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Abstract: With the growing number of people affected by osteoarthritis, wearable technology may
enable the provision of care outside a traditional clinical setting and thus transform how healthcare
is delivered for this patient group. Here, we mapped the available empirical evidence on the
utilization of wearable technology in a real-world setting in people with knee osteoarthritis. From
an analysis of 68 studies, we found that the use of accelerometers for physical activity assessment
is the most prevalent mode of use of wearable technology in this population. We identify low
technical complexity and cost, ability to connect with a healthcare professional, and consistency in the
analysis of the data as the most critical facilitators for the feasibility of using wearable technology in a
real-world setting. To fully realize the clinical potential of wearable technology for people with knee
osteoarthritis, this review highlights the need for more research employing wearables for information
sharing and treatment, increased inter-study consistency through standardization and improved
reporting, and increased representation of vulnerable populations.

Keywords: joint disease; wearable devices; e-health; free-living; artificial intelligence

1. Introduction

Osteoarthritis (OA) is the most prevalent chronic joint disease, with the knee being
the most commonly affected joint [1,2]. It is estimated that about 250 million people
worldwide are affected by OA [3]. OA is characterized by irreversible articular cartilage
degeneration, chronic pain, and disability, and 13% of OA patients are forced into early
retirement, with an average loss of eight working years per patient [4]. The medical cost
of OA in various high-income countries accounts for between 1% and 2.5% of their gross
domestic product [5]. As the number of people affected with OA is likely to increase due
to aging populations and the obesity epidemic [6], so too will the demand on healthcare
resources. In addition, the COVID-19 pandemic has had a notable impact on primary care
services which have had to adapt to different methods of service provision to limit the
number of face-to-face appointments with patients [7]. Concurrently, there has been a rise
in the research and development of wearable technology for healthcare applications for this
population [8,9], which could facilitate the treatment and monitoring of patients outside of
a clinical setting.

Wearable technology can be defined as any wearable and portable device with the
ability to detect or record any health indicators and/or as a device that allows information
sharing and/or treatment to the wearer. Wearable technology has had a significant influ-
ence on the fitness industry, with mobile phones, apps, and wearable sensors in widespread
use by citizens [10]. Moreover, innovations such as artificial intelligence (AI) are finding
new uses in patient self-care and clinical management, enabling the growth of personalized
medicine [11]. Thus, the widespread adoption of wearable technology in a real-world
setting has the potential to change how healthcare is provided.
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The transformation of the wearable technology landscape is evidenced and synthe-
sized in numerous focused review articles. Matthew-Maich et al. provided guidelines for
designing, implementing, and evaluating mobile health technologies for the management
of chronic conditions in elderly people [12]. Another review summarized the usage of
accelerometers for monitoring of physical activity and sedentary behavior and provided
practical considerations for their adoption in orthopaedics [13]. Kvedar et al. examined
the values of telehealth and telemedicine to patients and professionals [14]. Within the OA
research field however, knowledge regarding current utilization of wearable technology
seems limited. Summarizing and disseminating information from peer reviewed, pub-
lished research can stimulate and facilitate knowledge transfer between policymakers and
relevant stakeholders, and thus guide the further development of wearable technology.

Kobsar et al. conducted a scoping review examining use of wearable sensors in
people with lower-limb OA but focused primarily on gait analysis, rather than a free-living
assessment broadly [8]. Another scoping review investigated wearable sensors for the
assessment of outcomes following knee joint replacement surgery [9]. In their narrative
review, Sliepen et al. provided an overview of physical activity monitors in knee and
hip OA with a focus on technical specifications [15]. Thus, the way wearable technology
has been deployed in knee OA research in a real-world setting remains unexamined. In
addition, to our knowledge, the facilitators and barriers to the feasibility of using wearables
in a real-world setting in people with knee OA have not been determined. A better
understanding of such facilitators and barriers will shed light on users’ engagement with
wearables and provide guidance for planning and designing research in the field. Mapping
the breadth of this field will benefit clinicians, industry, and policy makers as they are
involved in developing best practices for use of wearables and facilitating understanding
how this technology can be of benefit to people with knee OA.

