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ABSTRACT

The popularity of mobile robots has been steadily growing, with these robots being increas-

ingly utilized to execute tasks previously completed by human workers. Bipedal robots, a

subset of mobile robots, have been a popular field of research due to the large range of tasks

for which they can be utilized. For bipedal robots to see a similarly successful integration

into society, robust autonomous navigation systems need to be designed. These autonomous

navigation systems can generally be divided into three components: perception, planning,

and control. A holistic navigation system for bipedal robots must successfully integrate all

three components of the autonomous navigation problem to enable robust real-world nav-

igation. Many works expand on fundamental planning algorithms such as A*, RRT, and

PRM to address the unique problems of bipedal motion planning. However, many of these

works lack several components required for autonomous navigation systems such as real-time

perception, mapping, and localization processes. Thus, the goal of this research is to develop

a real-time navigation system for bipedal robots in dynamic environments which addresses

all components of the navigation problem. To achieve this: a depth-based sensor suite was

used for obstacle segmentation, mapping, and localization. Additionally, a two-stage plan-

ning system generates collision-free and kinematically feasible trajectories robust to unknown

and dynamic environments. Finally, the Digit bipedal robot’s default low-level controller is

used to execute these feasible trajectories. The navigation system was first validated on a

differential drive robot in simulation. Next, the system was adapted for bipedal robots and

validated in hardware on the Digit bipedal robot. In both simulation and in hardware ex-

periments, the implemented navigation system facilitated successful navigation in unknown

environments and in environments with both static and dynamic obstacles.
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CHAPTER 1

INTRODUCTION

Bipedal robots have been a popular field of research, due to the large range of tasks they

can be utilized in. The general humanoid shape of bipedal robots should allow them to be

better integrated into a society designed for humans. However, for bipedal robots to be fully

integrated into society, robust autonomous navigation systems need to be designed. These

systems can generally be divided into three stages: perception, planning, and control, where

it is only with the combination of these three stages into a single navigation system in which

bipedal robots can truly integrate into human society.

Thus, autonomous bipedal navigation requires the implementation of a holistic navigation

system to enable the exploration of unknown and dynamic environments. This navigation

system must combine the three components of autonomous navigation – perception, plan-

ning, and control – into a single navigation system. A robust perception system is required

that is capable of extracting useful obstacle and environment structure information. This

environment information must then be used to generate useable representations of the global

and local environment for planning. Using the captured environment information, a plan-

ning system must generate global paths and local trajectories that are robust to unknown

environments and dynamic obstacles. Furthermore, planning must respect the kinematic

constraints of the robot while avoiding obstacles to ensure safe and feasible navigation. Fi-

nally, these trajectories must be executed with a low-level controller that maintains safe and

stable walking gaits. The combination of these capabilities will enable the safe navigation of

bipedal robots in complex environments.
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This thesis focuses on the implementation of a real-time navigation system for the Digit

bipedal robot with the goal of achieving robust autonomous navigation in unknown and

dynamic environments. The system utilizes two Depth cameras and a LiDAR sensor for

perception. These sensors are used to map the environment using global and local cost

maps which capture large-scale environment structure and local dynamic obstacles. During

navigation, odometry is calculated for robot localization using LiDAR Odometry and Map-

ping to enable accurate, long distance operation. Using the estimated odometry, planning

within the global and local maps is achieved through a two-stage planner which generates

collision-free global paths and obstacle avoiding local trajectories. In particular, a D* Lite

global planner, which is capable of fast re-planning, is used to generate high-level paths in

the global costmap. Next, a Timed-Elastic-Band local planner then follows the global path

through optimization-based trajectory generation that respects kinematic, velocity, acceler-

ation, and obstacle avoidance constraints. This local trajectory is executed by generating a

sequence of velocity commands sent to Digit’s walking controller. The combination of these

components addresses the three parts of the autonomous navigation problem, and culminates

in a real-time navigation system which can navigate bipedal robots through unknown and

dynamic environments.

1.1 Related Works

Over time, many works have expanded on the path planning methods of A* [4, 15, 14, 10, 16],

Rapidly-exploring Random Tree (RRT) [5, 1, 30], and Probabilistic Roadmap (PRM) [34]

to address the unique problems of bipedal motion planning and footstep planning. However,

on their own, these motion planning approaches lack several components required to create

a holistic autonomous navigation system such as real-time perception, mapping, and local-

ization processes. Furthermore, only few works expand further to integrate these bipedal

motion planning methods into robust bipedal navigation systems. However, many of these

approaches still are unable to address components of the autonomous navigation problem

required to create holistic autonomous bipedal systems such as on-robot perception systems

[28], localization methods [13], robustness to dynamic obstacles [31, 23], or validation in
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hardware. Before beginning to introduce the navigation system described in this thesis,

some previous works in the field of path planning, motion planning, and bipedal navigation

are discussed.

1.1.1 Path Planning

Two common approaches to the path planning problem are through heuristic-based algo-

rithms and sampling-based algorithms. Of the heuristic-based algorithms, one of the most

foundational path planning approaches is that of A* [11], with many robot motion planning

approaches using A* directly or one of its many successors. A* is a graph search algorithm

that generates a least-cost path in a weighted graph. The A* path planner applies a heuris-

tic, an estimate of the path cost to the goal state, to the planning problem, which allows it

to direct the search towards the most relevant states. When this heuristic is admissible, it

guarantees the found path cost is optimal. While A* works well for generating a path in a

known, static graph, many real-world scenarios often provide a graph that is either incom-

plete or changes over time. The authors of [7] discuss the limitations of the initial A* path

planner and describe several successor approaches that attempt to address the limitations

of A*. First, it is often the case that the initial graph becomes invalid during navigation,

to address this incremental replanning algorithms are introduced. Instead of completely

replanning from scratch once the initial graph becomes invalidated, incremental replanning

methods such as Focussed Dynamic A* (D*) [40], D* Lite [20], and Delayed D* [8] attempt

to modify the existing path to account for graph changes. On the other hand, in many cases

a quick reaction from the robot is necessary which can be infeasible when the planning space

is large and complex. To address this issue, anytime planning methods such as Anytime

Repairing A* (ARA*) [24] first generate a quick, suboptimal solution which is refined over

time. The separate benefits of incremental replanning methods and anytime methods led

to the creation of anytime replanning algorithms such as Anytime Dynamic A* (AD*) [25]

which combines the benefits of D* Lite with those of ARA*.

While these graph-based search algorithms generate optimal paths, they require dis-

cretization of the environment and tend to degrade when utilized in high dimensions. Sampling-
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based planning is another family of path planning algorithms that sample the configuration

space for planning. One of the most popular sampling-based planners is Rapidly-exploring

Random Trees (RRT) [22]. RRT is a single-query planner, which incrementally grows a

tree from a start position to a goal position. To grow this tree, a random configuration

is sampled from the configuration space. If the sampled configuration is in free space, a

connection to the tree is made from the sampled configuration to the closest vertex of the

tree. The simplicity and properties of RRT have made it a popular basis for further path

planning algorithms. For example, RRT*, which is introduced in [17], improves on the origi-

nal RRT algorithm by introducing a near neighbor search and tree rewiring operation which

allows the guarantee of asymptotic optimality. Several approches build off RRT and RRT*

to tackle additional problems in planning such as Kinodynamic RRT* to apply kinodynamic

constraints to planning; execution extended RRT (ERRT) [3] and Dynamic RRT (DRRT)

[6] which adapt RRT for real-time and dynamic scenarios; and many others. Another group

of popular sampling-based planners is those based on Probabilistic Roadmap (PRM) [18].

While RRT is considered a single-query planner, PRM is a multi-query planner that is com-

prised of two processes. First, a learning phase samples the configuration space to generate

a roadmap, or forest, of the space, then a query phase connects the start and goal positions

to the roadmap. Like A* and RRT, PRM is used as the foundation for a plethora of other

planning algorithms such as PRM* [17], Visibility PRM [32], Flexible PRM [2], and more.

1.1.2 Bipedal Robot Motion Planning

At the root of the autonomous navigation problem, path planning exists as a core com-

ponent to achieving robust navigation systems for bipedal robots. The ability to navigate

through the environment in a safe and collision-free manner is essential. The fundamental

path planning algorithms of A*, RRT, PRM and their derivatives have laid the foundation

of path planning for robots. Many existing works use these path planning algorithms to

design motion planning methods for bipedal robots. For example, the authors of [4] adapt

A* for indoor, goal directed navigation for legged robots. Using A* in a 2D environment

representation, they perform a search over the space of valid footsteps that the robot can
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perform. Following this sequence of footsteps results in successful navigation of legged robots

over elevated and rough terrains. Additionally, the method introduced in [15] take on a sim-

ilar approach but also consider the energy cost associated with navigation when planning

footsteps to achieve a lowest energy cost path. Furthermore, generating optimal paths when

planning over long distances can take large amounts of time. However, it is often required to

place a limit on the planning time. To address this, [14] introduces a method to use anytime

path planners to generate initial suboptimal paths that are bound with restricted planning

times. In other cases, replanning of a generated path is often necessary if the robot deviates

from the path during navigation, the environment changes over time, or terrain is poorly ob-

served during navigation. The authors of [10] address this by using a D* Lite based planner

to replan global paths and planned footsteps when deviations occur. However, all of these

methods operate in a 2D representation of the environment, which can be insufficient in

representing complex environments. The method introduced in [16] addresses this by using

a 3D map of the environment which is able to sufficiently represent complex terrains.

