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of machine learning of equivariant properties, machine 
learning-aided statistical mechanics, the incorporation of 
ab initio approaches in multiscale models of materials pro-
cessing and application of machine learning in uncertainty 
quantification. In addition to the above, the applicability 
of Bayesian approach for multiscale modelling will be dis-
cussed. Critical issues related to the multiscale materials 
modelling are also discussed.

Introduction

There has been extensive recent interest in the application of 
machine learning in diverse fields within materials science 
and engineering. Numerous review papers [1–6], viewpoints 
[7, 8], focused articles on material informatics [9, 10] and 
road-map documents [11, 12] have been published. With 
the increasing complexity of emergent materials, predictive 
structure–property correlation models require mechanistic 
understanding across a wide range of space and timescales. 
Experimental insight is often limited by the concurrent 
occurrence of multiscale phenomena. Conventional meth-
ods of multiscale simulation rely on passing information 
from simulations at ab initio up to continuum scale through 
atomistic scale with a sequential flow of information. In this 
approach, there is inherent extrapolation away from reference 
data with a consequent introduction of error. The ultimate 
challenge of multiscale simulation involves the bridging of 
atomistic observables to engineering-scale design variables, 
while retaining adequate precision and accuracy. To address 
these issues, there have been recent advances in terms of 
application of a wide range of machine learning tools. The 
direction of multiscale modelling in materials has primarily 
two main branches. Firstly, there has been significant inter-
est in employing machine learning to predict the electronic 
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structure of materials, whose accuracy is close to that of 
ab initio theory, while providing significant computational 
efficiency. The second approach involves data-mining-based 
schemes, where prediction of structure–property correlation 
is based on development of models based on data. This arti-
cle summarizes discussions between researchers from both 
streams to start a discussion on the development of newer 
methods for ever challenging problems in materials science 
and engineering. The article follows on from an online con-
ference held in December 2021, entitled ‘Exploiting Machine 
Learning in Multiscale Modelling of Materials’ (EMLM3 ), 
co-organized by the first and last author of the present article 
and involving all other authors as attendees [13]. The arti-
cle is structured into five sections corresponding to distinct 
themes, followed by a discussion of key challenges remaining 
in the field. The aim of this article is to document the discus-
sions during EMLM3 (Fig. 1); readers are referred to the pub-
lished literature for basics [3, 14–20] and recent advances in 
machine learning and its application for predicting the struc-
ture–property correlations in materials engineering [21–23].

Multiscale Materials Modelling

Machine Learning and Uncertainty Quantification 
in Multiscale Simulations

The behaviour of materials is a collective outcome of the 
numerous mechanisms that play out across a hierarchy of 

length and timescales. In a concurrent multiscale analysis 
scheme [24], the behaviour at each material point at each 
time of the higher coarse scale model is informed by the 
solution of the lower fine scale model. Though this idea has 
been incorporated in FE2 concurrent two-scale approach 
[25], it is prohibitively expensive to extend it to multiple 
scales. A more widely used technique is the sequential or 
parameter passing multiscale approach, where parameters 
from lower fine scale simulations are passed as inputs of 
the higher coarse-scale simulations. The intricacies of mate-
rial response at each scale lead to uncertainty in the final 
engineering application. Therefore, it is important that the 
integral uncertainties are accurately quantified. However, 
direct computation of these integral uncertainties is prohibi-
tive [26]. Traditionally, there has been limited data bridging 
multiple scales. However, owing to recent developments in 
experimental techniques and computational methods, the 
present researchers are transforming from a data deficient 
to a data-rich field. Additionally, there has been landmark 
advances in machine learning and uncertainty quantifica-
tion which facilitate learning from lower scale material 
behaviour with quantified uncertainty. These developments 
open up several avenues of investigation. To elucidate,  by 
using recent advances in new materials modelling methods, 
experimental data and supervised learning methods for mul-
tiscale modelling of materials? How does material uncer-
tainties propagate across multiple scales and how efficiently 
quantify these? Figure 2 shows a schematic outline for 
answering these two questions. The data from simulations 

Fig. 1   Schematic showing the 
various machine learning (ML) 
models, motivation, applica-
tion and challenges associated 
with such ML models for ab 
initio, semi-empirical atomistic 
approaches and empirical multi-
scale materials models
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of a fine scale problem can be used to build a machine learn-
ing/data-driven models. This model can be validated against 
experimental data, and the model and uncertainty will then 
be passed as inputs to the coarse scale problem. See [27] 
for developing a machine learning approach for mapping 
the electronic fields to the local deformation fields using a 
neural network.

