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Abstract: We study a collaborative revenue management problem where multiple decentralized parties agree to
share some of their capacities. This collaboration is performed by constructing a large mathematical programming
model that is available to all parties. The parties then use the solution of this model in their own capacity control
systems. In this setting, however, the major concern for the parties is the privacy of their input data, along with
their individual optimal solutions. We first reformulate a general linear programming model that can be used for a
wide range of network revenue management problems. Then we address the data privacy concern of the reformulated
model and propose an approach based on solving an equivalent data-private model constructed with input masking
via random transformations. Our main result shows that, after solving the data-private model, each party can safely
access only its own optimal capacity allocation decisions. We also discuss the security of the transformed problem
in the considered multi-party setting. Simulation experiments are conducted to support our results and evaluate the
computational efficiency of the proposed data-private model. Our work provides an analytical approach and insights
on how to manage shared resources in a network problem while ensuring data privacy. Constructing and solving a
collaborative network problem requires information exchange between parties that may not be possible in practice.
Including data privacy in decentralized collaborative network revenue management problems with capacity sharing
is new to the literature and relevant to practice.

Keywords: Revenue management; data privacy; network revenue management; collaboration; resource sharing

1. Introduction. Forming alliances is an important business strategy for a firm to streamline its costs
in order to remain competitive. Alliances can be considered as a collaboration by several parties to conduct
various activities, such as allocating resources, sharing information, and providing complementary services.
These partnerships can also be observed among competitors, for example, when several firms join their
professional assets to manage a supply chain network (Granot and Sošić, 2005; He and Yin, 2015). In
power networks, independent power suppliers operate on a distributed system, where they work together
to balance the power demand and supply (Ghaderyan et al., 2021). Recently, logistics companies have
started to collaborate by sharing empty vehicle capacities to overcome the problem of excess capacity in
freight transportation (Speranza, 2018). One of the important advantages of collaboration is the increase in
economies of scale. In airline revenue management, the carriers sign an alliance contract, called a codeshare
agreement, to share their flight capacities and provide joint services. The companies can offer more products
through joint services, leading to greater revenue opportunities in the long term (Topaloglu, 2012). Greater
customer value can be achieved with increased flexibility in the provided services. In addition to economic
benefits, the companies can also improve their reputation by improving the sustainability aspects of their
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operations (Gansterer and Hartl, 2016).

Coordination of partnerships or collaborations involves a series of challenges. Generally, in an alliance,
parties pool some of their resources and share the necessary information for the collaborative decision-making
process. Besides coordinating shared resources, they also manage their individual local resources. Therefore,
these parties, though often working towards a common goal, can be competitors and may be unwilling or
unable to disclose complete information about their operations to protect their own interest. In addition,
legal frameworks such as the antitrust law force companies to take extra measures to protect their data
(Gerlach et al., 2013; Wright, 2014; Albrecht and Stadtler, 2015). Depending on the industry, this sensitive
information may involve demand forecasts, selling prices, operational costs, and available resources. For
instance, in air cargo transportation, airlines and freight forwarders collaborate to sell flight capacity. In
this partnership, the freight forwarders keep their demand information, operating costs, and reservation
prices private to protect their interests (Amaruchkul et al., 2011). Due to the restrictions in information
exchange, decomposition and decentralization approaches have been studied to minimize information sharing
between parties in collaborative networks (Poundarikapuram and Veeramani, 2004; Albrecht and Stadtler,
2015; Singh and O’Keefe, 2016; Ding and Kaminsky, 2020). Research on decentralized collaborative decision-
making problems has primarily adopted iterative negotiation-based approaches to decompose the centralized
model, which requires complete information sharing. Although information exchange is reduced with the
decentralized coordination and negotiation-based approaches, the parties still have to share some information
on their individual operations, which may reveal confidential information about their activities. Several
studies have pointed out that revealing primal or dual optimal solutions can provide a strategic advantage
to other parties in the cooperation (Albrecht and Stadtler, 2015; Singh and O’Keefe, 2016; Lai et al., 2019;
Rius-Sorolla et al., 2020). There is no mechanism available in the literature to coordinate independent
cooperating parties while ensuring that the information shared by the parties remains private.

This paper considers a general setting for capacity collaboration in network revenue management problems,
where applications can be found in airline alliances, air-cargo transportation (Wright, 2014; Houghtalen
et al., 2011), collaborative logistics (Adenso-Díaz et al., 2014; Gansterer and Hartl, 2016; Jin et al., 2019),
and decentralized supply chains (Albrecht and Stadtler, 2015; Singh and O’Keefe, 2016). Considering the
benefits of collaboration, we assume that multiple parties agree to collaborate by sharing some of their
capacities. Each party also controls its own private capacities, in addition to the shared resources. This
collaboration is performed by constructing a large mathematical programming model available to all parties.
The fundamental aim of the parties is to identify the optimal allocated capacities for the shared resources and
to evaluate the opportunity costs of the capacities available to them, i.e., dual variables. These opportunity
costs are used in various capacity control policies. For instance, dual variables are used in well known bid-
price control policies to manage customer requests for quantity-based network revenue management problems
(Phillips, 2005). As an example, consider capacity management for an airline alliance where each partner
operates a set of flight legs and markets a set of itineraries. Through contracts set at the beginning of a sale
season (before flights are marketed online), each carrier agrees in advance on receiving a fixed number of
seats from the shared flights (Ratliff and Weatherford, 2013). Then all carriers govern their own allocated
capacities in addition to their individual flights throughout the selling season using their own capacity control
strategies based on bid prices. In our setting, the parties jointly compute the optimal capacity allocations
and bid prices of their collaborative model without disclosing any private information, such as selling prices
and local capacity restrictions. Gerlach et al. (2013) report that sharing information obtained through dual
variables in an airline alliance requires antitrust immunities. In practice, airlines prefer not to exchange such
information to protect their own interests since the exchange of primal or dual optimal solutions can reveal
information about the capacity utilizations or profitability which are often regarded as being confidential and
sensitive. Without the necessary and mostly private information about the collaborative network problem,
the correct values of bid prices and the capacity allocations for the shared resources cannot be computed.
This lack of proper information about the network problem raises an important question: How can one
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compute the correct bid prices and the capacity allocations of the shared resources that maximize the overall
revenue under privacy concerns? This question constitutes the main motivation behind our current study.
Thus, by answering this question, we can provide a mechanism for the parties to collaborate without revealing
their private data.

Contributions. We present a new transformation-based approach that considers data privacy in collab-
orative network revenue management problems, where multiple parties agree to share some of the network
capacities. The proposed approach allows partners to use their individual private data while solving the
collaborative capacity allocation problem to identify the optimal capacity sharing setting for the alliance.
In our setting, each party keeps its data private through random data masking. Unlike the previous de-
composition methods proposed for decentralized collaborative resource-sharing problems, this method does
not require any unmasked information exchange among parties while solving the collaborative model. To
the best of our knowledge, our approach is the first attempt in the literature to deal with data privacy,
considering both primal and dual variables. Our analysis makes use of several previous privacy studies based
on random transformations of the problem data. However, our focus on bid prices allows us to extend these
studies, providing new results about the privacy of dual solutions. We show that the original primal and
dual optimal solutions can be derived from the proposed transformed data-private model. Furthermore,
in a separate section, we discuss the security of our mathematical model, where we apply a special set of
random matrices (M -matrices) for transforming the simple inequalities. This set of matrices is much larger
than the set of permutation matrices used in other studies, which enhances the security of the proposed
method. We also contribute to that literature with a new result, showing that even if the private dataset of
a firm is guessed, a brute force approach to obtaining random matrices in order to reveal primal and dual
optimal solutions is computationally infeasible. We support our results with a simulation study on a set of
revenue management problems, where the network structure is taken from an actual firm and adapted to an
alliance network. Finally, we point out that the steps that we follow in this study can be extended to other
resource-sharing applications where linear programming is one of the fundamental tools and data privacy is
a major concern.

