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HITTING SPHERES ON HYPERBOLIC SPACES

s runep6onmaeckoro 6pOyHOBCKOTO IBUKEHUS Ha MOJIYINIOCKOCTI
[yarxape H?, BbIxOmANIero ux Toukn z = (1), ) BHYTPH IumepGom-
ugeckoro nucka U panumyca 7}, MBI IIOJIydaeM BEPOSITHOCTb NOCTUKEHUS
rpanunst OU B Touke (7, @). Ilpu 7j — 00 MBI mody4aeM I TOUKU
nocruxkenns: pacupenenerne Komm ma OH2. B wactHOCTH, OTCIONA
cjenyeT, UTO runepbondeckoe GPOYHOBCKOE IBIKEHIE, BBIXOMIIIIIEE U3
(x,y) € H?, «mocruraers rpasume! noaymiockocTu Ilyarkape H? B
TOUKe, KOTOpast IMeeT pacupenesierne Komu ¢ mapameTrpoM Macmraba

y = 7:n2-z|l—y2 U MapaMeTpOM CIOBHUTra T’ = . Ilpn ManbIx 3HAUYEHUSIX

=z
z24y?
7 U 7) MBI IIOJIyJaeM KJIaCCHYeCKoe eBKInaoBo sapo Ilyaccona.

BriBomsiTCs. BEpOSITHOCTH BBIXOHA U3 I'HIIEPOOIMYECKOro KOJIbIla B
H? ¢ panmycamu 11 7 2 I PACCMATPHUBACTCS TIEPEXOIHOE TIOBEICHNE T-
11ep6OIITIECKOro0 GPOYHOBCKOTO ABIKeHNI. CXOOHBEIE BEPOSATHOCTHU BHI-
YUCIIIIOTCS TaKXkKe 11 OPOYHOBCKOTO NBINRKEHUS HA TPEXMEPHOH cdepe.

B cnyuae rumep6onuueckoit momymiockoctu H™ MBI momydaewm, c
[I0KA3aTeIbCTBOM, OCHOBAHHBIM Ha METONE Da3lefieHus IePEMEHHBIX,
sanpo Ilyaccona mis mapa. s mamerx obnacreir B H” Mbl momyuaem
n-MepHoe eBKIunoBo sapo Ilyaccona. BeposTHOoCTH BBIXOIA U3 KOJIBIA
BBIUUCIIIIOTCS TaKXkKe B N-MEPHOM CJIydae.

Kamouesbie cao6a u @pasdvi: runepbOIMIecKre MTPOCTPAHCTBA,
runepbosmueckoe OGPOYHOBCKOe nBIXKeHUe, sapo llyaccona, 3amaua
Iupuxse, rumepreomerpmyueckme (QYHKINM, TOIUHOMBI |ererbayspa,
pacnpenenenune Komn, runepbommdeckas u chepudeckas (HOPMYIIBI
Kapmno.

1. Introduction. Hyperbolic Brownian motion has been studied over
the years by several authors on the half-plane H?, on the Poincaré disc D?
and in the n-dimensional hyperbolic space (see, for example, [17], [13], [5],
[4], [2]). Branching Brownian motion has been studied recently by [15], for
example. The hyperbolic half-space H™ is given by

H" = {z=(z,y): z € R"}, y >0},
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n > 2, with origin O = (0,...,0,1) endowed with Riemannian metric and

the distance formula

dz? + -+ +dz? | +dy?
y2

12" — 2|

ds? =
2yy’

, chn(z',z)=1+ (1.1)

The hyperbolic Brownian motion is a diffusion governed by the generator

2 ,n—1 92 2 .
An_y< 0 0 )_n 2 0 (1.2)
1

2 ~2\Zaa? o) 2 Yoy

(see, for example, [13] and [9, p. 265]). Therefore the probability density
p(z1,...,%,_1,y,t) of hyperbolic Brownian motion is solution to the Cauchy

problem
(Z 9%*p 82 ) n=2 8;0
2 8y

subject to the initial condition

n—1

p(z1,..., Ty 1,y,0) = H d(z;)0(y —1).

j=1

For our purposes it is important to express the hyperbolic Laplacian A,, in
hyperbolic coordinates (n, ) = (0, a1,...,@,_1), n:=n(0, z), as follows:
? n—-10 1
A,=—+——+—A2A5, , 1.3
67]2 + th,r’ an + Shzn Sn—1 ( )
where Ag, , is the Laplace operator on the (n — 1)-dimensional unit sphere
(see, for example, [14, p. 158] or [11]).
Section 2.1 concerns the derivation of the Poisson kernel of a hyperbolic
disc in H? by solving the Dirichlet problem

& + L9 + L & ( n,a)=0, 0<n<n<
—_— — U a;n,a) = o0
6772 th 77 877 Sh2 77 80[2 777 b 777 i 77 7] I

’U,(ﬁ, o; 1, d) = 5(& - d)a o, € (_7T7 7T],

(1.4)

in hyperbolic coordinates (7, «). The interplay between Dirichlet problems
and hitting probabilities in various contexts is outlined, for example, in [11].
The explicit solution of (1.4) is

1 chfn—chn
2w chnchn —1—shnshncos(a — &)

u(n, a; 1, &) = (1.5)

and represents the hitting distribution on the hyperbolic circumference of
radius 7 for the hyperbolic Brownian motion starting at (n, a).
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The solution to the Dirichlet problem (1.4) in hyperbolic coordinates
(n, @) is based on the classical method of separation of variables.

We show that for 7 — oo the distribution (1.5) tends to the Cauchy
distribution as was found by means of other arguments in [1].

In particular, it follows that the hyperbolic Brownian motion start-
ing at (z,y) € H? «hits» the boundary of H? at a point which is Cauchy
distributed with scale parameter y' = y/(z* 4+ y?) and position parameter
' = z/(2® +y*). We also obtain that the probability that the hyperbolic
Brownian motion starting at (n, ) € H? «hits» 0H? at (Z,0) is equal to the
probability that a Euclidean Brownian motion starting at (7, —«) hits the
z-axis at (z,0).