Incorporating ab initio Approaches in Multiscale 
Modelling of Materials Processing

Properties of materials are linked to their processing, which 
in turn is linked to their nano-/micro-structure. Though these 
links are important for the synthesis of new materials with 
desired functionalities, it is not understood the physical phe-
nomena that link the processing route to the synthesized 
microstructure and to the target property. However, recent 
advances in efficient computational methods allow us to 
establish these links and guide synthesis and processing of 
new materials. These can also provide a deeper understand-
ing of the complex mechanisms that play out during the pro-
cess. A sequential multiscale modelling approach is to uti-
lize first-principles calculations to evaluate the free energy 
surface of each phase over different range of processing 
parameters [28]. These free-energy surfaces can be used as 
inputs to meso-scale phase field simulations for simulating 
microstructure evolution during processing. The resulting 
microstructures can be homogenized and passed as inputs 
to continuum finite element simulations. See Fig. 3 for a 
schematic describing this idea. Recent advances in computa-
tional methods for large-scale first-principles simulations of 
defects in materials [29] can be used to accurately calculate 
defect generation and evolution during processing.

Bayesian Approaches to Multiscale Modelling 
of Materials

Surrogate Models: Simplifying Multiscale Modelling 
of Materials

The three main steps of a typical Bayesian data analysis are 
(i) composing the model, (ii) fitting the composed model to 
the available data, (iii) refining the model through continu-
ously monitoring its fit and making a comparison with other 
models [30]. The first step, composing a model, usually 
involves the usage of prior knowledge about the system. The 
second step fitting the model is the core of Bayesian infer-
ence and is often performed using Monte Carlo sampling 
algorithms. The main aim of this step is to evaluate the pos-
terior probability distribution of the model parameters [31].

Multiscale modelling of the composite material system 
can be achieved using an approach like mean field homog-
enization [32]. Due to the increased number of parameters 
in the nonlinear range, it is unlikely that a unique parameter 
set will be able to reproduce all the experimental condi-
tions due to the intrinsic limitations of the model. In such 
scenarios, Bayesian inference is a plausible option for esti-
mating the parameters of the proposed multiscale model. In 
this approach, the posterior probability distribution function 
takes into account all the aforementioned uncertainties rea-
sonably. As per the Bayesian philosophy, the posterior dis-
tribution function of the parameters represents the correction 
of the prior distribution through a likelihood function cal-
culated using the available experimental data. The Bayesian 
inference method has been used to estimate the parameters 
of nonlinear, homogenous materials in single-scale settings 
[33–35]. Nonetheless, the inference in a multiscale paradigm 

Fig. 2   Schematic overview of 
machine learning and uncer-
tainty quantification for materi-
als modelling across the scales
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is comparatively more difficult due to its intrinsic computa-
tional requirements.