While these motion planning methods, among many others, address several essential

problems in bipedal robot navigation, they still miss several key features that are necessary

for a real-time autonomous navigation system such as real-time planning, robustness to

dynamic environments, and the ability to plan in unknown environments. Furthermore, these

motion planning methods alone are not sufficient to enable robust navigation, bipedal motion

planning methods must be integrated with perception, mapping, localization, and control

methods to create holistic navigation systems. Several works expand on these initial motion

planning approaches to integrate more of these components of the navigation problem. The

authors of [28] address this by incorporating an external vision system to capture obstacle

and robot information for environment mapping and robot localization. However, requiring

an external vision system makes applying the motion planning approach infeasible in many

scenarios. The work shown in [31] addresses this by including an onboard laser range sensor

for perception. However, the motion planning method implemented is only shown to be

capable of planning in static environments. Another approach by [13] uses a forward facing
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RGB-Depth camera and shows successful navigation results on the Lola robot navigating

in both static and dynamic environments. However, no localization method is considered

which may cause problems for long distance navigation. A different approach by [23] also

uses a forward facing RGB-Depth camera and shows impressive motion planning and control

capabilities in static, height-constrained environments. However, this work also does not

consider localization and does not consider environments with dynamic obstacles.

In summary, while there exists a large basis for bipedal motion planning, many existing

approaches to creating navigation systems lack one or more essential components of the au-

tonomous navigation problem. Thus, this thesis introduces work with the goal of addressing

all components of the autonomous navigation problem. The available hardware and simu-

lation tools used during development and validation are first discussed in Chapter 2. Next,

initial system architecture considerations are presented in Chapter 3. The perception pro-

cesses used are then explored in Chapter 4, starting with the introduction of what sensor

data is available for navigation and which pre-processing methods are applied to this data.

Then, the chapter introduces how the available sensor data is used for obstacle segmenta-

tion, robot localization, and environment mapping. Afterwards, Chapter 5 explains how the

perception results are used to facilitate real-time motion planning. Finally, experimental

results in both simulation and hardware are discussed in Chapter 6 and concluding remarks

are presented in Chapter 7.
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CHAPTER 2

HARDWARE AND SIMULATION

In this chapter, we introduce the bipedal robot used in this research called Digit, which is

developed by Agility Robotics, along with the simulation configuration and the Turtlebot3

differential drive robot. Additionally, Digit’s equipped sensor suite is explored and the

simulated sensor suite is explained.

2.1 Hardware

2.1.1 Digit

Digit is a bipedal robot developed by Agility Robotics. Designed as the successor to the

legged robot Cassie, Digit comes with 20 actuated joints and 30 degrees of freedom. Addi-

tionally, Digit comes with a robust sensor suite for perception and state estimation. Digit

comes equipped with one RGB camera, one RGB-Depth camera, three Depth cameras, one

LiDAR sensor, one IMU (inertial measurement unit), and one GPS, with the configuration

of the perception sensors shown in Fig. 2.1. Out of this sensor suite, the current navigation

system only makes use of two depth cameras and the LiDAR sensor.

2.1.2 Depth Cameras

Digit comes with four cameras with depth capabilities: one Intel RealSense D435 RGB-

Depth camera and three Intel RealSense D430 Depth cameras. The RGB-Depth camera is

located at the top of Digit’s torso and is placed at a downward angle of 45o. This camera

is capable of collecting both visual RGB images and 3D depth point clouds from in front

7



Figure 2.1: The Digit bipedal robot from Agility Robotics. The 20 joints of the Digit bipedal
robot (left and center). Coverage of the perception sensors provided in Digit’s sensor suite
(right).

of the robot. Additionally, there are three depth-only cameras that are placed along Digit’s

pelvis. These three depth cameras are configured as a forward, downward, and backward

depth camera each oriented at 45o, 90o, and 135o, respectively. These cameras capture depth

information from directly in front, below, and behind the robot with a field of view of 85o

x 58o in the horizontal and vertical axes and a reported operating range of 0.2 m to 10.0

m. Due to the placement of these depth cameras, blind spots exist outwards from the right

and left sides of Digit. Out of these four depth capable cameras, the forward and backward

pelvis depth cameras are utilized in the navigation system.

2.1.3 LiDAR Sensor

In addition to the depth cameras available on Digit, a Velodyne VLP-16 LiDAR sensor

attached on top of Digit’s torso is used to capture depth information from the environment.

The LiDAR sensor uses 16 laser channels that scan in a circular pattern to achieve a field of

view of 360o x 30o in the horizontal and vertical axes. The LiDAR sensor is used for accurate
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depth measurements over long distances with a reported operating range of up to 100 m.

Due to the LiDAR’s placement on top of Digit’s torso and the small vertical field of view,

the LiDAR sensor is not able to receive ground detections until 5.5 m away from the robot

in all directions.

2.2 Simulation

During development the navigation system is not tested directly on the Digit robot, but

rather first validated in simulation. Simulated environments are generated using Gazebo,

where the navigation system is executed on a simulated Turtlebot3 differential drive robot.

2.2.1 Gazebo

Gazebo is an open-source 3D robotics simulator that provides high fidelity real-world physics

simulation. Gazebo supports several physics engines such as ODE (default), Bullet, DART,

and more that allow the simulation of friction, gravity, and other forces. Simulated envi-

ronments can be constructed as Gazebo worlds allowing the simulation of many situations

such as indoor and outdoor robotic navigation. Additionally, these simulated environments

can be both static and dynamic, allowing for better representation of complex navigation

environments. Furthermore, robot and sensor models can be directly inserted into these

simulated worlds, allowing sensor measurements and real-time navigation reactions to be

tested.

2.2.2 Turtlebot3

During simulated testing, the Turtlebot3 differential drive robot was simulated in Gazebo

environments. The Turtlebot3 robot is a single-axle differential drive robot that can be

readily simulated in Gazebo. Turtlebot3 comes equipped with a Laser Distance Sensor

(LDS) and 6-DOF IMU. However, for validation on Turtlebot3 to better reflect navigation

performance on Digit, two Intel RealSense D430 depth cameras and a Velodyne VLP-16

LiDAR sensor are added to the robots simulated configuration. This setup copies the utilized

sensors on Digit’s sensor suite and mimics the configuration of Digit’s sensors in simulation.
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CHAPTER 3

SYSTEM ARCHITECTURE

In this chapter we introduce system architecture considerations. As previously mentioned,

to enable a truly autonomous navigation system many separate components must integrate

seamlessly together into one navigation system. The perception components - obstacle seg-

mentation, localization, and mapping - rely on a reliable stream of information from the

sensor suite. Mapping relies on obstacle segmentation for continuous updates of obstacle

positions in the environment and on localization for an accurate estimate of the robot posi-

tion within the mapped environment. The planning system must receive constant estimates

of the robot position from localization and requires the most up-to-date environment maps

to generate safe and optimal trajectories. Finally, the walking gait controller then relies on

planning to receive the latest trajectory to execute. In summary, a constant and reliable

communication framework is necessary for an autonomous navigation system to be feasible.

In this work, the Robot Operating System (ROS) is leveraged as the backbone middleware

to facilitate stable communication and Move Base Flex [35] is used as the communication

framework to orchestrate actions between system components.

3.1 Robot Operating System

The Robot Operating System is an open-source middleware that provides several software

packages and tools for robotics applications. ROS provides three main services for robotics

development: plumbing, tools, and community [39]. ROS provides the plumbing for a

message-passing system for inter-process communication. The general ROS communica-
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Figure 3.1: The proposed navigation system, an architecture built on top of Move Base Flex
[35]. Point cloud detections are used for obstacle segmentation by Random Sample Consensus
[9]. Global and local costmaps [26] are generated from the obstacle segmentations. LiDAR
Odometry and Mapping [41] localizes the robot. A D* Lite global planner [20] uses the global
costmap to generate an optimal, collision-free path, which is used by the Timed-Elastic-Band
local planner [36] to generate local obstacle-avoiding trajectories, which are executed through
velocity commands sent to Digit’s gait controller.

tion framework consists of nodes (processes) and topics (data streams). Processes running

as nodes can receive and and send data to other processes by publishing or subscribing mes-

sages to named data streams in the form of topics. Alongside this plumbing, ROS provides

several tools for debugging, logging, visualization, and others that aid in development. Fi-

nally, the large open-source community provides a large selection of ready to use tools and

packages for simulation, perception, mapping, planning, control, and more. Building on the

provided capabilities of ROS, the described navigation system utilizes Move Base Flex to

organize action structure and inter-process communication.

