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Abstract
We consider the so-called measure once finite quantum automata model introduced by Moore
and Crutchfield in 2000. We show that given a language recognized by such a device and a
linear context-free language, it is recursively decidable whether or not they have a nonempty
intersection. This extends a result of Blondel et al. which can be interpreted as solving the
problem with the free monoid in place of the family of linear context-free languages.
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1 Introduction

Quantum finite automata or simply quantum automata were introduced at the beginning of
the previous decade in [6] as a new model of language recognizer. Numerous publications
have ever since compared their decision properties to those of the older model of probabilistic
finite automata. Some undecidable problems for probabilistic finite automata turn out to be
decidable for quantum finite automata. The result in [3] which triggered our investigation can
be viewed as asserting that the intersection emptiness problem of a language recognized by a
finite quantum automaton with the free monoid is recursively decidable. The present result
concerns the same problem where instead of the free monoid, more generally a language
belonging to some classical families of languages such as the context-free languages and the
bounded semilinear languages is considered.

An ingredient of the proof in [3] consists of expressing the emptiness problem in the first
order theory of the reals and then to apply Tarski-Seidenberg quantifier elimination. This is
possible because an algebraic subset, i.e., a closed subset in the Zariski topology A ⊆ Rn, is
naturally associated to this intersection and even more miraculously because this subset can
be effectively computed (cf. also [4]).

Here we show that the (actually semi-)algebraicity of A still holds when considering
not only the free monoid but more generally arbitrary context-free languages and bounded
semilinear languages. Unfortunately, its effective construction is only guaranteed under
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stricter conditions such as the fact that the language is context-free and linear or is bounded
semilinear. In particular, in the case of context-free languages, we are not able to settle the
nonlinear case yet.

We now give a more formal presentation of our work. The free monoid generated by the
finite alphabet Σ is denoted by Σ∗. The elements of Σ∗ are words. We consider all finite
dimensional vector spaces as provided with the Euclidian norm. A quantum automaton is a
quadruple Q = (s, ϕ, P, λ) where s ∈ Rn is a row-vector of unit norm, P is a projection of
Rn, ϕ is a representation of the free monoid Σ∗ into the group of orthogonal n× n-matrices
in Rn×n and the threshold λ has value in R. We recall that a real matrix M is orthogonal if
its inverse equals its transpose: M−1 = MT . We denote by On the group of n×n-orthogonal
matrices. We are mainly interested in effective properties which requires the quantum
automaton to be effectively given. We say that the quantum automaton is rational if all the
coefficients of the components of the automaton are rational numbers, i.e., ϕ maps Σ∗ into
Qn×n and λ ∈ Q. This hypothesis is not a restriction since all we use for the proofs is the
fact that the arithmetic operations and the comparison are effective in the field of rational
numbers. This is the “measure once” model introduced by Moore and Crutchfield in 2000
[6]. The language recognized by Q is

||Q>|| = {w ∈ Σ∗ | ||sϕ(w)P || > λ} (1)

Blondel et al. in [3] proved that the emptiness problem of ||Q>|| is decidable. This can be
interpreted as saying that the emptiness problem of the intersection of a language accepted
by a quantum automaton and the specific language Σ∗ is decidable. In other word, it falls
into the category of issues asking for the decision status of the intersection of two languages.
It is known that such a problem is already undecidable at a very low level of the complexity
hierarchy of recursive languages, namely for linear context-free languages to which Post
Correspondence Problem can be easily reduced.

A few words on the technique used in the above paper. Observe that, with the natural
meaning of the notation ||Q≤||, the emptiness problem for languages defined by (1) is
equivalent to the inclusion

Σ∗ ⊆ ||Q≤|| (2)

Since the function M → ||sMP || is continuous, it is sufficient to prove that for all matrices
M in the tolopological closure of ϕ(Σ∗) the condition ||sMP || ≤ λ holds. The nonemptiness
is clearly semidecidable. In order to prove that the emptiness is semidecidable the authors
resort to two ingredients. They observe that the topological closure of the monoid of matrices
ϕ(Σ∗) is algebraic, i.e., when considering the n× n-entries of a matrix M in the topological
closure of ϕ(Σ∗) as as many unknowns in the field of reals, they are precisely the zeros of a
polynomial in R[x1,1, . . . , xn,n]. This allows them to express the property (2) in first-order
logic of the field of reals. The second ingredient consists of applying Tarski-Seidenberg
quantifier elimination and Hilbert basis results, which yields decidability.

We generalize the problem by considering families of languages L instead of the fixed
language Σ∗. The question we tackle is thus as follows

L-Q INTERSECTION

Input: a language L in a family of languages L and a finite quantum automaton Q.

