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)

if γ > α+ β (see [12, formula 9.122.1]), we have that

lim
η̄→∞

Pz{BHn(Tη̄) ∈ dᾱ}

=
∞∑

k=0

(
2k

n− 2
+ 1

)
Γ(k + n− 1)

Γ(k + n/2)
thk
η

2
Fk

(

th2
η

2

)

×C
(n−22 )
k (cos ᾱ1)f(ᾱ) dᾱ. (2.37)

In [4] there is obtained an integral formula for the hyperbolic Poisson
kernel of half-spaces Ha = {(x, y) ∈ Hn : y = a > 0} and it is shown the
convergence, as a → 0, of such Poisson kernel to the Poisson kernel of the
entire hyperbolic space Hn. In particular, in [4, Corollary 4.3], the Poisson
kernel of the entire hyperbolic space Hn is given in a closed form and must
be compared with (2.37).

3. Exit probabilities from a hyperbolic annulus in Hn.

3.1. Two-dimensional case. Suppose the hyperbolic Brownian mo-
tion {BH2(t), t > 0} starts at z = (η, α) ∈ H2 inside the hyperbolic annu-
lus A with radii 0 < η1 < η2 <∞

A = {(η, α): η1 < η < η2}

(see Fig. 6). We define the hitting times

Tηi = inf{t > 0: η(O,BH2(t)) = ηi}, i = 1, 2,

Fig. 6. Hyperbolic Brownian motion starting inside the hyperbolic annulus A with radii
η1 and η2.
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and T = Tη1∧Tη2 . In the following theorem we evaluate the exit probabilities
Pz{Tη1 < Tη2}. Since these are given in terms of harmonic functions on the
annulus A, they are closely related to the Dirichlet problem.

Theorem 3.1. Let {BH2(t): t > 0} be a hyperbolic Brownian motion
starting at z = (η, α) ∈ A. The following result holds true :

Pz{Tη1 < Tη2} =
ln th(η2/2)− ln th(η/2)

ln th(η2/2)− ln th(η1/2)
, η1 < η < η2. (3.1)

P r o o f. Since the probability in (3.1) is spherically symmetric, we are
lead to study the solution v: (η1, η2)→ R to the Laplace equation involving
only the radial part:

[
∂2

∂η2
+

1

th η

∂

∂η

]

v(η) = 0

subjected to the boundary conditions v(η1) = 1 and v(η2) = 0. With the
change of variable w = ch η we immediately get the equation

(1− w2)K ′′(w)− 2wK ′(w) = 0, (3.2)

whose general solution is

K(w) = C1 + C2 ln

∣
∣
∣
∣
w − 1

w + 1

∣
∣
∣
∣

(see, for example, [19, section 2.1.2, formula 233 for a = 1, b = −1, λ = 0
and μ = 0]). It follows that

v(η) = C1 + C2 ln

(
ch η − 1

ch η + 1

)

= C1 + C2 ln th
η

2
, (3.3)

see also [3, p. 14 and 16]. By imposing the boundary conditions we get

Pz{Tη1 < Tη2} =
v(η2)− v(η)
v(η2)− v(η1)

=
ln th(η2/2)− ln th(η/2)

ln th(η2/2)− ln th(η1/2)
.

Theorem 3.1 is proved.

Starting from (3.1) and letting η2 go to infinity we have that Theorem 3.1
leads to the following corollary.

Corollary 3.1. For any z = (η, α) outside the hyperbolic disc of radius
η1 and center O, we have

Pz{Tη1 <∞} =
ln
(
ch η−1
ch η+1

)

ln
(
ch η1−1
ch η1+1

) =
ln th(η/2)

ln th(η1/2)
, η1 < η. (3.4)
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It is possible to show with simple computations that the functions
in (3.1) and (3.4) are genuine probabilities, since they vary in (0, 1).

R e m a r k 3.1. Since (1 − r2)2 > 0, the exit probabilities from the
hyperbolic annulus A = {(r, θ): r1 < r < r2} in D2 are easily derived from
the Euclidean case. If the hyperbolic Brownian motion starts at Q = (r, θ) ∈
A, then we have

PQ{Tr1 < Tr2} =
ln r2 − ln r

ln r2 − ln r1
, 0 < r1 < r < r2 < 1. (3.5)

Letting r2 → 1 in (3.5) we obtain that

PQ{Tr1 <∞} =
ln r

ln r1
< 1, 0 < r1 < r < 1.

3.2. Multidimensional case. It is possible to generalize the exit
probabilities from a hyperbolic annulus to the case of the n-th dimensional
hyperbolic Brownian motion.