It is possible to obtain analogous results by considering the Poincaré disc
model D? of the hyperbolic plane instead of the half-plane model H?. In D?
the Poisson kernel of a hyperbolic disc is easily derived from the Euclidean
case and is linked with (1.5) by the conformal mapping f: H?> — D? such
that f(z) = (iz+1)/(z +1).

In [5] the Poisson kernel of a ball in the n-dimensional Poincaré disc
D", where n > 2, is obtained in formula (16) by combining the results
of Theorems 2.2, 3.1, and 3.2 therein. We obtain the same result, up to
a conformal mapping, for the half-plane model H” by means of a simple
alternative proof based on the method of separation of variables. Its explicit
form in hyperbolic coordinates reads

e &% /2R )
nesn o) = 58 (554 o1 )

« ) (cos(ay — &) sin™ (s — ar),  (L6)

k=0

where n > 2, 0 < < 7 < o0, a; — &, € (0,7], Q, = 27"/2/T'(n/2)
is the surface area of the n-dimensional Euclidean unit sphere, Fj(z) =
F(k,1 — %;k + ;%) is the hypergeometric function and C,i'/) (z) are the
Gegenbauer polynomials. The analysis presented in this paper shows that
the two-dimensional case substantially differs from the multidimensional one,
in particular, the expression (1.6) of the Poisson kernel cannot be reduced
to a fine form as (1.5). However, for sufficiently small domains, we extract
from (1.6) the n-dimensional Euclidean Poisson kernel.

Section 3 is devoted to the exit probabilities P.{T,, < T,,} from a
hyperbolic annulus of radii 7; and 7. We examine both the planar and the
higher dimensional case discussing also the transient behavior of hyperbolic
Brownian motion. We obtain in fact that for a planar hyperbolic Brownian
motion the probability that the process goes to infinity before hitting the
hyperbolic circle of radius n; is strictly less then one:

Inth(n/2)

PATo < o0k = b 2)

<1,
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while it is well known that for a planar Euclidean Brownian motion this
probability is one.

In the last section the hitting probabilities on a spherical circle for a
spherical Brownian motion starting from p = (1, ¢) are considered. In par-
ticular, the most interesting result here is that

1 cos ¥ — cos ¥
P,{Bs(T3) € dp} = — = = do
o{Bs(Ty) € dp} 21 1 — cosfcos? — sin¥sin ¥ cos(¢ — @) &

0<d<dI<m o,@c(02n].

We note that H? can be viewed formally as a sphere with imaginary
radius, so by replacing in the last formula ¥ with i we obtain (1.5).

2. Hitting distribution on a hyperbolic sphere in H".

2.1. Two-dimensional case. We study here the Poisson kernel of
the circle in the hyperbolic plane H? = {(z,y): = € R, y > 0} endowed with
the hyperbolic metric.

The relationship between hyperbolic coordinates (7, «) and the cartesian
coordinates (z,y) in the two dimensional case is given by

shncosa 1

x_chn—shnsina’ y_chn—shnsina' (2.1)
For information on hyperbolic coordinates (see [16], [6], [7]). We have now
our first theorem.

We have now our first theorem.

Theorem 2.1. Let U = {(n,a): n < i1} be a hyperbolic disc in H? with
radius 7 and center in O. Then the solution to the Dirichlet problem

0? 1 0 1 o

5 — ,o;,a) =0, 0<n<f<oo,
on? * thn on * sh®n da? u(n, i, @) TS (2.2)
u(ﬁ,a;ﬁ,d) = (5(0[ - @)’ o, € (—7‘(‘,7‘(’],
s given by
_ 1 chfp—chn
u(n, a; 17, @) (2.3)

" 27 chnychig—1— shnshijcos(a — @)’

P roof. Our proof is based on the classical method of separation of
variables. We assume that

u(n, o3 1, &) = E(n)O(a) (2.4)
and we arrive at the following ordinary equations:

{ 0" (a) + p*0(a) =0,

2 " / 2 (25)
sh®nE"(n) + chnshnE'(n) — u”E(n) = 0,
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where p? is an arbitrary constant. The first equation has general solution
O(a) = Acos(ua) + Bsin(ua) (2.6)

and becomes periodic with period 27 for 4 = m € N. The second equation
necessitates some further treatment. We start with the change of variable
w = chn which transforms the second equation of (2.5) into

m2

1 —w?

(1 —w*)G"(w) — 2wG' (w) G(w) = 0. (2.7)

The general solution to (2.7) can be conveniently written as

w—1
w+1

w+1
w—1

‘m/Z ‘m/2

G(w)=C

+ O,

., m#0 (2.8)

(see, for example, [19, Section 2.1.2, formula 233 for a =1, b = —1, A = 0,
and p = —m?]). From (2.8) we have that

chn+1 m/2 chn—1 m/2
E(n) =
(n) Cl(chn1> + 2<ch17+1>

chn—l—l)m <ch77—1>m

=C C. . 2.9
! ( shn + e shn (2:9)
We disregard the first term of (2.9), since our aim is to extract finite-valued
and increasing solutions to (2.2), so that we have

chn—1\™
E = = h™
(n) 0( = ) Ct

(2.10)

N3

In light of (2.4), (2.6), and (2.10) we can write

w(m i) = 3 O(0) En(n)

m=0
chn—1
shn

= Ay + i [A,, cos(ma) + B, sin(ma)] <

m=1

)m. (2.11)

If we take the Fourier expansion of the Dirac delta function

da—a) = % + i [cos(ma) cos(ma) + sin(ma) sin(ma)], (2.12)

1
T

then by comparing (2.11) with (2.12) we obtain the Fourier coefficients A,,
and B,, so that we can write
_ 1 & _ . . _
u(n, a; 1, @) + — Z [cos(ma) cos(ma) + sin(ma) sin(ma)]
s

2 =
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" <chﬁ—1>_m<chn—1>m
sh# shn
1 > (a—my ShT chnp—1\"
- — |1 i(a—a)
277[ —I—;[(a chinf—1 shnp >
+<€—'L(a—o¢) sh@ chn—l)mH
chn—1 shyp
chf—1 2 chn—1 2
i < sgﬁ ) _( 51'71]77 )

27 (chi—1 2 chn—1 2 chn—1chn-1 _\
( sgﬁ ) + ( s}?n ) - 2 sgﬁ sgn COS(CY B Oé)
(2.13)

The expression in (2.13) can be substantially simplified by observing that

(chj —1)*sh®*n — (chn — 1)*sh*7
= (ch7p—1)(chn —1)[2ch7 — 2chn)]

and

(chi —1)?sh®n + (chn — 1)*sh*p
—2(ch i —1)(chn —1)shishncos(a — &)
= (chi—1)(chn —1)[2chnchn — 2 — 2shnsh7cos(a — @)].