The Bayesian inference can however be made compu-
tationally more efficient in a typical nonlinear scenario 
by incorporating the concept of surrogate modelling [32]. 
Surrogate modelling framework is employed in situations 
wherein the model is too complex mainly due to a large 
number of parameters or a very higher order of differential 
equations. Although a model is deemed as an abstraction of 
the underlying system, it can also introduce an abstraction of 
abstraction through a suitable surrogate modelling mecha-
nism. Formulation of a suitable surrogate model capable of 
generating satisfactory simulation in the operating region 
can significantly improve the computational efficiency of a 
model. All the mentioned traits of surrogate modelling make 
it a useful tool in the multiscale modelling of materials. A 
more detailed overview of the surrogate modelling approach 
in the context of material science can be found here [36]. 
The chosen surrogate model should ideally be feasible for 
high-dimensional nonlinear mapping. The feature set cor-
responding to the input–output data is pivotal in deciding 
the nonlinear base function, and thereafter, a linear combi-
nation of the chosen base model can be used to formulate 
the surrogate model. An artificial neural network (ANN) is 
instrumental in developing a surrogate model because, in 
theory, an ANN can carry out high-dimensional nonlinear 
mapping provided an adequate number of hidden layers and 
neurons are considered. For example, an ANN-based sur-
rogate model is trained with various micro-structure geo-
metrical and material parameters and Bayesian inference is 
used for parameter estimation [32]. In another such exam-
ple, the same sort of surrogate modelling, employing ANN 
is applied for multiscale modelling of carbon-based nano-
composites [37]. The selection of a surrogate model type can 
be difficult as there are numerous options, and therefore, a 

detailed review [38] can be referred by the practitioner to 
make an informed decision.

In addition to a popular choice, ANN, for surrogate mod-
elling in multi-scale modelling of materials, a more transpar-
ent but highly efficient nonlinear dynamical systems model 
class, such as Nonlinear Auto-regressive Moving Average 
with Exogenous Inputs (NARMAX) [39]. Despite possess-
ing a good nonlinear mapping capabilities, an ANN lacks 
transparency and can be termed as a ‘black box’ model, 
whereas a NARMAX model can be used to tease apart the 
characteristics of the various dynamical elements present 
within the original multi-scale model representation of the 
system. The parameter estimation of a NARMAX model 
can be done using either a deterministic or probabilistic 
approach, but the later one would be a preferred option 
because the posterior probability distribution of the param-
eters can accommodate the systems’ uncertainties to a fair 
extent.

ABC in Multi‑scale Modelling

Approximate Bayesian Computation (ABC) is a data-driven 
computation method originating from the classical theory 
of Bayesian statistical inference. The likelihood function 
under the Bayesian theory represents the probability of the 
observed data under a model. The model in this context is 
statistical in nature. Therefore, the likelihood function is the 
quantification of the joint probability of the observed data as 
a function of the parameters corresponding to the selected 
model. The derivation of likelihood function in analytical 
sense is mostly straightforward in simple models. Nonethe-
less, the same does not apply to more complex models. In 
such cases, deriving an analytical formula corresponding to 
likelihood function can become computationally expensive 
or sometimes even near impossible. The ABC harnesses 

Fig. 3   Schematic overview 
of the link between materials 
processing and the resulting 
mechanical properties
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the modern days high-performance computing infrastruc-
ture to bypass the necessity of evaluating likelihood func-
tion. Essentially, an ABC algorithm employs a simulation 
approach combined with Monte Carlo sampling for returning 
the posterior distribution of model parameters [31, 40].

The ABC methodology is inspired from simple rejection 
algorithm, but practitioners often employ an efficient version 
of this algorithm such as, ABC-Markov Chain Monte Carlo 
(ABC-MCMC) or ABC-Sequential Monte Carlo (ABC-
SMC). In an ABC algorithm, at every iteration, the param-
eter set is sampled from a probability distribution, which 
simulates the model. The data generated through simula-
tion are simplified using a chosen summary statistics which 
is compared to the observed summary statistics to decide 
whether to accept or reject the sampled parameters [41].

The ABC method has a great potential in multi-scale 
modelling of materials in almost all the scenarios wherever 
it intend to perform Bayesian inference. For example, the 
parameter estimation of models described in the literature 
[32, 37] can also be performed by applying ABC instead 
of following the suggested surrogate modelling route. A 
multi-scale modelling of permeability and the estimation of 
parameters based on Bayesian inference is discussed in the 
literature [42]. The permeability field is an important factor 
pertaining to a reservoir performance. However, instead of 
using a Multilevel Markov Chain Monte Carlo (MLMCMC), 
ABC is used, which has a superior performance compared 
to the MCMC approach. This study bolsters the applica-
tion of ABC in multi-scale modelling. Some studies on the 
usage ABC in multi-scale modelling of materials and their 
comparison with the more established framework, such as 
surrogate modelling, would be an interesting area of inves-
tigation for the community. The further details related to 
ABC techniques including some practical challenges are 
succinctly described here [43].

