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Abstract: During recent years there has been a growing interest in Brain Computer Interface (BCI) systems as an 
alternative means of interaction with the external world for people with severe motor disabilities. The use of 
the P300 event-related potentials as control feature allows users to choose between various options (letters 
or icons) requiring a very short calibration phase. The aim of this work is to improve performances and 
flexibility of P300 based BCIs. An efficient BCI system should be able to understand user's intentions from 
the ongoing EEG, abstaining from doing a selection when the user is engaged in a different activity, and 
changing its speed of selection depending on current user's attention level. Our self-paced system addresses 
all these issues representing an important step beyond the classical synchronous P300 BCI that forces the 
user in a continuous control task. Experimentation has been performed on 10 healthy volunteers acting on a 
BCI-controlled domestic environment in order to demonstrate the potential usability of BCI systems in 
everyday life. Results show that the self-paced BCI increases information transfer rate with respect to the 
synchronous one, being very robust, at the same time, in avoiding false negatives when the user is not 
engaged in a control task. 

1. INTRODUCTION 

A BCI system allows to control simple devices, 
including communication facilities, without using 
muscles and peripheral nerves (Wolpaw et al. 2002); 
in particular an EEG based BCI system is able to 
understand user's intentions translating his brain 
activity into a control signal (Wolpaw and 
McFarland, 2004). Progresses made in recent years 
have brought these systems to be considered as an 
alternative means of communication and control in 
situations where environmental conditions can 
transiently compromise the mobility of the user, and 
not only for people with severe disabilities. The 
P300 event-related potential is typically a large and 
positive deflection in the EEG activity (ca. 10-
20µV) with a latency ranging between 250 and 400 
ms (Polich et al. 1995, Fabiani et al.1987). It is 
elicited when the subject recognizes a particular 
stimulus (Target stimulus) presented within a train 
of frequent stimuli (NoTarget stimuli). An average 
of several epochs related to a specific target stimulus 

is required to distinguish the P300 potential from the 
spontaneous EEG activity. For this reason classic 
P300 based BCI systems provide a well-defined 
number of stimulation repetition at the end of which 
a selection is made; this last issue is the cause of 
obvious drawbacks because the user is continuously 
engaged in controlling the interface and his 
distractions produce wrong classifications. 
Moreover, the number of stimuli repetitions needed 
to make a selection (and therefore time) depends on 
the user's attention level; few sequences are needed 
if the user is very concentrated, but fatigue or 
distractions may cause a significant decrease in 
performance and in this case it is preferable that the 
system refrains from making selections avoiding a 
wrong classification. This work presents a 
methodology for the classification of EEG signals 
related to P300 potentials which allows the user to 
divert attention from the stimulation interface, 
suspending the control, without incurring in a wrong 
classification (selection). In order for the BCI 
systems to move from research labs to people's 
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homes it is absolutely necessary that they are able to 
recognize user's state without any outside input; in 
particular they have to detect user’s control state or, 
in other words, to distinguish when the user intends 
to operate through a control interface from when he 
is engaged in a different task and therefore to avoid 
making any selections. This is why in recent years 
many research groups have been involved in the 
problem of a self-paced BCI, both for the motor 
imagery (Mason and Birch, 2000; Millan and 
Mourino, 2003; Townsend et al, 2004) and for the 
P300-based systems (Zhang et al, 2008). 

In this work we show a simple and fast self-
paced system based on an heuristic method; we 
allow the system to recognize user's status, 
introducing thresholds in the classifier. Moreover the 
choice of Target stimulus become dynamic and this 
allows system to improve its selection speed 
depending on the user’s ability and attention level. 
For this reason particular attention will be also put 
on system performances in terms of information 
transfer rate (ITR) and accuracy. Another important 
thing to emphasize is that we conducted our 
experiments in an environment completely operated 
by the BCI system (Cincotti et al. 2008) and we 
based user’s task on real life situations. This is 
because we want to demonstrate the feasibility of 
using these systems in everyday life. 