In view of all these calculations we have that the hyperbolic Poisson kernel
takes the form (2.3).

Theorem 2.1 is proved.

Remark 2.1. By applying the hyperbolic Carnot formula we note
that it is possible to write the hyperbolic Poisson kernel (2.3) in a new form.
We construct a hyperbolic triangle with sides of length 7, 7 and 7, and angle
between the two sides of length 1 and 77 equal to 8 = o — @&, see Fig. 1. The
hyperbolic Carnot formula

chn = chnchy —shnshcos(a — &),
permits us to write (2.3) as

1 chnp—chn

= — — 2.14
27 chfp—1" (2.14)

u(n, a; 1, @)
where the dependence of u from o and & is hidden in 7.
Remark 2.2. We observe that the hyperbolic Poisson kernel (2.3)
is a proper probability law. In fact:
— it is nonnegative, because, for 7 > 7, we have chf — chn > 0 and by
the hyperbolic Carnot formula

chnchf—1—shnshfcos(a — @) =chn—1> 0;
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— it integrates to one, since it is well known that

2 dé om
= 2.15
/o a+ bcosh aZ —p2’ (2.15)

where, in this case, a = chnchf — 1 and b = —shnsh1.

Fig. 1. Hyperbolic triangle in H? with sides of length 7, 7 and #.

Remark 2.3. The kernel appearing in formulas (2.3) and (2.14)
represents the law of the position occupied by the hyperbolic Brownian mo-
tion {Bp=(t): t > 0} on H? starting from z = (1, @) € H? when it hits for
the first time the boundary OU of the hyperbolic disc U. In other words,

chfp—chn

1
Pz B 2 T— d_ - d_’
{Bu:(T;) € da} 27 chnchn— 1 —shnshqcos(a — &) “

a € [0,2m),

where T;; = inf{¢t > 0: Buz(t) € OU}, see Fig. 2.

A

Fig. 2. Brownian motion on H? starting at (n, @) and hitting the boundary of the hyper-
bolic disc U.
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Remark 2.4. For small values of n and 7 the hyperbolic Poisson
kernel (2.3) is approximated by the Euclidean Poisson kernel

wn o) ~ - L+7°/2 = (L+12/2)
PG S W+ P /2) (A + 72/2) — 1 — micos(a — @)
1 ,’7’2 _ ,'72

T o 72 + n? — 2nijcos(a — @)

that represents the law of the position occupied by the Euclidean Brownian
motion {B(t), t > 0} on R? starting from a point z = (9, @) when it hits for
the first time the boundary 0U of the Euclidean disc U = {(n,a), n < 71}
with Euclidean radius #. This is a consequence of the fact that in sufficiently
small domains of the Lobachevskian space, the Euclidean geometry is in
force.

Remark 2.5. We also note that:

— for n = 0 formula (2.3) becomes the uniform distribution as expected;

— for 7 — oo we have that

1 1
" 21 chp—shycos(a —a)’

(2.16)

a(n, ;@) := lim u(n, a;7, @)

The limiting distribution (2.16) can also be written as

1 1
27 chn — shrcos(a — @)

1 > hnp—1\"
:%{I—FZ <C 57}7117 > cosn(a—a)}

a(n,o; @) =

n=1

We note that @ represents the hitting distribution of the hyperbolic Brownian
motion, starting at z = (n,«), on the horizontal axis O0H? = {(7,a): 7 =
oo} = {(z,9): § = 0}, see Fig. 3. We observe that the boundary OH?
represents the point at infinity of H?. We can write the «hitting> probability
on OH? in the following form

1 1
PZ B 5 Too d_ —_ N . _d_.
{Bn:(T) € da} 2w chn —shncosacosa —shnsinasina “
(2.17)

We write now the distribution (2.17) in Cartesian coordinates. In view
of (2.1) we have that

2 +9y? -1

2 (2.18)

x
— =shncosa, tga=
Y
The first relation is an immediate consequence of (2.1) and for a proof of the
second equality, see [7]. From (1.1) and (2.18) it follows that
¢ 24 y? -1
shnsina = y/ch®n —1 ga _rty . (2.19)

V1itteta 2y
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Letting 7 — oo we note, in view of (2.1), that for a point (z,y) € 0H? it

holds that _
cos (¢

1—sina’ (2.20)
0.

8l
Il

N
Il

Formula (2.20) implies that z — cos@ = Z+/1 — cos? & and this leads to the
following relations:

_ 2T U

cosa=-——, sina= .

1+ % 1+ 72

In view of (2.18), (2.19) and (2.21) and since da = (2/(1 + %)) dZ, we can
write 4(n, a; &) da in cartesian coordinates as follows:

(2.21)

i o 1 2 _
u(x,y;a:) dz = % z24y2+1 oz 2z z2+y?-1 1-&2 1+ 72 dz
2y y 142 2y 1+a2
1 Y Az
= = x
T 22 (22 +y?) — 227 + 1
1 g 4z (2.22)
- - T. .
- 2

{j: B w"’iﬁr . Liyz}

A

Fig. 3. Brownian motion on H? starting at (7, a) and hitting the boundary of the hyper-
bolic plane.