3.2 Move Base Flex

Move Base Flex is an extension to the popular move_base [27] used in the ROS naviga-

tion stack. Move Base Flex is designed to maintain high levels of flexibility and modularity

through abstraction. Built upon Move Base Flex, a high-level overview of the implemented

navigation system is shown in Fig. 3.1. First, Move Base Flex maintains an abstraction

for environment representation independence by splitting the framework into an abstract
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Move Base Flex level and a map implementation level. The abstract Move Base Flex level

defines the core functionality of the map actions, while representation specific details are

implemented in the map implementation level. Furthermore, Move Base Flex extends this

abstract implementation to planning, control, and recovery actions by implementating Ab-

stractPlanner, AbstractController, and AbstractRecovery interfaces. These implement in-

teractions between the path planner, low-level controller and recovery behavior reactions

with the Abstract Navigation Server, while planner, controller, and recovery plugins handle

implementation specific details.

3.2.1 Move Base Flex Actions

This Abstract Navigation Server defines several actions: get_path, exe_path, recovery,

and move_base that define the core operation of the Move Base Flex framework.

The get_path action computes the path from a given start position to a given goal

position. The exact planner plugin to use can be specified and a final path, associated path

cost, outcome return code, and a return message are returned.

Using an input path, exe_path obtains the controller plugin, starts the controller process,

and sends the input path to the controller. The controller executes at a set frequency,

generating velocity commands to follow the input path, directly publishing the commands

to execute on the robot. Execution returns the current robot pose, velocity, distance to the

goal position, angle to the goal target, an outcome return code, and a return message.

The recovery action executes the specified recovery strategies and returns an outcome

return code and return message.

The move_base action is a compound action that combines the execution of get_path,

exe_path, and recovery actions into one action. Given a goal position, a planner, controller,

and recovery actions, the final output is the same as the exe_path action.

3.2.2 Move Base Flex Behavior Tree

For deployment, Move Base Flex uses a flexible behavior tree representation. The Move Base

Flex behavior tree uses three different node types: leaf nodes, inner nodes, and sub-trees.
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Leaf Nodes: Leaf nodes are terminal nodes that represent either a condition to be checked

or a simple action to execute.

Inner Nodes: The inner nodes of the behavior tree connect the condition and action nodes

to create more complex workflows. Composite inner nodes can contain several children nodes

and can call them all in a particular sequence such as in parallel or sequentially. Decorator

inner nodes instead modify the function of a single child node.

Sub-Tree Nodes: Sub-tree nodes, as the name implies, execute another behavior tree

instead of a single node. In the Move Base Flex behavior tree there are three different

sub-trees used: the Navigation sub-tree, Planning sub-tree, and Control sub-tree.

1) Navigation Sub-Tree: The Navigation sub-tree first checks the validity of the start

and goal positions, ensuring both poses are not in collision. If either of the positions are in

collision, the recovery behaviors are executed and the validity of the positions is rechecked.

If all recovery behaviors are exhausted and the start or goal positions are still not valid,

navigation terminates. Otherwise, the Planning and then the Control sub-trees are executed.

2) Planning Sub-Tree: Once valid start and goal positions are received, the Planning

sub-tree is executed. The sub-tree attempts to find a valid initial path between the start

and goal positions. If no valid path exists, recovery behaviors are executed such as clearing

the map, relaxing planning constraints, or navigating away from close obstacles.

3) Control Sub-Tree: Once a valid path is received, the Control sub-tree starts the con-

troller and begins to execute the received path. Again, if any issues prevent execution of the

provided path, recovery behaviors are executed in an attempt to resolve controller issues. If

all recovery behaviors are exhausted and the path is still not executable, the Planning sub-

tree is re-executed. In parallel to the controller execution, a second planner is also started to

modify the initial path as the environment is explored to account for discovered obstacles.
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CHAPTER 4

PERCEPTION, LOCALIZATION, AND MAPPING

In this chapter, we describe the Perception system and related perception, localization, and

mapping processes applied in the proposed navigation system. The Digit bipedal robot is

equipped with a suite of depth cameras and a LiDAR sensor used for environment percep-

tion. The resultant sensor readings are first pre-processed before being used for obstacle

segmentation and mapping due to sensor range limitations and erroneous sensor readings.

Knowledge of the pose of Digit relative to the world is essential for successful navigation.

A LiDAR-based localization method is described which provides odometry estimation. For

planning, an environment representation is required which balances the need for sufficient

environment information with computational load. Using the pose estimation from local-

ization, a 2D mapping method is explored which combines raw sensor measurements with

segmented obstacles.

4.1 Perception

The perception component of this system relies on the sensor suite provided in the Digit

bipedal robot. Out of Digit’s equipped sensors, the proposed navigation system utilizes the

forward and backward depth cameras placed at Digit’s pelvis and the LiDAR sensor placed

on top of Digit’s torso.
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4.2 Point Cloud Pre-Processing

The two depth cameras collect depth information from directly in front and behind Digit.

The obtained point clouds are used to capture information about obstacles in the environ-

ment local to Digit. These depth readings are accurate within 2.0-3.0 m of Digit, while

detections farther than 3.0 m from the forward and backward depth cameras become un-

reliable, with detection accuracy dropping significantly and point cloud distortion greatly

affecting height readings. Each depth camera provides a dense 3D point cloud, where due

to the orientation of the cameras the majority of detected points lie within 1.0 m of Digit.

This results in an uneven density throughout each point cloud, with a large density of points

being focused close to Digit’s feet and a low density of points farther away from Digit. These

properties of the raw sensor measurements make directly using the obtained point clouds

for perception tasks unsatisfactory. Therefore, several pre-processing steps are applied to

the sensor measurements before they are used in obstacle segmentation, localization, and

mapping.

4.2.1 Voxel Grid Filtering

First, as previously mentioned the raw sensor measurements from the forward and backward

depth cameras return dense point clouds with uneven density. Therefore, the depth camera

readings are first downsampled using Voxel Grid filtering as implemented in [38]. The 3D

environment of the point cloud is discretized into voxels, or cubes, of space. Each of these

voxels may contain a number of points from the point cloud within its space. The original

point cloud is downsampled by replacing all points within a voxel with the centroid of

those points. The downsampling factor using this method is determined by the voxel size

used. Voxel Grid filtering of the point cloud results in both the overall point cloud size

and the density difference between point cloud regions to be reduced, resulting in increased

computational efficiency. In processing the point clouds from Digit’s depth cameras, we use

voxels of size 0.02 m per voxel dimension, which sufficiently retains environment information

while reducing the size of the depth camera point clouds by 91.07% on average.
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Figure 4.1: Pre-processing and obstacle segmentation results. a) Original point cloud, b)
Filtered cloud, and c) Filtered point cloud with segmented obstacles in red.

4.2.2 Pass-Through Filtering

In addition to the size and inconsistent density of the raw sensor measurements, measurement

accuracy decreases with increasing distance from the depth cameras and outlier detections

are sometimes captured due to object reflections. To prevent inaccurate detection due to

measurement distance, the point cloud is filtered to retain only points within 2.9 meters of

each depth camera. Furthermore, to prevent reflections causing outlier points to be detected

underground and outside of the range of the sensor, a pass-through filter is applied to the

point clouds to remove NaN values and points with a height value below the estimated

ground plane. The final result of point cloud pre-processing can be seen in Fig. 4.1.

4.3 Obstacle Segmentation

After filtering the point cloud from all depth cameras, the resulting clouds are then fused

with the LiDAR point cloud before being used for obstacle segmentation. The Random

Sample Consensus (RANSAC) method proposed in [9] is used to segment obstacles from

this fused point cloud. Where, for a given point cloud, P , RANSAC randomly samples 3

points to solve a unique plane model:

ax+ by + cz + d = 0, (4.1)

where a, b, c, d ∈ R are the fitted coefficients, and (x, y, z) ∈ R3 represents the Cartesian

coordinates of a point. Then, the absolute distance, Di, of each point i in the cloud is
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calculated for the fitted model:

Di =

∣∣∣∣axi + byi + czi + d√
a2 + b2 + c2

∣∣∣∣ , for i ∈ {1, 2, .., n}, (4.2)

where n, is the total number of points in the point cloud P . Points within a given threshold

distance, Dthreshold, to the plane model are labeled as inliers of the model, denoted PI ,

PI = {pi ∈ P | Di < Dthreshold} . (4.3)

This process is repeated iteratively for a specified number of iterations, N , determined

statistically as:

N = round

(
log (1− α)

log (1− (1− ε)3)

)
, (4.4)

where α is the desired minimum probability of finding at least one good plane from P , usually

within [0.90− 0.99], and ε = (1− u) where u is the probability that any selected point is an

inlier. The resulting plane model is selected as the one which generates the largest number

of inliers with the smallest standard deviation of distances.

