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Advances in omics technologies allow for holistic studies into biological

systems. These studies rely on integrative data analysis techniques to obtain

a comprehensive view of the dynamics of cellular processes, and molecular

mechanisms. Network-based integrative approaches have revolutionized

multi-omics analysis by providing the framework to represent interactions

between multiple different omics-layers in a graph, which may faithfully

reflect the molecular wiring in a cell. Here we review network-based multi-

omics/multi-modal integrative analytical approaches. We classify these

approaches according to the type of omics data supported, the methods

and/or algorithms implemented, their node and/or edge weighting

components, and their ability to identify key nodes and subnetworks. We

show how these approaches can be used to identify biomarkers, disease

subtypes, crosstalk, causality, and molecular drivers of physiological and

pathological mechanisms. We provide insight into the most appropriate

methods and tools for research questions as showcased around the

aetiology and treatment of COVID-19 that can be informed by multi-omics

data integration. We conclude with an overview of challenges associated with

multi-omics network-based analysis, such as reproducibility, heterogeneity,

(biological) interpretability of the results, and we highlight some future

directions for network-based integration.
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Introduction

Studies that implement large-scale molecular profiling

techniques (-omics technologies) have increased our

understanding of disease mechanisms and led to the discovery

of new biological pathways, genetic loci underpinning disease

progression, biomarkers, and targets for therapeutic

development (Horgan and Kenny, 2011; Sun and Hu, 2016;

Karczewski and Snyder, 2018). Until recently, these studies

have mostly relied on single omics investigations.

Dependencies between biological features and the

relationships between different molecular layers (for example

transcriptome, proteome, metabolome, microbiome, and

lipidome) remain mostly elusive. The holistic understanding

of the molecular and cellular bases of disease phenotypes and

normal physiological processes requires integrated investigations

of the contributions and associations between multiple (different

but parallel) molecular layers driving the observed outcome.

Most importantly, genetic information flows from the genome

to traits and involves several molecular layers (Sun and Hu, 2016;

Hasin et al., 2017). Thus, understanding the genetic architecture

of complex phenotypes would involve integrating and

investigating the interactions between different molecular

layers (Buescher and Driggers, 2016; Hasin et al., 2017;

Chakravorty et al., 2018; Zapalska-Sozoniuk et al., 2019).

Multi-omics datasets require appropriate computational

methods for data integration and analysis. These methods/

models implement statistical, network-based, and/or machine

learning (ML) techniques on different omics layers to elucidate

key omics features associated with diseases at various molecular

levels and predict phenotypic traits and outcomes with increased

accuracy (Ritchie et al., 2015; Bersanelli et al., 2016; Zeng and

Lumley, 2018).

Based on the hypothesis that molecular features within a

system establish functional connections or are part of modules

to carry out processes, network-based methods offer a

framework to conceptualize the complex interactions in a

system as a collection of connected nodes (molecular

features). They further suggest possible connections (e.g.,

genotype to phenotype relationships) and/or subnetworks

(e.g., biological pathways) that are informative of an

observed phenotype (Chakravorty et al., 2018). Therefore,

network-based methods are particularly useful to assess

complex interactions within multi-omics datasets and

illustrate dependencies among multiple features. In addition,

some network-based methods can incorporate prior

information to guide the integrative analysis. For this reason,

network-based methods have attracted considerable attention

in multi-omics data integration around understanding disease

mechanisms and drug discovery (Wu et al., 2018; Agamah et al.,

2021). Previous reviews have mostly focused on the network-

based analysis of single-omics data (Camacho et al., 2018; Yan

et al., 2018; Zitnik et al., 2019) or different approaches toward

multi-omics data integration (Cavill et al., 2016; Duruflé et al.,

2021). Here, we review different integrative network-based

approaches and some tools for multi-omics data analysis.

The outline of the review is as follows; we begin with a

discussion on integrative multi-omics approaches, where we

highlight the approaches for network-based analyses. We then

discuss the different classes of methods for multi-modal

network analysis. Next, we describe several network-based

integrative multi-omics tools. This is followed by a

discussion on the application of network-based tools to

pertinent biological questions. This section provides

guidance on the choice of the most appropriate network-

based tools to answer a given biological question. As further

examples, we show how some tools have been applied to

COVID-19 research, which is currently one of the research

areas benefiting from multi-omics integration approaches.

Finally, we conclude with a discussion on some challenges

associated with multi-omics analysis and the possible

directions to mitigate such challenges.

Integrative multi-omics approaches

After initial data selection, processing, and quality assurance,

an appropriate data analysis approach needs to be selected. We

categorize integrative multi-omics analysis approaches into two

main categories, multi-stage and multi-dimensional (multi-

modal) analytical approaches (Figure 1) (Holzinger and

Ritchie, 2012; Wen et al., 2021). The multi-stage integration

involves integrating data from different technologies using a

stepwise approach. In this approach, omics layers are analysed

separately before investigating statistical correlations between

different biological features from the datasets under

consideration. This analytical approach puts an initial

emphasis on the relationships of features within an omics

layer and how they relate to the phenotype of interest (Ritchie

et al., 2015). The multi-modal analytical approach involves

integrating multiple omics profiles in a simultaneous analysis

(Holzinger and Ritchie, 2012; Ritchie et al., 2015; Karczewski and

Snyder, 2018; Ulfenborg, 2019).