2. Review of Related Literature. Collaboration via forming alliances is common in many industries.
Therefore, the efficient capacity allocation among the involved parties has long constituted an intriguing
research topic, with applications in airlines (Wright et al., 2010; Topaloglu, 2012; Chun et al., 2017), logistics
and maritime shipping (Agarwal and Ergun, 2010; Zheng et al., 2015; Gansterer and Hartl, 2018; Ding and
Kaminsky, 2020), and retail industries (Guo and Wu, 2018). Previous literature on collaborative decision-
making has primarily concentrated on the development of centralized models, which requires information
sharing among partners or with a central planner (Boyd, 1998; Topaloglu, 2012; Zheng et al., 2015). Recent
studies have pointed out the impracticality of central planning due to the restrictions in information sharing.
Belobaba and Jain (2013) and Wright (2014) have discussed the limitations in information sharing among
alliance partners in airlines. Similarly, Albrecht and Stadtler (2015) have studied collaboration in supply
chains and pointed out that the current advanced supply chain planning systems assume complete information
sharing between firms. They note that there is no mechanism to coordinate a system where the partners only
share limited information. They have proposed a negotiation-based scheme to coordinate collaborative parties
in a decentralized supply chain environment. Due to the limitations in information sharing, decentralized
models have been studied for collaborative decision-making problems(Rius-Sorolla et al., 2020).

Poundarikapuram and Veeramani (2004) have proposed a decentralized decision-making framework based
on the L-shaped method for a collaborative planning problem in a supply chain. This framework separates
the centralized problem into a master problem that includes common variables for all parties and sub-
problems with private local objectives and variables. The authors have presented an iterative procedure,
where the parties can solve their local problems privately and disclose limited information to solve the master
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problem at each iteration. Topaloglu (2012) has studied a centralized alliance problem in airline revenue
management. By relaxing the shared constraints with dual variables, he has proposed a decomposition
approach for finding the booking limits for each alliance partner as well as the bid prices. Amaruchkul et al.
(2011) have addressed data privacy in air cargo transportation. The carrier allocates bulk cargo capacity to
the forwarder who sells this capacity to individual customers. The authors have studied the capacity contract
between these two partners when the forwarder has private information on demand distribution, operating
costs, and reservation profits. Chun et al. (2017) have addressed optimal capacity exchange problem in
maritime transportation and proposed a two-stage framework to obtain the optimal resource allocation
policy between alliance partners. In the first stage, the capacity exchange amount is determined so that
the total alliance profit is maximized. Given the allocated capacities, each party decides on the reservation
price to maximize its own local objective in the second stage. Recently, Lai et al. (2019) have studied the
capacity allocation problem for a freight alliance by considering the data privacy in revenues and profit
margins. They assume that the alliance partners jointly book freight capacity from the market according
to the forecasted shipping demand and then share this capacity during the planning period. The authors
first studied the centralized capacity allocation problem assuming revenue information is public. Due to the
difficulty in solving the centralized problem, they proposed an iterative auction mechanism based on the
primal-dual method to find the capacity allocation policy. In the designed auction mechanism, the alliance
partners do not need to share their private data, except for the forecasted shipping demand.

Although decomposition or decentralization approaches reduce the information exchange among parties,
they do not completely ensure data privacy. We review two main approaches in privacy-preserving methods
for optimization and data analysis: cryptographic and non-cryptographic approaches (Weeraddana et al.,
2013). Cryptography-based techniques such as secure multiparty computation allow several parties to do
computation jointly over their inputs while ensuring that they remain private to each party. There is an
extensive literature on cryptographic methods, yet computational issues are always of concern. In fact,
forming a completely secure protocol for an optimization problem requires very high computational power
(Hong et al., 2018). Li and Atallah (2006) have presented a secure simplex algorithm for a setting, where the
objective function and the constraints are arbitrarily partitioned. Toft (2009) has followed the same scheme
with Li and Atallah and presented a protocol for solving linear programs using a secure simplex algorithm.
However, Dreier and Kerschbaum (2011) implemented the algorithm proposed by Toft (2009) and pointed
out that it is computationally inefficient even for small-scale problems.

Transformation is a non-cryptographic technique that involves converting a given linear optimization
problem into a new problem via algebraic transformations, such that the solution of the new problem is the
same as that of the original problem (Mangasarian, 2012; Wang et al., 2011). This enables parties to disguise
private data effectively while preserving the quality of the solution. Du (2001) and Vaidya (2009a) have used
transformation method in linear programming models. However, Bednarz (2012) has shown that this method
is open to information acquisition attacks; that is, the private coefficients in the model can be learned by
others. Mangasarian (2011, 2012) has proposed transformation techniques for vertically and horizontally
partitioned linear programming models. Li et al. (2013) have extended this approach by incorporating
inequality constraints into horizontally partitioned linear programming models. Hong and Vaidya (2014)
have shown that the transformation method proposed by Li et al. (2013) is also open to attacks. There are
few other transformation approaches for privately solving collaborative linear programming problems (Hong
et al., 2018; Weeraddana et al., 2013). To the best of our knowledge, all of these transformation approaches
focus on privacy in input data (private data) and primal optimal solutions. How the dual solution is affected
by the transformation applied to the primal model is unexplored.

3. Data-Private Capacity Allocation. Consider a collaborative network revenue management prob-
lem where multiple parties cooperate to share several capacities of the network for their own resource al-
location systems. In addition to the shared capacities, each party controls its own private capacities. The
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aim of the parties is to decide on the optimal allocated capacities for the shared resources and to identify
the bid prices of the capacities available to them. In this setting, parties jointly build and solve the capacity
sharing problem without disclosing any private information about their operations. Parties set a partnership
agreement at the beginning of the planning horizon. Therefore, a partner does not have any access to the
private data of any other partner in the cooperation. Depending on the industry, this private data may be
revenues, available resources, operation routes, or demand information.

Similar to other studies in the literature, we also assume that the parties in an alliance cooperate truthfully
(Krajewska and Kopfer, 2006; Topaloglu, 2012; Hyndman et al., 2013). This assumption is known as semi-
honest behaviour in computer science literature (Vaidya, 2009b). It implies that the involved parties do not
alter their data to get a better position in the collaboration. This assumption is naturally satisfied for several
important reasons: If one of the parties strategically manipulates the collaboration and secure most of the
shared capacities, then there can be legal consequences or simply loss of goodwill for their business. Firms
must consider the long-term prospects of future collaborations that can be jeopardized by opportunistic
behaviour. Moreover, as the optimal primal and dual solutions do not result from the correct network
information, they are of no use in controlling the shared capacities. Such a harmful move from one of the
parties can also cause other parties to opt out of the partnership in the next round. Even worse, the other
parties may start altering their data, which also eventually leads to the total collapse of the collaboration.
As a final example, consider a holding company that owns all the parties in the collaboration. Due to legal
regulations, it may be impossible to share data among the involved parties without transformation. In such
a setting, there is no incentive for any participant to manipulate the collaboration at the expense of the
others.

3.1 Capacity Sharing Model. In this section, we first describe the general type of collaborative
network revenue management problems that can be solved via our approach. We start with an illustration of
the proposed capacity sharing setting. Figure 1 shows a simple network structure for two parties. Each link
between a pair of nodes corresponds to a shared or private capacity on the network. As an example, we can
consider an airline alliance network partially shown in Figure 1, where a sequence of links constitutes a path
(e.g. route or itinerary) and the set of paths shows a number of origin-destination combinations. Moreover,
on each path, there could be multiple fare products with different revenues. A similar example would be
the set of different transshipment prices on a route that involves several stops with different truck capacities
on a transportation network. The first party operates the capacities (1-3) and (3-4), whereas the second
party operates the capacities (2-3) and (2-4). The second party also uses the capacity (3-4) shared by the
first party. Birbil et al. (2014) have also explored this network structure and proposed a framework based
on path decomposition. They treat each path as a single resource problem for a fixed capacity and solve
an optimization problem over all possible allocations of the capacities. We next reconsider the path-based
model of Birbil et al. (2014) and write it in a form that we can analyze to propose a data-private capacity
allocation approach. For ease of reference, we summarize the notation used in our capacity sharing problem
in Table 1.