Formula (2.22) says that the hyperbolic Brownian motion starting at
(x,y) € H? hits the boundary of H? at a point (Z,0) which is Cauchy
distributed with scale parameter y' = y/(2® + y*) and position parameter
' = x/(z* + y?) depending on the starting point. In particular, if the hy-
perbolic Brownian motion starts at the origin O of H?, we obtain a standard
Cauchy. We note that (2.16) can be viewed as a Cauchy density in hyperbolic
coordinates.
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Remark 2.6. Inview of formula (2.22), we also note that the prob-
ability that the hyperbolic Brownian motion starting at z = (z,y) = (n, @) €
H? hits 0H? at (7, 0) is equal to the probability that a Euclidean Brownian
motion starting at 2z’ = (z’,y’) = (,a’) hits the z-axis at (z,0), where z
and 2z’ have the same hyperbolic distance 7 from the origin but o’ = —a, see
Fig. 4. In fact

2
/ ($2-T-y2)2 T (123-1;2)2 t1l 224 y* +1

chn' = = = chn,
P 2y
2z222+ 2y222_1 1—1'2_y2
tga’: (z2+y?) 2(;-&-1/) — 5 = —tga.
12+y2 z

Formula (2.22) is in accordance with formula (1.2) in [1]. In [1] the hitting
distribution on the horizontal axis, for the hyperbolic Brownian with hor-
izontal and vertical drift, is obtained from the hitting distribution on the
horizontal lines H, = {(z,y) € H*: y = a > 0} when a — 0.

Fig. 4. Hyperbolic Brownian motion starting at z and Euclidean Brownian motion start-
ing at 2'.
Remark 2.7. The Poisson kernel (2.3) can be conveniently written
also in Cartesian coordinates by exploiting the relations (2.18), (2.19) and
the hyperbolic distance formula

2+ +1

chn="—"2"°2,
2y
We have that
22477 +1 2’4y’ 41
u(x,y; Z,9) = — 2y 2y
7y7 7y - 27T 12+y2+1 52+g2+1 . 1 oz i o m2+y2—1 :i‘2+g2—l

2y 2y Yy 2y 2y

1 @+P)y - @ +y)g+y—g
27 (x—2)2+ (y — ) '
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In the special case, where y = 0, the previous expression becomes

1 (1+2)y

U(l',y,l‘, 0) - 1T (a: _ :z_)Q 4 y2

and thus multiplying by 2/(1 + Z?) we get the Cauchy density as expected.
It is possible to obtain the same results, up to a conformal mapping,

by considering a different model of the hyperbolic space: the Poincaré disc

model D?. The half-plane H? can be mapped onto the disc D? = {(r,60): r €

[0,1), # € (—m, 7|} by means of the conformal mapping f: H> — D? such

that

1z+1

flz) =~ - (2.23)

The z-axis of H? is mapped onto dD? while the origin O = (0,1) of H? is
mapped into the origin O = (0, 0) of D?. An arbitrary point z = (z,y) € H?
is mapped into a point @ = (r,0) € D? such that

2r cos 6
v 1472 —2rsinf’
2.24
e (2.24)
Yy

T 1472 —2rsing
(for details see [16]). In view of (2.1) and (2.24) we have

2r cos 6

x
— =shncosa = 5
Y —-r

M., )

(0,0,ch 77) «

Y

Fig. 5. Brownian motion on H? starting at (n, &) and hitting the boundary of the hy-
perbolic ball.
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Since we have that

2r

cosa =cosf) and shn=-——;,
1—1r2

for 0, a € (—m, |, we easily arrive at

chn—1 chn—1 i
r= = =th -,
shn chn+1 2

0= a.

The hyperbolic metric and the distance formula in D? become

4 147
2_7 2 pr—
ds® = e dr®, d(0,Q) lnl_r.

By means of (2.24) the hyperbolic Laplacian is converted into

10 0 1 02
(1—1r?%) [T o <r 8r> + = 602}'
Since (1 —7?)? > 0 it is possible to derive the Poisson kernel related to the

Dirichlet problem from the Euclidean case:

1 72— r?

T 2w 2+ 72 — 2ricos(0 — 0)

(2.25)

(see also [14, p. 34]). Alternatively it is possible to obtain formula (2.25)
from the Poisson kernel in H? (2.13) with a change of coordinates.
We note that for ¥ — 1 we have
1 1—r?

~ -0) = i 70 = _ 1. (2.2
U(T,G, 0) ?ILI% u(r,@, r, 0) o 1+ 72— 2r COS(Q — 9)7 r< ( 6)

We can write (2.26) in hyperbolic coordinates as follows:

1 1—r? 1 1& fchnp—1\" _
= R . -0
27 14 r2 —2rcos(f — 0) 27r+7rnz_:1< shn > cos )

1 1
27 chny — shncos(f — )

which coincides with (2.16). On the other hand it is well known that under
the conformal mapping (2.23) the Poisson kernel (2.26) takes the form of the
Cauchy distribution as it is shown in formula (2.22).
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2.2. Multidimensional case. Let H" = {z = (z,y): z € R"~ 1, y >
0} be the n-dimensional hyperbolic plane, n > 2, with origin O = (0,...,0,1)
endowed with the hyperbolic metric.

In Lemma 2.1 we evaluate the hyperbolic Laplacian of the distance 7
in H". This result permits us, in Remark 2.8, to determine the hyperbolic
Laplacian of a smooth function f(n). The statement of this result is given,
for example, in [10, p. 117] (where ch p must be replaced by cth p), without
proof.

Lemma 2.1. For z = (z,y) and 2’ = (2/,y') in H" we have that the
hyperbolic distance 1n(z, z') is a solution of

n—1
Az, 2) = thn(z,2’)

Proof. Since

— n(z,2'") = arcosh”aj —P Ayt 4y
22 —1’ ’ 2y’

we have to prove that

cth(arcoshz) =

Y

|z —2'|]” + y* + ¢
Vilz =22+ (y +y)[lz — 27+ (y — y)?]
By performing the first and the second derivative of 7(z,z’) with respect
toy and x;, for i = 1,...,n — 1, we obtain A,n(z,z’) (for more details on
the calculations, see [8]).
Lemma 2.1 is proved.

Remark 2.8. In view of Lemma 2.1, if f is a smooth function on
R, it holds that

An(z,2')=(n-1)

n—1
thn

Anf(n) = f"(n)+ f'(n).