Question: does L ∩ ||Q>|| = ∅ hold?
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Our main result shows that whenever L is the collection of linear context-free languages
or is the collection of bounded semilinear languages, and whenever the automaton is rational,
the problem is decidable. It can be achieved, not only because the orthogonal matrices
associated with L are semialgebraic (a more general property than algebraic, which is defined
by more general first-order formulas), but also because these formulas can be computed “in
the limit”.

We can prove the semialgebraicity of more general families of languages: arbitrary
subsemigroups which is a trivial case and context-free languages which is less immediate.

In the last section, we show that our main results are not trivial since we can exhibit an
example of a language which is the complement of a linear context-free language and whose
set of matrices is not semialgebraic.

2 Preliminaries

Throughout this paper the notation (s, ϕ, P, λ) stands for a quantum automaton Q where,
as mentioned in the Introduction, s ∈ Rn is a vector of unit norm, P is a projection of Rn, ϕ
is a representation of the free monoid Σ∗ into the group On of orthogonal n× n-matrices in
Rn×n. The behaviour of Q heavily depends on the topological properties of the semigroup
of matrices ϕ(Σ∗). This is why, before returning to quantum automata, we first focus our
attention on these matrices for their own sake.

2.1 Topology
The following result is needed in the proof of the main theorem. Though valid under weaker
conditions, it will be considered in the particular case of orthogonal matrices. Given a subset
E of a vector space, we denote by Cl(E) the topological closure for the topology induced
by the Euclidian norm. Given a k-tuple of matrices (M1, . . . ,Mk), denote by f the k-ary
product f(M1, . . . ,Mk) = M1 · · ·Mk and extend the notation to subsets ρ of k-tuples of
matrices by posing f(ρ) = {f(M1, . . . ,Mk) | M1 · · ·Mk ∈ ρ}. The following result will be
applied in several instances of this paper. It says that because we are dealing with compact
subsets, the two operators of matrix multiplication and the topological closure commute (For
the proof of Theorem 1, see the Appendix).

I Theorem 1. Let C be a compact subset of matrices and let ρ ⊆ Ck be a k-ary relation.
Then we have

Cl(f(ρ)) = f(Cl(ρ))

Consequently, if ρ is a binary relation which is a direct product ρ1 × ρ2, we have Cl(ρ1ρ2) =
f(Cl(ρ1 × ρ2)). It is an elementary result of functional analysis that Cl(ρ1 × ρ2) = Cl(ρ1)×
Cl(ρ2) holds. Because of Cl(ρ1ρ2) = f(Cl(ρ1 × ρ2)) = f(Cl(ρ1)×Cl(ρ2)) = Cl(ρ1) Cl(ρ2)
we have

I Corollary 2. The topological closure of the product of two sets of matrices included in a
compact subspace is equal to the product of the topological closures of the two sets.

2.2 Algebraic and semialgebraic sets
Let us give first the definition of algebraic set over the field of real numbers (cf. [2, 7]).

I Definition 3. A subset A ⊆ Rn is algebraic (over the field of real numbers), if it satisfies
one of the following equivalent conditions:
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(i) A is the zero set of a polynomial p ∈ R[x1, . . . , xn], i.e.,

v ∈ A ⇐⇒ p(v) = 0. (3)

(ii) A is the zero set of an arbitrary set of polynomials P with coefficients in R[x1, . . . , xn],
i.e., for every vector v ∈ Rn,

v ∈ A ⇐⇒ ∀ p ∈ P : p(v) = 0. (4)

The equivalence of the two statements is a consequence of Hilbert finite basis Theorem.
Indeed, it claims that given a collection P there exists a finite subcollection p1, . . . , pr
generating the same ideal which implies in particular that for all p ∈ P there exist q1, . . . , qr
with

p = q1p1 + · · ·+ qrpr

Then pj(v) = 0 for j = 1, . . . , r implies p(v) = 0. Now this finite set of equations can be
reduced to the unique equation

n∑
i=1

pj(x)2 = 0

As a trivial example, a singleton {v} is algebraic since it is the unique solution of the equation
n∑
i=1

(xi − vi)2 = 0

where vi, with 1 ≤ i ≤ n, is the i-th component of the vector v.

It is routine to check that the family of algebraic sets is closed under finite unions and
intersections. However, it is not closed under complement. The following more general class
of subsets enjoys extra closure properties and is therefore more robust. The equivalence of
the two definitions below is guaranteed by Tarski-Seidenberg quantifier elimination result.