Therefore, the objective of this scoping review is to identify and map existing evidence
describing the current utilization of wearable technology in a real-world setting in people
with knee OA.

2. Materials and Methods

We employed the scoping review methodology developed by Arksey and O’Malley [16],
which includes five stages: (1) identification of a research question(s), (2) identification of
relevant studies, (3) study selection, (4) charting the data, and (5) data synthesis. Report-
ing adheres to the Preferred Reporting Items for Systematic Review and Meta-Analyses
(PRISMA) Extension for Scoping Reviews [17] (Table S1). The protocol, with its predefined
search strategy and criteria for eligibility, study selection, data extraction, and analysis
was registered within the Open Science Framework prior to the commencement of the
study (https://osf.io/3fh7m accessed on 25 November 2021). A deviation from the proto-
col was that we did not consult relevant stakeholders, which is also recommended in the
scoping review methodology developed by Arksey and O’Malley [16]. The number of
studies involved, the broad topic range, and the lack of a qualitative analysis of identified
papers defined our approach as a scoping review and differentiated it from a systematic
review [16]. This review provides valuable answers on the feasibility (i.e., does any evi-
dence in the literature exists), relevance (i.e., has a systematic review already been done),
and time needed (i.e., the volume of the evidence) to conduct a systematic review.

2.1. Research Questions

The objective of this work was achieved via addressing the following research ques-
tions:(1) what type of wearable technology is used in a real-world setting in people with
knee OA, (2) what are the applications of wearable technology in people with knee OA,
and (3) what are the facilitators and barriers to feasibility of using wearable technology in
a real-world setting in people with knee OA.

https://osf.io/3fh7m
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2.2. Eligibility Criteria

We included full-length journal articles with any type of study design theoretically
possible, i.e., randomized controlled trials, non-randomized trials, cohort studies, case-
control studies, case series. We also included qualitative studies that served as the basis
for the evaluation of wearable technology, provided the study participants used wearable
technology in a real-world scenario. We excluded secondary types of evidence such as
reviews, comments, editorials, dissertations, conference proceedings, etc. Included studies
needed to be conducted in a real-world setting (e.g., residence or community setting)
where participants used a form of wearable technology. Studies conducted explicitly in
a university laboratory setting, such as validation studies of wearable technology, were
excluded. We defined wearable technology as an electronic device that is worn close to
and/or on the surface of the skin, where it collects information concerning any health
indicators or which allows information sharing/treatment to/from/for the wearer. Partici-
pants were adults (older than 18 years of age) with knee OA. We excluded studies with
participants scheduled for/or after any form of joint surgical procedure, with other forms
of arthritis (e.g., rheumatoid arthritis), and, in case of mixed populations, studies that do
not differentiate/stratify data results between the knee OA population and those having
other condition.

2.3. Information Sources and Search

A systematic search for published evidence was conducted in MEDLINE (PubMed)
and then customized for the CINAHL, Scopus, Web of Science, EMBASE, IEEE Digital
Library, and Cochrane Library. Additionally, secondary searches included: ACM Digital
Library, Google Scholar, and reference lists of included studies. All databases were searched
from inception until 3 June 2021. The search strategy identified records that contained at
least one search term in each of the following themes: joint area, disease, and wearable
technology. Included studies could be published in English, Polish, Arabic, or Spanish.
Search strategy and results for each database are presented in Table S2.

2.4. Study Selection

Screening of manuscript titles and abstracts was conducted by two independent,
blinded reviewers (T.C. and J.W.). The search results from all databases were combined
and duplicate studies were removed. Prior to screening, reviewers worked through a
pilot exercise of example titles and abstracts. Discrepancies between the reviewers were
resolved by a discussion. The third reviewer (M.A.A.) was consulted if no consensus could
be reached. The full text was obtained for all studies that passed screening by title and
abstract. The first author (T.C.) assessed all full-text articles, while the second and the last
author (K.B., M.A.A.) assessed half of the full-text articles for eligibility, and nominations
for exclusion were discussed and agreed on by the authors. To ensure an independent
review process, screening of manuscript titles and abstracts as well full texts was conducted
through the use of the Rayyan systematic review web app [18]. In case of full text missing,
we contacted the first author by e-mail to obtain the full text. Authors were given one week
to respond and sent a reminder if needed.