2. MATERIALS AND METHODS 

For the aim of acquisition protocol we 
investigated the use of P3Speller application 
(Farwell and Donchin, 1988) provided with the 
BCI2000 framework (Schalk et al. , 2004) to control 
an home automation system. We organized 8 
different stimulus classes in a 4 by 4 matrix, each 
consisting of a row or a column. 

Matrix elements were 16 simple B&W icons (in 
order to minimize the variability and possible VEPs 
due to a high variety of colors and load information 
of each icon) representing the actions that the user 
could perform on the environment (e.g. light control, 
DVD player, webcam for remote monitoring, mobile 
phone and opening the door). Stimulation consisted 
in a random intensifications of each stimulus class, 
with a duration of 125ms each one. Inter Stimulus 
Interval (ISI) was set to 125ms, so 250ms lag 
between two stimuli.  

We distinguished two different states in which 
the user can be: the Control State, during which 
he/she was attending to the stimulation because he 
intended to exercise control over the surroundings 

through the interface; and the NoControl State, 
during which the user was engaged in another task 
and then he wanted the system refrained to make 
decisions. The EEG signal was reorganized in 
overlapping epochs representing the 800 ms time 
intervals immediately following the onset of each 
stimulus; we can distinguish the epochs acquired 
during Control trials in Target Epochs and NoTarget 
Epochs. Target Epochs relate to the onset of the row 
or the column stimulus containing the icon that the 
user intends to select, while NoTarget are related to 
no relevant stimuli. Then epochs were grouped into 
sequences; a sequence denotes a single presentation 
of each stimulus class on the control interface; in 
this case a sequence consisted of 8 epochs, one for 
each stimulus class of the interface. A single 
sequence lasted 2 seconds. With the term Trial we 
refer to a set of sequences at the end of which a 
selection is made. Between 2 Trials we took 4 
seconds during which the system presented to the 
users the Target icon. All the icons on the interface 
were proposed as a Target to the subject with the 
same frequency and this because we wanted that 
each stimulus was equally likely for subsequent 
analysis. Finally, a Run consists of a series of trials 
at the end of which data acquisition is stopped.  

2.1 Data acquisition Protocol 

10 volunteers participated to data acquisition 
protocol (4 female and 6 male) aged between 23 and 
38 years; 5 subjects had already experience with the 
BCI systems. Scalp EEG data were acquired from 
each subject during BCI sessions using the 
g.MobiLab device from g.Tec (Austria, 256Hz). The 
EEG was recorded from 8 Ag-AgCl electrodes : Fz, 
Cz, Pz, Oz, P3, P4, PO7 and PO8. This channel set 
represents the union of the classical channels used to 
extract the P300 response (Fz, Cz and Pz) with 
channels in the posterior regions that have strong 
correlation with desired matrix target (Krusienski et 
al. 2006). 

Each subject completed 2 recording sessions, we 
used collected data for subsequent off-line analysis 
and during recording session subject had not any 
feedback about classification results. The first 
recording session included a total of 8 runs, the first 
2 compounded of 8 trials each during which the 
subject was asked to always exercise control on the 
interface; the number of stimulation sequences per 
trial was fixed a priori to 10. Over the last 6 runs 
Control Trials and NoControl Trials were alternated 
for 10 trials in total. During the NoControl Trials the 
subject was asked to focus the eyes on a fixation 



 

cross in the center of the stimulation interface. This 
is because we wanted that the subject was not 
completely immune to the stimulation even when he 
was in the NoControl state. It is assumed that a BCI 
user can’t move his head or eyes to ignore the 
stimulation, so it is essential that the NoControl state 
is robust to random stimuli which the user does not 
actually paying attention to. 

The second session provided 2 runs in Control 
State to verify the subject's attitude to control the 
interface using the P300 potential, and 6 runs in 
which Control trials and NoControl trials were 
alternated, however we considered different 
NoControl tasks; in fact, the last 6 runs can be 
divided into 2 groups of 3 runs each: 
 Control and View: The subject during the 

NoControl Trials was watching a video on the 
other half of the screen. 