We use this resulting plane model to represent the estimated ground plane of the navi-

gation environment, given the assumption Digit is navigating in an environment with a flat

ground. Points from the fused point cloud can then be classified as either ground points, in-

liers to the RANSAC plane model, or obstacle points, outliers to the RANSAC plane model.

Then, two separate point clouds are created, a ground point cloud and an obstacle point

cloud comprised of ground points and obstacle points, respectively.

4.4 Localization

Obtaining sensor readings of the environment from the depth cameras and LiDAR sensor are

not directly sufficient for navigation. For successful navigation, applying the obstacle seg-

mentation and sensor measurements for environment mapping requires an accurate odometry

source. Direct sources of odometry for pose estimation such as Inertial Measurement Units

(IMUs) and Global Navigation Satellite Systems (GNSS) are often used for mobile robot
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Figure 4.2: Overview of the LiDAR Odometry and Mapping (LOAM) system as shown in
[41].

navigation. However, when these direct sources of odometry are not available, Simultaneous

Localization and Mapping (SLAM) methods can be used for pose estimation.

Many SLAMmethods exist that utilize different sensors such as cameras, LiDAR, RADAR,

etc. Regarding Digit’s sensor suite: the torso RGB camera has a low frame rate relative to

the mobility of Digit which can lead to odometry drift due to low frequency updates. Addi-

tionally, the downward orientation of the torso RGB-Depth camera results in a low number

of possible feature points that can be extracted from the camera’s point cloud. Therefore,

the LiDAR sensor at the top of Digit’s torso is leveraged for SLAM. To accomplish this, Li-

DAR Odometry and Mapping (LOAM), a method introduced in [41], is used to estimate the

odometry of the robot. LOAM introduces an odometry estimation algorithm and a mapping

algorithm that execute in parallel.

The LiDAR odometry estimation algorithm runs at 10 Hz in which the correspondence

of extracted features from consecutive LiDAR sensor sweeps are used to estimate the motion

of the sensor. The estimated motion of the LiDAR is then used to correct distortions in the

accumulated point cloud for a given sweep. The mapping algorithm runs at 1 Hz and uses the

undistorted point cloud to generate a 3D map of the environment. Finally, LOAM combines

transforms from both the odometry estimation algorithm and the mapping algorithm to

generate a final transform of the LiDAR sensor with respect to the generated map, which is

generated at 10 Hz. In this section an overview of the LOAM method is described, while a

more detailed description can be found in [41].
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4.4.1 Feature Point Extraction

First, feature points must be extracted from the point cloud to be used for correlation

between consecutive sweeps of the LiDAR sensor. To begin, each point in the point cloud is

assigned a c value, which evaluates the smoothness of the local surface,

ci =
1

|S| ·
∥∥XL

(k,i)

∥∥ · ∑
j∈S,j ̸=i

(
XL

(k,i) −XL
(k,j)

)
, (4.5)

where XL
(k,i) and XL

(k,j) are the points i and j in the LiDAR coordinate system, L, received

during the sensor sweep k, and S is the set of consecutive points in a scan. The points with

the highest smoothness values are considered as edge points, and points with the lowest values

are considered as planar points. To ensure an even distribution of features, a maximum of

2 edge points and 4 planar points are extracted from each of 4 identical subregions. For a

point to be selected as an edge point or planar point, it must meet several criteria:

• The number of edge points or planar points does not exceed the subregion maximum,

• A surrounding point is not already selected, and

• It does not belong to a surface that is close to parallel to the LiDAR scan, or on the

boundary of an occluded region.

4.4.2 Feature Point Correspondence

At the end of each sweep, the accumulated point cloud, Pk, during the sweep is projected

to time stamp tk+1 to generate the projected point cloud, Pk. The projected point cloud

is used together with the point cloud accumulated during the next sweep Pk+1 for sensor

motion estimation. First, correspondences must be found between Pk and Pk+1. Features

are extracted from Pk+1 using the previously described method, resulting in a set of edge

points Ek+1 and a set of planar points Hk+1. These edge points and planar points are then

projected back to the beginning of the sweep to obtain a set of projected edge points Ẽk+1

and a set of projected planar points H̃k+1 using the current transform estimate.
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We now can use these point sets to find correspondences between the projected cloud Pk

and consecutive point cloud Pk+1 in the form of edge lines as the correspondence for edge

points and planar patches as the correspondence for planar points. The edge line for point

i ∈ Ẽk+1 is represented as two points (j, l) where j is the closest neighbor of i in point cloud

Pk and l is the closest neighbor of i in the two consecutive scans. The planar patch for point

i ∈ H̃k+1 is represented as the three points (j, l,m) where j is the closest neighbor of i in

point cloud Pk and l,m are the two closest neighbors of i, one in the same scan of j and the

other in the two consecutive scans to that of j.

With correspondences found for the feature points, the distances between feature points

and their correspondence can be found. For a point i ∈ Ẽk+1 who has a correspondence edge

line (j, l) with j, l ∈ Pk, the point to line distance is:

dE =

∣∣∣(X̃L

(k+1,i) −X
L

(k,j)

)
×
(
X̃

L

(k+1,i) −X
L

(k,l)

)∣∣∣∣∣∣XL

(k,j) −X
L

(k,l)

∣∣∣ , (4.6)

and for a point i ∈ H̃k+1 who has a correspondence planar patch (j, l,m) with j, l,m ∈ Pk,

the point to patch distance is:

dH =

∣∣∣∣∣∣
(
X̃

L

(k+1,i) −X
L

(k,j)

)
((

X
L

(k,j) −X
L

(k,l)

)
×

(
X

L

(k,j) −X
L

(k,m)

))
∣∣∣∣∣∣∣∣∣(XL

(k,j) −X
L

(k,l)

)
×

(
X

L

(k,j) −X
L

(k,m)

)∣∣∣ , (4.7)

where X̃
L

(k+1,i),X
L

(k,j),X
L

(k,l) are the coordinates of points i, j, and l in the LiDAR coordinate

system, respectively.

4.4.3 Motion Estimation

It is assumed that there is a constant angular and linear velocity during each LiDAR sweep.

Using this assumption, the pose transformation can be linearly interpolated during each

sweep. First, let T L
k+1 be the LiDAR transform between time stamps [tk+1, t], where T

L
k+1 =

[tx, ty, tz, θx, θy, θz] is comprised of a 3D translation, t, and rotation, θ. Now, for a given
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Algorithm 1 LOAM motion estimation algorithm [41]

1: procedure LidarOdometry(Pk,Pk+1,T
L
k+1)

2: if at beginning of LiDAR sweep then
3: T L

k+1 ← 0;

4: Detect edge and planar points from Pk+1, insert into Ek+1 and Hk+1;
5: for a number of iterations do
6: for all edge point ∈ Ek+1 do
7: Find edge line correspondence and distance using (4.6), apply to (4.13);

8: for all planar point ∈ Hk+1 do
9: Find planar patch correspondence and distance using (4.7), apply to (4.13);

10: Compute a bisquare weight for each row of (4.13);
11: Update T L

k+1 for a nonlinear iteration based on (4.14);
12: if nonlinear optimization converges then
13: Break;

14: if at the end of a LiDAR sweep then
15: Reproject each point in Pk+1 to tk+2 and form Pk+1;
16: else
17: Return T L

k+1;

point i ∈ Pk+1, the pose transform between [tk+1, ti], T
L
(k+1,i), can be linearly interpolated

using T L
k+1,

T L
(k+1,i) =

ti − tk+1

t− tk+1

T L
k+1. (4.8)

Additionally, a rotation matrix R can be constructed using the Rodrigues formula [29]:

R = I + ω̂ sin θ + ω̂2(1− cos θ) = eω̂θ, (4.9)

where θ is the magnitude of the rotation in T L
(k+1,i), θ = ∥T L

(k+1,i)[4 : 6]∥, and ω̂ is the skew

symmetric matrix of ω, with ω = T L
(k+1,i)[4 : 6]/∥T L

(k+1,i)[4 : 6]∥.

Using the estimated pose transform and the rotation matrix, a correspondence can be

formed between a point in Ek+1 or Hk+1 and its corresponding point in Ẽk+1 or H̃k+1:

XL
(k+1,i) = RX̃

L

(k+1,i) + T L
(k+1,i)[1 : 3], (4.10)
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where XL
(k+1,i) is the coordinates of point i in Ek+1 or Hk+1, X̃

L

(k+1,i) is the corresponding

point in Ẽk+1 or H̃k+1, and T L
(k+1,i)[1 : 3] is the 1st to 3rd elements of T L

(k+1,i).