Machine Learning of Equivariant Atomic 
Properties

Equivariant Atomic Properties

In this section the authors review the recent adoption of 
machine-learning methodologies for the representation 
and approximation of equivariant atomic properties. Gen-
erally speaking, an atomic property is a mapping from the 
local atomic configuration �i = {𝜎j}rij<rcut within a structure 
{�i}i (molecule or material) to a scalar or tensor that may 
satisfy certain symmetries, where rcut is a characteristic 
lengthscale beyond which interactions can be truncated. 
From these “local” atomic properties one can then build 
models for the entire structure. For example, if �i = (ri, zi) 

describes an atom with position ri and atomic number zi , 
then the potential energy for a material or molecule can be 
written as

where the site energy Vi is an atomic property that is invari-
ant under translations, rotations, reflections and permuta-
tions of the atomic environment (freezing the centre atom).

More generally, most atomic properties one encoun-
ters have equivariant symmetries under those operations. 
The charge and magnetic dipoles, forces, or a complete 
Hamiltonian or friction operator. For example, V ∈ ℝ

3 
could represent the charge dipole on a molecule with V(�i) 
the atomic contribution from atom i.

Such general equivariant symmetries can be expressed 
as

where Q�i denotes the action of the generalized rotation 
matrix Q on the atomic environment �i and SYMQ denotes 
the action of Q on the property V. (Here, the orthogonal 
group O(3) was focused, but in principle the ideas general-
ize very broadly.) For example, if V denotes a site energy 
potential, then SYMQV = V  . If V ∈ ℝ

3 denotes a dipole or 
a force, then SYMQV = QTV .

Equivariant Features and Linear Models

The simplest way to approximate V is to represent it by a 
linear model, i.e. it may expand

where {Bk}k are tensorial-valued features (or, a basis) 
exactly satisfying the desired equivariance,

Numerous constructions of such features have been pro-
posed, including, e.g. the invariant Behler, Parinello sym-
metry functions [44], the SOAP descriptor [45–47], Spectral 
Neighbor Analysis Potential (SNAP) [48], Moment Tensor 
Potentials (MTPs) [49, 50], or most recently the Atomic 
Cluster Expansion (ACE) [51–55]. Moreover, there are natu-
ral and intimate connections between all of these approaches 
that have been explored in depth in [56], where also refer-
ences to further constructions of equivariant features can 
be found. It refers to the references above for further details 
and only point out that constructing equivariant features of 
atomic environments is now a fairly well-understood task, 

V({�i}i) =
∑

i

Vi(�i)

(1)V(�i) = SYMQ

[
V(Q�i)

]
, ∀Q ∈ O(3),

V(�;�i) = � ⋅B(�i) =
∑

k

�kBk(�i),

Bk(�i) = SYMQ(Bk(Q[�i)]),∀Q ∈ O(3).
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which can be performed efficiently and reliably, and said 
features can be evaluated in a numerically robust and effi-
cient manner.

Nonlinear Models

A feature vector B = (Bk)k may also be used to construct non-
linear models of the form

where F  would typically be represented in terms of an 
artificial neural network [44] or a Gaussian process [45]. 
Another class of nonlinear models of increasing impor-
tance are equivariant neural networks (ENNs), which are 
easiest to think about as message passing networks [57–59] 
in which each layer t is represented as an atomic structure 
{�

(t)

i
}i but now with “hidden” features attached to a state, 

�
(t)

i
= (ri, zi, �

(t)

i
) . The “message” is an equivariant mapping

In the output layer, the features may then be pooled to extract 
for example a global property. Thus, in this setting, each 
node in the network is an equivariant atomic property.

In general, these nonlinear models give rise to such an 
immense freedom in their design that f will not give any fur-
ther details, but direct the reader to the cited references for 
further information.