2.5. Data Extraction

Following the screening process, data from all included full-text manuscripts were
collected within a data extraction spreadsheet (Excel, Microsoft Corporation, Redmond,
WA, USA) by the first author (T.C.) and then verified by the last author (M.A.A.). Any
discrepancies were resolved by consensus, and, if needed, a third reviewer was consulted
(K.B.). Data extracted from the manuscripts included general publications details (authors,
year of publication, language, etc.), information about the study (design, sample size,
etc.), and information about the studied population (gender, body mass index (BMI), age,
disease, etc.). In addition, specific information addressing each research question was
extracted. A detailed data extraction template is presented in Table S3.
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2.6. Data Synthesis

We recorded the data extracted from each study in tables and summarized it by using
visualizations such as bar graphs, histograms, and pie charts, using Tableau Public 21.2
(TABLEAU SOFTWARE, LLC). Specifically, we first synthesized general study and popula-
tion details by visualizing the number of studies by year of publication, design, sample size,
country, mean age, mean Body Mass Index (BMI) group, and ethnicity of participants. To
answer what type of wearable technology is used in people with knee OA in a real-world
setting, we visualized the following metrics: type of wearable technology, body location
of use/attachment, and duration of use. To depict applications of wearable technology in
knee OA, we visualized the aims of wearable technology and specific metrics collected with
or transferred to wearable technology from the wearer. Finally, to demonstrate facilitators
and barriers to the feasibility of using wearable technology in a real-world setting in people
with knee OA, we collected and synthesized data on the following metrics: facilitators
and barriers, user experience, adherence to and adverse events related to using wearable
technology, instructions provide to participants how to use wearable technology, how
data obtained from wearable technology was analyzed, and reliability and validity of
wearable technology.

3. Results

The database searches resulted in 3656 records. Following duplicate removal, 2487 ti-
tles and abstracts were assessed for eligibility. Of these, 2219 records did not meet the
inclusion criteria. Subsequently, 266 full-text articles were assessed for eligibility, and
68 studies [19–86] were ultimately included in the review (Figure 1).

3.1. General Study and Population Details

In total, 35.3% of the studies were published in the last two full years included in
the review (Figure 2A). Retrospective cohort (19.1%), RCT (14.7%) and cross-sectional
(11.8%) were the most reported study designs (Figure 2B). The USA was the country where
the majority of the studies were conducted (51.5%), followed by Canada (11.8%) and
the UK (10.3%) (Figure 2C). 35.3% of studies recruited ≤50 participants with knee OA
(Figure 2D). Female participants constituted the majority of study subjects in most of the
studies (Figure 2F). Most of the studies recruited people with knee OA aged in the range
of 60 to 70 years old (Figure 2E), and in the BMI range of 28 to 32 kg/m2 (Figure 2G). 58.8%
of the studies did not report the ethnic background of participants (Figure 2H).

3.2. Wearable Technology

Accelerometers were the most used type of wearable technology, accounting for
63% of wearables reported in the studies (Figure 3A). The reported wearable technology
was mostly attached in the regions of the pelvis (19.8%), hip (16.1%), and mid-thigh
(13.6%), while hand-held types of wearable technology accounted for 13.6% of all reported
technology types (Figure 3B). In 69.1% of studies, participants were instructed to use
wearable technology for less than one week (Figure 3C).

