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ABSTRACT

An approach for the analysis of atomically resolved scanning transmission electron microscopy data with multiple ferroic variants in the
presence of imaging non-idealities and chemical variabilities based on a rotationally invariant variational autoencoder (rVAE) is presented.
We show that an optimal local descriptor for the analysis is a sub-image centered at specific atomic units, since materials and micro-
scope distortions preclude the use of an ideal lattice as a reference point. The applicability of unsupervised clustering and dimensionality
reduction methods is explored and is shown to produce clusters dominated by chemical and microscope effects, with a large number of
classes required to establish the presence of rotational variants. Comparatively, the rVAE allows extraction of the angle corresponding to the
orientation of ferroic variants explicitly, enabling straightforward identification of the ferroic variants as regions with constant or smoothly
changing latent variables and sharp orientational changes. This approach allows further exploration of the chemical variability by separating
the rotational degrees of freedom via rVAE and searching for remaining variability in the system. The code used in this article is available at
https://github.com/saimani5/ferroelectric_domains_rVAE.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0105406

INTRODUCTION

Ferroic phenomena in complex materials have been a pri-
mary focus of condensed matter physics and materials science
since dawn of these disciplines. Ferroelectric materials have found
a broad spectrum of applications, from sensors and actuators to
non-volatile memories.' ' Ferromagnets underpin multiple energy
generation and information technologies* while ferroelastic mate-
rials such as shape memory alloys are broadly used as structural
materials.”® In ferroelectrics and ferroelastic, the emergence of
the corresponding order parameters is intimately tied to lattice

deformation, resulting in a broad spectrum of mechanical coupling
effects and enabling a new generation of strain coupled multiferroic
and sensing devices.”

Over the last two decades, the attention of the scientific com-
munity has shifted to the exploration of ferroic behavior on the
nanometer and atomic scales. These advances were enabled by
the synergy of improved fabrication techniques such as pulsed
laser deposition (PLD) and atomic layer deposition (ALD),® and
advances in high-resolution imaging and characterization. Tech-
niques such as piezoresponse force microscopy and spectroscopy
have enabled visualizing of ferroelectric domain structures and
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probing of the polarization dynamics at the nanometer level.”
Scanning transmission electron microscopy (STEM) has allowed
visualization of atomic structures of surfaces and interfaces with
a high information limit, allowing the determination of atomic
column positions with picometer level precision.'” Owing to the
strong coupling between ferroic order parameters and mechani-
cal and structural phenomena in ferroelectrics and ferroelastics,
the direct visualization of corresponding order parameter fields
and their evolution at relevant microstructural elements has been
enabled.'* '

While the first visualization of ferroelectric domains from
atomic-scale transmission electron microscopy (TEM) imaging
can be traced to early 2000," this direction gained prominence
with further resolution gains from the advent of spherical aberra-
tion correctors and the demonstration by Jia et al. of the direct
mapping of polarization fields at interfaces and domain walls by
TEM."”"™" Almost immediately, a similar approach was intro-
duced using STEM by Chisholm,'* Borisevich,”’** Nelson and
Pan,” *° and others, leading to rapid growth in this field over
the last decade. The behavior of polarization, octahedral tilts in
the image plane and in the beam direction, and chemical and
physical strain fields can now be visualized.” >’ Correspond-
ingly, multiple studies of the polarization behavior at surfaces,
interfaces, domain walls, and more complex topological defects
such as closure domains and ferroelectric vortices, have been
reported.”® In several cases, the numerical values of polarization
fields have been fitted to mesoscopic Ginzburg-Landau type mod-
els to extract the gradient and flexoelectric terms in order parameter
expansions.'“"”