Parameter Estimation

Ignoring the more complex case of ENNs for the moment, 
both linear and nonlinear models in the end give rise to param-
eterized atomic properties V(�;�i) that satisfy certain equivari-
ance conditions. The authors estimate the parameters � = (�k)k 
from first-principles datasets by fitting the parameters, usually 
through a least squares approach.

A critical challenge one often encounters is that the atomic 
property V cannot be directly observed, but only indirect 
observations can be made. For example, a site energy is not 
an observable property, but total potential energy and forces 
can be obtained from first-principles calculations. In general, 
the present researchers therefore seek to estimate parameters 
by minimizing a least squares loss function

where Oj is an observation, yj the value to which the obser-
vation is fitted, wj a weight, and Φ a general regularization 
term. If the parameterization V and the observations Oi are 
linear and the regularizer Φ is quadratic, then minimizing 
L gives rise to a linear least squares problem for which 

V(�;�i) = F(�;B(�i)),

�
(t+1)

i
= V (t+1)(�

(t)

i
).

L(�) =
�

j

wj‖Oj(V) − yj‖2 + Φ(�),

efficient and robust direct solution techniques exist. Other-
wise the minimization must be performed iteratively using, 
for example, (stochastic) gradient descent methods, or quasi-
Newton methods.

By means of example, suppose that V is a linear param-
eterization of a site energy or general atomic property and 
that an observation Oi represents the evaluation of the cor-
responding total property on a structure �(j) = {�

(j)

i
} , e.g. the 

total energy or the net dipole. In that case, 

This shows how general observations can be composed of 
local features and also highlights the linear structure in the 
case of linear models and linear observations.

Applications

The machinery outlined above, but with numerous modi-
fications to fine-tune and specialize, has been used with 
increasing success in the atomistic modelling community, 
for a broad range of applications. Early on the main focus 
was on the construction of highly transferrable interatomic 
potentials with (near-) ab initio accuracy [48, 50, 51, 55, 57, 
60–62]. More recently, there have been studies on adapting 
it to learning equivariant Hamiltonians [63, 64], wave func-
tions [65], or dielectric and magnetic tensorial properties 
[66].

Accelerating Statistical Mechanics Using Machine 
Learning

In addition to understanding the ground state of materials, 
it is important to be able to describe the finite temperature 
behaviour of materials. To obtain these properties from 
a microscopic atomistic model of a material, statistical 
mechanics need to be employed. The connection between 
these two scales is provided, in the case of a canonical 
ensemble, by a temperature-dependent probability distribu-
tion of the occupation of the individual micro-states, i.e. 
the points in phase space, that is the Boltzmann distribution

where � ∈ Ω represents a microstate in the high-dimensional 
phase space Ω of the system, � = 1∕kBT  is the inverse tem-
perature and H(�) is the Hamiltonian. Thus, the expected 
values of observables A are temperature-dependent averages 
weighted with this distribution.

Oj(V) =
∑

i

V(�;�
(j)

i
) =

∑

i

∑

k

�kBk(�
(j)

i
)

=
∑

k

�k

∑

i

Bk(�
(j)

i
).

p(�;�) =
e−�H(�)

∫
Ω
e−�H(��)d��
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The methods of choice for sampling this huge phase space 
of materials at finite temperature are Monte Carlo algo-
rithms, starting with the original Metropolis algorithm [67] 
and including further improvements in sampling that have 
achieved significant gains in the scaling and sampling prop-
erties for ranges of temperatures [68–70].

Traditionally Monte Carlo sampling has been applied to 
model systems where the energy is fast and easy to evaluate. 
To capture the subtleties of the interactions in real materials, 
it is desirable to be able to combine the statistical mechanics 
with first-principles density functional theory calculations 
that capture the quantum mechanical origins of the energy 
of the materials due to electron interactions. Yet these cal-
culations are usually prohibitively expense due to the cost 
of the single energy evaluations. Thus this direct approach 
of combining classical Monte Carlo simulations with DFT 
calculations, has been applied only in few cases of care-
fully chosen system, thus as the calculations of the Curie 
temperature in iron-based materials [71, 72] or in binary 
solid solution alloys [73]. To be able to increase the number 
and complexity of materials that can be investigated, it is 
necessary to reduce the number of first-principles energy 
evaluations. This can be achieved by constructing surrogate 
models from first-principles data that can be evaluated with 
a significant reduction of computational resources. A tradi-
tional approach to constructing such a model for solid solu-
tion alloys has been the cluster expansion method [74, 75].