 Control and Answer: During the NoControl 
trials the subject had to do computation as 
quickly as possible looking at the fixation cross 
at the center of the interface. 

Following this approach the data set contains 
NoControl trials representing real situations in 
which the user turns his attention elsewhere or 
speaks with another person.  

2.2 Features Extraction and 
Classification 

Signal preprocessing is necessary before perform 
the classification. In particular, the EEG signal was 
divided into overlapped epochs of 800 ms starting 
from the onset of each stimulus, and then each epoch 
was down-sampled at 85 Hz. Such down-sampling 
reduces the data size and at the same time speeds up 
the ensuing EEG processing significantly. Then, 
EEG epochs were reorganized into a three-
dimensional array: each 2D matrix of the array 
represents a single epoch related to a single stimulus, 
where rows represent acquisition channels and 
columns correspond to samples of each epoch. 

Despite this first preprocessing the amount of 
data was still significant and a further reduction in 
features space was performed using the Stepwise 
Linear Discriminant analysis (SWLDA). Stepwise 
Linear Discriminant analysis (Draper and Smith, 
1981) is an extension of Fisher’s linear discriminant 
(FLD, Fisher 1936) that performs feature space 
reduction by selecting suitable features to be 
included in the discriminant function. Farwell and 
Donchin first introduced this method for classifying 
P300 features into EEG signal (Farwell and 

Donchin, 1988); Krusienski et al. confirmed that this 
simple technique is really efficient for online 
communication (Krusienski et al., 2008). We ran the 
stepwise function on a testing data set including 
NoControl trials. We assigned a label equal to zero 
to the NoTarget and NoControl epochs while label 
was equal to 1 for Target epochs. Using SWLDA, 
the final discriminant function was restricted to 
contain a maximum of 60 features. Nonzero weights 
were assigned to these features, w. Then the scores 
values for each epoch were calculated as:  
 

௝ݕ ൌ෍ݓ ∙ ௜݂ ൅ ܾ   ሺ1ሻ
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Where i denote all features related to single 
stimulus j. It is assumed that a P300 is elicited for 
one of the four row/column intensifications during 
Control trials, and that the P300 response is invariant 
to row/column stimuli, the resultant classification is 
taken as the maximum of the scored feature vectors 
for the respective rows, as well as for the columns: 
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The icon that appears at the intersection of the 
predicted row and column in the matrix is the one 
chosen. 
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2.3 Threshold values 

Self-paced control is based on the introduction of 
some thresholds in the classifier; the classification 
was performed as explained before but the system 
will refrain from making a selection until a row and 
a column scores exceeds the threshold value. The 
threshold values were chosen through a procedure 
that relies on the use of ROC curves. In particular 
we calculated the scores value on the Target, 
NoTarget and NoControl epochs. A normal 
distribution well fit the scores distributions and to 
confirm this we ran a t-test on the 3 different score 
distributions for each subject. T-test results show 
that the hypothesis of normal distribution is true 
with 95% confidence level. Next step was 
investigating if the 3 score's distributions can be 
considered different; for this reason we ran the 
Kolmogorov-Smirnov test on each pair of samples. 



 

Table 1 report the results of this test; the hypothesis 
of different distribution was confirmed with the 95% 
confidence level for all subjects except one (Subject 
1: No Target vs NoControl). For this reason it is 
necessary to take account of NoControl trials for 
thresholds extraction.  

 

Table 1: Kolmogorov-Smirnov test on each pair of sample 
 

   Target vs 

NoTarget 

Target vs 

NoControl 

NoTarget vs 

NoControl 

SUBJ 1  8,75E‐192  9,65E‐196  0,44287182 

SUBJ 2  1,74E‐154  1,84E‐136  6,99E‐04 

SUBJ 3  8,52E‐256  6,38E‐205  2,01E‐21 

SUBJ 4  2,74E‐213  1,79E‐182  2,82E‐11 

SUBJ 5  1,24E‐198  3,95E‐159  2,48E‐10 

SUBJ 6  1,81E‐255  3,42E‐207  9,35E‐19 

SUBJ 7  1,77E‐277  2,77E‐241  2,67E‐23 

SUBJ 8  2,34E‐177  4,52E‐134  8,90E‐22 

SUBJ 9  1,04E‐147  2,30E‐107  2,39E‐13 

SUBJ 10  6,67E‐178  1,14E‐126  1,31E‐24 

 