In fact we have

Anf(n(z 7))
—y[ =) + 2f<n<z,z’>>]—<n—2>y§y F(n(z2))

— 2
n of
— A,_n.
G (S (on) = (5) T+ 5L o
Since it holds that

n—1 2 2
B 0
> (50) +(5)
—~ \0z; oy
4z — ' |Py? + [llz — /|| + v — y?]? _ 1
Ve =22+ +y)?lle — 22+ (y—y)?] v

from Lemma 2.1 we obtain the final result.
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We denote by {Bu-(t), t > 0} the hyperbolic Brownian motion on H"
with starting point z = (1, a) € H", where a = (ay,...,a,_1) € [0,7]"7? X
[0,27), and we assume that z is inside the n-dimensional hyperbolic ball U
with hyperbolic radius 7.

We obtain the solution to the Dirichlet problem (2.28) in hyperbolic
coordinates (1, ) by means of the classical method of separation of variables.
Byczkowski and Matecki [5, Theorem 3.2], obtain, with a different method,
the Poisson kernel for the Poincaré model D”. Our result and formula (16)
in [5] are related.

In particular, we obtain the law of the position occupied by the hyper-
bolic Brownian motion on H™ when it hits the boundary QU for the first
time. Since the Laplace operator is invariant under rotations (see, for ex-
ample, [14, Proposition 2.4]), without loss of generality we can assume that
the starting point is z = (9, @1,0,...,0) and the process hits the boundary
of the ball U at some point z = (7, @y,0,...,0), where a; — @; is the angle
between the vectors z and z. For a function on the (n — 1)-dimensional unit
sphere S,,_; depending only on one angle 6 we have

Asn—l =

2 _
! a(sin"_298>— o ,n=29 (2.27)

sin" 20 00 ) 002 " g0 06

In view of (1.3) and (2.27) we have that the hitting distribution on U is
obtained from the solution of the following Dirichlet problem:

872+n—12+ 1 <82 n—2 0
o2 thn dn  sh’y
0<n<i< oo,

aa% tgal 80{1)}7‘(777041;777041) = 07

u(ﬁval; 7, dl) = 5(0(1 - dl)? oy — 0 € (Oaﬂ-]‘
(2.28)

Theorem 2.2. The solution to the Dirichlet problem (2.28) is given by

Q2% th* (n/2) Fy,(th*(1/2))
i) = 523 (25 L G E )
X C,Sﬂf)(cos(al —ay))sin" *(a; — @), (2.29)

where n > 2, 0 < n < 77 < oo, and oy — a@; € (0,7] and Fi(z)
=F(k,1—-3;k+3;2).

Proof. As in Theorem 2.1, our proof is based on the method of
separation of variables. We assume that

u(% a3 7_77 C_Vl) - G(QI)E(U)
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Since we have that

-1 E(n) n—2
El @//
() + S [een) +

O() B (1) + Oa) "

there exists a constant u? such that

{ O"(a1) + (n — 2) cot 10" (ay) + p?O(ay) = 0,

, (2.30)
sh”nE"(n) + (n — 1) chnshnE'(n) — p’E(n) = 0.

With the change of variable w = cosa; and for p? = k(k +n — 2), the first
equation in (2.30) can be reduced to

(1-w?)G"(w) — (n — NG (w) + k(k +n — 2)G(w) = 0. (2.31)

that is a particular case of the Jacobi equation for o« = 3 = 252 (see, e.g., [18,
Chap. IV, p. 60]). The Jacobi equation admits two linearly independent
solutions P\ (w) and Q> (w) called Jacobi functions of the first and
second kind. We disregard Q( oF) (w) since it is defined in the complex plane

cut along the segment [—1, 1] and we note that Pk(%%)(w) = C,S%)(w)
where C")(w) are the Gegenbauer polynomials (see, e.g., [18, p. 84]). This
implies that

O(ar) = 407 (cos an). (2.32)

We transform the second equation of (2.30) into a hypergeometric equation.
The first step is based on the change of variable ¢ = th(n/2). Since

d 1 d d? 1 d? sh(n/2) d

dn ~ 2ch(n/2) A’ dn?  4ch(y/2) A 2ch¥(n/2) dC

and shn = 2sh(n/2)ch(n/2), chn = 2ch®(n/2) — 1, the second equation of
(2.30) becomes

QQC 2N 1 d72_ sh(n/2) i
4sh h 2 [4ch4(77/2) d¢?  2ch’(n/2) dC]E(O

+(n—1)-2shnch77(2ch2;7—1)

1 9 _
And since
C2s/2) | sh) () e
om0 Vi (245 )

1 +th2(n/2)}

—tp ! n—
—th2 14 ( 2)1—th2(77/2)
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we can write

1+ ¢?

CE(O+ |1+ (n =277

E'(¢) — p*E({) = 0. (2.33)

We now assume that
E(¢) =¢"f(¢?)

after some manipulations (for details see [8]) we arrive at the following equa-
tion

2 2\ 11 ( 42 n N\ o pry 2
=)+ o+ g - (k2= )¢ e
(-1 o oo
Equation (2.34) coincides with the hypergeometric equation

tA=t)f"() + [y — (a+ B+ 1)Hf'(t) —aBf(t) =0
fort =(* a=k B=1-n/2, and v = k +n/2. In view of the position
E(¢) = ¢*f(¢?) and ¢ = th(n/2), we conclude that a solution to the second
equation of (2.30) is given by
E :thknF<k 1- 20k ”-th”). 2.
() =t P (k1 Dk ] (2.35)

Equations (2.32) and (2.35) imply that

u(n,asii, @) = Y- BulmOnlan) = > Avth B ])
k=0 k=0

X C,g%)(cosozl).