3.3. Applications of Wearable Technology

We identified three main aims of wearable technology use, with outcome assessment
being the most common application (72%) (Figure 3D). Specific data metrics
recorded/transferred from/to the wearer are organized according to the type of wearable
technology and presented in Figure 4. Time spent in moderate to vigorous or seden-
tary physical activity and the number of steps per day were the metrics collected most
often (Figure 4).
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3.4. Facilitators and Barriers to Feasibility of Using Wearable Technology

In total, 82.3% of studies did not reflect on any facilitators or barriers to the feasibility
of using wearable technology in a real-world setting in people with knee OA (Figure 5A).
Ease of use was the most reported facilitator. However, we observed that the majority of
studies did not report on user experience (Figure 5B) and adherence to using wearable
technology (Figure 5C), did not report whether they provided instructions to participants
on how to use wearable technology (Figure 5D) and did not report adverse events related
to using wearable technology (Figure 5E). One study involved the public in wearable
technology design [35].
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type of wearable device; (D) applications of wearable technology stratified by type of wearable device; Abbreviations: PES,
pulsed electrical stimulation device; PEMF, pulsed electromagnetic field device; EMG, electromyography; IMU, inertial
measurement unit; NMES, neuromuscular electric stimulation device; TENS, transcutaneous electrical nerve stimulation
device; Interactive version of the figure with all the study references is located here: https://public.tableau.com/app/
profile/tomasz.cudejko/viz/Figure3_16324888236280/Figure3 (accessed on 19 October 2021).

Another mentioned facilitator was a consensus on how data obtained from wearable
technology should be analyzed. We determined that 42% of the studies collecting sensor
data with wearable technology did not report how they analyzed raw data, and out of
those who reported, half used a commercially available producer software, whereas the
other half own processing algorithms (Figure 5F). In addition, we observed that the validity
and reliability of the wearable technology were not reported in 61.4 and 66.6% of studies,
respectively (Figure 5G,H). Likewise, 80.7% of studies did not include raw sensor data
collected with wearable technology, and none of the studies accompany their publication
with publicly available software/algorithms for data analysis (Supplementary Excel file).

Finally, low cost and longer duration of battery time of wearable technology were also
commonly reported by facilitators. However, we identified that 97 and 95.6% of studies
did not report the price and battery time of wearable technology used in their studies
(Supplementary File S1).

https://public.tableau.com/app/profile/tomasz.cudejko/viz/Figure3_16324888236280/Figure3
https://public.tableau.com/app/profile/tomasz.cudejko/viz/Figure3_16324888236280/Figure3
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(accessed on 19 October 2021).
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4. Discussion

The objective of this review was to identify and map the available evidence describing
current utilization of wearable technology in a real-world setting in people with knee OA.
We presented an overview of type of wearable technology used in a real-world setting in
people with knee OA. We also determined what are the applications of wearable technology
in this population. Finally, we identified the most critical facilitators and barriers to the
feasibility of using wearable technology in a real-world setting in people with knee OA
that may enhance the generalized adoption of wearable technology in this patient group.

The results of this review reflect the very recent growth in the use of wearable technol-
ogy in a real-world setting in people with knee OA, with 35.3% of the studies published

https://public.tableau.com/app/profile/tomasz.cudejko/viz/Figure5_16328264416900/Figure5
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in the last two full years included in the review. Variability in the study designs reported
represents the variety of the context that wearable technology was used in. Most studies re-
cruited relatively young participants (62–66 years of age) and in the overweight/obese BMI
category (28–32 kg/m2), which is in line with a review by Kobsar et al. [8], but questions the
generalizability of the results to older populations with a more severe OA stage. We did not
collect data on radiological severity of knee OA, which could have provided more insights
regarding the generalizability of the results to people with a more severe knee OA diseases
stage and thus can be a topic for future research. Although the majority of the studies
were limited to less than 50 participants, cohort studies such as the Osteoarthritis Initiative
(n > 1000) [70] or the Multicentre Osteoarthritis Study (n > 400) [61] provide convincing
evidence that wearable technology can be used in a large scale in a real-world setting
in people with knee OA. Few studies collected information on race/ethnicity, despite its
considerable significance for outcomes and disparities [87]. Wearable technology presents
an opportunity to reduce workforce, financial, and geographic barriers [88]. The relative
scarcity of studies in vulnerable populations suggests the need for improved representation
to ensure that wearable technology is designed for use in all populations and that it does
not exacerbate disparities.