We denote the set of parties by K, while the set of paths controlled by party k ∈ K is denoted by Sk.
Let m be the number of shared capacities in the network and J denotes the set of capacities shared by at
least two parties. We also introduce mk to denote the number of private capacities owned by party k and
Jk represents the set of these private capacities. We note that J ∩ Jk = ∅ for each party k ∈ K. If the
collection of paths is S = ∪k∈KSk and xs is the allocated capacity to path s ∈ S, then the generic model
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Figure 1: An illustrative network structure for two parties. The capacity on path 1 → 3 is private for the
first party, whereas the capacities on paths 2 → 3 and 2 → 4 are private for the second party. Two parties
share the capacity on path 3→ 4.

Table 1: Notation for the main capacity sharing model.

Type Notation Description

Shared

K Set of parties
J Set of m shared capacities
cj Shared capacities j ∈ J
m Number of shared capacities
α ∈ Rm Dual variables associated with the shared capacity constraints

Private

Jk Set of mk private capacities of party k ∈ K
Sk Set of paths controlled by party k ∈ K
cj Private capacities j ∈ Jk, k ∈ K
nk Number of products owned by party k ∈ K
mk Number of private capacities of party k ∈ K
rk ∈ Rnk Expected revenues for party k ∈ K
Ak ∈ Rm×nk Incidence matrix showing whether a product of party k ∈ K uses the shared capacities
Bk ∈ Rmk×nk Incidence matrix showing whether a product of party k ∈ K uses the private capacities
xk ∈ Rnk Decision vector private to party k ∈ K
αk ∈ Rmk Dual variables associated with the private capacity constraints of party k ∈ K

becomes:
maximize

∑

s∈S
φs(xs),

subject to
∑

s∈S
ajsxs ≤ cj , j ∈ J ,

∑

s∈Sk
ajsxs ≤ cj , j ∈ Jk, k ∈ K,

xs ≥ 0, s ∈ S,

(1)

where ajs = 1 if path s uses one unit from capacity j; 0, otherwise. The shared capacities are denoted by
cj , j ∈ J , and cj , j ∈ Jk stand for the private capacities of party k ∈ K. The first set of constraints ensures
that the capacity allocation decisions for the paths do not violate the shared capacities. The second set of
constraints guarantees that the capacity allocation decisions to paths for party k ∈ K do not exceed the
private capacity limits for that party. φs(xs) represents the expected revenue obtained when capacity xs is
allocated to path s. The function φs(xs) for a given xs is itself evaluated by solving an optimization problem
that yields the allocation decision of xs capacities to different classes, with the objective of maximizing
revenue. For instance, φs(xs) may correspond to a stochastic dynamic programming or a deterministic
programming model constructed for the capacity allocation problem for each path s. We assume that
xs 7→ φs(xs), s ∈ S are discrete concave functions. Birbil et al. (2014) have discussed that many well
known single dimension, capacity control models proposed in the revenue management literature satisfy this
assumption. Any of these models can be used to construct the objective function. We refer to Birbil et al.
(2014) for an elaborate discussion on different dynamic and static network revenue management problems
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that can be considered within this generic structure.

As the objective function is concave and separable, we can replace it with a piece-wise linear concave
function and reformulate the problem as a linear program. Dantzig (1956) has proposed an approach which
represents the concave objective function as an indefinite integral and approximates it by a sum over fixed
intervals. Following this approach, we can reformulate the model (1) as follows:

Z = maximize
∑

k∈K
rᵀkxk, (2)

subject to
∑

k∈K
Akxk ≤ c, (α) (3)

Bkxk ≤ ck, k ∈ K, (αk) (4)

0 ≤ xk ≤ 1, k ∈ K, (5)

where 1 and 0 stand for the vector of ones and the vector of zeros, respectively. The details of this model
construction are given in Appendix A. In this model, the columns designated by subscript k ∈ K show all
products owned by party k and the vector rk ∈ Rnk denotes the corresponding expected revenues for the
same party, where nk is the number of products owned by party k. The m× nk incidence matrix Ak shows
whether a product of party k uses the shared capacities. Likewise, themk×nk matrix Bk consists of columns
incident to the private capacities. The vectors α ∈ Rm and αk ∈ Rmk , k ∈ K given in parentheses are the
dual variables (bid prices) associated with the shared and the individual capacity constraints, respectively.
After solving this problem, each party obtains its own optimal allocations and bid prices. They also receive
the optimal common bid-price vector corresponding to the shared capacities. These bid prices can be used
by the parties to implement their decision-making policies. Therefore, the decision vector xk and individual
dual variables αk are private to party k ∈ K. In our subsequent discussion, the optimal values of capacity
allocations and bid prices for each party and the optimal bid-price vector for shared capacities are denoted
by x∗k, α∗k and α∗. Before discussing the data-private mathematical model, let us define formally what
constitutes as the private dataset for each party.

Definition 3.1 In the multi-party capacity sharing problem (2)-(5), the private dataset for party k ∈ K
consists of the matrices Ak, Bk, and the vectors ck, rk.

One may question why multiple parties would prefer solving the network problem collectively? Instead,
the shared capacity c could be partitioned among the parties and each party could solve its problem indepen-
dently. That is, if each party k ∈ K receives its share of the capacity denoted by sk such that c =

∑
k∈K sk,

then the same party k can solve the following problem without sharing any private data:

Zk = maximize rᵀkxk, (6)

subject to Akxk ≤ sk, (7)

Bkxk ≤ ck, (8)

0 ≤ xk ≤ 1. (9)

However, this approach has three drawbacks: First, it is not clear how to determine the optimal partitioning
of the shared capacity among the parties without having complete information about the network problem.
As a result of this sub-optimal partitioning, the capacities allocated to a party might be left unused, even
though those capacities could have been filled up by the other parties if they had been shared. These adverse
effects of the defragmentation of network capacities have also been observed in the literature (Curry, 1990;
Kunnumkal and Topaloglu, 2010). This sub-optimal partitioning leads us to the second drawback. The
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pre-allocation of the common capacities yields less total expected revenue than that of the collective model
(2)-(5). In other words, irrespective of the how the common capacity is shared, we have

∑
k∈K Zk ≤ Z. This

result simply follows from the fact that the collection of feasible solutions to each (6)-(9) is also a feasible
solution to (2)-(5). Third, the primal and dual variables obtained from the individual models depend on the
partitioning of the common capacity and lack of information about the entire network. Overall, it is more
beneficial for all parties to collaborate and solve the collective model (2)-(5).

3.2 Data-Private Mathematical Model. Even though the parties may have agreed to collaborate,
their major concern is the privacy of the input data (see Definition 3.1) and their sensitive decisions when
solving the joint problem (2)-(5). In our problem setup, the parties keep their revenue and capacity vectors,
as well as their product matrices private. Although the parties sign up to sharing some capacities on the
network, they do not share any information about their individual capacities. Thus, only the shared resource
capacities denoted by c are not private for the involved parties. In the next part of this section, we present
the steps for the parties to randomly transform their private input and output data in order to ensure data
privacy while collectively solving the network problem. This process can be summarized in three steps:

1. Each party in the alliance network generates and stores a set of random matrices to conceal its
private dataset by transforming its private vectors and matrices (given by Ak, Bk, ck, rk) with the
random matrices.

2. Parties share their transformed private data as well as the shared capacities (c) to construct and
solve the data-private network model.

3. Each party recovers its optimal solution (capacity allocations and bid prices denoted by xk and αk,
respectively) using the same random matrices stored in Step 1.

In the following discussion, the term masked problem is used to refer to the resulting problem after applying
random transformations to the input data.