However, these analyses have been limited to nearly ideal
materials systems imaged under optimal conditions, e.g., single
interfaces or domain walls. While multiple observations of polariza-
tion fields in the vicinity of complex domain wall structures, impuri-
ties, and dislocations have been reported and are routinely available,
analyses have been limited due to the large number of possible struc-
tural variants affected both by the polarization field distribution,
chemical composition, and STEM imaging conditions including
sample tilt and beam shape. This problem is common in STEM
image analysis and has stimulated the development of machine
learning (ML) methods for structural analysis (local crystallogra-
phy) based on the analysis of atomic neighborhoods,” " sliding
window transforms,”””° and the analysis of centered sub-images.””
These methods differ in the choice of the underpinning physical
models used. For instance, sliding window transforms implicitly rely
on continuous translational symmetry and use fast Fourier trans-
form (FFT) amplitude (rejecting the FFT phase) to extract local
periodicities. Local crystallographic analysis necessitates unambigu-
ous atom finding and position refinement, reducing the (S)TEM
image to a set of atomic positions. Alternatively, the analysis
can be based on sub-images centered on selected atomic features,
thereby enabling physics-based descriptors as explored for ferro-
electrics in Ref. 37 and the chemically heterogeneous Si-graphene
system in Ref. 38.

However, the characteristic aspect of ferroic materials is the
presence of multiple variants of the same deformed unit cell
related through discrete rotational symmetries, which can poten-
tially be affected by the imaging conditions used. This severely
limits the applicability of image analysis methods based on
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convolutional neural networks (CNNs), traditional clustering, or
dimensionality reduction methods, since each rotational variant will
be associated with an individual class in the clustering methods.
In the presence of other symmetry lowering distortions or com-
position variations, these classes are impossible to separate since
presence of additional sources of variability results in interclass mix-
ing and lead to physically undefined structural variants. Here, we
demonstrate the applicability of rotationally invariant variational
autoencoders (rVAEs) for the analysis of ferroic materials in the
presence of structural and chemical variants and under non-ideal
imaging conditions. We show that the ferroic variant correspond-
ing to different orientations can be readily identified and that rVAEs
can disentangle the chemical and physical variability. We further
show that special care should be taken to identify the presence of
instrumental biases, such as those induced by sample tilt variations,
necessitating careful tracing of these effects during image acquisition
and analysis.

RESULTS AND DISCUSSIONS

As a model system, we demonstrate rVAE applied to a high-
angle annular dark field (HAADF)-STEM image dataset for a
rhombohedral ferroelectric BiFeOs; (BFO) thin film [Fig. 1(a)]
grown via PLD. The BFO film adopts a polydomain configura-
tion of the ferroelectric order parameter corresponding to nominal
rotationally symmetric twins of the rhombohedral structure. In
BFO this order parameter manifests in local cation sublattice as
non-centrosymmetry between the 4 corner A-site (Bi) cations and
the central B-site (Fe) cation of the perovskite unit cell. This non-
centrosymmetry vector at each cation is the offset between the cation
position and the average of the four nearest neighbors. The cation
positions are plotted as scatter points in real space and are colored
with the vector properties of non-centrosymmetry vector using an
amplitude-phase color scheme in Fig. 1(b). The magnitudes of the
non-centrosymmetry vectors are normalized to fall in [0, 1], and
then, color is picked for each vector corresponding to its position
in polar space. This color variation in the polar space is shown in
the inset of Fig. 1(b), where the radius of the circle is 1. In addi-
tion, the film interface with the SrTiOs substrate is host to a (101)
edge dislocation, which dissociates into separate (100) and (001)
components as shown in Fig. 1(c), enlarged from the highlighted
region in Fig. 1(a).

To explore the order parameter behavior in the BFO system,
we extend a previously reported approach based on ML analysis
of the structural building blocks.””* In this method, atoms in the
selected sub-lattice are chosen as local reference points and the
sub-images centered on these atoms are chosen as descriptors. The
sub-images are centered at the experimentally determined atomic
coordinates rather than at atoms in an ideally periodic lattice. In this
manner, the intrinsic strains and distortions present in the material
are relevant only on the length scale of the individual sub-images.
Comparatively, using the ideal lattice sites as reference points leads
to systematic deviation of the atomic positions from the center of
sub-images since in this case the relevant length scale is that of the
full image.

