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Abstract
Numerical methods provide the computational foundation of science, and power automated data
analysis and inference in its contemporary form of machine learning. Probabilistic numerical
methods aim to explicitly represent uncertainty resulting from limited computational resources and
imprecise inputs in these models. With theoretical analysis well underway, software development
is now a key next step to wide-spread success. This seminar brought together experts from
the forefront of machine learning, statistics and numerical analysis to identify important open
problems in the field and to lay the theoretical and practical foundation for a software stack for
probabilistic numerical methods.
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Probabilistic Numerical algorithms frame a numerical task as a statistical inference problem,
expressed in the language of probabilistic inference. The key advantage of this approach
is that it allows quantification of uncertainty arising from finite computational resources,
and to combine thus with other forms of uncertainty, in particular those arising from
model misspecification, finite observational data, and measurement errors. In recent years,
algorithms arising from this formalism have repeatedly shown that they can enrich and
improve upon classic methods in tasks where
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hyperparameter adaptation is not straightforward;
computational stochasticity and low precision play a prominent role;
limited data make uncertainty quantification a key functionality;
related problems have to be solved repeatedly;
and where extreme scale or tight budgets call for rough approximations at low cost.

Probabilistic Numerics lies at the intersection of machine learning within computer science
and numerical analysis within applied mathematics. This interdisciplinary nature raises
an exciting and challenging set of viewpoints with regards to goals and challenges of the
field. The first goal of this seminar was to rekindle our community following two years of
pandemic lockdown, to provide an opportunity to update others on one’s own research, and
to discuss new directions and ideas together. We were lucky to assemble – both in-person and
remote – a diverse group of people from computer science, machine learning, from statistics,
optimization, and from numerical analysis.

The second key goal of this seminar was to take the next step in the development of
probabilistic numerical methods by focusing on their implementation. From Lapack to
SciPy to PyTorch, open-source software libraries have driven scientific advancement in their
respective domains. Such libraries accelerate research, enable benchmarking and promote the
development of new methods via rapid prototyping. Most importantly, they are a necessary
step towards their use in applications. While considerable advances in the theoretical
understanding of probabilistic numerical methods have been made, the lack of high-quality
implementations is holding back their adoption. In response, we recently started a community
effort to develop an open-source framework named ProbNum (http://probnum.org).

A central theme of Dagstuhl seminars is the open, collaborative atmosphere with a focus
on new ideas and tangible outcomes as opposed to existing work. The seminar stimulated
multiple focussed discussions around software and additions to ProbNum. Examples in-
cluded how to best include automatic differentiation functionality, or how to expand the
package’s Bayesian quadrature functionalities. It also set the starting point for potential new
research collaborations on probabilistic linear solvers and probabilistic numerical methods
for PDEs. Even at this point, shortly after the seminar’s conclusion, two tangible products
are already available: the seminar’s participants jointly created a Probabilistic Numer-
ics Wikipedia page https://en.wikipedia.org/wiki/Probabilistic_numerics, and the
implementation sessions culminated with a preprint for the community library ProbNum [1].

As the organizers we want to thank all participants, both physical and virtual, for their
interesting talks, the stimulating discussions and the collaborative overall atmosphere. We
also want to thank Schloss Dagstuhl for their technical support that made the challenging
hybrid format possible.

References
1 Jonathan Wenger, Nicholas Krämer, Marvin Pförtner, Jonathan Schmidt, Nathanael Bosch,

Nina Effenberger, Johannes Zenn, Toni Karvonen Alexandra Gessner, François-Xavier Briol,
Maren Mahsereci, and Philipp Hennig. ProbNum: Probabilistic numerics in Python. arxiv
preprint, 2021. URL http://arxiv.org/abs/2112.02100

21432

http://probnum.org
https://en.wikipedia.org/wiki/Probabilistic_numerics
http://arxiv.org/abs/2112.02100


104 21432 – Probabilistic Numerical Methods – From Theory to Implementation

2 Table of Contents

Executive Summary
Philipp Hennig, Ilse C.F. Ipsen, Maren Mahsereci, Tim Sullivan, and Jonathan
Wenger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Overview of Talks
Approximate Gaussian Process Regression as an Early Stopping Problem
Simon Bartels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