4.1. Applications of Wearable Technology in Knee OA

Currently, wearable technology is used for outcome assessment, information sharing,
and treatment.

An accelerometer was the most common wearable technology used for outcome
assessment. Although the use of an accelerometer allows researchers and clinicians the
ability to track a broad scope of outcomes, its current use in a real-world setting is lim-
ited to assessing physical activity metrics. Nevertheless, accelerometers provide greater
objectivity in assessing physical activity than patient-reported outcomes which are sub-
ject to the ceiling effect and recall bias [89]. Moreover, accelerometers can measure the
four dimensions of physical activity: frequency, intensity, time, and type, but an inability
to measure all activities with equal accuracy has been suggested as their current limita-
tion [15]. In addition, data processing methods for accelerometers are not generalizable
to all populations because they are based on specific thresholds subject to differences in
movement patterns and walking speed between populations [59]. An overwhelming num-
ber of studies placed an accelerometer near the center of mass. However, the accelerometer
anatomical placement should be chosen appropriately based on the research question as
it influences their characteristics, user acceptance, engineering requirements, and data
processing choices [90].

In health care, sensor data such as accelerometry of gyroscope data would be even
more relevant if combined with simultaneously collected patient-reported outcomes. This
would enable adding context to the sensor metrics, monitoring of symptoms, and can
aid clinical decision making and empower patients. This review demonstrates the abil-
ity to collect patient-reported outcomes such as pain intensity, KOOS and WOMAC by
using tablets, smartwatches, and smartphones. Most studies were observational in na-
ture and represented outcome assessment in non-experimental conditions with the aim
to establish associations between wearable technology-derived health metrics and other
health outcomes. Nevertheless, the overall variability of the metrics reported, and in
some cases inconsistencies in methods and data processing choices, calls into question the
current ability of wearable technology-derived outcomes to inform health prevention and
management efforts.

Current research in user-related information delivery via wearable technology is
primarily concerned with the provision of feedback, real-time user insight, and recommen-
dations. Tablets, smartwatches, or smartphones were utilized in 15 studies for information
sharing, such as reminding participants about using another wearable technology, provid-
ing information/advice about the importance of participation in physical activity/exercise,
or connecting with a health professional or with other study participants. Examples from
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other areas demonstrate that wearable technologies incorporating an information-sharing
function within the device can enhance communication between patients, professionals,
and caregivers, provide more opportunities to express feelings, increase connectedness
and caregiver support and improve advanced care planning [91]. Smartphones, tablets
and/or smartwatches are accessible and can be delivered conveniently and easily to the
target audience. However, these devices may not be suitable for all people with knee OA,
potentially because of age, preference, comorbidities, and/or severity of illness. Manini
et al. observed that App interface customization was a recurring theme throughout the
focus group discussions, pointing to the need to accommodate potential hearing and visual
impairments and to users’ individual needs [92]. Therefore, using wearable technologies for
information sharing must be tailored to the needs, preferences, and conditions of patients
and be supported by face-to-face modes in the intervention package.

We found 11 studies that used wearable technologies, such as ultrasound, PES, PEMF,
and or TENS for the treatment of people with knee OA in a real-world setting. Many
people with knee OA may live at a distance from health services and continue to be
in the workforce with limited time to attend treatment sessions. Thus, such wearable
devices have the potential to be an important component in models of care by offering
a sustainable opportunity to improve patient outcomes via the enhanced delivery of
self-management tools and increased access to best practices and continuity of care [93].
Although some reviews suggested ultrasound and PEMF to be effective in reducing pain
and improving physical function in people with knee OA [94,95], it should be noted that
current international clinical guidelines for the management of knee OA do not recommend
such devices to be considered a core treatment for knee OA [96,97].