I Definition 4. A subset A ⊆ Rn is semialgebraic (over the field of real numbers) if it
satisfies one of the two equivalent conditions

(i) A is the set of vectors satisfying a finite Boolean combination of predicates of the form
p(x1, . . . , xn) > 0 where p ∈ R[x1, . . . , xn].

(ii) A is first-order definable on the structure whose domain are the reals and whose predicates
are of the form p(x1, . . . , xn) > 0 and p(x1, . . . , xn) = 0 with p ∈ R[x1, . . . , xn].

We now specify these definitions to square matrices.

I Definition 5. A set A ⊆ Rn×n of matrices is algebraic, resp. semialgebraic, if considered
as a set of vectors, it is algebraic, resp. semialgebraic.

We now combine the notions of zero sets and of topology. In the following two results
we rephrase Theorem 3.1 of [3] by emphasizing the main features that serve our purpose.
Given a subset E of a group, we denote by 〈E〉 and by E∗ the subgroup and the submonoid
it generates, respectively.

I Theorem 6. Let S ⊆ Rn×n be a set of orthogonal matrices and let E be any subset
satisfying 〈S〉 = 〈E〉. Then we have Cl(S∗) = Cl(〈E〉).
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Proof. It is known that every compact subsemigroup of a compact group is a subgroup G.
Now S∗ ⊆ 〈E〉 implies G = Cl(S∗) ⊆ Cl(〈E〉) and S ⊆ G implies Cl(〈E〉) ⊆ G and thus
Cl(S∗) = Cl(〈E〉). J

The main consequence of the next theorem is that the topological closure of a monoid of
orthogonal matrices is algebraic (for the proof of this theorem, see the Appendix).

I Theorem 7. Let E be a set of orthogonal matrices. Then Cl(〈E〉) is a subgroup of
orthogonal matrices and it is the zero set of all polynomials p[x1,1, . . . , xn,n] satisfying the
conditions

p(I) = 0 and p(eX) = p(X) for all e ∈ E

Furthermore, if the matrices in E have rational coefficients, the above condition may be
restricted to polynomials with coefficients in Q.

Combining the previous two theorems, we get the general result

I Corollary 8. Let L ⊆ Σ∗. Then Cl(ϕ(L)∗) is algebraic.

2.3 Effectiveness issues
We now return to the L-Q INTERSECTION problem as defined in the Introduction. We
want to prove the implication

∀X : X ∈ ϕ(L)⇒ ||sXP || ≤ λ

We observed that due to the fact that the function X → ||sXP || is continuous the implication
is equivalent to the implication

∀X : X ∈ Cl(ϕ(L))⇒ ||sXP || ≤ λ

It just happens that under certain hypotheses, Cl(ϕ(L)) is semialgebraic, i.e., it is defined
by a first-order formula which turns the above statement into a first order formula. In the
simplest examples, the closure is defined by an infinite conjunctions of equations which by
Hilbert finite basis result reduces to a unique equation. Thus Theorerm 7 guarantees the
existence of the formula but does not give an upper bound on the finite number of equations
which must be tested. Therefore the following definition is instrumental for the rest of the
paper.

I Definition 9. A subset A of matrices is effectively eventually definable if there exists a
constructible sequence of first-order formulas φi satisfying the conditions

1) for all i ≥ 0, for all X ∈ Rn×n we have φi+1(X)⇒ φi(X)

2) for all i ≥ 0, for all X ∈ A we have φi(X)

3) there exists an integer n such that

φn(X)⇒ X ∈ A

The following is a first application of the notion and illustrates the discussion before the
definition.
I Proposition 1. Let Q be a rational quantum automaton. Let L ⊆ Σ∗ be such that the
set Cl(ϕ(L)) is effectively eventually definable. It is recursively decidable whether or not
L ∩ ||Q>|| = ∅ holds.
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Proof. Equivalently we prove the inclusion L ⊆ ||Q≤||. In order to prove that the inclusion
is effective, we proceed as in [3]. We run in parallel two semialgorithms. The first one verifies
the noninclusion by enumerating the words w ∈ L and testing if ||sϕ(w)P || > λ holds. The
second semialgorithm considers a sequence of formulas φi(X), i = 0, . . . , which effectively
eventually defines Cl(ϕ(L)) and verifies whether the sentence

Ψi ≡ ∀X : φi(X)⇒ sXP ≤ λ

holds which can be achieved by Tarski Seidenberg elimination result. If the inclusion L ⊆
||Q≤|| holds then the first semialgorithm cannot answer “yes” and the second semialgorithm
will eventually answer “yes”. If the inclusion does not hold then the second semialgorithm
cannot answer “yes” for any Ψi since the second condition of the Definition 9 implies
X ∈ Cl(ϕ(L))⇒ φi(X) and thus