ProbNumDiffEq.jl: Fast and Practical ODE Filters in Julia
Nathanael Bosch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Iterative Unbiased Linear Solvers for Gaussian Processes
Maurizio Filippone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Bayesian Cubature with Low Discrepancy Sequences in QMCPy
Fred J. Hickernell, Jagadeeswaran Rathinavel, and Aleksei Sorokin . . . . . . . . . 107

BayesCG: A probablistic numeric linear solver
Ilse C.F. Ipsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

bayesquad: Bayesian quadrature in ProbNum
Toni Karvonen and Alexandra Gessner . . . . . . . . . . . . . . . . . . . . . . . . . 108

Fun with ODE filters
Peter Nicholas Krämer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

ProbNum: Probabilistic Numerical Methods in Python
Maren Mahsereci and Jonathan Wenger . . . . . . . . . . . . . . . . . . . . . . . . 108

Solving and Learning Differential Equations with Gaussian Processes
Houman Owhadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Implementing BayesCG Under The Krylov Prior
Timothy Reid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A Probabilistic State Space Model for Joint Inference from Differential Equations
and Data
Jonathan Schmidt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A Probabilistic View on Sparse Cholesky Factorization
Florian Schäfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Convergence and Robustness of Gaussian Process Regression
Aretha Teckentrup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Black Box Probabilistic Numerics
Onur Teymur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

The MAP for ODEs
Filip Tronarp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Priors in Probabilistic Numerics
Zi Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



Philipp Hennig, Ilse C.F. Ipsen, Maren Mahsereci, and Tim Sullivan 105

Working groups
Probabilistic Numerics Wikipedia Page
François-Xavier Briol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

ProbNum Library Scope
Jonathan Wenger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

From (Prior) Information to Usable Algorithm
Jonathan Wenger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Panel discussions
Bayesian Optimization
Roman Garnett . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Scientific Software Development
Andrei Paleyes, Maren Mahsereci, Michael McKerns, Masha Naslidnyk, Geoff Pleiss,
and Jonathan Wenger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Open problems
Calibration of PN methods
Giacomo Garegnani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Remote Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

21432



106 21432 – Probabilistic Numerical Methods – From Theory to Implementation

3 Overview of Talks

3.1 Approximate Gaussian Process Regression as an Early Stopping
Problem

Simon Bartels (University of Copenhagen, DK)

License Creative Commons BY 4.0 International license
© Simon Bartels

Joint work of Simon Bartels, Pablo Moreno-Munoz, Kristoffer Stensbo-Smidt, Wouter Boomsma, Jes Frellsen,
Soren Hauberg

This talk is about a method to fit Gaussian process regression models to large datasets from
only a subset of the data. The novelty of this approach is that the size of the subset is
selected on the fly during inference with little computational overhead. This is achieved by
monitoring probabilistic bounds on the model evidence that tighten as more data is processed.
Remarkably, these bounds are largely composed of terms that appear in intermediate steps
of the standard Cholesky decomposition, allowing to adaptively stop the decomposition once
enough data have been observed.

3.2 ProbNumDiffEq.jl: Fast and Practical ODE Filters in Julia
Nathanael Bosch (Universität Tübingen, DE)

License Creative Commons BY 4.0 International license
© Nathanael Bosch

Joint work of Nathanael Bosch, Filip Tronarp, Philipp Hennig

ProbNumDiffEq.jl provides an implementation of ODE filters in Julia, building on top of
the established DifferentialEquations.jl ecosystem. In this session, we discuss how software
for probabilistic numerics (PN) can benefit from existing non-PN code to obtain higher
performance, a larger set of features, and to reach a wider audience. This is facilitated
by the composability of the Julia programming language, and the modular structure of
DifferentialEquations.jl. We demonstrate the speed and ease of use of the resulting ODE
solvers in a live code demo. Additionally, we show how ODE filters can be extended to
include additional knowledge about the problem structure (such as second-order ODEs or
energy conservation) and demonstrate how to solve such problems in practice.

3.3 Iterative Unbiased Linear Solvers for Gaussian Processes
Maurizio Filippone (EURECOM – Biot, FR)

License Creative Commons BY 4.0 International license
© Maurizio Filippone

Joint work of Maurizio Filippone, Raphael Engler
Main reference Maurizio Filippone, Raphael Engler: “Enabling scalable stochastic gradient-based inference for

Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE)”, in Proc. of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
JMLR Workshop and Conference Proceedings, Vol. 37, pp. 1015–1024, JMLR.org, 2015.