Previously, we demonstrated that simple linear unmixing
techniques such as principal component analysis (PCA) and
non-negative matrix factorization (NMF) applied to, thus, derived
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FIG. 1. (a) High-angle annular dark
field (HAADF)-STEM image of BiFeO3
film. Scalebar 10 nm. (b) Correspond-
ing colorized image of cation non-
centrosymmetry vector, color legend
inset. (c) Dissociated (101) edge dislo-
cation into (100) and (001) components
enlarged from the region highlighted in

Counts/1000

(a). (d) Histogram of the latent angle dis-
tribution. (e) Array of unit cells spanning
2D Ly, Ly latent space for the range —2
to 2.
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sub-images can be used to explore ferroic distortions in the sys-
tem, with the PCA eigenvectors providing the dominant distor-
tion modes and the loading maps visualized at respective lattice
sites yielding the domain structures and visualizing anomalies at
domain walls and interfaces.”” This approach, however, was shown
to create an independent PCA component for each domain variant.
However, ferroelectric domains correspond physically to identical
distortion patterns differing only in the orientation in the image
plane. Hence, while linear unmixing methods allow for separating
ferroic variants, the smaller variability corresponding to chemical
changes in the system or observational conditions in STEM will be
overlooked.

Autoencoders (AE) are a class of neural networks that project
the original dataset into a low dimensional latent space through a
set of dense or convolutional layers. These latent representations of
the dataset are subsequently deconvolved into the original dataset.
The reconstruction error, i.e., the difference between the origi-
nal dataset and the reconstructed dataset is used to train the AE.
Variational autoencoder uses a similar approach but learns a con-
tinuous latent space representation of the dataset as opposed to the
discrete encoding of the dataset by AEs. In their true sense, the VAEs
model the generating distribution of the dataset with the latent layer
representing a Bayesian prior distribution.”” They use a stochas-
tic encoder to approximate the true posterior of the generative
model, which is the decoder.”’ They achieve this by minimizing a
Kullback-Leibler (KL) divergence between the true posterior and the
approximated distributions in addition to minimizing a reconstruc-
tion loss between the original and the encoded-decoded datasets.
rVAEs are an adaptation of VAEs to the dataset with rotational
symmetry, ie., the same datapoint can be present in the dataset
at different orientations. rVAEs explicitly enforce one of the latent
variables to represent the angle, two optional latent variables allow
for the small offsets in the x- and y-directions, while the remain-
ing latent variables encode data similar to traditional VAEs. In

this manner, the rVAE latent space has 1 + N (pure rotation and
no translations) or 3 + N (rotation plus offsets) elements encod-
ing the orientation of the building blocks, optional offsets allowing
for sub-pixel displacements of the true atomic positions from the
maximal pixel, and latent variables encoding the characteristic dis-
tortions. We have previously applied rVAEs to analyze the dynamics
of protein nanorod’s self-assembly,*' explore the dynamic evolu-
tion of electron bean induced processes in atomic scale structures,*
investigate the domain switching pathways in ferroelectric materials
visualized by piezoresponse force microscopy,* create a bottom-
up symmetry analysis Bayesian workflow for atomically-resolved
data,** and study the dynamic domain evolutions in bias induced
phase transitions of BaTiO3.*

To analyze the subimages of HAADF-STEM image in Fig. 1,
an rVAE with symmetric encoder-decoder architecture is used.
The encoder has two convolutional layers, each comprise 128 ker-
nels/filters of size 3 x 3 with a leaky-ReLU (slope = 0.1) activation
function. At the end of these two convolutional layers, a dense layer
is used to reduce the dimensionality of the data to twice the num-
ber of latent dimensions. In a symmetric autoencoder, the decoder’s
architecture is the mirror image of the encoder. The encoder-
decoder pair is trained together to minimize a loss function that
is the sum of reconstruction error and KL divergence. As can be
observed from the variation of non-centrosymmetry vector across
the image, the expected factors of variation in the unit cells present
in the image include the presence of ferroelectric domains of dis-
similar orientation, presence of non-polar phase in the substrate,
emergence behavior at interfaces and domain walls, and instru-
mental factors. The rVAE analysis has been performed for several
sets of possible degrees of freedom viz., (i) no translation; two
latent variables, (ii) translations; one latent variable, and (iii) trans-
lations; two latent variables. The full set of analysis is provided in
the Jupyter Notebook attached in the GitHub repository. However,
since variability in the input dataset is impossible to independently

AIP Advances 12, 105122 (2022); doi: 10.1063/5.0105406
© Author(s) 2022

12, 105122-3


https://scitation.org/journal/adv

AIP Advances

capture using only a few latent dimensions, in this manuscript, we
have only discussed the rVAE with five latent dimensions viz., an
encoded angle, translations/offsets in x (Ox) and y (Oy), two latent
variables L1 and L,.