∀X : X ∈ Cl(ϕ(L))⇒ ||sXP || ≤ λ

a contradiction. J

We state a sufficient condition for a subset of matrices to be effectively eventually definable.
Let S ⊆ Rn×n be a set of orthogonal matrices and let E be any subset satisfying

〈S〉 = 〈E〉.
I Proposition 2. Let L ⊆ Σ∗ and let E ⊆ Qn×n be a finite subset of orthogonal matrices
satisfying 〈ϕ(L)〉 = 〈E〉. Then Cl(ϕ(L)∗) is effectively eventually definable.

Proof. Indeed, set A = Cl(ϕ(L)∗) = Cl(〈E〉) where the last equality is guaranteed by
Theorem 6. Then A is the zero set of all polynomials p(X) where p satisfies the condition

p(I) = 0 and p(gX) = p(X) for all g ∈ A

Since it clearly suffices to verify the invariance of p under the action of the finite set of
generators, we proceed as follows. We enumerate all polynomials p ∈ Q[x1,1, . . . , xn,n] say
p0, p1, . . .. For each such polynomial p the invariance relative to the action of each generator
can be tested. Thus the formula

φi(X) ≡
i∧
j

pj(X) = 0

effectively eventually defines A: the first two conditions can be readily verified and the last
one is a consequence of Hilbert finite basis theorem on ideals of polynomials. J

2.4 Closure properties
In this paragraph we investigate some closure properties of the three different classes of
matrices, algebraic, semialgebraic and effectively eventually definable, under the main usual
operations as well as new operations.

We define the sandwich operation denoted by � whose first operand is a set of pairs of
matrices A ⊆ Rn×n × Rn×n and the second operand a set of matrices B ⊆ Rn×n by setting

A � B = {XY Z | (X,Z) ∈ A and Y ∈ B}

The next operation will be used. Given a bijection

π : {(i, j) | i, j ∈ {1, . . . , n}} → {(i, j) | i, j ∈ {1, . . . , n}} (5)
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and a matrix M ∈ Rn×n denote by π(M) the matrix π(M)i,j = Mπ(i,j). Extend this
operation to subsets of matrices A. Write π(A) to denote the set of matrices π(M) for all
M ∈ A.

The last operation is the sum of square matrices M1, . . . ,Mk whose result is the square
block matrix

M1 ⊕ · · · ⊕Mk =


M1 0 · · · 0
0 M2 · · · 0
...

...
...

...
0 0 0 Mk

 (6)

These notations extend to subsets of matrices in the natural way. Here we assume that all k
matrices have the same dimension n× n. Observe that if the matrices are orthogonal, so is
their sum. Such matrices form a subgroup of orthogonal matrices of dimension kn× kn.

Logic provides an elegant way to formulate properties in the present context. Some
conventions are used throughout this work. E.g., we write ∃nX when we mean that X is a
vector of n bound variables. Furthermore, a vector of n× n variables can be interpreted as
an n × n matrix of variables. As a consequence of Tarski-Seidenberg result, consider two
semialgebraic subsets of matrices, say A1 and A2, defined by two first-order formulas φ1(X1)
and φ2(X2) where X1 and X2 are two collections of n2 free variables viewed as two n× n
matrices of variables. Then the product

A1A2 = {M1M2 |M1 ∈ A1,M2 ∈ A2}

is defined by the following formula where X is a collection of n2 free variables viewed as an
n× n matrix

∃n×nX1∃n×nX2 : X = X1X2 ∧ φ1(X1) ∧ φ2(X2)

where X = X1X2 is an abbreviation for the predicate defining X as the matrix product of X1
and X2. This proves that the product of two semialgebraic sets of matrices is semialgebraic.
Similarly we have the following closure properties whose verification is routine.

I Proposition 3. Let A1,A2 ⊆ Rn×n be two sets of matrices and let π be a one-to-one
mapping as in (5).

1) If A1 and A2 are algebraic so are A1A2 and π(A1).

2) If A1 and A2 are semialgebraic, resp. effectively eventually definable, so are A1 ∪ A2,
A1A2 and π(A1).

I Proposition 4. Let A1 ⊆ Rn×n × Rn×n and A2 ⊆ Rn×n be semialgebraic, resp. effectively
eventually definable. Then A1 � A2 is semialgebraic, resp. effectively eventually definable.