 

The threshold values were chosen according to the 
number of stimulation sequences accumulated in the 
trial. In fact the scores for the general stimulus i at 
the sequence s will be defined as: 
 

௜ܿܿܽݕ
௦ ൌ ௜ܿܿܽݕ

௦ିଵ ൅ ௜ݕ
௦ ݏ ൌ 1,2, ݍ݁ܵ݉ݑܰ…  

 

݅ ൌ  (2)    ݏܰ…,1,2
 
Where  ݕ௜

௦  is given by (1), Ns = 8 for the domotic 
interface and the number of stimulation sequences 
was fixed to 10. 
Subsequently, for each sequence we looked for the 
maximum score of the row stimuli and the 
maximum score of the column stimuli, and then to 
them was assigned a label equal to 1 if the maximum 
scores were relative to a Target stimulus and equal 
to 0 if it referred to NoTarget or NoControl stimuli. 
In this way we are sure to include the maximum 
score values related to NoControl trial in ROC 
curves training, so threshold values taking into 
account possible artifacts that may occur when the 
subject was not engaged in BCI control. Now ROC 
curves can be plotted for each sequence using the 
corresponding scores. An example is shown in 
figure 1 where it is evident that when the number of 
sequences accumulated in the trial increases the 
ROC curves assume an ideal trend. Finding a 
tradeoff between false positive rate and false 
negative rate, is necessary in order to choose the 

threshold. We have chosen to set the maximum 
False Positive Rate (FPR) to 0.05 and the lowest 
True Positive Rate (TPR) to 0.5, so the threshold 
will be chosen at the intersection of the ROC curve 
to the straight line joining points (0.1) and (0.05 and 
0.5) . 

Figure 1: Area under the ROC curve: thresholds are 
identified from a tradeoff between the True Positive Rate 
(yellow area) and False Positive Rate(blue area). Figure 
shows only the first five stimulation sequences, over the 
trend is approximately the same. 

3. RESULTS 

This section describes the results obtained 
through the off-line analysis performed on data 
acquired during the 2 recording sessions. Then we 
compare our self-paced system with a classic P300 
based BCI in terms of information transfer rate 
considering only the Control trials. 

3.1 Off-line analysis 

An off-line cross validation was performed on 
the data collected during recording sessions. In 
particular, we divided the data into a training data 
set consisting of 3 runs from the first session and 4 
runs from the second session. In this way we 
included in the training data set NoControl trials 
related to all 3 different NoControl tasks. The 
remainder of the data set was used as a test data set. 
Specifically, the train data set was used for features 
extraction and to select the threshold values. The 
figure 2 shows the results obtained in cross 
validation. 

There are 5 different classification outcomes, 
depending on the user’s state. 
 

During Control trials we can distinguish 
between: 
 

 Correct Classification: the target is 
correctly recognized; 



 

 Wrong Classification: there’s a target 
misclassification; 

 Missed Classification: the thresholds are 
never exceeded, for this reason the system 
abstains from take a decision. 
 

During NoControl trials possible classification 
outcome can be: 
 

 Abstention: the system properly refrain 
from taking decisions; 

 Missed Abstention: the thresholds are 
exceeded and the system wrongly makes a 
choice. 