URL http://proceedings.mlr.press/v37/filippone15.html

In applications of Gaussian processes where quantification of uncertainty is of primary interest,
it is necessary to accurately characterize the posterior distribution over covariance parameters.
This paper proposes an adaptation of the Stochastic Gradient Langevin Dynamics algorithm
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to draw samples from the posterior distribution over covariance parameters with negligible
bias and without the need to compute the marginal likelihood. In Gaussian process regression,
this has the enormous advantage that stochastic gradients can be computed by solving linear
systems only. A novel unbiased linear systems solver based on parallelizable covariance
matrix-vector products is developed to accelerate the unbiased estimation of gradients. The
results demonstrate the possibility to enable scalable and exact (in a Monte Carlo sense)
quantification of uncertainty in Gaussian processes without imposing any special structure
on the covariance or reducing the number of input vectors.

3.4 Bayesian Cubature with Low Discrepancy Sequences in QMCPy
Fred J. Hickernell (Illinois Institute of Technology – Chicago, US)
Jagadeeswaran Rathinavel (Illinois Institute of Technology – Chicago, US)
Aleksei Sorokin (Illinois Institute of Technology – Chicago, US)

License Creative Commons BY 4.0 International license
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Bayesian cubature proceeds by constructing credible intervals for the integral based on a
prior distribution for the integrand combined with sampled integrand values. We explain
this approach has been developed using low discrepancy (digital net and lattice) sampling
and matching covariance kernels to expedite the computation to be much faster than O(n3),
where n is the sample size. We tune the hyper-parameters of our covariance kernels using
function data to increase the chance that the integrand is not an outlier. We also show
how we have implemented these Bayesian cubature algorithms in QMCPy, a community
supported Python library for quasi-Monte Carlo calculations. Some preliminary results also
call into question the Bayesian assumption. This matter requires further study.

3.5 BayesCG: A probablistic numeric linear solver
Ilse C.F. Ipsen (North Carolina State University – Raleigh, US)

License Creative Commons BY 4.0 International license
© Ilse C.F. Ipsen

Joint work of Ilse C.F. Ipsen, Tim W. Reid, Jon Cockayne, Chris J. Oates
Main reference Tim W. Reid, Ilse C. F. Ipsen, Jon Cockayne, Chris J. Oates: “A Probabilistic Numerical Extension

of the Conjugate Gradient Method”, CoRR, Vol. abs/2008.03225, 2020.
URL https://arxiv.org/abs/2008.03225

We present the probabilistic linear solver BayesCG, an extension of the Conjugate Gradient
method (CG) that relies on probability distributions to capture uncertainty due to early
termination when solving linear systems with real symmetric positive definite coefficient
matrices. We present a CG-based implementation of BayesCG with a structure-exploiting
prior distribution. The BayesCG output consists of CG iterates and posterior covariances
that can be propagated to subsequent computations. The covariances are low-rank and
maintained in factored form. This allows easy generation of accurate samples to probe
uncertainty in subsequent computations. We discuss the choice of efficient prior distributions,
and end with speculation on how to propagate uncertainty through computational pipelines.
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3.6 bayesquad: Bayesian quadrature in ProbNum
Toni Karvonen (University of Helsinki, FI)
Alexandra Gessner (Universität Tübingen, DE)

License Creative Commons BY 4.0 International license
© Toni Karvonen and Alexandra Gessner

We present the current state of the implementation of Bayesian quadrature in ProbNum and
discuss features that are to be included in the future. The talk contains examples of the use
of the two main Bayesian quadrature functions, bayesquad and bayesquad_from_data, and
their comparison to the corresponding SciPy functions.

3.7 Fun with ODE filters
Peter Nicholas Krämer (Universität Tübingen, DE)

License Creative Commons BY 4.0 International license
© Peter Nicholas Krämer

Joint work of Peter Nicholas Krämer, Nathanael Bosch, Jonathan Schmidt, Philipp Hennig
Main reference Nicholas Krämer, Philipp Hennig: “Stable Implementation of Probabilistic ODE Solvers”, CoRR,

Vol. abs/2012.10106, 2020.
URL https://arxiv.org/abs/2012.10106

This talk surveys recent advances of probabilistic solvers for differential equations. At first,
stable implementation of probabilistic, filtering-based ODE solvers is discussed; both, in low-
and high-dimensional settings. Then, efficient probabilistic solvers for ODE boundary value
problems and partial differnetial equations are explained.