I Proposition 5. Let A be a semialgebraic, resp. effectively eventually definable, set of
kn× kn matrices of the form (6). The set

{X1 · · ·Xk | X1 ⊕ · · · ⊕Xk ∈ A}

is semialgebraic, resp. effectively eventually definable.

I Proposition 6. IfA1, . . . ,Ak ⊆ Rn×n are semialgebraic, resp. effectively eventually definable
sets of matrices then so is the set A1 ⊕ · · · ⊕ Ak.
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3 Context-free languages

For the sake of self-containment and in order to fix notation, we recall the basic properties and
notions concerning the family of context-free languages which can be found in all introductory
textbooks on theoretical computer science (see, for instance, [5]).

A context-free grammar G is a quadruple 〈V,Σ, P, S〉 where Σ is the alphabet of terminal
symbols, V is the set of variables, P is the set of rules, and S is the axiom of the grammar. A
word over the alphabet Σ is called terminal. As usual, the variables are denoted by uppercase
letters A, B, . . . . A typical rule of the grammar is written as A→ α. The derivation relation
of G is denoted by ∗⇒.

A grammar is linear if every right hand side α contains at most one occurrence of variables,
i.e., if it belongs to Σ∗ ∪ Σ∗V Σ∗.

The idea of the following notation is to consider the set of all pairs of left and right
contexts in the terminal alphabet of a self-embedding variable. In the next definition, the
initial “C” is meant to suggest the term “context” as justified by the following.

I Definition 10. With each variable A ∈ V associate its terminal contexts defined as

CA = {(α, β) ∈ Σ∗ × Σ∗ : A ∗⇒αAβ}.

As the proof of the main theorem proceeds by induction on the number of variables, we need
to show how to recombine a grammar from simpler ones obtained by choosing an arbitrary
non-axiom symbol as the new axiom and by canceling all the rules involving S. This is the
reason for introducing the next notation

I Definition 11. Let G = 〈V,Σ, P, S〉 be a context-free grammar. Set V ′ = V \ {S}.
For every A ∈ V ′, define the context-free grammar GA = 〈V ′,Σ, PA, A〉 where the set PA

consists of all the rules of G of the form

B → γ, B ∈ V ′, γ ∈ (V ′ ∪ Σ)∗

and denote by LA the language of all terminal words generated by the grammar GA.

The next result introduces the language of terminal words obtained in a derivation where S
occurs at the start only.

I Definition 12. Let L′(G) denote the set of all the words of Σ∗ which admit a derivation

S ⇒ γ1 ⇒ · · · ⇒ γ` ⇒ w (7)

where, for every i = 1, . . . , `, γi ∈ (V ′ ∪ Σ)∗.
If no ambiguity arises, in the sequel, the language L′(G) is simply denoted L′.

The language L′ can be easily expressed in terms of the languages LA for all A ∈ V ′.
Indeed, consider the set of all rules of the grammar G of the form

S → β, β ∈ (V ′ ∪ Σ)∗ (8)

Factorize every such β as

β = w1A1w2A2 · · ·w`A`wj`+1 (9)

where w1, . . . , w`+1 ∈ Σ∗ and A1, A2, . . . A` ∈ V ′. The following is a standard exercise.
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I Lemma 13. With the notations of (9), the language L′ is the (finite) union of the languages

w1LA1w2LA2 · · ·w`LA`
wj`+1

when β ranges over all rules (8).

I Proposition 7. With the previous notations L is a finite union of languages of the form
CS � L′′ where

L′′ = w1LA1w2LA2 · · ·w`LA`
w`+1

Proof. In order to prove the inclusion of the right- into left- hand side, it suffices to
consider w = αuβ, with u ∈ L′ and (α, β) ∈ CS . One has S ∗⇒u and S

∗⇒αSβ and thus
S
∗⇒αSβ

∗⇒αuβ.

Let us prove the opposite inclusion. A word w ∈ L admits a derivation S ∗⇒w. If the
symbol S does not occur in the derivation except at the start of the derivation, then w ∈ L′.
Otherwise factor this derivation into S ∗⇒αSβ

∗⇒w such that S does not occur in the second
part of the derivation except in the sentential form αSβ. Reorder the derivation αSβ ∗⇒w

into αSβ ∗⇒ γSδ
∗⇒w so that γ, δ ∈ Σ∗. This implies w = γuδ for some word u ∈ L′, where

L′ is defined as in Definition 12, completing the proof. J

4 The main results

Here we prove that the problem is decidable for two families of languages, namely the linear
context-free languages and the linear bounded languages.