Using the correspondences, geometric relationships can be formed between an edge point

and its corresponding edge line and a planar point and its corresponding planar patch:

fE
(
XL

(k+1,i),T
L
k+1

)
= dE , i ∈ Ek+1, (4.11)

fH
(
XL

(k+1,i),T
L
k+1

)
= dH, i ∈ Hk+1. (4.12)

These relationships are stacked for each edge feature point and each planar feature point to

obtain a nonlinear function,

f
(
T L

k+1

)
= d, (4.13)

where each row of f is a feature point and each row of d is the correspondence distance. The

Jacobian matrix, J, of f with respect to T L
k+1 can be computed and used to solve (4.13) by

iteratively minimizing d to zero:

T L
k+1 ← T L

k+1 − (JTJ+ λdiag(JTJ))−1JTd, (4.14)

where λ is determined by the Levenberg-Marquardt method [12]. At the end of each LiDAR

sweep, the LOAM odometry estimation algorithm uses the solved pose transform to undistort

the point cloud Pk, where both the estimated transform and the undistorted point cloud

are then used in the mapping algorithm. This motion estimation algorithm can be seen in

Algorithm 1.

4.4.4 LiDAR Mapping

As previously mentioned, the mapping algorithm runs at a lower frequency of 1 Hz, called

only at the end of each LiDAR sweep. The mapping algorithm maintains an accumulated

mapped point cloud Qk, which contains the mapped points up to sweep k, and a transform,

TW
k , of the pose of the LiDAR with respect to the map at the end of sweep k. From the

odometry estimation, the mapping algorithm receives the solved pose transform which is
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used to extend TW
k for one sweep from tk+1 to tk+2 into TW

k+1, and the undistorted point

cloud which is projected into the world coordinates to obtain Q̄k+1.

Feature points are then extracted from Q̄k+1 in the same way as described in Section 4.4.1,

except 10 times the maximum feature points are extracted. To compute the correspondence

between feature points in Q̄k+1 and mapped points in Qk, two points on an edge line and

three points on a planar patch are selected to allow the same distance formulation as (4.6) and

(4.7). The geometric relationships in (4.11) and (4.12) are reformulated for these new sets

of feature points, and then the nonlinear optimization is again solved using the Levenberg-

Marquardt method to finally register Q̄k+1 onto the map. The final pose of the LiDAR

sensor is the combination of the pose transform T L
k+1 from the odometry algorithm and the

pose transform TW
k from the mapping algorithm.

4.5 Mapping

Although LOAM generates both an odometry estimation and a mapped point cloud, the

mapped point cloud was not used directly for environment mapping. Although LOAM

provides a high fidelity depth map of the navigated environment, the computational cost of

maintaining a 3D map and executing 3D planning within this map is high. Additionally, for

many environments, such as during indoor navigation, the level of environment information

provided in a 3D map is not always necessary for successful navigation and may unnecessarily

increase computational load. Instead, a 2D representation of the environment was used for

mapping and planning is executed in 2D instead of 3D. To enable this, we create a 2D layered

cost maps presented in [26] to map both the global environment and the robots local region.

4.5.1 Global Map

As the robot navigates through the environment, long term mapping of environment ob-

structions and general environment structure is required. The purpose of the global map is

not to track local, dynamic obstacles but rather capture and store macro-scale information

of the environment. To enable this, the global map uses a lower resolution of 0.1 m and

only updates at a rate of 2 Hz. To populate the global map, wall and large obstructions
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Figure 4.3: Mapping results from the same environment as shown in Fig. 4.1. a) Global
map with black cells representing Occupied space and grey cells representing Free space. b)
Local map with purple cells representing Occupied cells, blue cells representing the Inflated
regions around obstacles, and grey cells representing Free space. c) The fused global and
local maps.

are detected using the LiDAR sensor, and the local region of the global map is updated

with the latest local map information. The odometry estimation from LOAM is used for

two purposes during map creation: 1) At each update step, the pose estimate allows the

global map to be accurately updated using LiDAR readings relative to the already mapped

global environment; and 2) At each update step, the pose estimate is used to accurately

position the local map within the global map to update information regarding close dynamic

obstacles.

The global map is represented as a cost map, where the map is comprised of a grid of

cells with each cell given a state representing environment information. Cells in the global

map have two possible states:

Occupied: Any 3D point detections from the obstacle point cloud extracted earlier are

projected onto the 2D plane of the global map. Any cells that contain projected points are

considered to be occupied by obstacles. All occupied cells are considered untraversable.

Free: Any cell that is not occupied is considered free and traversable for the robot. Unex-

plored regions of the environment are by default considered to be free.
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4.5.2 Local Map

While the global map is used to store long-term information, capturing all known environ-

ment information for explored areas, the local map is intended to only capture a small region

local to the robot. This local map captures a 8 m x 8 m region around the robot with the

map’s origin being the robot’s center of mass. The map updates at a frequency of 10 Hz,

which allows it to capture local dynamic obstacles and facilitate real-time obstacle avoidance.

Additionally, to better enable obstacle avoidance, the local map uses a higher resolution of

0.05 m per cell to more precisely capture obstacle positions within the environment. The

local map is populated using detections from both the segmented obstacle point cloud and

the LiDAR sensor measurements. Similar to the global map, the local map cells can be given

Occupied and Free states which are identical to that of the global map, but introduces a

new cell state:

Inflated: Cells within a certain distance of obstacles are inflated with non-zero cell costs.

These non-zero costs are used to penalize trajectory planning through regions close to ob-

stacles while not completely prohibiting trajectories from entering these regions.
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CHAPTER 5

REAL-TIME MOTION PLANNING

In this chapter we describe the motion-planning component of the proposed navigation sys-

tem. This motion planning is comprised of a two-stage planner and the Digit default low-

level walking gait controller. During navigation through unknown environments, generating

in real-time collision-free paths through the global environment is required. As described in

Section 4.5, we use a 2D grid-based representation for the environment. Considering the need

for real-time collision-free path generation and planning in a grid-based representation, D*

Lite is used as the global planner as presented in [20]. Capable of fast re-planning, D* Lite is

designed to solve goal-directed navigation problems in graph-represented environments and

can be directly applied to the global 2D cost map described in Section 4.5. However, global

planning is not sufficient as the D* Lite planner does not consider the physical constraints

of the robot during path generation. Introducing these physical constraint into the global

planner is possible, but when navigating in large environments, optimizing a kinematically

constrained trajectory in real-time over long distances can become infeasible. Therefore, a

local planner, Timed-Elastic-Band (TEB) [37, 36], is leveraged to generate kinematically

feasible trajectories only in the local map that follow the global path provided by D* Lite.

5.1 D* Lite Global Planner

D* Lite as introduced in [20] builds off a variant of the popular A* planning algorithm [11],

Lifelong Planning A* (LPA*) [19]. The D* Lite algorithm is an incremental graph-search

planning algorithm that can be used to solve goal-directed navigation problems. In a terrain

26



modelled as an eight-connected graph, the D* Lite algorithm continuously calculates the

shortest path between the current robot vertex and a goal vertex. The edge costs of this

graph can change during navigation towards the goal vertex, with the only restriction on the

graph being that the successors and predecessors of a given vertex must be determinable.

For every vertex, s, in the graph, D* Lite maintains two goal distance estimates: an

estimate of the goal distance, g(s) = h(s, sgoal), where h is the Euclidean distance from the

current vertex s to the goal vertex sgoal; and a one-step lookahead value based on the g-value,

rhs(s):

rhs(s) =

0 if s = sgoal

mins′∈Pred(s) (g (s
′) + c (s′, s)) otherwise,

(5.1)

where c(s′, s) is the cost to traverse from a neighboring vertex, s′, to the current vertex, s.

The heuristic h does not need to be the Euclidean distance, but must satisfy the following:

h(s, s′) must be nonnegative, h(s, s′) ≤ c∗(s, s′), and h(s, s′′) ≤ h(s, s′) + h(s′, s′′) for all

vertices s, s′, s′′ ∈ S, with c∗(s, s′) denoting the cost of the shortest path from s to s′.

Furthermore, a vertex is classified as locally consistent if its g-value equals its rhs-value,

otherwise it is classified as locally inconsistent. When all vertices are locally consistent,

a shortest path can be generated between the goal vertex sgoal to a start vertex sstart by

moving from the current vertex s, starting at the start vertex, to the successor vertex, s′

that minimizes c(s, s′) + g(s′) until the goal vertex is reached. However, when some edge

costs of the graph change (when new obstacles are detected) the vertices will not all be

locally consistent. Instead of making all vertices locally consistent, D* Lite will instead use

heuristics to only update the vertices that are relevant for shortest path generation. To

achieve this, a priority queue is maintained that contains the locally inconsistent vertices.

The vertices in the priority queue are those vertices that need their g-values updated to

become locally consistent. The priority of vertices in the priority queue are based on a key
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value given as k(s) = [k1(s), k2(s)], with

k1(s) = min(g(s), rhs(s)) + h(s, sstart) + km, (5.2)

k2(s) = min(g(s), rhs(s)), (5.3)

where km is a scalar whose value is incremented each time the planner re-plans, and will be

expanded on later in this section.