4.2. Facilitators and Barriers to Feasibility of Using Wearable Technology in a Real-World Setting

The possibility of enriching people with knee OA with wearable technology to manage
their own health and facilitating clinicians with superior methods of monitoring highlights
the potential of such devices [98]. With technology improving drastically, we can expect
such devices to be widely adopted in patient care in the future. A prerequisite for this is
a better understanding of the facilitators and barriers to the feasibility of using wearable
technology in a real-world setting. Our review demonstrates, however, that these aspects
have not been addressed in most of the studies.

The user feedback reviews report that initial user enthusiasm on wearable devices
is often lost because of technical complexities, price, data quality concerns, and unclear
end-user needs [99]. Indeed, we observed low technical complexity was the most reported
facilitator. Data on user experience and engagement is crucial for the widespread adoption
of such devices for patient self-management. Very few studies, however, evaluated user
experience, adverse events related to the use of wearable technology, nor did they report
whether they provided instructions to participants on how to use the wearable technol-
ogy. Simple interface, technical support, and clear instructions are needed to tackle the
technological barriers, which is consistent with other studies [100,101].

Low cost of wearable technology or subsidization of costs by health insurance was
another facilitator. Only two studies reported the price of wearable technology used in their
studies with a reported price of $4400 to $6800 for ultrasound devices [26,33]. Sliepen et al.
reported that the financial burden varies widely between activity monitors for knee and
hip OA patients, ranging from €25 to €4500 [15], demonstrating a difference in the price of
wearables depending on their applications (data collection vs. treatment). Authors also
reported that the need for and cost of required software varies greatly between the devices,
which makes it difficult to understand the overall cost of the wearable technologies.

Establishment and disclosure of specific threshold for estimation of physical -activity
metrics derived from accelerometers and consensus on how this data should be analyzed
was another facilitator. Collins et al. observed that specific thresholds to measure PAs
derived from hip-worn accelerometers should not be used to measure PA by wrist-worn
accelerometers in adults with knee OA [59]. Our review demonstrated variability and
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lack of consensus regarding processing choices for sensor data from wearable devices.
We additionally show that 50% of included studies used wearable technology, which
was validated/tested for reliability on the non-knee OA population. This is consistent
with a recent meta-analysis demonstrating that IMU devices are generally validated with
highly heterogeneous protocols, in different populations, and against varying criteria
methods [102]. The validation of wearable technologies explicitly in healthy individuals
could lead to an erroneous reflection of the device’s true validity, as knee OA leads to
abnormalities in gait dynamics and increased energy expenditure during gait compared to
healthy participants [103]. Moreover, validation studies are often conducted in a laboratory
setting, which represents an artificially constrained environment deviating from a real-
world setting, thereby confounding locomotor parameters compared to habitual gait
performance [104].

Another facilitator was the ability of technology to connect/provide feedback to a
health professional or the ability to receive feedback in the form of visualizations of patient’s
data metrics or information about the disease. Participants emphasized the importance
of using easily understandable and interpretable health metrics on which counseling can
be based. If wearable technology provides feedback, it is important that it has respectful
automation (appropriate frequency of questionnaires) and tone of feedback. Beukenhorst
et al. reported that too frequent reminders about the importance of participation in physical
activity sent via a smartphone app made participants feel guilty, especially in a situation
when exercise was not possible [55].

The long duration of battery time is another important facilitator; along with being
comfortable, light, and user-friendly, wearable technology needs to be power efficient.
We observed that majority of the accelerometers studies monitored physical activity for
seven days which has been shown to enhance the robustness of the physical activity
measurements and is a manageable length of time for most patients to wear the sensor,
resulting in sufficient compliance [105]. Although sensor miniaturization has made it
possible to measure for days or weeks without the need for large and bulky batteries or
base stations, identified research trends reveal that research on battery technology lags
compared with research on other wearable system components, implying that energy
efficacy and efficiency remain an important design concern [106].

4.3. Recommendations for Future Research

The translation to a long-term commitment to wearable technology for health monitor-
ing and management in a real-world setting requires clear use scenarios, valuable feedback,
and constructive recommendations. The findings of this review provide guidance for
planning and designing research that aims to utilize wearable technology in people with
knee OA for these purposes.