3.8 ProbNum: Probabilistic Numerical Methods in Python
Maren Mahsereci (Universität Tübingen, DE)
Jonathan Wenger (Universität Tübingen, DE)

License Creative Commons BY 4.0 International license
© Maren Mahsereci and Jonathan Wenger

Joint work of Jonathan Wenger, Nicholas Krämer, Marvin Pförtner, Jonathan Schmidt, Nathanael Bosch, Nina
Effenberger, Johannes Zenn, Alexandra Gessner, Toni Karvonen, François-Xavier Briol, Maren
Mahsereci, Philipp Hennig

URL http://probnum.org

ProbNum is a Python library that provides probabilistic numerical solvers to a wider audience.
In the talk, we describe the current state and functionality of ProbNum and highlight some
benefits of open source collaboration for students and for the community. The second part
of the talk contains a live demonstration of some of the ProbNum solvers.
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3.9 Solving and Learning Differential Equations with Gaussian Processes
Houman Owhadi (California Institute of Technology – Pasadena, US)

License Creative Commons BY 4.0 International license
© Houman Owhadi

Joint work of Houman Owhadi, Yifan Chen, Boumediene Hamzi, Bamdad Hosseini, Romit Maulik, Yoo Gene
Ryan, Florian Schäfer, Clint Scovel, Andrew Stuart

Main reference Yifan Chen, Bamdad Hosseini, Houman Owhadi, Andrew M. Stuart: “Solving and learning nonlinear
PDEs with Gaussian processes”, J. Comput. Phys., Vol. 447, p. 110668, 2021.

URL https://doi.org/10.1016/j.jcp.2021.110668
Main reference B. Hamzi, R. Maulik, H. Owhadi: “Simple, low-cost and accurate data-driven geophysical forecasting

with learned kernels”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, Vol. 477(2252), p. 20210326, 2021.

URL https://doi.org/10.1098/rspa.2021.0326
Main reference Boumediene Hamzi, Houman Owhadi: “Learning dynamical systems from data: A simple

cross-validation perspective, part I: Parametric kernel flows”, Physica D: Nonlinear Phenomena,
Vol. 421, p. 132817, 2021.

URL https://doi.org/10.1016/j.physd.2020.132817
Main reference Houman Owhadi, Clint Scovel: “Operator-Adapted Wavelets, Fast Solvers, and Numerical

Homogenization: From a Game Theoretic Approach to Numerical Approximation and Algorithm
Design”, Cambridge University Press, 2019.

URL https://doi.org/10.1017/9781108594967
Main reference Houman Owhadi, Gene Ryan Yoo: “Kernel Flows: From learning kernels from data into the abyss”,

J. Comput. Phys., Vol. 389, pp. 22–47, 2019.
URL https://doi.org/10.1016/j.jcp.2019.03.040

We present a simple, rigorous, and unified framework for solving and learning (possibly
nonlinear) differential equations (PDEs and ODEs) using the framework of Gaussian pro-
cesses/kernel methods. For PDEs the proposed approach: (1) provides a natural generalization
of collocation kernel methods to nonlinear PDEs and Inverse Problems; (2) has guaranteed
convergence for a very general class of PDEs, and comes equipped with a path to compute
error bounds for specific PDE approximations; (3) inherits the state-of-the-art computational
complexity of linear solvers for dense kernel matrices. For ODEs, we illustrate the efficacy of
the proposed approach by extrapolating weather/climate time series obtained from satellite
data and highlight the importance of using adapted/learned kernels.

3.10 Implementing BayesCG Under The Krylov Prior
Timothy Reid (North Carolina State University – Raleigh, US)

License Creative Commons BY 4.0 International license
© Timothy Reid

Joint work of Timothy Reid, Ilse C.F. Ipsen, Jon Cockayne, Chris J Oates
Main reference Tim W. Reid, Ilse C. F. Ipsen, Jon Cockayne, Chris J. Oates: “A Probabilistic Numerical Extension

of the Conjugate Gradient Method”, CoRR, Vol. abs/2008.03225, 2020.
URL https://arxiv.org/abs/2008.03225

We present solutions to the computational challenges associated with implementing BayesCG
under the Krylov prior. We also have a discussion of possible solutions to open questions
related to implementing probabilistic numerical linear solvers.
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3.11 A Probabilistic State Space Model for Joint Inference from
Differential Equations and Data