In order to determine the coefficients A, by applying the boundary condi-
tions we have that

w(f, aq;7, 1) = 0(ag — @) = };Ak th” g Fk(th2 727>

X C,SnT_Q)(cosal).

n—2

By multiplying both members by CLT) (cos @) sin™ ? a; and then integrat-
ing we have that

/ d(a; — dl)C’S@%)(cos ay)sin" "% oy day
0
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- n 2 1]
=) A th* Fm<th )
P 2 2
X / C’,S%) (cos al)Cr(n%) (cos o) sin™? a; dayy
0

— A, th" 1 F, <th2 77)
2 2

" 7-2""T(m+n — 2)
m!(m+ (n—2)/2)I((n —2)/2)%’

because the functions C,g”) (z) form an orthogonal system on the interval
z € (—1,1) (see [12, formula 7.313]). This implies that

(%) — on—2 —
Cm * /(cosay)sin™ = a;

m =

th™ (7/2) Fy (th*(7/2))
" ml(m + (n —2)/2)I((n — 2)/2)?
723=7T'(m +n — 2) .
We finally obtain
u(n, a3, @) = ['((n—2)/2)*sin" “a,

23—ngq
" i El(k + (n —2)/2) th*(n/2)Fy(th*(n/2))
I'(k+n—2) th*(7/2)F,(th*(7/2))

k=0

X C,S 22)(cos 641)0,5%2)(0% ay).

By rotational invariance, without loss of generality, we can assume a; = 0,
we then have

wln, g7, y) = I'((n— 2;?{?22:111”— ay
" i El(k + (n —2)/2) th*(n/2)Fy(th*(n/2))
= T(k+n—2) th*#n/2)F(th*(7/2))

X 0,5%2)(1)0,5 ngz)(cos ay),

where &; = a; — a;. Since C;g%)(l) = (") (see, e.g., [12, for-
mula 8.937.4]) the last expression reduces to

I'((n—2)/2)%sin™ *(ay — ay)

u(n, a3 1, Q) = 25=n(n — 3)Ir
- n — 2\ th"(n/2) Fy(th*(n/2)) (=3*) . =
Z<’” 2 >th’“<n/2>Fk<th2<n/2>>Ck feosct)
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We arrive at formula (2.29) by observing that

I'((n—2)/2)> 2 Q,,
2-n(n - 31w n-2 Q,

where (Q,, = 13(75//22) is the surface area of the n-dimensional Euclidean unit

sphere.

Theorem 2.2 is proved.

Remark 2.9. We note that for small values of n and 7 we obtain
the Euclidean Poisson kernel. In fact, since th(n/2) ~ 1/2, C\"(t) = 2nt,
CSM(t) =1, and kC™ (t) = 2n[tC Y (8) — CLEV ()], we have that

(2 1) SRR ),

cos(ag — @y))

n th* (77/2) Fi (th*(77/2))
~ - i 5 [ék(g Clgngz)(cos(al — dl)) + (’n, — 2) % COS(O[l — O_zl)
+ r 5 2 ]i (g) C’,Snf)(cos(ozl —ay))

=2 {cos(al —ay) 2 (g)kC,Sgl) (cos(a; — ay))

n
i \11
(Y]
=2 {g cos(a; — ay) g;) (g>kclgg)(cos(a1 —ay))

i (g kC’,Engz)(cos(al - al))]

_l’_
k=0
2n B n? —n/2 n ) n?
=2|(1-Feostar -+ ) (Feostan - - )
1 2 2\ —(n—2)/2
+2<1—:cos(a1—d1)+22> ]

Remark 2.10. The kernel (2.29) represents the marginal, with re-
spect to as,...,a,_1, of the distribution of the position occupied by the
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hyperbolic Brownian motion { By~ (t), t > 0} starting from z = (n, «) € H”
when it hits for the first time the boundary OU of the n-dimensional hy-
perbolic hypersphere of radius 7. For z = (n,0), such distribution is given
by

2k 1) th*(n/2) F}.(th® (n/2))
o \n—2 th*(7/2) Fi(th®(7/2))

« ) (cos @) f(a) da, (2.36)

where n > 2, n <17, a €[0,7) is the angle between z and z, and
f(@) = (1/Q,)sin" ?a;sin™ 2 ay - - - sin @, _,

is the uniform density on S, _;.

Remark 2.11. We observe that (2.36) is a proper probability law.
In fact:

— the nonnegativity is due to the nonnegativity of solutions of Dirichlet
problems with nonnegative boundary conditions;

— it integrates to one, in fact

[ [P € da)

0 (2% th" (n/2) Fy.(th*(n/2))
T Q Z<n—2+1)th’c(n/2)Fk( h*(7j/2))

X / C,g%) (cos @y ) sin™* &, da

k=0

Q1 Fy(th’(n/2))
Q. Fy(th*(7/2))
— Q"*1 "
=5

/ C’ = (cosa1)51n &, day

Sin"_ aq d(jél = 1,
since, if k£ > 0, we have
/ C™ (cos ) sin" 20 df = 0
0

(see [12, formula 7.311.1)), and F(0,8;7;2) =1, C™(z) = 1,

™ 1 n—1
/ sin"20df = B(, n )
0 2 2

Remark 2.12. We also note that:

— for n — 0 (i.e., when the starting point is the center of the hyperbolic
hypersphere) formula (2.36) becomes the uniform distribution on S,_; as
expected;
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— for 77 — oo, since th(7/2) — 1 and

T(Y)(y —a—f)
L(y = a)l'(y = B)

if v > a+ (3 (see [12, formula 9.122.1]), we have that

F(o, B57;1) =

n—00

= ( 2k T(k+n—1) ( w)
= o) pR LR th? L
];)(n—2+ ) L'(k+n/2) 2k 2

« ) (cos ay) f(a) da. (2.37)

In [4] there is obtained an integral formula for the hyperbolic Poisson
kernel of half-spaces H, = {(z,y) € H” : y = a > 0} and it is shown the
convergence, as a — 0, of such Poisson kernel to the Poisson kernel of the
entire hyperbolic space H". In particular, in [4, Corollary 4.3], the Poisson
kernel of the entire hyperbolic space H” is given in a closed form and must
be compared with (2.37).

3. Exit probabilities from a hyperbolic annulus in H”.

3.1. Two-dimensional case. Suppose the hyperbolic Brownian mo-
tion {Bu=(t), t > 0} starts at z = (n,a) € H? inside the hyperbolic annu-
lus A with radii 0 < m; <72 < 0

A={(n,a):m <n<n}
(see Fig. 6). We define the hitting times

T,, = inf{t > 0: n(O, Bu=(t)) = n;}, i=1,2,

Y

Fig. 6. Hyperbolic Brownian motion starting inside the hyperbolic annulus A with radii
1 and 72.
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and T'= T, AT,,. In the following theorem we evaluate the exit probabilities
P.{T,, <T,,}. Since these are given in terms of harmonic functions on the
annulus A, they are closely related to the Dirichlet problem.