4.1 The bounded semilinear languages
We solve the easier case. We recall that a bounded semilinear language is a finite union of
linear languages which are languages of the form

L = {wn1
1 · · ·w

nk

k | (n1, . . . , nk) ∈ R} (10)

for some fixed words wi ∈ Σ∗ for i = 1, . . . , k and R ⊆ Nk is a linear set, i.e., there exists
v0, v1, . . . , vp ∈ Nk such that

R = {v0 + λ1v1 + · · ·+ λpvp | λ1, . . . , λp ∈ N}

I Proposition 8. If L is bounded semilinear then its closure Cl(ϕ(L)) is semialgebraic.
Furthermore, if the quantum automaton Q is rational, the L−Q-intersection is decidable.

For the proof of this proposition, see the Appendix.

4.2 The case of context-free languages
Here we show that Cl(ϕ(L)) is effectively eventually definable for languages generated by
linear grammars and rational quantum automata.

We adopt the notations of Section 3 for context-free grammars. We recall the following
notion that will be used in the proof of the next result (see [8]). A subset of a monoid M is
regular if it is recognized by some finite M -automaton which differs from an ordinary finite
nondeterministic automaton over the free monoid by the fact the transitions are labeled by
elements in M .
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I Proposition 9. If L is generated by a context-free grammar, then Cl(ϕ(L)) is semialgebraic.
Furthermore, if the grammar is linear and if the quantum automaton is rational then Cl(ϕ(L))
is effectively eventually definable and the L−Q-intersection is decidable.

Proof. With the notations of section 3 the language L is a finite union of languages of the
form CS � L′′ with

L′′ = w1LA1w2LA2 · · ·w`LA`
w`+1 (11)

where, for every 1 ≤ i ≤ `+ 1, and wi ∈ Σ∗ and Ai ∈ V . It suffices to show by induction on
the number of nonterminal symbols that, with the previous notations, the subsets

Cl(ϕ(CS � L′′)) (12)

are semialgebraic in all cases and effectively eventually decidable when the quantum auto-
maton is rational and the grammar of the language is linear. As a preliminary remark let us
show this property for Cl(ϕ(CS)). Define ϕT : Σ∗ → Rn×n by posing ϕT (u) = ϕ(u)T . Set

M = {ϕ(a)⊕ ϕT (bT )) | (a, b) ∈ CS}

where, applied to a matrix, the superscript T represents its transpose, while applied to a
word, it represents its mirror image.

Observe that M is a submonoid since if ϕ(a)⊕ ϕT (b) and ϕ(c)⊕ ϕT (d) are in M then
we have

ϕT (b)ϕT (d) = ϕ(b)Tϕ(d)T = (ϕ(d)ϕ(b))T = ϕ(db)T = ϕT (db)

which yields
(ϕ(a)⊕ ϕT (b))(ϕ(c)⊕ ϕT (d)) = ϕ(ac)⊕ ϕT (db)

Furthermore M is a regular submonoid of the group of orthogonal matrices On ⊕On if the
grammar is linear. Indeed, it is recognized by the finite O2n-automaton whose states are
the nonterminal symbols, the transitions are of the form A

(ϕ(a)⊕ϕR(b)−−−−−−−−→ B where A→ aBb

is a rule of the grammar and where the initial and final states coincide with S. As a first
consequence, by Corollary 8, Cl(M) is algebraic. Now, the subgroup generated by a regular
subset of a monoid has an effective finite generating set, e.g., [1] (cf. also [8]) and thus by
Proposition 2 Cl(M) is effectively eventually definable if ϕ(Σ∗) ⊆ Qn×n.

We proceed by induction on the number of nonterminals. If the set of nonterminals is
reduced to S then L is reduced to L′. We may further assume that there is a unique terminal
rule S → w. By Theorem 1 we have

Cl(ϕ(L)) = {Xϕ(w)Y T | X ⊕ Y ⊕ {ϕ(w)} ∈ Cl(M ⊕ ϕ(w))}

By Corollary 2 we have

Cl(M ⊕ ϕ(w)) = Cl(M)⊕Cl(ϕ(w)) = Cl(M)⊕ ϕ(w)

which, by Proposition 6, is semialgebraic, resp. effectively eventually definable. In that latter
case the L−Q-intersection is decidable.