Jonathan Schmidt (Universität Tübingen, DE)

License Creative Commons BY 4.0 International license
© Jonathan Schmidt

Joint work of Jonathan Schmidt, Nicholas Krämer, Philipp Hennig
Main reference Jonathan Schmidt, Nicholas Krämer, Philipp Hennig: “A Probabilistic State Space Model for Joint

Inference from Differential Equations and Data”, CoRR, Vol. abs/2103.10153, 2021.
URL https://arxiv.org/abs/2103.10153

This talk shows how different sources of information – mechanistic knowledge and empirical
observations – can be combined to solve differential equations that are assumed to underlie
observed data. The mismatch between both sources of knowledge is captured by introducing
a latent force acting on the vector field. The method is showcased by fitting an SIRD-model
to COVID-19 case counts.

3.12 A Probabilistic View on Sparse Cholesky Factorization
Florian Schäfer (Georgia Institute of Technology – Atlanta, US)

License Creative Commons BY 4.0 International license
© Florian Schäfer

Joint work of Jiong Chen, Mathieu Desbrun, Jin Huang, Matthias Katzfuss, Houman Owhadi, Florian Schäfer,
Tim J. Sullivan

Main reference Florian Schäfer, Houman Owhadi: “Sparse recovery of elliptic solvers from matrix-vector products”,
CoRR, Vol. abs/2110.05351, 2021.

URL https://arxiv.org/abs/2110.05351
Main reference Florian Schäfer, Timothy John Sullivan, Houman Owhadi: “Compression, inversion, and

approximate PCA of dense kernel matrices at near-linear computational complexity”, CoRR,
Vol. abs/1706.02205, 2017.

URL http://arxiv.org/abs/1706.02205
Main reference Florian Schäfer, Matthias Katzfuss, Houman Owhadi: “Sparse Cholesky factorization by

Kullback-Leibler minimization”, CoRR, Vol. abs/2004.14455, 2020.
URL https://arxiv.org/abs/2004.14455

Main reference Jiong Chen, Florian Schäfer, Jin Huang, Mathieu Desbrun: “Multiscale cholesky preconditioning for
ill-conditioned problems”, ACM Trans. Graph., Vol. 40(4), pp. 81:1–81:13, 2021.

URL https://doi.org/10.1145/3450626.3459851

The guiding theme of this talk is the probabilistic interpretation of numerical linear algebra,
in particular of the Cholesky factorization of kernel matrices and discretized elliptic partial
differential equations. By using this interpretation, we derive simple, fast solvers with
state-of-the-art complexity vs. accuracy guarantees for general elliptic differential- and
integral equations. We furthermore derive an algorithm that allows the reconstruction,
or learning, of elliptic solution operators from a number of solution pairs that scales only
polylogarithmically in the target accuracy. Our methods come with rigorous error estimates,
are easy to parallelize, and show good performance in practice.
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3.13 Convergence and Robustness of Gaussian Process Regression
Aretha Teckentrup (University of Edinburgh, GB)

License Creative Commons BY 4.0 International license
© Aretha Teckentrup

Main reference Aretha L. Teckentrup: “Convergence of Gaussian Process Regression with Estimated
Hyper-Parameters and Applications in Bayesian Inverse Problems”, SIAM/ASA J. Uncertain.
Quantification, Vol. 8(4), pp. 1310–1337, 2020.

URL https://doi.org/10.1137/19M1284816

We are interested in the task of estimating an unknown function from data, given as a set of
point evaluations. In this context, Gaussian process regression is often used as a Bayesian
inference procedure, and we are interested in the convergence as the number of data points
goes to infinity. Hyper-parameters appearing in the mean and covariance structure of the
Gaussian process prior, such as smoothness of the function and typical length scales, are
often unknown and learnt from the data, along with the posterior mean and covariance. We
work in the framework of empirical Bayes’, where a point estimate of the hyper-parameters
is computed, using the data, and then used within the standard Gaussian process prior to
posterior update. Using results from scattered data approximation, we provide a convergence
analysis of the method applied to a fixed, unknown function of interest.