First, we start with concealing the private output; that is, the individual optimal capacity allotments (x∗k)
and the individual bid prices (α∗k). To this end, we first ask each party k ∈ K to generate its own private
pair of random vectors, ηk ∈ Rnk and ξk ∈ Rmk , to transform the primal and dual solutions. We define
the auxiliary variable zk = xk + ηk to transform the primal variable in model (2)-(5). In order to mask the
dual optimal solution, we also define the auxiliary variable vk which corresponds to the slack of constraints
(3), i.e., vk = ck − Bkxk. Using the auxiliary variables zk and vk for k ∈ K, we construct the following
mathematical model:

maximize
∑

k∈K
(rk + Bᵀ

kξk)ᵀzk +
∑

k∈K
ξᵀkvk (10)

subject to
∑

k∈K
Akzk ≤ c +

∑

k∈K
Akηk, (β) (11)

Bkzk + vk = ck + Bkηk, k ∈ K, (βk) (12)

zk ≤ 1 + ηk, k ∈ K, (13)

zk ≥ ηk, k ∈ K, (14)

vk ≥ 0, k ∈ K, (15)

where the vectors in parentheses are again the dual vectors associated with the corresponding constraints.
The constraints (11) and (12) correspond to the capacity constraints (3) and (4) in path-based formulation
(2)-(5), respectively. Since xk is increased by ηk, the right-hand side of the constraints (3) and (4) is increased
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by
∑
k∈KAkηk and Bkηk in constraints (11) and (12), respectively. Given that the auxiliary variable vk

corresponds to the slack of constraints (3), the constraint (12) can be rewritten as an equality. The auxiliary
variable vk and its cost coefficient ξk are introduced to ensure that the dual optimal solution is shifted with
a random vector. The following lemma shows that the optimal allocations and the dual variables for each
party are indeed perturbed by private random noise vectors after solving this problem. As long as each party
k ∈ K does not share its random vectors ηk and ξk with the other parties, the individual optimal capacity
allotments and the individual bid prices remain private. The proof of the lemma is given in Appendix B.

Lemma 3.1 If we denote the primal optimal solution of (10)-(15) by (z∗k,v
∗
k)k∈K and the dual optimal

variables associated with the capacity constraints by (β∗,β∗k)k∈K, then we have

z∗k = x∗k + ηk, k ∈ K,
β∗ = α∗,

β∗k = α∗k + ξk, k ∈ K.

We note that in order to solve problem (10)-(15), each party k ∈ K still needs to reveal its pair of
random vectors, ηk and ξk, so that the objective function and the bound constraints can be constructed.
Consequently, the optimal allocations and the dual variables of each party can be easily recovered by other
parties when the problem (10)-(15) is solved collectively. Thus, the next step is to conceal the random
vectors by using a linear transformation. That is, we set vk = Eᵀ

kwk for k ∈ K, where Ek is a tk × mk

random matrix with tk ≥ mk. Likewise, we can also set zk = Dᵀ
kuk for k ∈ K, where Dk is a sk×nk random

matrix with sk ≥ nk. This is, in fact, the transformation proposed by Mangasarian (2011). We note that
we can simply form matrices Dk and Ek with real or rational random values. Then, the resulting matrices
are almost-surely full rank (Feng and Zhang, 2007). With the new transformation, we obtain

maximize
∑

k∈K
(rk + Bᵀ

kξk)ᵀDᵀ
kuk +

∑

k∈K
ξᵀkE

ᵀ
kwk (16)

subject to
∑

k∈K
AkD

ᵀ
kuk ≤ c +

∑

k∈K
Akηk, (17)

BkD
ᵀ
kuk + Eᵀ

kwk = ck + Bkηk, k ∈ K, (18)

Dᵀ
kuk ≤ 1 + ηk, k ∈ K, (19)

Dᵀ
kuk ≥ ηk, k ∈ K, (20)

Eᵀ
kwk ≥ 0, k ∈ K. (21)

Nonetheless, this transformation is still not enough to conceal the data or the random vectors because
the parties have to explicitly share the random matrices Ek due to constraints (18) and (21). Likewise,
the random matrices Dk and the random vectors ηk need to be revealed because of the bound constraints
(19)-(20). In fact, Mangasarian (2011) deals only with linear programming models without bound constraints
and mentions that there is “a difficulty associated with possibly including non-negativity constraints.” Li
et al. (2013) include inequality constraints, and resolve this privacy issue by allowing each party to generate
a positive diagonal random matrix for their slack variables. Their approach has been shown to be open to
attacks (Hong and Vaidya, 2014). In order to alleviate this problem, we propose to use M -matrices, for
which the positive diagonal matrices constitute a subset. Let us first give the formal definition of M -matrix
that will be used to conceal data in our approach.

Definition 3.2 (M-matrix (Poole and Boullion, 1974)) An `× ` matrix M that can be expressed in
the form M = sI −N, where N = (nij) with nij ≥ 0, i, j ∈ 1, ..., `, and s > ρ(N) is called an M -matrix
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where ρ(N) = max{|λ| : det(λI−N) = 0}.

This definition also provides a procedure to obtain a randomM -matrix: First sample a random non-negative
N matrix and select a random s > ρ(N). Then sI−N becomes an M -matrix. This simple procedure clearly
shows that it is possible to produce infinitely many M -matrices. We will make use of this observation when
we discuss the security of our transformed problem in the next section.

We generate the mk × mk matrices Fk and Lk as well as the nk × nk matrices Gk and Hk using the
simple procedure shown above. In order to conceal the random vector ηk and the random matrices Dk and
Ek for k ∈ K, we multiply the constraints (18)-(21) by the M -matrices Fk, Gk, Hk and Lk, respectively.
The resulting model is given as:

maximize
∑

k∈K
(rk + Bᵀ

kξk)ᵀDᵀ
kuk +

∑

k∈K
ξᵀkE

ᵀ
kwk (22)

subject to
∑

k∈K
AkD

ᵀ
kuk ≤ c +

∑

k∈K
Akηk, (23)

FkBkD
ᵀ
kuk + FkE

ᵀ
kwk = Fk(ck + Bkηk), k ∈ K, (24)

GkD
ᵀ
kuk ≤ Gk(1 + ηk), k ∈ K, (25)

HkD
ᵀ
kuk ≥ Hkηk, k ∈ K, (26)

LkE
ᵀ
kwk ≥ 0, k ∈ K. (27)

Model (22) - (27) ensures the privacy of the individual input and output data of each party while parties
solve their joint capacity control problem. To simplify our notation, we further define for k ∈ K with the
following

r̄k = Dk(rk + Bᵀ
kξk), ξ̄k = Ekξk, Āk = AkD

ᵀ
k, c̄ = c +

∑
k∈KAkηk = c +

∑
k∈K η̃k

B̄k = FkBkD
ᵀ
k, F̄k = FkE

ᵀ
k c̄k = Fk(ck + Bkηk), Ḡk = GkD

ᵀ
k

1̄k = Gk(1 + ηk) H̄k = HkD
ᵀ
k, η̄k = Hkηk, L̄k = LkE

ᵀ
k,

(28)
and rewrite model (22)-(27) as

Z̄ = maximize
∑

k∈K
r̄ᵀkuk +

∑

k∈K
ξ̄
ᵀ
kwk (29)

subject to
∑

k∈K
Ākuk ≤ c̄, (γ) (30)

B̄kuk + F̄kwk = c̄k, k ∈ K, (γk) (31)

Ḡkuk ≤ 1̄k, k ∈ K, (32)

H̄kuk ≥ η̄k, k ∈ K, (33)

L̄kwk ≥ 0, k ∈ K, (34)

where (γ,γk)k∈K are the dual variables. The following theorem shows that after the random transformations,
the exact primal and dual solutions of the original problem can easily be recovered. The proof of this theorem
is given in the appendix.

Theorem 3.1 Let (u∗k,w
∗
k)k∈K and (γ∗,γ∗k)k∈K be the primal and dual optimal solutions of (29)-(34).

Using again the primal and dual optimal solutions, (x∗k)k∈K and (α∗,α∗k)k∈K of the original problem (2)-(5),
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we obtain:
Z = Z̄ −∑

k∈K rᵀkηk −
∑
k∈K(ck + Bkηk)ᵀξk,

x∗k = Dᵀ
ku
∗
k − ηk, k ∈ K,

α∗ = γ∗,
α∗k = Fᵀ

kγ
∗
k − ξk, k ∈ K.