With the form of the cluster expansion ansatz, there are 
many choices to be made about which clusters to include 
in the model. This includes both the number of sites 
included in these clusters as well as the spatial extend of 
these interactions. These problems share a noticeable simi-
larity to the hyperparameter optimization in many machine 
learning approaches. Thus the relation between the model 
that is supported by a given dataset size and the desired 
error in finite temperature Monte Carlo calculations can 
be controlled by combining these to methods as dem-
onstrated in an application of the Wang–Landau Monte 
Carlo algorithm to FeCo [76]. When moving from binary 
alloys as in the previous example to more complex materi-
als, such as concentrated multi-component solid solution 
alloys or high entropy alloys, the problems of identify-
ing the hyper-parameters of a model that maximizes the 
information that can be extracted from a training dataset 
while avoiding over-fitting becomes even more acute. To 
avoid overfitting it is common to introduce a regularization 
parameter to penalize large regression coefficients. For a 
simple pair interaction model subset of the cluster expan-
sion approach the use of a Bayesian information criterion 
allows the identification of the ideal model size for a given 

⟨A⟩� = ∫Ω

A(�)p(�;�)d�
training set that maximizes the model likelihood while 
minimizing the risk of overfitting. This robust data-driven 
approach for finding models for the energy of high entropy 
alloys will also indicate the need for larger datasets if the 
required model accuracy cannot be supported by an exist-
ing dataset size [77].

A different approach to building surrogate models 
for the energy of alloy configurations is provided by the 
construction of deep artificial neural networks (DNNs) 
that takes the site occupation by the atomic species 
(for multi-component alloys as a one-hot encoding) as 
an input vector. As DNNs usually have a significantly 
larger parameter space than the physically inspired clus-
ter expansion models, the model training would require 
prohibitively large training sets to avoid the possibility of 
the model being stuck in unphysical models. An approach 
that can at the same time reduce that dataset sizes and 
stabilizes the deep-learning predictions of the energies 
in solid solution alloys utilizes the additional informa-
tion that is available from the underlying first-princi-
ples calculations that generated the training data in the 
first place. These calculations provide in addition to the 
energy of the system also the distribution of charge and, 
if the material is magnetic, the magnetic moments in the 
material. This allows the application of multitask learn-
ing [78]. By constructing a network architecture that in 
addition to the energy also predicts the these additional 
physical properties, the DNN model can be guided to a 
more robust prediction of the physical properties as the 
additional knowledge acts as regularizer driven by the 
physics of the system [79].

Finally, the model construction approaches described 
above can be combined with Monte Carlo simulations. 
Yet the original training dataset might not cover the phase 
space sufficiently to ensure the accurate description of 
the statistical mechanics of complex multi-component 
alloys where both transitions between ordered and dis-
ordered phases as well as phase separation between dif-
ferent compositional phases might occur. To capture this 
behaviour the model can be actively refined by recording 
the phase space points that are visited during a simula-
tion run and identifying new phase space regions that 
were not sufficiently covered by the initial training data. 
By enriching the training set with new first-principles 
calculations for these points and retraining the model 
can be refined. This enables a self-consistent workflow 
that alternates the first-principles data generation, model 
retraining and Monte Carlo simulations until a the pro-
cess has converged to a model that provides a stable pre-
diction for the finite temperature statistical mechanics of 
the material [80].
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Discussion

The present article provides a pedagogical overview of the 
basics of the multiscale materials modelling. The challenges 
of sequential multiscale materials modelling have been 
highlighted along with some possible solutions involving 
uncertainty quantification along with experimental valida-
tion at each stage of the multiscale model. Modelling mate-
rials processing presents an additional challenge, as such 
a scenario is inherently dynamic in nature. Such problem 
requires the incorporation of the influence of the material 
defects, as well. It has been proposed that free energy sur-
faces derived from the ab initio approaches can be input to 
the mesoscale microstructure development model, such as 
phase field model (PFM). The PFM can provide the input to 
the property evaluation model such as finite element model. 
However, development of accurate free energy surface with 
defects can be a challenging problem. Such a challenge can 
be addressed through machine learned interatomic poten-
tials, which can generate the potential energy landscape 
with the quantum-mechanical accuracy with limited com-
putational cost [81].