Algorithm 2 Optimized D* Lite initialization algorithm [20]

1: procedure Initialize()
2: U = ∅;
3: km = 0;
4: ∀s ∈ S, rhs(s) = g(s) =∞;
5: rhs(sgoal) = 0;
6: U .Insert(sgoal, [h(sstart, sgoal); 0]);

First, the D* Lite algorithm begins by initializing the search problem, shown in Algorithm

2, setting the g-values and rhs-values to infinity. The D* Lite algorithm begins searching for

a shortest path from the goal vertex to the start vertex, thus as part of the initialization the

goal vertex’s rhs-value is set to 0, and adds the goal vertex to the empty priority queue, as it

is the only locally inconsistent vertex. After initialization, ComputeShortestPath(), shown

in Algorithm 3, is called, which on the first run operates similar to A*. As new vertices

are removed from the priority queue, the true values of a vertex are only calculated as they

are expanded. ComputeShortestPath() removes the vertex u with the smallest priority, kold,

from the priority queue. This priority from the priority queue may no longer be accurate

due to edge cost changes. CalculateKey() is used to calculate the most current priority

for vertex u, if kold < CalculateKey(), it is reinserted into the priority queue with the

new key value, if kold ≥ CalculateKey(), then vertex u is expanded. A locally inconsistent
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Algorithm 3 Optimized D* Lite shortest path generation algorithm [20]

1: procedure CalculateKey(s)
2: return [min(g(s), rhs(s)) + h(sstart, s) + km);min(g(s), rhs(s))];

3: procedure UpdateVertex(u)
4: if (g(u) ̸= rhs(u) AND u ∈ U) then
5: U .Update(u, CalculateKey(u));
6: else if (g(u) ̸= rhs(u) AND u /∈ U) then
7: U .Insert(u, CalculateKey(u));
8: else if (g(u) = rhs(u) AND u ∈ U) then
9: U .Remove(u);

10: procedure ComputeShortestPath()
11: while (U .TopKey() < CalculateKey(sstart) OR rhs(sstart) > g(sstart)) do
12: u = U .Top();
13: kold = U .TopKey();
14: knew = CalculateKey(u);
15: if kold < knew then
16: U .Update(i, knew);
17: else if g(u) > rhs(u) then
18: g(u) = rhs(u);
19: U .Remove(u);
20: for all s ∈ Pred(u) do
21: if s ̸= sgoal then
22: rhs(s) = min(rhs(s), c(s, u) + g(u));

23: UpdateVertex(s);

24: else
25: gold = g(u);
26: g(u) =∞;
27: for all s ∈ Pred(u) ∪ {u} do
28: if rhs(s) = c(s, u) + gold then
29: if s ̸= sgoal then
30: rhs(s) = min

s′∈Succ(s)
(c(s, s′) + g(s′));

31: UpdateVertex(s);
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vertex, s, may be locally overconsistent if g(s) > rhs(s), in which case expanding the

vertex sets the g-value equal to the rhs-value, or the vertex may be locally underconsistent

if g(s) < rhs(s), in which case expanding the vertex sets the g-value equal to infinity.

Expanding a locally overconsistent vertex makes the vertex locally consistent, but expanding

a locally underconsistent vertex may make the vertex either locally consistent or locally

overconsistent. Furthermore, the expansion of locally inconsistent vertices may effect the

local consistency of its successors. Thus, ComputeShortestPath() updates the rhs-values of

the successors, checks for local consistency, and appropriately adds or removes them from

the priority queue.

After executing ComputeShortestPath(), the shortest path can be followed by navigating

from the start vertex, sstart, to the goal vertex, sgoal, by moving to the successor, s′, of the

current vertex, s, that minimizes c(s, s′) + g(s′) until the goal position is reached or it is

determined no finite-cost path exists from sstart to sgoal.

With an initial shortest path found, the robot can begin to move along the generated

path. When navigating in an unknown environment, new obstacles may be encountered

during navigation which results in edge cost changes. With edge costs changes detected

in the graph, two processes occur: first, the heap ordering of the priority queue must be

maintained and second, the values and keys of the vertices potentially affected by the edge

changes must be updated.

When edge cost changes are detected in the graph after moving from a given vertex,

s, to a new vertex, s′, the priorities of the affected vertices in the priority queue must be

recalculated as they were initially based on heuristics calculated at the old vertex position of

the robot. Unless these priorities are recalculated, they do not follow the constraint that the

priority of a vertex in the priority queue is the same as its key value. However, constantly

recalculating priorities in the priority queue can quickly become computationally expensive

as the number of vertices in the priority queue increases. To avoid this constant reordering,

D* Lite adapts a method from the D* planning algorithm introduced in [40], which maintains

lower bounds on priorities. When the robot moves from a given vertex, s, to a new vertex,
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Algorithm 4 Optimized D* Lite shortest path execution algorithm [20]

1: procedure Main()
2: slast = sstart;
3: Initialize();
4: ComputeShortestPath();
5: while sstart ̸= sgoal do
6: if rhs(sstart) =∞ then
7: There exists no known path

8: sstart = argmin
s′∈Succ(sstart)

(c(sstart, s
′) + g(s′));

9: Move to sstart;
10: Scan for changed graph edge costs;
11: if Edge costs changes detected then
12: km = km + h(slast, sstart);
13: slast = sstart;
14: for all all directed edges (u, v) with changed edge costs do
15: cold = c(u, v);
16: Update edge cost c(u, v);
17: if cold > c(u, v) then
18: if u ̸= sgoal then
19: rhs(u) = min(rhs(u), c(u, v) + g(v));

20: else if rhs(u) = cold + g(v) then
21: if u ̸= sgoal then
22: rhs(u) = min

s′∈Succ(u)
(c(u, s′) + g(s′));

23: UpdateVertex(u);

24: ComputeShortestPath();
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s′, and edge cost changes are detected, the first element of the priorities in the priority

queue can have decreased by at most h(s, s′) (the distance between vertices s and s′). Thus

to maintain the lower bounds on the priorities, h(s, s′) should be subtracted from the first

element of the priorities of all vertices in the priority queue. Thus, when new vertices are

added to the priority queue, the first element of their priorities are h(s, s′) too small, and

must have the value added to the first element of their priorities every time the edge costs

change. When the robot moves and the edge costs change again, this constant offset of the

priorities increases. To account for this, a constant value, km, is added to the first element

of newly calculated priorities. Every time the robot moves from s to s′ and the edge costs

change, the value of km is increased by h(s, s′).

Additionally, when edge cost changes are detected in the graph after moving from a given

vertex, s, to a new vertex, s′, UpdateVertex() is called to update the rhs-values and keys

of the potentially affected vertices. Once the affected vertices are updated, ComputeShort-

estPath() is executed again to obtain the new shortest path, and the robot can continue

navigation. This global planner executes at a rate of 5 Hz and the most up-to-date global

path is represented as a sequence of waypoint vertices within the global cost map. The main

global path generation process can be seen in Algorithm 4.

5.2 Timed-Elastic-Band Local Planner

The purpose of the local planner is to generate a smooth, kinematically feasible trajectory

that follows the global path generated by the D* Lite global planner. The Timed-Elastic-

Band (TEB) method introduced in [37, 36] originally implements a trajectory optimization

method for differential drive models. We adapt this method for use in bipedal robots by

applying simplifying assumptions on the kinematic constraints of the low-level controller to

mimic those of a differential drive robot. The bipedal locomotion is modeled as a differential

drive model to avoid several problems introduced from the omnidirectional movement of

bipedal robots. For example, lateral velocity in bipedal locomotion is difficult to control due

to oscillating behaviors in the lateral direction.

The TEB problem is defined as an open-loop optimization task to find the sequence of
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controls needed to move the robot from an initial pose, ss, to a goal pose, sf . A trajectory is

defined as a sequence of robot poses S = {sk|k = 1, 2, . . . , n} where sk = [xk, yk, βk]
⊤ denotes

the robot pose at time k, with xk and yk denoting the 2D position of the robot and βk denoting

the orientation of the robot. The TEB planner then augments the trajectory with positive

time intervals ∆Tk, k = 1, 2, . . . , n. The sequence of robot poses and time intervals are then

joined to form the parameter vector b∗ = [s1,∆T1, s2,∆T2, s3, . . . ,∆Tn−1, sn]
⊤. TEB solves

the non-linear optimization task defined as:

V ∗(b) = min
b

n−1∑
k=1

∆T 2
k , (5.4)

which is subject to several constraints defined as equality and inequality constraints.