Figure 2: Results of offline cross validation for Control 
and No-Control task 
 

Figure 2 also shows the averaged number of 
sequences needed to make a selection when the user 
was in the Control state. From the graph it can be 
see how the system was proved to be robust during 
NoControl trials in fact Abstentions reached an 
average of 98%. On the other hand there is a high 
percentage of abstentions during the Control trials 
(average 8,4%), this may seem an inconvenience but 
it really represents the system's ability to avoid 
misclassification, because the percentage of wrong 
classification did not exceed an average of less than 
3%. We used the first 2 runs of the first 2 sessions, 
in which the subject was always in a Control state, to 
assess his ability with a classic P300-based BCI. We 
found the ‘optimal’ number of stimulation sequences 
just doing a cross validation offline: particularly we 
used 2 runs to train SWLDA and to extract 
significant features and the other 2 to test these 
parameters, then we averaged the results of 
classification for each possible combination of 
training and testing data set. The figure 3 shows the 
trend of the percentages of correct classification 
based on the number of stimulation sequences 
accumulated for each subject. The black line 
represents an accuracy of 95%, which corresponds 
to a false positive rate of 5% that is the maximum of 
false positive allowed in the self-paced system 

through ROC curves. We used these results to 
estimate the information transfer rate. 
 

 

Figure 3: Results of offline cross validation for Control 
task depending on number of stimulation sequences. 

3.2 Information transfer rate (ITR) 

To assess the efficiency of the two systems in 
terms of information transfer rate we used the 
definition of bit rate given by Wolpaw et al.(2000) 
and widely used in BCI systems, this is based on the 
definition of information rate proposed by Shannon 
for noisy channels with some simplifying 
assumptions: the symbols have all the same a priori 
occurrence probability ݌ ൌ 1/ ௦ܰ, the classifier 
accuracy P is the same for all target symbols and 
that the classification error 1 െ ܲ is equally 
distributed amongst all remaining symbols.  

ௐ௢௟௣௔௪ܤ ൌ logଶ ௦ܰ ൅ ܲ logଶ ܲ ൅ ሺ1 െ ܲሻ logଶ ቈ
ሺ1 െ ܲሻ

௦ܰ െ 1
቉    ሺ3ሻ 

This express the bit rate or bit/trial for each 
selection. The information transfer rate (bits/minute) 
is equal to BWolpaw multiplied by speed of selection S 
(Selection per minute). In turn the speed selection 
for P300-based system depends on the number of 
sequences of stimulation used and when we 
calculated it we have taken account of the 4 seconds 
between a trial and the other which are used to 
present the results of the classification. The Table 2 
shows the values of ITR for each subject calculated 
using the average number of sequences and the 
percentage of accuracy obtained by off-line analysis 
both for self-paced BCI and for the synchronous 
one. In particular, for the synchronous system we 
imposed the number of stimulation sequences that 
allowed subject to achieve 95% of accuracy, if this 
did not happen we have used the minimum number 
of sequences that produced the highest accuracy. 



 

Table 2: ITR in both modalities 
 

    SYNC   SELF 

SUBJ 1  12,39  4,24 

SUBJ 2  5,08  11,37 

SUBJ 3  16,81  16,36 

SUBJ 4  12,01  11,87 

SUBJ 5  11,03  18,00 

SUBJ 6  16,81  15,00 

SUBJ 7  14,01  16,06 

SUBJ 8  5,98  15,38 

SUBJ 9  4,67  10,17 

SUBJ 10  5,63  11,83 

Mean  10,44  13,03 
 

4. CONCLUSIONS 

The introduction of a threshold based 
classification system in the P300-based BCIs allows 
the user to divert his attention from control interface 
at any time and without the use of external inputs, 
and it also brings positive effects on the bit rate that 
is incremented when the user is in the best control 
conditions. A further advantage consists in 
increasing the accuracy of the system by preventing 
errors through abstentions; in this way the BCI 
system acquires more dynamicity and flexibility by 
reducing its gap with traditional input interfaces. 
Future applications could consider the use of 
dynamic thresholds fitting the user's current action 
or the environment state: the system would be able 
to automatically identify the user's most likely action 
and facilitate its selection by reducing the threshold 
values for that item. This work represents a step 
towards the use of the BCI systems as an aid for 
functional communication and environmental 
control for people with severe motor disabilities or 
as alternative means when the usual channels of 
communication and interaction are temporarily 
compromised. 
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