Highly complex problems involving numerous variables 
pertaining to structure–property correlations have been ear-
lier attempted through database-oriented approaches [82, 
83]. However, recent interest in the Bayesian approach to 
develop the surrogate models for structure–property corre-
lations can be alternative way forward. The development of 
surrogate models requires the coarse graining of parameter 
space. The conventional approach of the mean-field homog-
enization is being replaced with the Bayesian inference 
through application of ANN as well as NARMAX approach 
for the determination of feature set of the input–output data-
base. The Bayesian approach has already being increasingly 
applied to single-scale problems such as alloy design [84], 
grain growth [85], as well as property predictions [86–88]. 
However, the application of such a approach for multiscale 
materials modelling problems has been limited [32].

 The authors have also briefly reviewed recent develop-
ments using equivariant features derived from atomic envi-
ronments. This is now a well-understood approach, which 
can be performed efficiently and reliably, in a numerically 
robust and efficient manner to provide input representations 
for linear and nonlinear machine learning models suitable 
for a range of applications from interatomic potentials 
through to direct surrogate models of electronic structure 
calculations.

The determination of finite temperature properties 
through statistical mechanics-based approach convention-
ally relies on the sampling of the phase space through 
Metropolis Monte Carlo method. In such as method, 
energy calculation is a bottleneck step. The surrogate 
model for the energy calculation step can be either 

developed by employing physically inspired cluster expan-
sion approach or by DNN approach. The DNN approach 
is a promising approach for the development of energy 
calculation surrogate. However, it required the large data-
set covering ideally the full phase space. As mentioned in 
Sect. 5, such a challenge can be solved by the development 
of the self-consistent workflow involving iterative ab ini-
tio database generation, model refitting and Monte Carlo 
simulations. This approach of dynamic database genera-
tion is closely related to the MODNet approach, where 
low data problem has been tackled with feature selection 
based on normalized mutual information [89]. The issue of 
low data becomes particularly challenging for multicom-
ponent materials, where again efficient schemes are being 
developed [90–92].

In addition to the above, during EMLM3 focused discus-
sions on various issues related to the application of machine 
learning (ML) to various problems such as reproducibility 
of calculations, database-oriented materials discovery and 
challenges in dealing with long-ranged electrostatic interac-
tions through ML approaches were carried out.

The reproducibility studies on ML-based methodologies 
are scarce, in comparison with the concerted efforts to report 
the reproducibility of plane-wave ab initio calculations [93]. 
The attempt to ensure the reproducibility in the atomistic cal-
culations has been through the interatomic potential reposi-
tory of NIST, which stores the numerous classical potential 
published in the literature. Another effort to document the 
classical interatomic interaction is the OpenKIM framework 
[94], which not only stores the interatomic potentials, but 
also verifies the interatomic potential for code integrity and 
predictive capability. Recent interest in applying machine 
learning in materials science has led to a significant volume 
of publications. However, it is important to note that it is 
becoming increasingly difficult to reproduce calculations. 
In principle, the results of the calculation may be repro-
ducible, if the code, training datasets and environment of 
the calculator are properly shared. But, the repetition of the 
calculations is generally not pursued and present scenario of 
peer-reviewed journal publications does not emphasize the 
data and code sharing with the scientific results.

The curation of datasets and allied information of ML 
models would be critical for not only their justifiable appli-
cation, but also helpful in the identification of the inher-
ent limitation of these models. Such an approach is in line 
with the traditional approaches [95, 96]. It is envisaged that 
the significant interest in applying ML to materials prob-
lem would gradually lead to the fifth paradigm of scientific 
discovery.
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