Now assume V contains more than one variable. We first prove that for each nonterminal
A, Cl(ϕ(CS � LA)) is semialgebraic in the general case and effectively eventually definable
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when the grammar is linear and the quantum automaton is rational. By Theorem 1 and
Corollary 2, Cl(ϕ(CS � L′′)) is the subset

Cl(ϕ(CS � L′′)) = {XZY T | X ⊕ Y ⊕ Z} ∈ Cl(M)⊕Cl(ϕ(L′′)}

with L′′ as in expression 11, i.e.,

{XZY T | X ⊕ Y ⊕ Z ∈ Cl(M)⊕Cl(ϕ(w1)ϕ(LA1) · · ·ϕ(w`)ϕ(LA`
)ϕ(w`+1))}

By Cororally 2 we have

Cl(ϕ(w1)ϕ(LA1) · · ·ϕ(w`)ϕ(LA`
)ϕ(w`+1))}

= ϕ(w1)Cl(ϕ(LA1)) · · ·ϕ(w`)Cl(ϕ(LA`
))ϕ(w`+1)}

which shows, via Proposition 3 and by induction hypothesis that this subset is semialgebraic,
resp. effectively, eventually decidable. Then its direct sum with Cl(M) is semialgebraic
and effectively, eventually decidable if the grammar is linear and the quantum automaton is
rational. We conclude by applying Proposition 5. J

5 Complement of context-free languages

In this section we prove that there is a language L such that (i) the complement of L is
linear context-free and (ii) Cl(ϕ(L)) is not semialgebraic.

Given a real α = 0.b1 · · · bn · · · , we define its approximation sequence (α[k])k≥0 as the
sequence of its successive truncations α[k] = 0.b1 . . . bk.

I Lemma 14. Let 0 < α < 1 be an irrational. There exist infinitely many rationals q
n such

that ∣∣∣α[1 + 2`(n)]− q

n

∣∣∣ < 1
n2

holds, where `(n) = blog2 nc.

Proof. By the triangular inequality we have∣∣∣α[1 + 2`(n)]− q

n

∣∣∣ ≤ |α[1 + 2`(n)]− α|+
∣∣∣α− q

n

∣∣∣
By the definition of the approximation sequence we get

|α[1 + 2`(n)]− α| ≤ 1
21+2`(n) = 1

2 ×
1

22blog2 nc
≤ 1

2 ×
1
n2

Now by Hurwitz Theorem there exist infinitely many rationals p
n for which∣∣∣α− p

n

∣∣∣ ≤ 1√
5
× 1
n2

We conclude by combining these last two inequalities. J

We now fix an irrational 0 < α < 1. Consider the orthogonal matrix

Mα =
(

cos 2πα sin 2πα
− sin 2πα cos 2πα

)
and the morphism ϕα : b∗ → On from the free monoid generated by the letter b and the
group On defined by ϕα(b) = Mα. Furthermore set

L(α) =
{
bn | ∃ q ∈ N |

∣∣∣α[1 + 2`(n)]− q

n

∣∣∣ < 1
n2

}
(13)
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I Lemma 15. If 0 < α < 1 is an irrational, the topological closure Cl(ϕ(L(α)) is not
semialgebraic.

Proof. Since the element in position (1, 1) of the matrix ϕα(bn) is cos 2πnα and since the
projection of a semialgebraic set is semialgebraic, it suffices to show that

Cl({cos 2πnα | bn ∈ L(α)})

is not semialgebraic.
Observe that n 6= n′ implies cos 2πnα 6= cos 2πn′α since α is irrational. In particular, the

set {cos 2πnα | bn ∈ L(α)} is infinite.
Now we verify that 1 is the unique limit point. Indeed, by definition bn ∈ L(α) implies

that for some integer q we have ∣∣∣α[1 + 2`(n)]− q

n

∣∣∣ ≤ 1
n2

For such an integer q we have∣∣∣α− q

n

∣∣∣ ≤ |α− α[1 + 2`(n)]|+
∣∣∣α[1 + 2`(n)]− q

n

∣∣∣
≤ 1

2n2 + 1
n2 = 3

2 ×
1
n2

Consequently, |nα− q| ≤ 3
2 ×

1
n . Now we compute

1 ≥ cos 2πnα = cos 2π(nα− q) = cos 2π|nα− q| ≥ cos 3π
n

which proves that the closure Cl({cos 2πnα | bn ∈ L(α)}) consists of a unique limit point
and of infinitely many isolated points. This is not a semialgebraic set since the semialgebraic
sets on the reals are finite unions of intervals. J

Now we state the main result of this section (for the proof of this theorem, see the
Appendix).