In order to evaluate the exit probabilities from the hyperbolic annulus A
in Hn, with hyperbolic radii η1 and η2 with η1 < η2, we are interested in
obtaining a solution v: (η1, η2) → R to the radial part of the hyperbolic
Laplace equation in Hn. We have proved in Lemma 2.1 and Remark 2.8
that it is equivalent to solve

[
d2

dη2
+
n− 1

th η

d

dη

]

vn(η) = 0. (3.6)

In what follows we will assume that

c(n, 0) =
1

n− 2
, c(n, k) =

(n− 3)(n− 5) ∙ ∙ ∙ (n− 2k − 1)

(n− 2)(n− 4) ∙ ∙ ∙ (n− 2k − 2)
,

k = 1, . . . ,
n− 3

2
.

Theorem 3.2. For a hyperbolic Brownian motion {BHn(t): t > 0}
started at z = (η, α) ∈ A, we have that

for n = 3, 5, 7, . . .

Pz{Tη1 < Tη2} =

∑(n−3)/2
k=0 (−1)k−1 c(n, k)

[
ch η2

shn−2k−2 η2
− ch η
shn−2k−2 η

]

∑(n−3)/2
k=0 (−1)k−1 c(n, k)

[
ch η2

shn−2k−2 η2
− ch η1
shn−2k−2 η1

] ; (3.7)

for n = 4, 6, 8, . . .

Pz{Tη1 < Tη2} =

( (n−4)/2∑

k=0

(−1)k−1 c(n, k)

[
ch η2

shn−2k−2 η2
−

ch η

shn−2k−2 η

]
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+ (−1)(n−2)/2
(n− 3)!!

(n− 2)!!
ln

th(η2/2)

th(η/2)

)

×
( (n−4)/2∑

k=0

(−1)k−1 c(n, k)

[
ch η2

shn−2k−2 η2
−

ch η1

shn−2k−2 η1

]

+ (−1)(n−2)/2
(n− 3)!!

(n− 2)!!
ln

th(η2/2)

th(η1/2)

)−1
.

P r o o f. The general solution to equation (3.6) is given by

vn(η) = C1 + C2

∫
1

shn−1 η
dη,

see, for example, [3, p. 14 and 16]. For n = 2m+ 1, m = 1, 2, . . . we have

vn(η) = C1 + C2
ch η

2m− 1

[

−
1

sh2m−1 η

+
m−1∑

k=1

(−1)k−1
2k(m− 1)(m− 2) ∙ ∙ ∙ (m− k)

(2m− 3)(2m− 5) ∙ ∙ ∙ (2m− 2k − 1)

1

sh2m−2k−1 η

]

= C1 + C2

(n−3)/2∑

k=0

(−1)k−1C(n, k)
ch η

shn−2k−2 η
(3.8)

(see [12, formula 2.416.2]).
For n = 2m+ 2, m = 1, 2, . . . , we have

vn(η) = C1 + C2

[ (n−4)/2∑

k=0

(−1)k−1C(n, k)
ch η

shn−2k−2 η

+ (−1)(n−2)/2
(n− 3)!!

(n− 2)!!
ln th

η

2

]

(3.9)

(see [12, formula 2.416.3]). With computations analogous to those performed
in the two dimensional case, we obtain the statement. Theorem 3.2 is proved.

From this it follows immediately that:

Corollary 3.2. For z = (η, α) outside the hyperbolic ball in Hn with
radius η1 and center in O, we have that
for n = 3

Pz{Tη1 <∞} =
1− cth η

1− cth η1
;

for n = 5, 7, . . .

Pz{Tη1 <∞}

=

∑(n−5)/2
k=0 (−1)kc(n, k) ch η

shn−2k−2 η
+ (−1)(n−5)/2 (n−3)!!

(n−2)!!

[
1− ch η

sh η

]

∑(n−5)/2
k=0 (−1)kc(n, k) ch η1

shn−2k−2 η1
+ (−1)(n−5)/2 (n−3)!!

(n−2)!!

[
1− ch η1

sh η1

] ,
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η1 < η;

for n = 4, 6, 8, . . .

Pz{Tη1 <∞}

=

∑(n−4)/2
k=0 (−1)kc(n, k) ch η

shn−2k−2 η
+ (−1)n/2 (n−3)!!

(n−2)!! ln th η
2

∑(n−4)/2
k=0 (−1)kc(n, k) ch η1

shn−2k−2 η1
+ (−1)n/2 (n−3)!!

(n−2)!! ln th η1
2

, η1 < η.

R e m a r k 3.2. For the space H3 formula (3.7) takes the simple form

Pz{Tη1 < Tη2} =
cth η2 − cth η

cth η2 − cth η1
, η1 < η < η2,

and for η2 →∞ yields

Pz{Tη1 <∞} < 1.

This shows that there is a positive probability that the hyperbolic Brownian
motion never hits the ball of radius η1.