3.14 Black Box Probabilistic Numerics
Onur Teymur (University of Kent, GB)
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Joint work of Onur Teymur, Christopher N. Foley, Philip G. Breen, Toni Karvonen, Chris. J. Oates
Main reference Onur Teymur, Christopher N. Foley, Philip G. Breen, Toni Karvonen, Chris J. Oates: “Black Box

Probabilistic Numerics”, CoRR, Vol. abs/2106.13718, 2021.
URL https://arxiv.org/abs/2106.13718

In many numerical algorithms, intermediate numerical outputs are nonlinearly related to the
quantity of interest, rendering the proper conditioning of random variables in the probabilistic
numerics paradigm difficult and limiting the range of numerical tasks that can be addressed
by existing approaches. In this presentation we introduce an idea to construct probabilistic
numerical methods based only on the final output from a traditional method. A convergent
sequence of approximations to the quantity of interest constitute a dataset, from which the
limiting quantity of interest can be extrapolated, in a probabilistic analogue of Richardson’s
deferred approach to the limit. This black box approach (1) massively expands the range of
tasks to which probabilistic numerics can be applied, (2) inherits the features and performance
of state-of-the-art numerical methods, and (3) enables provably higher orders of convergence
to be achieved. We present several proof-of-concept applications, such as for nonlinear
ordinary and partial differential equations, as well as for eigenvalue problems – the latter a
setting for which no probabilistic numerical methods have yet been developed.
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3.15 The MAP for ODEs
Filip Tronarp (Universität Tübingen, DE)
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There is a growing interest in probabilistic numerical solutions to ordinary differential
equations. In this talk, the maximum a posteriori estimate is studied under the class of ν

times differentiable linear time-invariant Gauss-Markov priors. The maximum a posteriori
estimate corresponds to an optimal interpolant in the reproducing kernel Hilbert space
associated with the prior, which in the present case is equivalent to a Sobolev space of
smoothness ν. Subject to mild conditions on the vector field, convergence rates of the
maximum a posteriori estimate are then obtained via methods from nonlinear analysis and
scattered data approximation.

3.16 Priors in Probabilistic Numerics
Zi Wang (Google – Cambridge, US)
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Joint work of Zi Wang, George E. Dahl, Kevin Swersky, Chansoo Lee, Zelda Mariet, Zackary Nado, Justin Gilmer,
Jasper Snoek, Zoubin Ghahramani

Main reference Zi Wang, Caelan Reed Garrett, Leslie Pack Kaelbling, Tomás Lozano-Pérez. “Learning compositional
models of robot skills for task and motion planning.” Int. J. Robotics Res. 40(6-7) (2021).
Zi Wang, George E. Dahl, Kevin Swersky, Chansoo Lee, Zelda Mariet, Zackary Nado, Justin Gilmer,
Jasper Snoek, and Zoubin Ghahramani. “Automatic prior selection for meta Bayesian optimization
with a case study on tuning deep neural network optimizers.” arXiv preprint arXiv:2109.08215
(2021).

How do we understand priors? Surrounding this question, I discuss some of my thoughts
on different forms of priors and how they impact the design and performance of algorithms.
In particular, I group priors into 3 categories: priors in nature, engineering priors and
data priors. Data priors are very relevant to how we may be able to set priors better in
probabilistic numerics. I use Bayesian optimization to illustrate how priors estimated from
multi-task data can lead to better performance than hand-selected priors.

4 Working groups

4.1 Probabilistic Numerics Wikipedia Page
François-Xavier Briol (University College London, GB)

License Creative Commons BY 4.0 International license
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This working group focused on developing a Wikipedia page for the field of probabilistic
numerics. The aim was to help raise the visibility of the field, but also to serve as a brief
introduction for non-experts. Overall, this was very successful; less than a month after it
was first created, the page has been viewed around 2000 times and has 30 distinct authors.
A second page for the sub-field of Bayesian quadrature is also currently undergoing the
Wikipedia approval process.
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4.2 ProbNum Library Scope
Jonathan Wenger (Universität Tübingen, DE)
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ProbNum implements probabilistic numerical methods in Python. Such methods solve
numerical problems from linear algebra, optimization, quadrature and differential equations
using probabilistic inference. This session discusses the exact use cases of a PN library and
defines the separation from other libraries for classic numerics, probabilistic programming
and uncertainty quantification.

4.3 From (Prior) Information to Usable Algorithm
Jonathan Wenger (Universität Tübingen, DE)

License Creative Commons BY 4.0 International license
© Jonathan Wenger

Prior information is often touted as a prime example of why probabilistic numerical methods
have an advantage over classical methods. But what types of prior information are available
for different numerical problems and what can we actually encode?