With this main theorem, we conclude that the parties can safely obtain their own exact solutions since
the set of random matrices designated with subscript k is known only to the individual party k ∈ K. It is
important to note that the parties can generate their primal solutions by using the random matrices, yet the
dual solutions of the original problem are exactly the same as the transformed problem (γ∗ = α∗).

Algorithm 1 presents our transformation-based protocol and shows how one party (k̂ in the algorithm) can
apply the data-private capacity allocation. The main idea behind this approach is to transform the private
input data by using random matrices and vectors to collaboratively solve network capacity sharing problem
while ensuring the optimality. In order to clarify this protocol, let us discuss it over an airline alliance
example. First, each party in an alliance generates a set of random matrices to conceal its private dataset.
The data masking is performed through multiplication and summation with random matrices as presented
in (28). After each party masked its input data, all parties share their transformed data to construct and
solve the data-private network model (29)-(34). Once the network problem is solved, each party use the
solution to recover their individual private solution as described in Theorem 3.1. The implementation steps
can be given as follows. In Step 1, airline k̂ generates the random matrices and vectors to mask the private
input (Ak̂,Bk̂, rk̂, ck̂) and output data (xk̂,αk̂). While the input data consists of the product matrices, the
revenue, and the capacity vectors, the output data corresponds to the primal and dual solutions. This data
is transformed in Step 2 and shared with the other parties. Since all parties share their transformed data
after masking it, the input for the overall private model is available to everyone (Step 3). All parties solve
the data-private network problem and obtain the masked optimal primal-dual solutions in Step 4. Then
airline k̂ recovers its optimal dual variable vectors in Step 5. As a result, using Lemma 3.1 and Theorem 3.1,
we show that the optimal primal and dual solutions of the original model can be obtained safely from the
optimal primal and the dual solutions of the transformed model. Hence, we conclude that the correctness of
the original problem is preserved.

Algorithm 1 Data-Private Capacity Allocation for Party k̂ ∈ K
1: Compile private individual input

ξk̂,ηk̂,Dk̂,Ek̂,Fk̂,Gk̂,Hk̂,Lk̂.

2: Transform individual input using (28) and share

r̄k̂, ξ̄k̂, Āk̂, B̄k̂, F̄k̂, c̄k̂, Ḡk̂, 1̄k̂, H̄k̂, η̄k̂, L̄k̂, η̃k̂.

3: Store all transformed data

(r̄k, ξ̄k, Āk, B̄k, F̄k, c̄k, Ḡk, 1̄k, H̄k, η̄k, L̄k, η̃k)k∈K.

4: Solve (29)-(34) with c̄ = c+
∑
k∈KAkηk and the stored data. Obtain the transformed optimal solution

(u∗k,w
∗
k,γ
∗,γ∗k)k∈K.

5: Recover the private individual output using the transformed solution and the private input in Step 1:

x∗
k̂

= Dᵀ
k̂
u∗
k̂
− ηk̂, α

∗ = γ∗, α∗
k̂

= Fᵀ
k̂
γ∗
k̂
− ξk̂.
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3.3 Security. We next discuss the security of our data private model (29)-(34) in the presence of attacks.
With transformation-based approaches, there is an overarching trade-off between efficiency and security
(Goldreich, 2009). Actually, Laud and Pankova (2013) show that it is impossible to achieve information
theoretical security with the transformation techniques of multiplication, scaling, permutation, and shifting,
a point that is also noted by Dreier and Kerschbaum (2011) in their work on linear programming. In
transformation-based methods, the concern is how much information may leak to other parties during the
transformation. Indeed, this concern is also raised by Du and Zhan (2002) to quantify the security achieved
in each transformation-based protocol, so that these protocols can be compared in terms of the level of
security they can achieve. To be able to attain this, the notion of information leakage, also known as the
vulnerability of the system, is introduced by Braun et al. (2009). The authors define this concept as “the
amount of information learnt by the adversary by observing the output of the protocol.” In a more recent
study, Dreier and Kerschbaum (2011) use this concept to measure how much information about the private
data is revealed to an adversary. They quantify the information leakage when the parameters of a linear
program are masked with random matrices. In their analysis, the components of all data and random
matrices are assumed to be non-negative integers, and the leakage results depend on the largest components
of the random matrices. Even though our input matrices are binary, we do not impose upper bounds or
integrality requirements on the components of the random vectors or matrices (not necessarily square) used
in our transformations. It is crucial to point out that the authors only use positive monomial matrices
(permutation matrices with non-negative pivot elements) to deal with the inequalities and state that these
matrices cause vulnerability in security. Unlike these simple permutation matrices, we sample from the
much larger set of M -matrices. In fact, as Definition 3.2 and the subsequent paragraph show, this set is
uncountable.

Recall that the matrices Ak and Bk constitute the products for each firm k ∈ K. In certain applications,
one of the parties may be able to guess the products and the capacities of the other parties. For instance,
in airline revenue management, these products correspond to different fare class itineraries that may be
collected by web-scraping. As Theorem 3.1 and (28) show, the security of our transformations relies mainly
on private random matrices Dk, Fk, ηk and ξk. We show in the next lemma that even all the private
data (see Definition 3.1) of a firm is perfectly guessed, a brute-force approach to obtain the private random
matrices is computationally infeasible. The proof of this lemma is given in the appendix.

Lemma 3.2 Suppose for k ∈ K that 1 ≤ m < nk ≤ sk, 1 < mk ≤ tk, and both Ak and Bk have full rank.
Even if all private data of party k ∈ K is known (see Definition 3.1), then finding any one of Dk, Fk, ηk,
or ξk requires obtaining a particular solution to a system of linear equations with infinitely many solutions.

The condition in Lemma 3.2 implies that each party should participate in this collaboration with multiple
individual capacities and multiple products. This is a reasonable assumption since it is easier for the other
parties to guess the actual values for very small datasets. We note that even if the dataset of a party is
small, the same party can still enlarge it by adding redundant constraints or dummy products.

4. Simulation Study. We devote this section to our simulation study so as to discuss different aspects
of our proposed data-private model. In particular, we investigate the impact of capacity sharing and evaluate
the computational performance of the data-private model. We next explain the simulation setup in detail
and then present the numerical results.

4.1 Setup. We design our experiments by using an airline network structure obtained from an actual
firm. These data include flight legs with corresponding capacities, flight itineraries, and origin-destination
(OD) paths. Since the network data belongs to a single airline, it does not include any alliance information. In
order to construct an alliance network, we randomly allocate OD-paths in each network to obtain artificially
generated airline partners. The partners set a block space partnership agreement to share capacities on
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some of the flights at the beginning of the planning horizon. Although the real-time flight information
such as marketed flight itineraries and associated prices can be partially available through online travel
agencies during the sale season, the complete flight information, including forecasted demand, prices, and
flight capacities, are not available when the codeshare agreements are set at the beginning of the sale season.

We simulate the arrival of reservation requests over a planning horizon of length T . We assume that the
booking requests for the OD path s ∈ S arrive according to a homogeneous Poisson process with rate λs.
Given that a booking request arrives for OD-path s at time period t, it is for product i with probability
pis(t). The way we generate these arrival probabilities is quite similar to the one given by Birbil et al. (2014).
The simulation process is defined as follows: We first generate the arrival times of booking requests for all
OD-paths over the planning horizon T . By using the arrival probabilities for products in each OD path, we
find the product of the requests and apply the corresponding booking policies. To change the tightness of
the flight capacities, we use a load factor parameter (ρ). The average arrival rate µj for flight j ∈ J depends
on the value of the load factor. This relation can be expressed as µj = ρ

cj
TNj

, where Nj is the number of

OD-paths using flight leg j. Then, the arrival rate λs for OD-path s is generated as follows: λs =
∑

j∈Js
µj

Js
,

where Js is the number of flight legs used by OD-path s.