R e m a r k 3.3. We note that for small values of η we have
ch η/shp η ∼ 1/ηp and ln th(η/2) ∼ ln(η/2). From (3.3), (3.8), and (3.9)
it follows that

vn(η) ∼

{
C1 + C2 ln η, if n = 2,

C1 + C2η
2−n, if n = 3, 4, 5 . . . .

This means that, for sufficiently small domains, we obtain the exit probabil-
ities of Euclidean Brownian motion from an annulus:

Pz{Tη1 < Tη2} ∼






ln η2 − ln η

ln η2 − ln η1
, if n = 2,

η2−n2 − η2−n

η2−n2 − η2−n1

, if n = 3, 4, 5 . . . .

(3.10)

R e m a r k 3.4. It is important to note that for a planar hyperbolic
Brownian motion the probability that the process goes to infinity before
hitting the hyperbolic circle of radius η1 is strictly less than one:

Pz{Tη1 <∞} =
ln th(η/2)

ln th(η1/2)
< 1

while it is well known, see (3.10), that for a planar Euclidean Brownian
motion it holds that

Pz{Tη1 <∞} = 1.

Hyperbolic Brownian motion is, in fact, transient for every dimension n > 2
as stated in [11, Proposition 3.2].
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4. Brownian motion on the surface of a three-dimensional
sphere. The surface S of the unit-radius three-dimensional sphere is a
model of the elliptic geometry if geodesic lines are represented by great cir-
cles. We specify the position of an arbitrary point p ∈ S with the couple
(ϑ, ϕ) of spherical coordinates, where ϑ ∈ [0, π] and ϕ ∈ [0, 2π).

If U = {(ϑ, ϕ): ϑ̄ > ϑ} is the surface of a spherical cap on S with center
in the north pole, the Dirichlet problem on the surface of the sphere S reads:






[
∂2

∂ϑ2
+

1

tg ϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂ϕ2

]

u(ϑ, ϕ; ϑ̄, ϕ̄) = 0, 0 < ϑ < ϑ̄ < π,

u(ϑ̄, ϕ; ϑ̄, ϕ̄) = δ(ϕ− ϕ̄), ϕ, ϕ̄ ∈ [0, 2π).

Assuming that u(ϑ, ϕ; ϑ̄, ϕ̄) = T (ϑ)F (ϕ) we immediately arrive at the fol-
lowing ordinary equations:

{
F ′′(ϕ) + μ2F (ϕ) = 0,

sin2 ϑT ′′(ϑ) + cosϑ sinϑT ′(ϑ)− μ2T (ϑ) = 0,
(4.1)

with μ ∈ R. With the change of variable w = cos θ, in the second equation
of (4.1), we arrive at equation (2.7) with general solution (2.8). Therefore,
for μ = m ∈ N, the general solution to the second equation of (4.1) can be
written as

T (ϑ) = C1





√
1 + cosϑ

1− cosϑ





m

+ C2





√
1− cosϑ

1 + cosϑ





m

. (4.2)

We restrict ourselves to the increasing component of (4.2) so that we have

u(ϑ, ϕ; ϑ̄, ϕ̄) =
∞∑

m=0

[Am cos(mϕ) +Bm sin(mϕ)]





√
1− cosϑ

1 + cosϑ





m

.

By imposing the boundary condition u(ϑ̄, ϕ; ϑ̄, ϕ̄) = δ(ϕ − ϕ̄) and in view
of (2.12), we finally obtain that

u(ϑ, ϕ; ϑ̄, ϕ̄) =
1

2π
+

1

π

∞∑

m=1

cos(m(ϕ− ϕ̄))





√
1− cosϑ

1 + cosϑ

√
1 + cos ϑ̄

1− cos ϑ̄





m

=
1

2π

1− 1−cosϑ
1+cosϑ

1+cos ϑ̄
1−cos ϑ̄

1 + 1−cosϑ
1+cosϑ

1+cos ϑ̄
1−cos ϑ̄ − 2

√
1−cosϑ
1+cosϑ

1+cos ϑ̄
1−cos ϑ̄ cos(ϕ− ϕ̄)

=
1

2π

cosϑ− cos ϑ̄

1− cosϑ cos ϑ̄− sinϑ sin ϑ̄ cos(ϕ− ϕ̄)
. (4.3)

R e m a r k 4.1. Since for spherical triangles the following Carnot for-
mula holds:

cos ϑ̂ = cosϑ cos ϑ̄+ sinϑ sin ϑ̄ cos(ϕ− ϕ̄),
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we can rewrite (4.3) as follows:

u(ϑ, ϕ; ϑ̄, ϕ̄) =
1

2π

cosϑ− cos ϑ̄

1− cos ϑ̂
. (4.4)

R e m a r k 4.2. We note that the Poisson kernel (4.3) is a proper
probability law. In fact:

– in view of (4.4) and observing that ϑ̄ > ϑ we have that (4.3) is positive;

– applying (2.15) with a = 1−cosϑ cos ϑ̄ and b = − sinϑ sin ϑ̄ we obtain
that (4.3) integrates to one.