A stack of sub-images centered on the B site cations was formed
as the input the rVAE. For generality, we used the data from the
image shown in Fig. 1(a) with a sub-image size of 48 pixels cor-
responding to 7.5 A or ~1.8-unit cells. Each of these subimages is
then represented as a 5D vector in the latent space by rVAE. The
resulting distribution of the encoded angle is plotted as a histogram
Fig. 1(d) depicting three sharp peaks separated by 71/2, indicative of
the successful separation of the ferroic variants based on the in-plane
rotations, which are expected to be 7/2. The latent space of Li-L,
is uniformly sampled in the range of [-2, 2] while the other latent
variables are held at constant. This set of uniformly sampled points
in the latent space is then decoded back into the space of subim-
ages and are shown in Fig. 1(e) providing insight into traits within
the data encoded in the latent variables (L; and L,). Overall, the
uniformity of the latent space suggests that the network discovered
the universal representation of the sub-images, i.e., the individual
building blocks.

Greater insight regarding the nature of the rVAE analysis of
ferroic phenomena can be derived from the exploration of the latent
variable maps, as shown in Fig. 2. As an initial step to understand
the encoding of the subimages, the centers of the B-site cations
are plotted as scatter points in the latent space [Figs. 2(a)-2(d)].
These points are then colored corresponding to their latent repre-
sentation using an amplitude phase scheme as discussed in Fig. 1(b).
The corresponding colormap in the polar space is shown in Fig. 2(f).

a) Latent Variable-1 (L) c)

X-Offset (0,)

b) Latent Variable-2 (L)  d) Y-Offset (0,)

ARTICLE scitation.org/journall/adv

Amplitudes of the vectors for this representation are the respective
encoded values of L, [Fig. 2(a)], Ly [Fig. 2(b)], Ox [Fig. 2(c)], and
Oy [Fig. 2(d)]. The angle/phase for all four plots is the encoded
angle of each subimage. Although these latent encodings represented
as vectors in the polar form do not represent anything physically,
such plots will provide insights about more than one latent dimen-
sion in a single plot. It can be observed from Figs. 2(c) and 2(d)
that the translational encodings along with the angle represent the
non-centrosymmetric vector. Two different ferroelectric domains
are clearly delineated in both these images and the non-polar sub-
strate is separated in color from the ferroelectric regions. Latent
variable-1 (L) [Fig. 2(a)] along with the angle represents the domain
walls to some extent and the chemical variability toward the right
end of the sample. Latent variable-2 (L;) extensively represents
the domain walls when transitioning from ferroelectric to non-
ferroelectric phases. These unit cell centers are represented in the
latent space (L; vs L1) in Fig. 2(e) and in the latent space (Oy vs Ox)
in Fig. 2(g). The colors of these scattered points correspond to the
(L2-encoded angle) polar color scheme in Fig. 2(¢) and (Ox-encoded
angle) polar color scheme in Fig. 2(g).

Insight into the microstructure and evaluation of the latent
space segregation can be gained from simple unsupervised classifica-
tion algorithms, e.g., k-means clustering and Gaussian mixture mod-
eling (GMM). K-means clustering separates the data points based
on the selected distance metrics into maximally localized clusters
where the distance is the Euclidean distance in the full vector space
corresponding to the sub-image size, i.e., the full 2304-dimensional
space. GMM represents the probabilistic model for sub-populations
(clusters) within an overall population (entire sub-image stack). In

e) h)
L S
g2
8 ;
© E
Q ®
1

i)  Encoded Angle (%)

()