Our experimental design is based on various factors. These are the number of alliance partners (K),
the number of OD-paths (N), and the load factor (ρ). In simulation experiments, we design three alliance
partnerships with different numbers of partners K ∈ {2, 4, 6}. We assume that all alliance partners have a
similar market share in terms of number of OD-paths in the alliance network. We test three networks with
sizes N ∈ {100, 200, 400}. We extract these networks from the overall network data, which include 119, 215,
and 368 flight legs, and 869, 1,762, and 3,567 products, respectively. Since we randomly divide OD paths
among the fictitious alliance partners, the number of shared flights can change depending on the allocated
flights. Therefore, Table 2 presents the average number of shared flights in each sub-network. The last
parameter set comes from the load factor ρ ∈ {1.05, 1.20, 1.60, 2.00}, corresponding to low, medium, high,
and very high loads, respectively. The computational results are reported over 100 simulation runs. We take
the reservation period length as T = 1, 000.

Table 2: The average number of shared flights in each network.

Number of Parties Network Size (N)
(K) 100 200 400
2 9 32 81
4 16 42 109
6 18 43 124

4.2 Results. In this section, we conduct simulation experiments to evaluate the effects of collaborative
capacity sharing and provide a sensitivity analysis with respect to various parameters. In particular, we
investigate centralized coordination with complete information sharing, coordination with data privacy, and
individual control strategies. These strategies are introduced as follows:

Collaborative Capacity Planning (CP). This strategy assumes that alliance partners act collabora-
tively and the booking decisions for shared capacities are controlled through an integrated planning system
that requires complete information sharing. Topaloglu (2012) describes this system as “centralized planning,”
where the booking decisions are made by considering the overall alliance benefit. CP solves the model (2)-(5)
to compute the optimal values of the dual variables (α ∈ Rm and αk ∈ Rmk , k ∈ K) associated with the
capacity constraints. When a request for a product arrives, the summation of the optimal dual variables
corresponding to the used flight legs becomes the bid price for accepting or rejecting the request. That is,
assuming a product request using path s arrives for party k, we accept this request if the fare of the product
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is greater than or equal to
∑
j∈J ajsαj +

∑
j∈Jk

bjsαjk. To consider the effects of reoptimization, we divide
the planning horizon into five equal segments and resolve the model (2)-(5) at the beginning of each segment
with the updated capacities. Since CP coordinates the booking decisions for the whole alliance, this strategy
requires access to all flight information of the partners (the capacities on all flight legs and the expected
demands for all products), which is quite unlikely to occur in practice (Topaloglu, 2012).

Coordinated Capacity Sharing (CCS). In this strategy, the parties come together and solve the data-
private model (29)-(34) by transforming their private information to obtain the optimal values of the trans-
formed dual variables and the capacity allocations (see Algorithm 1). After the partners receive the trans-
formed solution, each of them converts the transformed values to the original ones, as shown in Theorem 3.1.
During the booking horizon, each partner makes their booking control decisions by using the optimal dual
variables and the allocated leg capacities. Allowing (α∗,α∗k)k∈K to be the recovered dual variables obtained
by the dual optimal solution of model (29)-(34), party k accepts the arriving path s request if the fare of
the product is greater than or equal to

∑
j∈J ajsα

∗
j +

∑
j∈Jk

bjsα
∗
jk and the party has enough allocated leg

capacity for the flights covered by path s. Unlike CP, the parties control and consider their own capacity
allocations obtained from model (29)-(34) when they make accept/reject decision for an arriving customer.
On the other hand, CP oversees the whole network (available capacities to all parties and their associated
dual variables) when making a booking decision. Therefore, CCS does not require alliance partners to share
any private information regarding their flights. In order to include the effect of reoptimization, we divide
the booking horizon into five segments and resolve problem (29)-(34) at the beginning of each segment.

Individual Control (IC). This strategy solves problem (6)-(9) for each partner. For shared flight-legs,
partner-based capacity allocations are calculated with respect to the expected demands. In particular, letting
djk be the demand for partner k in shared flight leg j, the allocated capacity for partner k is calculated as

djk∑
k∈Kj

djk
cj , where Kj is the set of partners using leg j. In this strategy, each partner makes their booking

control decisions by using the optimal bid prices associated with capacity constraints in problem (6)-(9).
Similar to previous strategies, we divide the planning horizon into five segments and revise the bid prices at
the beginning of each segment. The IC strategy requires alliance partners to share their demand information
in order to allocate the capacities of the shared flights.

Recall that the objective function value in the path-based formulation can also be obtained by solving
different single-capacity, static, and dynamic programming models. Our approach here is applicable in all
those cases. In our numerical experiments, we assume that the three strategies listed above use a deterministic
linear programming (DLP) model to compute the booking control policies. The reason behind this choice is
twofold: First, DLP models are frequently used in the literature (Poundarikapuram and Veeramani, 2004;
Albrecht and Stadtler, 2015). Second, bid-price control with a DLP model is a competitive strategy when
compared against other static and dynamic network models (Talluri and van Ryzin, 2004).

Figure 2 shows the simulation results in terms of revenues (objective functions) for three alliance networks
with two, four, and six partners, respectively. In these figures, we present the relative differences with
respect to the CP strategy since it always performs better than the other two strategies. CP oversees the
whole alliance network and makes accept-reject decisions for arriving reservation requests for all partners.
On the other hand, airlines individually make their booking control decisions in strategies CCS and IC
without sharing any information over the planning horizon. In Figure 2, the dashed line passing through
100 corresponds to CP and bar charts are used to show the relative difference for strategies CCS and IC.

When we compare the respective performances, we observe that the average revenues obtained by CCS
are very close to those obtained by CP, especially for the networks with 100 and 200 OD-paths. The average
performance gaps between CP and CCS are only 0.30%, 0.42%, and 0.86% for the problems with 100,
200, and 400 OD-paths, respectively. As Figure 2 illustrates, the performance gaps between CP and CCS
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slightly decrease when the load factor is high (ρ ∈ {1.6, 2.0}). We conjecture that CP and CCS make the
same booking decisions most of the time since both of these strategies solve the same model to obtain their
optimal booking policies. The only difference is that CCS allocates the shared flight capacities to partners
and each partner privately manages its own booking system; hence, each airline is restricted by that limit
while making booking control decisions. On the other hand, the CP strategy pools the capacities of the
shared legs and does not consider the individual booking limits. When the arrival intensity is low (ρ = 1.05),
CCS performs poorly due to the restrictive individual booking limits. As the load factor increases, it can
compensate for the revenue loss with higher demand. We have validated that the relative differences between
the total expected revenues obtained by CCS and CP are statistically significant at the 95% level in 36 test
scenarios. Thus, CCS can deliver similar results, with the ideal case being where each party shares its
information.

Comparing IC with CP and CCS in Figure 2, we observe that IC obtains lower expected revenues in all
cases. We notice that as the load factor, the number of OD-pairs (network size), and the alliance partners
increase, the IC performance deteriorates. The expected revenues obtained with IC can lag on average 8.52%
behind those obtained with CCS. This striking performance gap between strategies CCS and IC is due to
the management of the shared capacities. While CCS solves the data-private model (29)-(34) to obtain
booking control variables by considering the whole alliance network, IC allocates the capacities of the shared
flight legs by only considering the expected demand information of each partner. This demonstrates the
importance of considering overall network information while making capacity allocation decisions.

ρ = 1.05 ρ = 1.20 ρ = 1.60 ρ = 2.00
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Figure 2: Relative average revenues with respect to CP.

4.3 Computational Efficiency. In the last step, we evaluate the computational efficiency of the data-
private model (29)-(34). When we consider the structure of the proposed data-private model, we observe
that the matrices in the original model (2)-(5) lose their sparse structure after the reformulation. Take for
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(a) Original Ak and Bk matrix (b) Dense Āk and B̄k matrix (c) Sparse Āk and B̄k matrix

Figure 3: The sparsity structure of matrices for an example problem from our computational study. The
values in each cell of the matrix are between zero (dark blue) and one (bright white). The darker the cell,
the closer the value to zero.

instance the matrix Ak and its transformed counterpart Āk. An incidence matrix Ak is sparse whereas Āk

is quite dense. This loss of sparsity structure in the overall problem should be expected to cause an increase
in the computation time. Indeed, we have observed that whenever the matrices Āk and B̄k are obtained by
straightforward randomization, the solution time of the data-private model is considerably longer than the
time to solve the original problem (see Section 4 for the computation times). Figures 3(a) and 3(b) show
the sparsity structure before and after direct random transformation, respectively.