5 Panel discussions

5.1 Bayesian Optimization
Roman Garnett (Washington University – St. Louis, US)

License Creative Commons BY 4.0 International license
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Main reference Roman Garnett: “Bayesian Optimization”, Cambridge University Press, 2022.
URL https://bayesoptbook.com

I discussed a number of issues related to Bayesian optimization (BayesOpt) and themes
behind several of the success stories in that field. I identified one major theme in the
BayesOpt literature – a focus on expensive functions – which has allowed research in that
field consider correspondingly expensive approaches to modeling and policy design. In
probabilistic numerics (PN), on the other hand, there seems to be a general trend away from
this “expensive regime.” I concluded by posing three questions to the group:

To what extent is the fidelity of modeling in PN? Is the “expensive regime” of interest?
To what extent is the sophistication/myopia of algorithms an issue in PN? Is the “expensive
regime” of interest?
How can we improve PN pipelines through user interaction?

An engaging discussion ensued.
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5.2 Scientific Software Development
Andrei Paleyes (University of Cambridge, GB)
Maren Mahsereci (Universität Tübingen, DE)
Michael McKerns (Los Alamos National Laboratory, US)
Masha Naslidnyk (Amazon Research Cambridge, GB)
Geoff Pleiss (Columbia University – New York, US)
Jonathan Wenger (Universität Tübingen, DE)
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Recent years saw the high amount of scientific software produced by research groups in
academia and industry. A good software package can be an asset of a research group,
increasing productivity of its members and enabling faster experimentation. However,
development and maintenance of a high quality software can be a challenging task. Recent
trends and challenges of scientific software development were discussed by the panel at the
Dagstuhl seminar 21432 “Probabilistic Numerical Methods – From Theory to Implementation”.
This document is the summary of the discussion.

5.2.1 Introduction

Over the past 6 years the proportion of papers in machine learning that are released along
with the codebase used to produce the results tripled, growing from under 10% in 2015
to nearly 30% in 20211. While some of these codebases can remain unchanged since their
release, there is also a growing tendency to turn them into reusable software components.
This decision can bring benefits, but also comes at a cost. The panel discussed challenges of
developing and maintaining software tools for academic and industry teams, associated trade
offs and past experience panelists had with their software packages.

5.2.2 Should scientists worry about developing software or just use existing tools?

While development of a new scientific tool does not need to be a goal of each research
project, it may bring certain benefits worth pursuing. Software that is intended to be reused
over multiple research projects or over several years tends to be well tested, thus further
ensuring quality of the scientific results produced. Long-lived software also tends to be well
documented, thus enabling others to reproduce results from prior work, and to directly
compare their own new results produced with the software. Finally, good scientific software
can accelerate research and the development of other software produced by a research group.
A research group can leverage good scientific software to provide a solid reusable software
foundation to extend, with the benefit of several years of development, testing, and validation,
rather than starting from scratch on each new project.

Since research groups are normally built around a certain research direction, a software
package may also emerge naturally, even though the group never had such a goal, by
accumulating reusable components from multiple projects done by the group. A research
group may decide to produce and maintain their own software, however an equally viable (and
potentially more fruitful) choice is to adopt an existing open source package, and contribute
to it’s development. Interestingly, the decision to contribute to an existing codebase as
opposed to developing a new software package from scratch is unfortunately rare.

1 According to https://paperswithcode.com/trends, accessed 21.11.2021
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5.2.3 What are challenges in maintaining scientific software?

Scientific code does not always have to be production ready, and therefore does not always
need to uphold high standards in terms of software design or test coverage. In that sense, the
academic environment can be liberating. However, when this code is turned into a reusable
toolbox, a certain level of quality is anticipated. This can be a challenge for researchers, as
most of them do not have software engineering experience, and therefore might not be aware
of best practices. Having access to a trained software developer might help, but again not
every lab can afford hiring one. For that reason a lot of researchers in machine learning have
to learn engineering skills on the fly in addition to producing research in their primary topic.
This can be a steep and challenging learning curve.

In years past, a researcher learning good software development in an academic environment
was often at the cost of an academic career, as the generation of software products was not
seen as part of countable academic achievements. However, the ability to produce good
software concurrent with academic research is now a highly-desired skill, even though a
record of software contributions is still generally measured unfavorably against a record of
journal publications. As journals and funding agencies have begun to expect research groups
to develop and extend software when they produce new research results, the ability for an
academic environment to attract and retain researchers with good software dvelopment skills
has increased.