X

FIG. 2. Unit cell centers in real space are colored using an amplitude-phase color scheme. The amplitudes/magnitudes of the colors are the (a) latent variable-1 (L1), (b)
latent variable-2 (Ly), (c) translations in the x-direction (Ox), and (d) translations in the y-direction (Oy) encoded by the rVAE, while the angles/phase are the angles encoded
by the rVAE in all the four cases. The subimages are represented in the latent space (e) L4 vs L, and (g) Oy vs Oy, and are colored using L,-angle in (€) and Ox-angle in
(9). (f) The colorbar for the amplitude-phase plots (a)-(e), (g) where the amplitude varies between [—1, 1]. (h) Unit cells are plotted as scatter points in Latent variable-1 vs
Encoded angle space and are colored using the cluster index of Gaussian mixture modeling (GMM). (i) Unit cell centers in the real space are colored using the class index

of GMM when the number of classes in GMM is 5.
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GMM, clusters are characterized as mean vectors and covariance
matrices in the sub-image space. Unlike distance-based clustering
methods, GMM can separate distributions characterized by similar
means but with different dispersions. Note that GMM, k-means, and
other clustering techniques allow for a significant number of options
in terms of distance metrics and the form of the covariate matri-
ces. The attached Jupyter Notebook allows the reader to experiment
with these techniques and apply them to their own data. The 5D
latent encodings at each cation site act as the feature vectors (input)
to the GMM algorithm. The result of a GGM k = 5 cluster analy-
sis is shown in the latent (L; vs encoded angle) in Fig. 2(h) and real
space in [Fig. 2(i)]. The scatter points are then colored using the class
labels of the clusters formed by GMM. Note, the three ferroelectric
domain orientations are assigned to three clusters (No. 1, No. 2, and
No. 5), one for the poor-fit regions (No. 4), and one for the domain
walls (No. 3). The class associated with domain walls also encom-
passes points from the right side of the image that are not part of the
domain wall.

To explore the applicability of the rVAE approach for more
complex materials systems, we applied the same approach to
a BiFeO3-Lag7Sro3MnO; (BFO-LSMO) superlattice epitaxially
grown on a SrTiO3 substrate by pulsed laser deposition (PLD).

An annular dark field (ADF) STEM image of the BFO-LSMO
superlattice acquired along the [100] zone axis is shown in
Fig. 3(a). Here, the bright/dark contrast corresponds to the
different BFO/LSMO layers, respectively. Coherent interfaces, i.e.,
without dislocations, were characteristic in this system; how-
ever, the contrast variation is relatively diffuse, especially at

o +f
>0 +|
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the BFO-into-LSMO interface, indicative of chemical intermix-
ing at this growth interface. A closer examination of this image
(and similar ones) reveals the presence of a defective lamellar
structure in some areas within the BFO layers. The lamellae
have a periodicity of 2-unit cells and lie 45° with respect to
the BFO-LSMO interfaces along the (110) direction. Previous
image analyses concluded that a highly strained BFO orthorhom-
bic phase coexists with the more common pseudo-rhombohedral
phase.*® This orthorhombic phase presents as the lamella structure
with anti-parallel polarization, resulting in an antiferroelectric-like
structure.

To illustrate the initial crystallographic analysis of the
heterostructures that form within the BFO layers, the A and B cation
sites are identified using semantic segmentation via the deep convo-
lutional neural network (DCNN) with the U-Net architecture. The
details of this DCNN architecture and its workings are discussed
extensively in Ref. 47. The resulting lattice is illustrated in Fig. 3(b).
Note that identification of the atomic sites relies purely on local
contrast and no assumptions regarding long-range translational
symmetry are made.

As discussed in the previous case, subimages, ie., images
cropped around the centers of cations are used as the feature vec-
tors for the cations. Initially, we explored the classification of these
experimental sub-images into different numbers of classes using
two clustering algorithms viz., K-means and GMM. The results of
these clustering techniques are shown in Fig. 3(c) for k-means and
Fig. 3(d) for the GMM. In all cases, at least eight classes are neces-
sary to visualize domain variants as separate discrete classes, whereas

L4
o
oo
<43
<443
<43
(33
(3343
(L3
oo

0000 ¢

20006

FIG. 3. (a) ADF-STEM image of

0 ¢
¢
> e
>

BFO-LSMO  superlattice. ~ Scalebar

2 nm. (b) Output from DCNN network

g;’.c;wth >

clearly delineates two different classes
of cations (shown by red and green),
Cation centers are colored using the
labels of their corresponding subimages
as a result of (c) GMM and (d) k-means
clustering algorithms. Note that the
actual value of the class label does not
have any significance in this case but
the grouping of subimages.
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only a few classes separate the variability of chemical composi-
tion but not ferroic variants. This is unsurprising since sub-images
encode both chemical and polarization effects, and the former tends
to dominate STEM contrast.