In order to circumvent this loss of sparsity, we try to randomize the matrices in a structured manner so
that we can obtain transformed matrices that are as sparse as possible. To this end, we aim at filling in
the non-zero entries of the random matrix Dk in such a way that the multiplication of its components with
the components of Ak and Bk yields as many zeros as possible. This observation leads to the following
mathematical programming model:

minimize 1ᵀ
m(AkU)1sk + 1ᵀ

mk
(BkU)1sk + 1ᵀ

nk
U1sk (35)

subject to U1sk ≥ sk1nk
, (36)

1nk
U ≥ sk1sk , (37)

U is a binary matrix, (38)

where the subscript • in 1• shows the dimension of the vector of ones. The first two terms in (35) are added
to obtain as many zeros as possible after multiplying Ak and Bk with the binary matrix U. The last term
of (35) ensures that the solution is filled with zeros instead of ones as long as the first two terms are not
affected. The constraints (36)-(37) guarantee that we have sk many ones in each column and row of U.
This is a network flow problem that satisfies the total unimodularity property. Therefore, it can be solved
very efficiently with a standard network simplex algorithm. Moreover, the resulting optimal spanning tree
solution U∗ has full rank (Wright, 2000). The last step is to randomize this binary matrix to obtain the
desired matrix. Formally, Dᵀ

k = U∗ �R, where � stands for the Hadamard product and R is an nk × sk
random matrix. When contrasted against Figure 3(b), Figure 3(c) shows how obtaining the matrix Dk by
solving (35)-(38) changes the sparsity structure of the data-private model.

To understand the effect of transformation, we report the computation times for the original model (2)-
(5), the data-private model (29)-(34), and the sparsity induced model. The data-private model results are
first given with straightforward randomization, which ends with full matrices. Then we solve (35)-(38) to
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obtain sparse matrices. We evaluate the computation times for all network sizes with four parties. Figure 4
presents the average computation times on a semi-logarithmic plot; that is, the values on the vertical axis
are scaled by taking their logarithms. The legend shows the original model (CP), the masked model with
straightforward randomization (CCS - Dense), and the masked model with sparsity-inducing transformations
(CCS - Sparse). The numerical results confirm that this loss causes a significant increase in the computation
time. The data-private model with dense matrices takes by far the largest computation time compared to
the other models. As the network size increases, the solution time of the data-private model also increases.
Taking sparsity into consideration for the data-private model does indeed pay off, as the computation time
with the sparsity inducing transformations reduces the computation times considerably.
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Figure 4: Average computation time (ρ = 1.20,K = 4).

At this point, we should emphasize that the random matrices obtained after solving the mathematical
programming model (35)-(38) may not be secure in the sense of Section 3.3. Thus, the gain from maintaining
sparsity may come at the cost of a security breach. This happens because we do not have a control on the
optimal solution of the model, and, hence, it is not easy to quantify the potential leakage (Hong et al., 2018).
We leave this discussion for a future work.

5. Conclusion. We have presented a mathematical model which considers data privacy in a collabora-
tive resource management problem where multiple parties share some of the capacities of the network. The
proposed approach is based on applying matrix transformations to the collaborative network problem. We
have shown that the original primal and dual optimal solutions can be derived from the proposed data-private
mathematical model. We have also discussed the security of the input data after solving the transformed
problem.

We have conducted a simulation study on a network structure of an airline. Our results have illustrated the
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benefits of the proposed data-private capacity allocation. We have considered the setting with and without
collaboration, and shown that, with collaboration, the revenues for the parties are significantly higher.
Therefore, these results offer an economic motivation for the parties to form an alliance. Even though our
simulation study was conducted on an airline network, our approach is not limited to airline problems. The
proposed approach can be used in different network problems, from collaborative supply chains to power
networks. For instance, in the logistics sector, sharing network capacities among several companies may
increase the utilization of the resources. This high utilization, in turn, increases the competitive advantage of
a participating company in terms of higher profit and less environmental impact. Furthermore, our approach
can be used for decision-making problems outsourced in a cloud environment. Cloud computing provides
computing resources and it is widely used by companies to efficiently solve their large-scale decision-making
problems. However, one of the main issues is the security and privacy of the stored data. Our approach can
be used to mask input data and solve the problem while ensuring data privacy.

Limitations and Directions for Future Research. We highlight several limitations of the study and
suggest directions for future research. First, ensuring data privacy comes at a cost. The proposed data-
private model has a dense structure compared to the sparse structure of the original problem. This loss of
sparsity causes a considerable increase in computation times. To overcome this problem, we have provided
an approach based on solving a network flow model. We have demonstrated how this approach positively
affects the computational effort. However, our approach to maintaining the sparse structure may cause a
security leakage; an important point that we have left for future study.

Second, the proposed transformation-based approach may become vulnerable to potential security breaches
for small-scale problems. For instance, when a party has only one product and one path (or origin-destination
pair), some of the random matrices used in the transformation can be identified, which may reveal the pri-
vate data of the party. Investigating the effect of small-scale problems on data privacy is also on our future
research agenda. Another approach to tackling data privacy in collaborative decision-making problems could
be using the concept of differential privacy, where the main idea is to perturb the output with a carefully
adjusted noise. Such an approach does lead to approximate solutions, but the privacy levels can be quantified
and controlled.

Lastly, we assume that the parties participating in the protocol are semi-honest. This assumption implies
that the parties do not alter their data to get a better position in the collaboration. Although this is a
common assumption in transformation-based studies, a future study could also shed light on the effects of
this assumption. However, we note that involving dishonest behaviour in collaboration requires a completely
different study lying at the intersection of cryptography and game theory.
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Appendix A. Suppose for each path or route s ∈ S that the objective function φs(xs) consists of Bs
breakpoints (intervals with a length of one) that subdivides the range of xs. These breakpoints collectively
form the set Bs for s ∈ S. We introduce the auxiliary variables xbs for b ∈ Bs and set

xs =
∑

b∈Bs

xbs.

Since the length of each interval is one, we have xbs ≤ 1, s ∈ S, b ∈ Bs. If we denote the partial revenues by
rbs, then the new model becomes

maximize
∑

s∈S

∑

b∈Bs

rbsxbs,

subject to
∑

s∈S

∑

b∈Bs

ajsxbs ≤ cj , j ∈ J ,
∑

s∈Sk

∑

b∈Bs

ajsxbs ≤ cj , j ∈ Jk, k ∈ K,

0 ≤ xbs ≤ 1, s ∈ S, b ∈ Bs.

Due to the concavity of the objective function, we have r1s ≥ r2s ≥ rBss for s ∈ S. This structure allows us
to partition for k ∈ K, the decision variables and the objective function parameters as

xk = [xbs : s ∈ Sk, b ∈ Bs]ᵀ and rk = [rbs : s ∈ Sk, b ∈ Bs]ᵀ,

respectively. Again for k ∈ K, we next define the m× nk matrix Ak with nk =
∑
s∈Sk Bs and the mk × nk

matrix Bk as

Ak =


ajs ajs · · · ajs︸ ︷︷ ︸

Bs times




j∈J ,s∈Sk

and Bk =


bjs bjs · · · bjs︸ ︷︷ ︸

Bs times




j∈Jk,s∈Sk

, (39)

respectively. Here bjs = 1, if path s uses one unit from capacity j; otherwise, bjs = 0. The last step is to
introduce the shared and the private capacity vectors as

c = [cj : j ∈ J ]ᵀ and ck = [cj : j ∈ Jk]ᵀ for all k ∈ K,

respectively. We are now ready to give our main capacity sharing model with the path-based formulation:

Z = maximize
∑

k∈K
rᵀkxk,

subject to
∑

k∈K
Akxk ≤ c, (α)

Bkxk ≤ ck, k ∈ K, (αk)

0 ≤ xk ≤ 1, k ∈ K,

where 1 and 0 stand for the vector of ones and the vector of zeros, respectively.