Theorem 3.1. Let {Buz(t): t > 0} be a hyperbolic Brownian motion
starting at z = (n,«) € A. The following result holds true:

Inth(ny/2) — Inth(n/2)
Inth(ny/2) — Inth(n,/2)’

PAT,, <T,,}= m < n <. (3.1)

P roof. Since the probability in (3.1) is spherically symmetric, we are
lead to study the solution v: (ny,72) — R to the Laplace equation involving
only the radial part:

o? 1 0
= -2 -0
o+ a0

subjected to the boundary conditions v(n;) = 1 and v(n2) = 0. With the
change of variable w = chn we immediately get the equation

(1 —w?)K"(w) — 2wK'(w) =0, (3.2)

whose general solution is

K(w) :C1+021n

w—l‘
w41

(see, for example, [19, section 2.1.2, formula 233 fora =1, b= -1, A =0
and p = 0]). It follows that

chn—1
chn+1

o(n) = €+ Caln ) =i+ Culnen ], (3.3)

see also [3, p. 14 and 16]. By imposing the boundary conditions we get

o(m) —o(n)  Inth(p/2) — Inth(y/2)
PAT < T} = ) —otn) ~ T th(na/2) — Inth(m/2)°

Theorem 3.1 is proved.
Starting from (3.1) and letting 7, go to infinity we have that Theorem 3.1
leads to the following corollary.

Corollary 3.1. For any z = (n, ) outside the hyperbolic disc of radius
m and center O, we have

Pt < ooy~ () _ nthy/2)
z 1 In (chmfl) lnth(m/Q)’

chni+1
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It is possible to show with simple computations that the functions
in (3.1) and (3.4) are genuine probabilities, since they vary in (0,1).

Remark 3.1. Since (1 —r?)? > 0, the exit probabilities from the
hyperbolic annulus A = {(r,0): r; < r < ry} in D? are easily derived from
the Euclidean case. If the hyperbolic Brownian motion starts at @ = (r,0) €
A, then we have

Inry —Inr
PolTl,, <T),} = ———, 0 1. 3.5
ol <T,,} Ry <T<r<ry < (3.5)
Letting ro — 1 in (3.5) we obtain that
1
PQ{TT1<oo}:1n—T<1, 0<rm <r<L
nry

3.2. Multidimensional case. It is possible to generalize the exit
probabilities from a hyperbolic annulus to the case of the n-th dimensional
hyperbolic Brownian motion.

In order to evaluate the exit probabilities from the hyperbolic annulus A
in H", with hyperbolic radii 7; and 7, with 7; < 7y, we are interested in
obtaining a solution wv. (n;,172) — R to the radial part of the hyperbolic
Laplace equation in H". We have proved in Lemma 2.1 and Remark 2.8
that it is equivalent to solve

d?2 n-14d
d7772+ th?’] d—nvn(n)—O

(3.6)

In what follows we will assume that

1 _ (n=3)(n—5)---(n—2k—1)
c(n,O)—n_2, e(n, k) = (n—2)(n—4)---(n—2k—2)’
k=1, ,";3.

Theorem 3.2. For a hyperbolic Brownian motion {Bu~(t):t > 0}
started at z = (n, o) € A, we have that
forn=3,5,7,...

Efn:_OB)/Q(_l)k_l c(n, k) [Shnf};,?fz — Shnfg,l’,z 77}

(n—3)/2 k-1 ch s chmy ’
k=0 (_1) C(n,k) shn—26—2 T shn-2k-2 ™

Pz{Tm < Tnz} =
>

forn=4,6,8,...

_ chny chn
P AT, <T,} = ( Z (1) " e(n, k)Lhnzkz - Shn2k2n:|
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e (=3 th(n/2)
HEDT g e th(n/2)>
(n—4)/2 - chn chm
2y (n = 3)!! th(r2/2) B
+ (=12 (n—2)Il n th(771/2)> '

P roof. The general solution to equation (3.6) is given by

v,(n) =C1 + 02/ dn,

_
Shn—l n

see, for example, [3, p. 14 and 16]. For n =2m + 1, m = 1,2,... we have

chn 1
w(n) = C; + C. —
vn (1) 1+ 22m—1[ sh?™ 1
m—1 k
_ 2"(m—-1)(m—2)---(m —k) 1
71 k—1
* ];( ) (277’1,—3)(2’177,— 5)---(2m—2k— 1) sh2m72k7177
(n—3)/2
ch
= 01 + CQ Z (—1)k_10(7’l/, k) hnf% (38)
k=0 S n
(see [12, formula 2.416.2]).
Forn=2m+4+2, m=1,2,..., we have
(n—1)/2
h
w() = Gt Co| 3 (1) Clnk) S
P sh n
3 - 3)! n
_py-aye B .
+(=1) (n—2)l "2 (3:9)

(see [12, formula 2.416.3]). With computations analogous to those performed
in the two dimensional case, we obtain the statement. Theorem 3.2 is proved.
From this it follows immediately that:

Corollary 3.2. For z = (n,«a) outside the hyperbolic ball in H™ with
radius m; and center in O, we have that

forn=3 . .
P.{T,, < oo} = 1__;31:1;
forn=5,7,...
P.{T, < oo}
S0 e b) i + ()RR (1 g

- n—5)/2 c n— n—3)!! c ’
0 (—1)ke(n, k) gt + (—1)-9/2 BB [1 — |
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m <
forn=4,6,8,...
PZ{TUl < OO}
(0 (1) re(n, k) grier, + (~1)2 2= Inth 2 -
- n-— chm n—3)!! . ? 1 .
SV (1) ke, ) gt + (—1)/2 =2 i th o

Remark 3.2. For the space H? formula (3.7) takes the simple form

cthny — cthn

P.{T, —_—
Z{ cth N2 — cth ™ ’

7]1<TU2}: 771<7I<7727
and for 7, — oo yields

P.{T, < oo} <1.

This shows that there is a positive probability that the hyperbolic Brownian
motion never hits the ball of radius ;.