This behavior is further illustrated in Fig. 4 where the sub-
images are visualized in the latent spaces corresponding to different
dimensionality reduction methods. Here, we apply classical prin-
cipal component analysis (PCA), t-distributed stochastic neighbor
embedding (tSNE), multidimensional scaling (MDS), and isomet-
ric mapping (ISO). This allows us to explore the variability of the
first two components, proximity in the data space, distant scaling,
and isometric projections for optimal representation of the data
manifold in 2D space. These transforms encode the sub-images
as component vectors. Unlike clustering methods, this compo-
nent vector corresponds to the continuous variables. The maps
in all cases visualize the distributions of the components in 2D
space corresponding to the first and second endmember. Addition-
ally, to build the relationship between the materials structure and
dimensionally reduced variables, we color code the GMM classes
in the images.

Note that in all cases, the distribution of points in the cor-
responding low dimensional spaces, while structured, is not easily
separable. The PCA decomposition forms a dense cloud of the
points, and no obvious clusters emerge, the GMM labels suggest
considerable intermixing in the PCA space. The density based tSNE
decomposition separates clearly visible subclusters, as expected for
this method. However, no clear clusters corresponding to the indi-
vidual components or ferroic variants in the BFO-LSMO system

scitation.org/journal/adv

are observed. Similar behaviors are observed for MDS and ISO
based dimensionality reduction. Overall, these methods allow to
visualize the clusters within the data but will treat the rotational
variants of the same structure as a dissimilar group. Finally, an
rVAE with a similar architecture to that discussed for the previous
dataset is applied to this dataset of subimage stack with two different
window sizes.

The results of the rVAE analysis for two different window sizes
are compared in Fig. 5. Latent space representation where the space
of L1-L, is uniformly sampled while all other latent variables are held
at constants and these sample points are then decoded back to the
subimage space is shown in Fig. 5(a) for window size = 54 pixels and
in Fig. 5(b) for window size = 36 pixels. Similar to the BFO case,
the dominant variability in the latent space for window size = 36
pixels is due to the atomic column intensity. This is clearly observed
in the joint distribution of data in the L;-L, space [Fig. 5(f)] where
the L, varies from —1.5 to 1.5, and L; varies from —0.08 to 0.05, i.e.,
30 times smaller. Furthermore, the latent variable distribution seems
to suggest a relationship between the two. The latent angle distribu-
tion shows two clear peaks separated by 71/2 as an indication of two
ferroelectric domains.

In comparison, for a larger sub-image size, the latent space
becomes less degenerate, with the range of L, variability being less
than an order of magnitude smaller than that of L; [Fig. 5(c)].
The structure of the distribution becomes more complex, reflect-
ing more detail in the sub-images. However, an examination of
the latent space representation suggests that the sub-images contain
unphysical features.
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FIG. 5. Latent space representation
(decoding) as a function of the first latent
variable (L) and second latent variable
(L) at window sizes (a) 54 pixels and
(d) 36 pixels. Histograms of the encoded
angle at a window size of (b) 54 pixels
and (e) 36 pixels. The sample sub-
images (feature vectors) for each
window size are shown in the insets of
(b) and (e). Each subimage is plotted
as a scatter point in Ly-L, space and
the corresponding fitted density of
datapoints is shown for window size of
(c) 54 pixels and (f) 36 pixels.
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FIG. 6. Distribution of (a) L4, (b) L2, and (c) encoded angle as a function of the position of sub-image for window size of 54 pixels. (d) L, (€) Lp, and (f) encoded angle

distributions as a function of the spatial position of sub-image at window size of 36 pixels.
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The decoded images are shown in Fig. 6. Note that for
n = 54 and n = 36 window sizes, the rotation of polarization in the
ferroelectric layer, i.e., the antipolar orthorhombic phase, is clearly
observed. The L, images clearly visualize the chemical homogeneity
for both window sizes, whereas the corresponding L; image visual-
izes similar weak contrast. For the larger window size, n = 54, the L,
image now contains information from the ferroelectric structures.
In this manner, we have discovered the factors of variability in local
atomic structures that visualize ferroic variants and composition
variations.