Maintaining software beyond the original funding source, or the original developer, can
be challenging. Long-lived research software like mystic [1, 2] sustain steady development by
being central to new proposals and new research funding. Software tied to project funding
can pay researchers to serve as developers as part of their jobs, as opposed to requiring
additional efforts outside of their funded work.

5.2.4 Can you hope to compete against industrial research labs when writing a
software package?

At the first glance it may seem impossible for an academic research group to compete with
industry when it comes to software development. Teams in industry are often well funded,
have access to better infrastructure and attract significant software engineering talent. In fact,
the competition is not as severe as it may seem. Companies normally only fund engineering
effort that is able to support their business goals. As such, software engineering projects
created by industrial researchers are aimed at deploying well established research ideas in
practical applications. Groups in universities and research centers, on the other hand, are
working on the cutting edge research ideas, and therefore are more likely to create a software
project in a direction, which is not ready for production yet.

National research laboratories have traditionally been a source of reusable scientific
software, as researchers often work on multiple well-funded projects with expected deliverables
and shortened timelines, and thus have similar conditions to those found in industry. Projects
at national laboratories often have industry partners, where the groups at the national
laboratory are tasked with providing high-quality cutting-edge research tools.

5.2.5 How do you tread the line between spending too much time on maintenance,
implementing features for others and moving your own research forward?

Navigating the balance between maintenance and novel development is always a trade off.
However, while maintenance will always demand certain time investment from the package
owner, there are several general rules that can alleviate the load.
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Most importantly, time invested in software design always pays off. Simple high level API
means less errors due to an improper use. An extensible software architecture means more
straightforward contributions that are easier to review. Good test coverage means fewer
bugs. All of these are good engineering practices that also help reduce the maintenance load.
As an example, the author of dill2 and mystic maintains a range of open source scientific
packages, and the overall load is only manageable because each package was developed with
accordance to good engineering practices where the reusability of the software enables it to
be directly tied to new research funding.

Successful software packages can attract a strong community of users and contributors.
Such a community can, to a certain extent, share the load of maintenance, as is the case
now with GPyTorch [3]. Clearly such a community requires time and effort to gather, and
therefore can be seen as a long-term investment. Even after the initial release of Emukit [4]
its authors still continue to promote the package both in academia and in industry, which
helps growing the community of its users.

However there can be cases when authors of the package are no longer interested in
spending their time and effort in maintaining it. It is important to detect such situations
when they happen, and identify the best way forward, which can be even discontinuing
maintenance of the package, as is now the case with GpyOpt [5].

5.2.6 How do you scale a project from a small group to an open-source project
with outside contributors?

As already mentioned, scientific packages can become a primary tool for a an research
group. This link can also work in the other direction, where a successful research idea can
be implemented as a new functionality of the package. This setup works well particularly
for student and intern projects, and may even have an amplifying effect, where a scientist
who contributed to a project joins another research group and may attract further users.
Declaring contribution as an additional goal of a research project helps to accelerate growth
during the early stages.

Once the package gains a certain level of maturity, it may attract interest from the
industry partners. They can benefit by applying the scientific methods implemented in the
package to their business problems. The level of contribution that companies can bring
back varies widely, from feature requests and bug reports, to the contribution of individual
features, to financial support for the library and its authors.

An ideal scenario is finding industrial collaborators who wish to build software on top
of your package. For example, Facebook built the BoTorch Bayesian optimization package
[6] on top of the GPyTorch package. As a result, the BoTorch team has a vested interest
in ensuring that GPyTorch is maintained, yet ownership still ultimately resides with the
original GPyTorch team. It can be challenging to find these collaborations, and companies
are more likely to reach out if the software package is actively maintained by responsive
developers.

However, at each stage of development it is important to define the purpose and goals of
the package and therefore clearly separate what functionality is in- and out of scope.
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6 Open problems

6.1 Calibration of PN methods
Giacomo Garegnani (EPFL – Lausanne, CH)
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One of the main goals underlying the development of probabilistic numerical methods is
that they help to quantify the uncertainty due to approximate computations. In order for
this purpose to be fulfilled, probabilistic methods should yield consistent global or local
information on the error, or in other words they should be well calibrated. In this session,
I will try to define what a well-calibrated probabilistic numerical methods should be, in
particular by highlighting the connections with traditional a posteriori error estimators.
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