Non-holonomic constraint: An equality constraint vk enforces the kinematic constraints

of the robot. According to [37] this non-holonomic constraint can be defined with a geometric

interpretation to assume the robot can only execute smooth paths with consecutive poses sk

and sk+1 sharing a common arc of constant curvature. To enforce this constraint the angle

ϑk between pose sk and direction dk,k+1 = [xk+1 − xk, yk+1–yk, 0]
⊤ has to be equal to the

similar angle ϑk+1 at pose sk+1,

ϑk = ϑk+1, (5.5)
cos(βk)

sin(βk)

0

× dk,k+1 = dk,k+1 ×


cos(βk+1)

sin(βk+1)

0

 , (5.6)

and thus the resulting equality constraint applied to the optimization task in (5.4) is given

by:

hk(sk+1, sk) =



cos(βk)

sin(βk)

0

+


cos(βk+1)

sin(βk+1)

0


× dk,k+1. (5.7)
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Velocity and acceleration constraints: Additionally, limitations of the linear and an-

gular velocities and accelerations are applied. First, the linear and angular velocities are

approximated between two consecutive poses sk and sk+1:

vk = ∆T−1
k ∥[xk+1 − xk, yk+1 − yk]

⊤∥γ(sk, sk+1), (5.8)

ωk = ∆T−1
k (βk+1 − βk), (5.9)

where γ(sk, sk+1) is a sign extraction function which is approximated by a smooth sigmoidal

approximation that maps to the interval [−1, 1]:

γ(sk, sk+1) ≈
κ⟨qk,dk,k+1⟩

1 + |κ⟨qk,dk,k+1⟩|
. (5.10)

Next, the accelerations are approximated in a similar manner to the velocities between

consecutive poses:

ak =
2(vk+1 − vk)

∆Tk +∆Tk+1

, (5.11)

ω̇k =
2(ωk+1 − ωk)

∆Tk +∆Tk+1

. (5.12)

Finally, the velocity and acceleration constraints are applied to (5.4) as:

vk(sk+1, sk,∆Tk) = [vmax − |vk|, ωmax − |ωk|]⊤, (5.13)

αk(sk+2, sk+1, sk,∆Tk+1,∆Tk)) = [amax − |ak|, ω̇max − |ω̇k|]⊤. (5.14)

Obstacle avoidance: The local planner considers obstacles, Ol, l = 1, 2, ..., R, as simply-

connected regions in the form of points, circles, polygons, and lines in R2. To ensure a

minimum separation ρmin between pose sk and all obstacles, the inequality constraint applied

to (5.4) is:

ok(sk) = [ρ(sk,O1), ρ(sk,O2), ..., ρ(sk,OR)]
⊤ − [ρmin, ρmin, ..., ρmin]

⊤, (5.15)
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where ρ is the minimal Euclidean distance between the obstacle and the robot pose. This

equality restricts the possible robot positions (xk, yk) to {R2 \
⋃R

l=1 Õl} where Õl is the

obstacle region inflated by ρmin. This leads to the nonlinear problem (5.4) containing many

local minima. Due to the computational burden, local optimization methods are used for

the online optimization, causing the optimality of the solution to depend on the global path,

which acts as an initial solution for the local optimization.

The nonlinear task shown in (5.4) is computationally expensive to solve directly consid-

ering the hard constraints. The TEB method instead applies an unconstrained optimization

technique to the problem. Thus, the problem is transformed into an approximate nonlinear

least-squares optimization problem that can be more efficiently solved. The constraints are

applied to the approximated objective function as additional quadratic penalty functions

and applied according to [33]. The kinematic equality constraint is expressed as:

ϕ(hk, σh) = σh∥hk∥22, (5.16)

and the inequality constraints are approximated as:

χ(vk, σv) = σv∥min{0,vk}∥22, (5.17)

χ(αk, σα) = σα∥min{0,αk}∥22, (5.18)

χ(ok, σo) = σo∥min{0,ok}∥22, (5.19)

where σi, i ∈ {h,v,α,o} are scalar weights and the min operator is applied row-wise. The

overall optimization problem is approximated with the objective function:

b∗ = argmin
B\{s1,sn}

Ṽ (b), (5.20)
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Ṽ (b) =
n−1∑
k=1

[∆T 2
k + ϕ(hk, σh) + χ(rk, or) + ...+ χ(vk, σv)

+ χ(ok, σo) + χ(αk, σα)] + χ(αn, σα),

(5.21)

where b∗ is the optimal parameter vector. This optimization problem is solved using a variant

of the Levenberg–Marquardt algorithm implemented in the open-source graph optimization

framework g2o [21]. This optimization problem is repeatedly solved during runtime where

at each sampling interval only the first control input is commanded to the robot to account

for disturbances and changes in the environment. In the proposed navigation system, the

robot is commanded by a translational and rotational velocity calculated according to (5.8)

and (5.10). At the end of each interval, the start and goal poses are updated and the

previous trajectory is sampled with respect to its length to maintain a desired temporal

step size ∆Tref . A new sample is added between poses sk and sk+1 if ∆Tk is larger than

∆Tref , otherwise pose sk+1 is removed. To prevent oscillations in the number of samples, a

hysteresis ∆Thyst is applied.

As previously mentioned, the application of local online optimization results in many

local minima in the nonlinear problem, where achieving the global minimum relies on the

initial global path. The TEB method is further improved to search for the global mini-

mum by optimizing several trajectories from distinctive topologies in parallel. The detailed

descriptions of these optimizations can be found in [36].

The final output from the TEB local planner is sequences of translational and rotational

velocity commands that can be used to command the robot. To execute the local trajec-

tory generated by TEB, the velocity commands are executed using Digit’s default low-level

controller provided by Agility Robotics.
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CHAPTER 6

RESULTS

This chapter focuses on the results of the proposed navigation system. Initial experiments

were conducted in simulation to validate the perception, localization, mapping, and planning

systems for real-time navigation. Simulated experiments were conducted to explore naviga-

tion in unknown environments, navigation in environments with dynamic obstacles, and long

distance navigation. After the navigation system was validated in simulation, it was adapted

to be used on the Digit bipedal robot and tested in static and dynamic environments.

6.1 Simulation Experiments

As previously mentioned, for simulation experiments a Turtlebot3 differential drive robot is

configured with a sensor suite to mimic that of the Digit bipedal robot. The Turtlebot3 robot

is placed in one of two simulated Gazebo worlds used for validation. The first Gazebo world,

as seen in Section 6.1.1 and Section 6.1.2, is a 6.0 m x 6.0 m hexagon shaped environment.

Inside this hexagon are nine static, 0.15 m radius and 2.0 m tall cylinders organized in a grid

pattern 0.5 m away from each other. The second Gazebo environment used for simulation

validation can be seen in Section 6.1.3. This environment is 6.0 m x 30.0 m and contains

three distinct rooms for navigation. The first two rooms contain static, rectangular prism

shaped obstacles, in the first room they are placed along the walls of the environment and

in the second room they are interspersed throughout the room. The third room contains

multiple cube shaped dynamic obstacles.
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Figure 6.1: Results from experiment 6.1.1 with the top row showing the simulated world
view and the bottom row showing the environment representation available to the robot.
The red and blue circles represent the first and second goals. Black grid cells are obstacles
in the global map, purple and blue grid cells are obstacles and inflated cells in the local
map, respectively. The red arrow is the current estimated odometry. The red path and
green paths are the global path and local trajectory, respectively. The purple path shows
the robot’s traveled path. As unknown obstacles are discovered, re-planning occurs. Midway
through execution, a new goal is provided and is reached.

6.1.1 Static Obstacles, Unknown Environment

Experiment results are shown in Fig. 6.1. The Turtlebot3 is placed in the first Gazebo

simulated environment previously described, with the task of navigating in an environment

that is unknown with static obstacles. At t = 0, an initial goal position is selected. From

t = 0 to t = 9 the robot navigates along the path until an obstacle is discovered obstructing

the current trajectory, at which point the global path and local trajectory are quickly re-

planned to account for the new obstacle. While continuing to navigate to the first goal,

a new goal position is given. The system quickly re-plans and begins navigating to the

new goal. At t = 24, a blocking obstacle is again detected and re-planning occurs. From

t = 24 to t = 50 the robot successfully executes the trajectory and reaches the goal position.

From this experiment, the navigation system’s ability to successfully command a robot in

static, unknown environments is validated. This ability is necessary for navigation systems

to operate in society as navigation through a previously unexplored environment is often

needed.
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Figure 6.2: Results from experiment 6.1.2 with the top row showing the simulated world
view and the bottom row showing the environment representation available to the robot.
The red circle represents the goal position. Black grid cells are obstacles in the global map,
purple and blue grid cells are obstacles and inflated cells in the local map, respectively. The
red arrow is the current estimated odometry. The red path and green paths are the global
path and local trajectory, respectively. The purple path shows the robot’s traveled path.
As the unknown dynamic obstacles is discovered, the robot stops, begins to reverse, and
then plans around the obstacle. Once the dynamic obstacle has passed, the robot begins to
navigate forward and successfully reaches the goal.