Remark 3.3. We note that for small values of 1 we have
chn/sh’n ~ 1/n? and Inth(n/2) ~ In(n/2). From (3.3), (3.8), and (3.9)
it follows that

Ci+Cylnn, ifn=2
vp(n) ~
Cl+027727n, lfn:3,4,5

This means that, for sufficiently small domains, we obtain the exit probabil-
ities of Euclidean Brownian motion from an annulus:

Inn—lnp . _,
ln’r]2 —_ 1117’]1’ )
Pz{Tﬂ1 < Tﬁz} ~ 2—n _ . 2-n (310)
%a ifn=3,4,5....
N2 —

Remark 3.4. It is important to note that for a planar hyperbolic
Brownian motion the probability that the process goes to infinity before
hitting the hyperbolic circle of radius 7, is strictly less than one:

_ Inth(n/2)

PoAT <o} = hn 2)

<1

while it is well known, see (3.10), that for a planar Euclidean Brownian
motion it holds that
P.{T, <o} =1

Hyperbolic Brownian motion is, in fact, transient for every dimension n > 2
as stated in [11, Proposition 3.2].
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4. Brownian motion on the surface of a three-dimensional
sphere. The surface S of the unit-radius three-dimensional sphere is a
model of the elliptic geometry if geodesic lines are represented by great cir-
cles. We specify the position of an arbitrary point p € S with the couple
(9, ¢) of spherical coordinates, where ¥ € [0, 7] and ¢ € [0, 27).

If U = {(9,p): 9 > 9} is the surface of a spherical cap on S with center
in the north pole, the Dirichlet problem on the surface of the sphere S reads:

2 1 9 1 & - _
[8192+tg19319+sin2198902 u(ﬂ,go,ﬂ,go)—o, 0<?.9<19<7T,
u(d,¢;9,9) = 3(p — ), @, € [0,2m).

Assuming that u(9, ¢;9, @) = T(9)F(p) we immediately arrive at the fol-
lowing ordinary equations:

F'() + p?F(p) = 0, (4.1)
sin® 97" (9) + cos ¥ sin 9T (9) — u*T(9) = 0, ‘

with 4 € R. With the change of variable w = cos 8, in the second equation
of (4.1), we arrive at equation (2.7) with general solution (2.8). Therefore,
for 4 = m € N, the general solution to the second equation of (4.1) can be

written as
1+ cos? 1—cosd
T@) =G (V 1—cos19> +C (\/ 1+Cos19) ' (4.2)

We restrict ourselves to the increasing component of (4.2) so that we have

= 1 —cos?d "
u(9, ;9, @) :g::oA cos(myp) + B,, sin(mep)] (”1—%22219) .

By imposing the boundary condition u(J, p;9, @) = §(p — @) and in view
of (2.12), we finally obtain that

_ 1 1 & 1—cos?¥ |1+ cos?d "
197 7197 p) = = - - 2
u(d, ¢ 9, ¢) 2w + T z} cos(m(e = 7)) (\/1 + cos ¥ \/1 — Cos 19)
cos ¥ cos ¥
1 1- }+cosﬁ }J’_COSIL)

271' 1—cos® 14cos®d 1—cos® 14+cos®d =
1 + 14+cos 9 1—cos ¥ 2 14+cos 9 1—cos I COS((‘O SO)
1 cos ¥ — cos ¥

= — _ — . 4.3
2m 1 — cos ¥ cos ¥ — sin ¥ sin ¥ cos(p — @) (4:3)

Remark 4.1. Since for spherical triangles the following Carnot for-
mula holds: )
cos ¥ = cos ¥ cosJ + sin 9 sin ¥ cos(p — @),
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we can rewrite (4.3) as follows:

= 1 cosv — cos?
u(¥, p; 9, 9) o 1 cosd (4.4)

Remark 4.2. We note that the Poisson kernel (4.3) is a proper
probability law. In fact:

—in view of (4.4) and observing that ¥ > 1 we have that (4.3) is positive;

— applying (2.15) with @ = 1 —cos ¥ cos ¥ and b = — sin ¥ sin 9 we obtain
that (4.3) integrates to one.

For ¥ = 0 we obtain from (4.3) the uniform law, while for 9 = 7/2 we
get

( s _) 1 cos?
u 197 P50 P

2

Remark 43. Let {Bs(t):t > 0} be a Brownian motion on the
surface of the three-dimensional sphere S with starting point p = (¢, ) € S
(see Fig. 7). The kernel in (4.3) represents the law of the position occupied
by the spherical Brownian motion when it hits for the first time the boundary
of the spherical cap U.

" 21 1 —sindcos(p — @)

Fig. 7. Spherical Brownian motion starting at (1J,¢) and hitting the boundary of the
spherical disc.

In order to obtain the exit probabilities of {Bg(t): ¢ > 0} from a spher-
ical annulus A = {(9, ¢): ¥ < ¥ < ¥} with center in the south pole of S,
we consider the solution v: (J5,9;) — R to the Laplace equation involving
only the radial part
0? 1 0
— + ——|v(¥) =0.
[8192 + tgﬁ&?} v(?)

With the change of variable w = cos? we arrive at equation (3.2). With
calculations analogous to those performed in the proof of Theorem 3.1 we
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get
cosﬂz—l‘ _ cosﬁ—l’
Y2+1 9+1
].)p{T;g1 < T192} == ot 0 5 192 < ’19 < '191. (45)
In cos¥a—1| In cos¥y—1
cos¥2+1 cosI1+1

In particular for ¥ — 7/2 formula (4.5) reads

vl mlel  w
].:’p{,I‘ﬂ1 < T%} = eondo1 = ™ |t R 5 <9 < Y.
In cos191+1‘ & 2

Remark 4.4. We note that replacing formally 9 with ¥ it is pos-
sible to extract from (4.3) and (4.5) the Poisson kernel and the exit prob-
abilities obtained for the hyperbolic plane, namely (2.3) and (3.1). This
is because H? can be viewed formally as a sphere with imaginary radius.
For small values of 6§ we obtain instead results analogous to those obtained
for the Euclidean Brownian motion. In fact, for sufficiently small domains,
Euclidean geometry is in force.
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