I Theorem 16. There is a language L ⊆ Σ∗ and a morphism ϕ : Σ∗ → Qn×n, assigning an
orthogonal matrix to every word of Σ∗, such that (i) L is the complement of a context-free
language (ii) the topological closure Cl(ϕ(L)) is not semialgebraic.
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A Appendix

Proof of Theorem 1: Since the function f is continuous, the inverse image of Cl(f(ρ)) is
closed, i.,e., Cl(ρ) ⊆ f−1(Cl(f(ρ))) holds which yields f(Cl(ρ)) ⊆ Cl(f(ρ)). Now we prove
the opposite inclusion. Consider an element A ∈ Cl(f(ρ)). It is the limit of a sequence
M1,n · · ·Mk,n where (M1,n, · · · ,Mk,n) ∈ ρ for n ≥ 0. Because C is a compact set, there
exists a subsequence (M1,ni , · · · ,Mk,ni) ∈ ρ, i.e., an infinite sequence of strictly increasing
indices ni which converges to a limit point (A1, · · · , Ak) ∈ Cl(ρ). By continuity we have
f(A1, · · · , Ak) = A which shows that Cl(f(ρ)) ⊆ f(Cl(ρ)). J

Proof of Theorem 7: It is clear that Cl(〈E〉) is a subgroup of orthogonal matrices, say G.
By [7, Thm 5, p. 133] this group is the zero set of all polynomials p[x1,1, . . . , xn,n] satisfying
the conditions where I denotes the identity matrix

p(I) = 0 and p(gX) = p(X) for all g ∈ G (14)

Let us verify that we may assume the above condition is satisfied by all e ∈ E. First, if
it is the case, it is satisfied for all elements of the group 〈E〉. Now observe that condition
(14) defines a linear constraint on the coefficients of the polynomial: if V ∈ Rd is the vector
of coefficients of the polynomial p then the above equality can be expressed as a system of
linear equations

MV = V

where the matrix M depends on g only, say M = Mg. Let

lim
i→∞

gi = g and MgiV = V for all i ≥ 0

Then by continuity we have MgV = V .
The last assertion concerning the case where the coefficients are rational can be found in

[3, Th. 3.1]. J

Proof of Proposition 8: Because the semialgebraic sets are closed under finite union, it
suffices to consider the case where the language is of the form (10). For t = 0, . . . , p set
vTt = (vt,1, . . . , vt,k) and consider the orthogonal matrices

gt =


ϕ(w1)vt,1 0 0 0

0 ϕ(w2)vt,2 0 0
...

...
...

...
0 0 0 ϕ(wk)vt,k


Set G = {gi | i = 1, . . . , p}. In virtue of Theorem 6 and Proposition 2 the set Cl(G∗) is
semialgebraic and it is effectively eventually definable if the coefficients of the quantum
automata are rational. By Corollary 2 we have

Cl(g0G
∗) = g0Cl(G∗)

and by Proposition 3 this product is semialgebraic (resp. and effectively eventually definable
if the coefficents of the quantum automaton are rational). By Proposition 5, Cl(ϕ(L)) is
semialgebraic (resp. and effectively eventually definable if the coefficients of the quantum
automaton are rational). In the latter case the L−Q-intersection is decidable by Proposition
1 which completes the proof. J
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Proof of Theorem 16: Consider a one tape Turing machine implementing the following
procedure for recognizing the language L(α) defined in (13):

Input bn
A← α[1 + 2`(n)]
F ← 0
for q = 1 to n, if |A− q

n | <
1
n2 then F ← 1

if F = 1 then write abn,
position the head on the rightmost occurrence of b,
change to a new state q̂, move the reading head to the leftmost cell while staying in state q̂
stop when reaching the occurrence a.

We know that the computation histories of a Turing machine, i.e., the set of sequences of
configurations properly separated by a new symbol is, as a language, the intersection of two
linear context-free languages (see, for instance, [5], Lemma 8.6). Let Hist(bn) be the history
associated to the input bn. Let Γ be the disjoint union of the symbols comprising the input
and tape alphabets along with the states including the special state q̂. With α = arctan 3

4
we get the orthogonal matrix

Mα =
( 3

5
4
5

− 4
5

3
5

)
Define the morphism ϕ : Γ∗ → O2 by

ϕ(c) :=
{

I if c ∈ Γ \ {q̂}
Mα if c = q̂

By applying the result mentioned above to the Turing machine implementing the procedure
for recognizing the language L(α), we have that there exist two linear context-free languages
L1 and L2 such that

Hist(Lα) = L1 ∩ L2 = (Lc1 ∪ Lc2)c

Since L1 and L2 are linear and deterministic context-free, Lc1 ∪ Lc2 is linear (in general
non-deterministic) context-free and thus Hist(Lα) is the complement of a linear context-free
language. But then

ϕ(Hist(Lα)) = {Mn
α | bn ∈ Lα}

We conclude by applying Lemma 15. J
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