First, we identified gaps in the literature in terms of reporting. We recommend that
authors collect and report data on multiple aspects of user experience, such as adherence
to using wearable technology, adverse events, and acceptability. In addition, reporting
of technical specifications of wearable technology such as weight, size, price, sampling
frequency, and battery time was missing in most studies but is critical for further develop-
ment of such technologies. Moreover, due to inconsistencies in how physical activity data
is processed, publishing raw data sets as supplementary files should be standard practice.
In accelerometers, for instance, an important feature might be the possibility to extract raw
data that can be analyzed independent of the manufacturers’ algorithms or re-analyzed
retrospectively if new algorithms are developed. Likewise, we found that no studies pro-
vided any open software to accompany their articles. Open-source software repositories
(i.e., GitHub) can support cost-effective replication, advancement, and growth of software
for clinical research [107]. Although limited, such examples are already present in the
field of wearable technology [108,109]. Finally, a set of standard outcome measures and
a testing methodology should be established in wearable technology for health outcome
assessment in people with knee OA. We extracted close to 90 different data metrics, and
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most studies did not report the methodology of using wearable technology in participants’
real-world settings. Within optical gait analysis, the standard testing methodology is well
established in knee arthroplasty research [110]. Similar progress is required in research on
the utilization of wearable technology in a real-world setting in knee OA.

Second, we observe significant gaps in the capability of wearable technology to
collect other health outcomes than physical activity-based metrics. Although knee OA
is considered to be partially driven by abnormal biomechanics [111], there is limited
research in terms of using wearable technology for gait analysis in a real-world setting.
A combination of accelerometers, gyroscopes, and magnetometers (IMU devices) may
provide added benefits to measuring more complex metrics related to the biomechanics
of gait, such as kinematics or kinetics, and thus provide insights into the quality of gait
in various situations that would not be detected within constrains of in-lab setting [112].
IMUs have however significant power and data storage requirements [113], which requires
a level of active interaction by the user for battery charging and initiation of data collection
and transfer. In addition, measuring more complex metrics would require the integration
of valid activity classification and event detection algorithms, which are usually studied
in isolation but rarely incorporated together in a single system [108]. Hence, due to these
technical and logistical difficulties, longitudinal assessment via IMUs is currently lacking.
Nevertheless, such examples are already present in other fields [114,115] and can serve
as a basis for further development of such devices for the assessment of biomechanics in
people with knee OA in a real-world setting.

Finally, studies using machine learning and AI for delivering personalized support
based on the data from wearable technology were not present among included studies,
despite progress in AI-enable healthcare delivery [116]. The large volume of heterogeneous
data types collected using wearable technology is beyond the abilities of commonly used
data processing techniques. High-performance computing such as AI, machine learning,
or deep neural networks permits the efficient processing of large volumes of data, but
future studies need to consider how such an approach would transform collected data into
manageable and useful information for people with knee OA. Current commercial wearable
technologies lack relevance for many potential users, presenting an additional burden [117].
To gain wider consumer preference, the data collected with wearable technology has to be
fitted into specific contexts, offering the needed insights and advice.

4.4. Limitations

First, we did not conduct the assessment of the risk of bias and evidence strength.
This is, however, not mandatory in scoping reviews [17] and, given the variety of designs
of the included studies, would be out of the scope of this review. Second, it is questionable
whether the results of this study can be extrapolated to people with a severe stage of knee
OA as the included studies recruited relatively young people with knee OA (62–66 years of
age). Finally, we did not include studies that investigated wearable technology in people
with knee OA scheduled for or after knee joint replacement surgery.

5. Conclusions

The research utilization of wearable technology in a real-world setting in people with
knee OA is increasing, with the use of accelerometers for physical activity assessment
being the most prevalent mode of use. There is a gap in research regarding the use
of wearable technology for patient self-treatment and for information-sharing. To fully
realize the clinical potential of wearable technology for people with knee OA, this review
highlights the need for more research employing wearable technology for information
sharing and treatment, increased inter-study consistency through standardization and
improved reporting, and increased representation of vulnerable populations.
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