For ϑ = 0 we obtain from (4.3) the uniform law, while for ϑ̄ = π/2 we
get

u

(

ϑ, ϕ;
π

2
, ϕ̄

)

=
1

2π

cosϑ

1− sinϑ cos(ϕ− ϕ̄)
.

R e m a r k 4.3. Let {BS(t): t > 0} be a Brownian motion on the
surface of the three-dimensional sphere S with starting point p = (ϑ, ϕ) ∈ S
(see Fig. 7). The kernel in (4.3) represents the law of the position occupied
by the spherical Brownian motion when it hits for the first time the boundary
of the spherical cap U .

Fig. 7. Spherical Brownian motion starting at (ϑ, ϕ) and hitting the boundary of the
spherical disc.

In order to obtain the exit probabilities of {BS(t): t > 0} from a spher-
ical annulus A = {(ϑ, ϕ): ϑ2 < ϑ < ϑ1} with center in the south pole of S,
we consider the solution v: (ϑ2, ϑ1) → R to the Laplace equation involving
only the radial part [

∂2

∂ϑ2
+

1

tg ϑ

∂

∂ϑ

]

v(ϑ) = 0.

With the change of variable w = cosϑ we arrive at equation (3.2). With
calculations analogous to those performed in the proof of Theorem 3.1 we
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get

Pp{Tϑ1 < Tϑ2} =
ln
∣
∣
∣ cosϑ2−1
cosϑ2+1

∣
∣
∣− ln

∣
∣
∣ cosϑ−1
cosϑ+1

∣
∣
∣

ln
∣
∣
∣ cosϑ2−1
cosϑ2+1

∣
∣
∣− ln

∣
∣
∣ cosϑ1−1
cosϑ1+1

∣
∣
∣
, ϑ2 < ϑ < ϑ1. (4.5)

In particular for ϑ2 → π/2 formula (4.5) reads

Pp{Tϑ1 < Tπ2 } =
ln
∣
∣
∣ cosϑ−1
cosϑ+1

∣
∣
∣

ln
∣
∣
∣ cosϑ1−1
cosϑ1+1

∣
∣
∣

=
ln
∣
∣tg ϑ

2

∣
∣

ln
∣
∣tg ϑ1

2

∣
∣ ,

π

2
< ϑ < ϑ1.

R e m a r k 4.4. We note that replacing formally ϑ with iϑ it is pos-
sible to extract from (4.3) and (4.5) the Poisson kernel and the exit prob-
abilities obtained for the hyperbolic plane, namely (2.3) and (3.1). This
is because H2 can be viewed formally as a sphere with imaginary radius.
For small values of θ we obtain instead results analogous to those obtained
for the Euclidean Brownian motion. In fact, for sufficiently small domains,
Euclidean geometry is in force.
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Pythagorean compass. — J. Statist. Phys., 2008, v. 130, № 3, p. 455–482.

7. Cammarota V., Orsingher E. Cascades of particles moving at finite velocity in hyper-
bolic spaces. — J. Statist. Phys., 2008, v. 133, № 6, p. 1137–1159.

8. Cammarota V., Orsingher E. Hitting spheres on hyperbole spaces.
arXiv:1104.1043(math.PR)

9. Chavel I. Eigenvalues in Riemannian Geometry. Orlando: Academic Press, 1984,
362 p.

10. Davies E.B. Heat Kernels and Spectral Theory. Cambridge: Cambridge Univ. Press,
1990, 197 p.

11. Grigor’yan A. Analytic and geometric background of recurrence and non-explosion
of the Brownian motion on Riemannian manifolds. — Bull. Amer. Math. Soc., 1999,
v. 36, № 2, p. 135–249.

12. Градштейн И.С., Рыжик И.М. Таблицы интегралов, рядов и произведений.
СПб.: БХВ-Петербург, 2011, 1176 с.

13. Gruet J.-C. A note on hyperbolic von Mises distributions. — Bernoulli, 2000, v. 6,
№ 6, p. 1007–1020.



Hitting spheres on hyperbolic spaces 587

14. Helgason S. Groups and Geometric Analysis. Orlando: Academic Press, 1984, 654 p.
15. Kelbert M., Suhov Yu.M. Branching diffusions on Hd with variable fission: the Haus-
dorff dimension of the limiting set. — Теория вероятн. и ее примен., 2006, т. 51,
в. 1, с. 241–255.

16. Lao L., Orsingher E. Hyperbolic and fractional hyperbolic Brownian motion. —
Stochastics, 2007, v. 79, № 6, p. 505–522.

17. Matsumoto H., Yor M. Exponential functionals of Brownian motion. I. Probability
laws at fixed time. — Probab. Surv., 2005, v. 2, p. 312–347.
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