Note that the analyses in Figs. 5 and 6 represent the structural
descriptors of the materials in terms of continuous low dimen-
sional variables. While similar to other ML methods, these do not
necessarily have well-defined physical meaning; the use of rVAEs
allows separation of the rotational variants and remaining degrees
of freedom. In the present case, the latter is dominated by chem-
ical composition. This approach further allows exploration of the
purely chemical behavior of the system. For example, Fig. 7 shows
GMM clustering on the latent variables. Here, GMM is applied in
the latent space of the system where each subimage is represented
by its encoding in the 2D latent space with Li, L, as the latent
dimensions. This representation not only helped in the reduction of
dimensions from 1296 to 2 but also helps in separating the rotational
components of the ferroelectric variants. The resultant cluster
centers or means for k = 4 are shown in Fig. 7(a). Each subimage is
then plotted as a scatter pointin L, -L; latent space and is color coded
with its corresponding class label in Fig. 7(b). It can be observed
from this plot that we can observe four distinct clusters in the latent
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space, which is why the number of classes is set to 4 in the first place.
Finally, the subimage centers in real space are color coded with
their respective class labels in Fig. 7(c). Here, the clustering clearly
separates the LSMO and BFO regions as well as the intermediate
layers between the two, whereas the rotational variants of BFO are
identified as a single class.

To summarize, here we explore the applicability of rVAEs for
the exploratory analysis of atomically resolved scanning transmis-
sion electron microscopy data with multiple ferroic variants in the
presence of imaging non-idealities and chemical variability. We
show that the optimal local descriptor for the analysis is the sub-
image stack centered at specific atomic units, since materials and
microscope distortions preclude the use of an ideal lattice being
used as the reference point. Classical unsupervised clustering meth-
ods such as k-means and GMM tend to produce clusters dominated
by chemical and microscope effects, and a large number of classes
are required to establish the presence of rotational variants. Sim-
ilarly, dimensionality reduction methods projecting the data on
low dimensional spaces via PCA or density-based methods tend to
produce non-easily separable distributions.

Comparatively, the rVAE allows extraction of the angle corre-
sponding to the orientation of ferroic variants explicitly, allowing
for straightforward identification of ferroic variants as regions with
the constant or smoothly changing latent variables and sharp ori-
entational changes. This approach allows for further exploration
of chemical variability by separating the rotational degrees of free-
dom via rVAE and exploring the remaining variability in the
system.
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This approach can be of interest for systems with more
complex polarization structures, including morphotropic ferro-
electrics, and materials at the morphotropic phase boundaries
and can provide insight into the nature of symmetry breaking
phenomena in these materials.

MATERIALS AND METHODS

Sample growth: The oxide layers were grown by pulsed laser
deposition (PLD) using a 48 nm wavelength KrF excimer laser.
Lag7S193MnQ; layers were deposited at 600 °C using 0.8 mJ/cm®
with an oxygen pressure of 0.15 mbar and frequency of 5 Hz. BiFeO3
layers were deposited at 600 °C using 0.97 mJ/cm* with an oxygen
pressure of 0.15 mbar and 10 Hz pulse frequency.

Atomic-resolution STEM images of the monolithic BiFeO; film
were collected using a probe corrected NION ultraSTEM at 200 kV
with a high-angle annular dark field (HAADF) detector. The BFO
sample preparation, imaging, scan correction, fitting, and image
analysis were performed identically to Refs. 48 and 49.

Atomic-resolution STEM images of the BFO-LSMO superlat-
tices were acquired using a double aberration-corrected Schottky
emission JEOL ARM-200F operating at 200 kV. Annular dark field
(ADF) images were formed using a collection angle of 45-180 mrad.
To reduce scan distortion and sample drift effect, each image is the
result of 20 short exposure images combined using the SmartAlign
algorithm [10.1186/540679-015-0008-4]. TEM specimens were pre-
pared using an FEI Scios focused ion beam (FIB) using standard
lift-out procedures.
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