Appendix B. We have reserved this section for the proofs of our theoretical results, which we have
repeated here for clarity purposes.
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Lemma 3.1 If we denote the primal optimal solution of (10)-(15) by (z∗k,v
∗
k)k∈K and the dual optimal

variables associated with the capacity constraints by (β∗,β∗k)k∈K, then we have

z∗k = x∗k + ηk, k ∈ K,
β∗ = α∗,

β∗k = α∗k + ξk, k ∈ K.

Proof. We first define (λk)k∈K as the dual vector corresponding to the upper-bound constraints (5).
Then, the dual of (2)-(5) becomes

minimize cᵀα +
∑

k∈K
cᵀkαk +

∑

k∈K
1ᵀλk (40)

subject to Aᵀ
kα + Bᵀ

kαk + λk ≥ rk, k ∈ K, (41)

α,αk,λk ≥ 0, k ∈ K. (42)

Likewise, we also define (νk)k∈K and (θk)k∈K as the dual vectors corresponding to the constraints (13) and
(14), respectively. Then, the dual of (10)-(15) is obtained as

minimize (c +
∑

k∈K
Akηk)ᵀβ +

∑

k∈K
(ck + Bkηk)ᵀβk +

∑

k∈K
(1 + ηk)ᵀνk −

∑

k∈K
ηᵀ
kθk (43)

subject to Aᵀ
kβ + Bᵀ

kβk + νk − θk = rk + Bᵀ
kξk, k ∈ K, (44)

βk ≥ ξk, k ∈ K, (45)

β,νk,θk ≥ 0, k ∈ K. (46)

Suppose that (z∗k,v
∗
k)k∈K and (β∗,β∗k,ν

∗
k,θ
∗
k)k∈K are the primal and the dual optimal solutions for (10)-(15),

respectively. Let
z∗k = x∗k + ηk, k ∈ K. (47)

We plug this particular vector into (10)-(15) and observe that vk ≥ 0, k ∈ K. Thus, (x∗k)k∈K is a feasible
solution for (2)-(5). Next we plug

β∗ = α∗,
β∗k = α∗k + ξk, k ∈ K,
ν∗k = λ∗k, k ∈ K,

(48)

into (43)-(46) and note that θk ≥ 0, k ∈ K. This shows that (α∗,α∗k,λ
∗
k)k∈K is a feasible solution for (40)-

(42). Consequently, we have feasible solutions for both the primal problem and the dual problem. When we
consider the equalities in (10)-(15) and (43)-(46), we obtain for k ∈ K that

v∗k = ck + Bkηk −Bkz
∗
k = ck −Bkx

∗
k,

θ∗k = Aᵀ
kβ
∗ + Bᵀ

kβ
∗
k + ν∗k − rk −Bᵀ

kξk = Aᵀ
kα
∗ + Bᵀ

kα
∗
k + λ∗k − rk.

(49)

Recall that the strong duality of linear programming implies

∑

k∈K
(rk + Bᵀ

kξk)ᵀz∗k +
∑

k∈K
ξᵀkv

∗
k = (c +

∑

k∈K
Akηk)ᵀβ∗ +

∑

k∈K
(ck + Bkηk)ᵀβ∗k +

∑

k∈K
(1 + ηk)ᵀν∗k −

∑

k∈K
ηᵀ
kθ
∗
k.
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Rewriting this equality with (47), (48) and (49) shows that

∑

k∈K
rᵀkx
∗
k = cᵀα∗ +

∑

k∈K
cᵀkα

∗
k +

∑

k∈K
1ᵀλ∗k.

This establishes that (xk)k∈K and (α∗,α∗k,λ
∗
k)k∈K are the primal and dual optimal solutions for (2)-(5),

respectively. The desired equalities in the hypothesis follow from our construction. �

Theorem 3.1 Let (u∗k,w
∗
k)k∈K and (γ∗,γ∗k)k∈K be the primal and dual optimal solutions of (29)-(34). Using

again the primal and dual optimal solutions, (x∗k)k∈K and (α∗,α∗k)k∈K of the original problem (2)-(5), we
obtain

Z = Z̄ −∑
k∈K rᵀkηk −

∑
k∈K(ck + Bkηk)ᵀξk,

x∗k = Dᵀ
ku
∗
k − ηk, k ∈ K,

α∗ = γ∗,
α∗k = Fᵀ

kγ
∗
k − ξk, k ∈ K.

Proof. To obtain the linear programming model (29)-(34), we apply for k ∈ K the change of variables
Dᵀ
kuk = zk and Eᵀ

kwk = vk to the model (10)-(15). Likewise, multiplying both sides of the equality
constraints (12) with Fk leads for k ∈ K, to the change of variables βk = Fᵀ

kγk. Note that both sides of
the constraints (13)-(15) are multiplied by M -matrices and, hence, feasibility is not affected. Using the next
Lemma 3.1 implies

x∗k = z∗k − ηk = Dᵀ
ku
∗
k − ηk, k ∈ K,

α∗ = β∗ = γ∗,
α∗k = β∗k − ξk = Fᵀ

kγ
∗
k − ξk, k ∈ K.

Mangasarian (2011, Proposition 1) has shown that the optimal objective function values of (10)-(15) and
(29)-(34) are the same. Recall from the proof of Lemma 3.1 that (10)-(15) is obtained from (2)-(5) by
applying for k ∈ K, the transformations zk = xk +ηk and βk = αk + ξk. Using the first transformation, the
constant term

∑
k∈K rᵀkηk is subtracted from the objective function. Moreover, the same transformation also

alters the right-hand side of (4) as ck + Bkηk, k ∈ K. The second transformation with this new right-hand
side additionally subtracts the constant term

∑
k∈K(ck + Bkηk)ᵀξk from the objective function. Adding

both constant terms establishes the required equality:

Z̄ = Z +
∑

k∈K
rᵀkηk +

∑

k∈K
(ck + Bkηk)ᵀξk.

This completes the proof. �

Lemma 3.2 Suppose for k ∈ K that 1 ≤ m < nk ≤ sk, 1 < mk ≤ tk, and both Ak and Bk have full rank.
Even if all private data of party k ∈ K is known, then finding any one of Dk, Fk, ηk, or ξk requires obtaining
a particular solution to a system of linear equations with infinitely many solutions.

Proof. Using (28), we first check the relations that involve Dk as the only unknown. This leaves us
with Āk = AkD

ᵀ
k, where Ak is m× nk matrix. Since m < nk and rank(Ak) = m, this system has infinitely

many solutions. In all other relations listed in (28), Dk is placed along with another private random matrix.
However, we note that when nk = sk, we have

1̄k − ḠkH̄
−1
k η̄k = Gk1 + Gkηk − ḠkH̄

−1
k η̄k = Gk1.
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When nk = 1, the random matrix Gk and, consequently, Dk can be obtained. However, we have assumed
that nk > 1 leading to an underdetermined system. Thus, Dk cannot be obtained without solving a system
with infinitely many solutions. In a similar vein, ηk appears only in η̃k = Akηk as the sole unknown: but,
again, this system has an infinite number of solutions for m < nk. Matrices Fk and ξk do not directly
appear in any one of the equations without being multiplied with another random matrix. Again, we note
that when nk = sk, we have

c̄k − B̄kH̄
−1
k η̄k = Fkck + FkBkηk − B̄kH̄

−1
k η̄k = Fkck.

This system is also undetermined since mk > 1. Finally, when mk = tk, we have

r̄k − B̄ᵀ
kF̄
−ᵀ
k ξ̄

ᵀ
k = Dkrk + DkB

ᵀ
kξk − B̄ᵀ

kF̄
−ᵀ
k ξ̄

ᵀ
k = Dkrk.

Given 1 < nk ≤ sk, this last system has infinitely many solutions as well. �

                  