6.1.2 Dynamic Obstacles, Unknown Environment

Experiment results are shown in Fig. 6.2. The Turtlebot3 is placed in the same Gazebo

environment as the experiment in Section 6.1.1, however a dynamic obstacle has been placed

in the environment in the form of a 0.15 m x 0.15 m x 2.0 m rectangular prism moving in a

square pattern in the center of the simulated environment. This task explores navigating in

an unknown environment that contains dynamic obstacles. At t = 0, an initial goal position

is selected. The robot begins to navigate until t = 6 when the dynamic obstacle comes

into view and blocks the path. The planners attempt to re-plan around the obstacle but

determine the current path is untraversable. The robot stops and begins to reverse until

t = 12 when a viable trajectory is discovered. At t = 14, the robot stops reversing and

begins to execute the trajectory as the dynamic obstacle has passed. From t = 14 to t = 30,

the robot executes the trajectory and reaches the goal. The successful completion of this

experiment validates the navigation systems ability to react to dynamic obstacles, necessary

in the complex environments common in society.
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Figure 6.3: Results from experiment 6.1.3 with the top row showing the simulated world
view and the bottom row showing the environment representation available to the robot.
The red circle represents the goal position. Black grid cells are obstacles in the global map,
purple and blue grid cells are obstacles and inflated cells in the local map, respectively.
The red arrow is the current estimated odometry. The red path and green paths are the
global path and local trajectory, respectively. The purple path shows the robot’s traveled
path. As the robot discovers new regions and obstacles in the unknown environment, the
navigation system quickly reacts to obstacles obstructing the current path and trajectory.
The navigation system is able to safely plan around the static obstacles in the first two
rooms of the Gazebo world. As the robot encounters dynamic obstacles in the final room,
the navigation system is able to safely navigate around the moving obstacles and successfully
reaches the goal position.

6.1.3 Dynamic Obstacles, Large Unknown Environment

Experiment results are shown in Fig. 6.3. The Turtlebot3 is placed in the second Gazebo

environment previously described, consisting of three rooms with static and dynamic ob-

stacles. This task explores navigating over long distances in an unknown environment that

contains dynamic obstacles. At t = 0, an initial goal position is selected and the robot begins

to navigate towards this goal. At t = 24, the robot has successfully navigated around the

first obstacle in front of the start position and has detected the connecting doorway to the

next room ahead and begins to navigate towards this opening. By t = 46, the robot has

successfully navigated through the doorway connecting the first two rooms and begins to

plan around the visible obstacles interspersed in room two. At t = 77, the robot is safely

navigating around the static obstacles in room two and is heading towards the detected door-

way between rooms two and three. Once the robot passes through the doorway into room

three at t = 108, the dynamic obstacles in the final room are detected. While navigating
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Figure 6.4: Results from experiment Section 6.2.1 with the top row showing the camera view
of the environment and the bottom row showing the environment representation available to
the robot. The solid red circle represents the goal position. The red and blue hollow circles
represent the first and second obstacles, the second being a dynamic obstacle in Fig. 6.5.
Black grid cells are obstacles in the global map, purple and blue grid cells are obstacles
and inflated cells in the local map, respectively. The red arrow is the current estimated
odometry, and the green circle shows the robots current position. The red path and green
paths are the global path and local trajectory, respectively. The purple path shows the
robot’s traveled path. Digit is able to successfully navigate around static obstacles blocking
the initial trajectory and safely reaches the goal position.

to the goal position, the robot is able to successfully navigate around the dynamic obstacles

at t = 130 and reaches the goal position at t = 143. The successful completion of this final

simulated experiment validates the navigation system’s ability to successfully navigate over

long distances, which is essential for autonomous operation in society.

6.2 Hardware Experiments

The navigation system computation is executed on an external desktop using an AMD Ryzen

5800X CPU and connected through a TCP connection to Digit. In this work, two hardware

experiments were conducted indoors: 1) Planning in a static environment and 2) Planning in

a dynamic environment. Both experiments are conducted in a 10.0 m x 8.0 m indoor room

with different obstacles in each experiment. Each test is deemed successful once the Digit

robot is able to navigate collision-free from the start position to the goal position within a

0.2 m final goal position tolerance and 0.2 rad final goal orientation tolerance.
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Figure 6.5: Results from experiment Section 6.2.1 with the top row showing the camera view
of the environment and the bottom row showing the environment representation available to
the robot. The solid red circle represents the goal position. The red and blue hollow circles
represent the first and second obstacles, the second being a dynamic obstacle. Black grid
cells are obstacles in the global map, purple and blue grid cells are obstacles and inflated
cells in the local map, respectively. The red arrow is the current estimated odometry, and
the green circle shows the robots current position. The red path and green paths are the
global path and local trajectory, respectively. The purple path shows the robot’s traveled
path. During navigation, a dynamic obstacle is discovered and as the obstacle begins to
move, the trajectory deforms to maintain a collision free path. The dynamic obstacle finally
comes to a rest and Digit is able to successfully navigate around the obstacles and safely
reach the goal position.

6.2.1 Static environment

As shown in Fig. 6.4, the 10.0 m × 8.0 m environment contains two static 0.5 m × 1.0 m

and 1.0 m × 0.5 m obstacles. At t = 0 a goal position is given to Digit and the robot

begins to rotate to safely avoid the first obstacle. Digit continues to travel forward between

t = 0 and t = 11 at which point Digit begins to rotate to avoid the second obstacle. Digit

continues along the generated trajectory until the robot safely reaches the goal position at

t = 34. This experiment successfully validates the ability to adapt the navigation system in

hardware and execute on a bipedal robot.

6.2.2 Dynamic environment

The second experiment is conducted in the same environment as the previous experiment,

except the second static obstacle has been replaced with a dynamic obstacle. At t = 0 a

goal position is given to Digit. Initially, the dynamic obstacle is not visible to Digit due to

being obscured by the first obstacle. Digit begins to execute the generated trajectory and
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at t = 6 the dynamic obstacle is detected. At this moment, the dynamic obstacle begins to

navigate across the currently planned trajectory. As the obstacle moves in the environment,

the planned trajectory begins to deform to maintain a collision-free path, which can be seen

at t = 11. Between t = 11 and t = 15, Digit begins to slow to a stop as the dynamic

obstacle continues to move across the robots path. At t = 15, the obstacle comes to a

rest and Digit is able to begin executing a collision-free path to the goal. Digit is able to

successfully execute the trajectory between t = 15 and t = 38 and safely reaches the goal

position at t = 38. Many environments that target mobile robot integration requires robust

navigation in dynamic environments. The success of this experiment validates the robustness

of the navigation system when executing on a bipedal robot and in these common dynamic

environments.
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CHAPTER 7

CONCLUSION

In this thesis a real-time navigation system for bipedal robots that is robust in complex,

dynamic environments was developed. First, a depth-based sensor suite of three depth

cameras and a LiDAR sensor was used to capture 3D point clouds of the environment. These

point clouds are first processed to reduce the raw point cloud size, even out the density, and

remove possible erroneous detections farther than 2.9 m from the robot and below the ground

plane. After processing, Random Sample Consensus was used to segment obstacle points

from ground points into separate point clouds. Using the sensor measurements from the

LiDAR sensor, LiDAR Odometry and Mapping was used to estimate the odometry of the

robot and generate a 3D point cloud map of the explored environment. This 3D point cloud

map was not directly used for environment mapping, but instead the sensor detections were

used to populate a global and local 2D cost map of the global and local environments.

Once robot odometry is estimated and the environment is mapped, a two-stage planner

was used to generate collision-free, kinematically feasible trajectories. A D* Lite global plan-

ner was used to generate high level paths directly in the 2D cost map representation. This

global planner is capable of re-planning in real-time and robust to a changing environment.

The global path generated from this planner is then used by the Timed-Elastic-Band local

planner as an initial estimate of the optimal trajectory through the environment. The local

planner follows the global path and applies several constraints to generate an optimal trajec-

tory that respects non-holonomic, velocity, acceleration and obstacle avoidance constraints.

From this trajectory, translational and rotational velocities were calculated and executed
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using the default Digit bipedal robot walking gait controller provided by Agility Robotics.

While the proposed navigation system was shown to successfully execute in complex en-

vironments, there exist several limitations. The current sensor suite configuration results in

blind spots on the left and right sides of the robot. This prevents the navigation system

from quickly reacting to dynamic obstacles that move in these blind spots. In future work,

a more robust sensor suite providing 360o sensor coverage would allow for better dynamic

obstacle reactions. Additionally, the use of 2D layered costmaps limits the navigable envi-

ronments to only flat 2D terrains. While this is sufficient for many complex environments, it

is often desirable to navigate through inclines, stairs, and uneven terrain. Using a mapping

and planning system that can utilize 3D information would allow for more robust naviga-

tion in complex 3D terrains. Finally, although the local planner is able to generate robust

trajectories, the assumption of differential drive kinematic constraints limits the capabili-

ties of bipedal robots. An extension to omnidirectional locomotion would allow for better

utilization of the unique capabilities of bipedal robots.
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