Methods for multi-modal network
analysis

In this review, we focus on (i) machine learning-driven

network-based methods, (ii) network-based diffusion/

propagation methods, and (iii) causality- and network-based

inference methods. The selection criteria were based on the

fact that these multi-omics/multi-modal network-based

methods implement network architectures together with

statistical and mathematical models for integrative multi-

omics data analysis. Most of these methods can be
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implemented in both multi-stage and multi-dimensional multi-

omics analysis (Figure 1).

Machine learning-driven network-based
methods

ML is a collection of data-driven techniques for fitting an

analytical model to a given dataset. ML methods do not only

provide the framework to automatically learn models from

large multi-omics data and make accurate predictions but also

implement network architectures to exploit interaction across

the different omics layers e.g., for exploring omics-phenotype

associations (Reel et al., 2021). ML comprises mainly

supervised and unsupervised learning methods. Supervised

learning uses labelled datasets to train models to yield the

desired output and emphasizes predictions by inferring

discriminating rules from the data. Supervised learning

model training requires comprehensive data and can be

time-consuming, while unsupervised learning uses

unlabelled data, to find latent structures or patterns in

the data.

FIGURE 1
An overview of the multi-omics integration approach and the methods for network-based integration. (A) Processed omics data and prior
knowledge for integrative analysis. (B) An integrative multi-omics approach that could be implemented. (C) Integrative network-based methods (D)
Multi-layered network showing intra-layer interaction (solid lines) and crosstalk (dashed lines) across different layers (L1, L2, L3). The nodes are
shaped and coloured to represent different omics featureswithin the omics layers they are involved in. The edges are coloured to showdifferent
interactions within and between omics layers.
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Classical graph-based ML methods (e.g., label

propagation, a method for assigning labels to unlabelled

points) can be used for a variety of tasks including

generating graph edges, estimating node weights

(quantitative measure of node importance) as well as

estimating and optimizing edge weights (quantitative

measure of the importance of the pairwise interaction

between nodes) in a network to exploit the structure of

graphs and learn models from the data (Karasuyama and

Mamitsuka, 2017). Subsequent network optimization

techniques introduce perturbations into the network and

identify highly perturbed subnetworks to prioritize the most

relevant features that correlate with the biological processes

under study.

Multiview/multi-modal ML is an emerging method for

multi-omics data integration used to exploit information

captured in each omics dataset and infer from the

associations between the different data types (Nguyen and

Wang, 2020). Multi-view learning implements the

alignment-based framework and the factorization-based

framework (Nguyen and Wang, 2020). The alignment-

based framework is a method based on the supervised

setting for seeking pairwise alignment among different

omics data whereas the factorization-based framework is

based on an unsupervised setting for seeking a common

representation of features across different omics layers.

Deep learning methods, an example of multiview/multi-

modal learning, have become one of the more promising

integration methods not only because of their ability to

exploit the structure of graph neural networks/graph or

convolutional networks in both supervised and

unsupervised settings with high sensitivity, specificity, and

efficiency compared to classical ML methods but also, the

predictive performance and capability to capture nonlinear

and hierarchical representative features (Martorell-Marugán

et al., 2019; Kang et al., 2022). The hierarchical feature

processing can capture complex nonlinear associations in

a multi-layered manner. The architecture of deep learning

models consists of the input layer, hidden layer(s), and

output layer. From the perspective of multiomics data

integration, most deep learning methods follow the steps

of (i) feature selection, (ii) transforming high dimensional

multiomics data into low-ranked latent variables, (iii)

concatenating multi-omics features into a larger dataset

and (iv) analysing the data for the desired task such as

node ranking, link prediction, node classification and

clustering (Figure 2) (Kang et al., 2022). It is worth noting

that the deeper the hidden layer, the more it can learn

complex patterns in the data. A major challenge for deep

learning methods is the problem of overfitting due to large

features and the small sample size of multi-omics data. In

addition, a large amount of cleaned data is required to train

and validate the model, thus influencing how the model is

interpreted (Kang et al., 2022). We refer the reader to a

current review on deep learning in multi-omics data

integration by Kang et al. (Kang et al., 2022).

FIGURE 2
Graph Neural Networks (GNNs) are a class of deep learning methods designed to perform inference and predictions on graph data by learning
embeddings for graph attributes (nodes, edges, global-context). The concept behind the architecture of these methods is such that it accepts graph
data as input and produces the same input graph with updated embeddings before making predictions. GNN uses a function (f) on each graph
component vector [nodes vector (Vn), edge vector (En), global-context vector (Un)] in the input graph to learn abstract feature representations
of the graph to compute a new feature vector for nodes (Vn+1), edges (En+1) and global-context (Un+1)). The output layer could predict nodes
ranked according to a particular score (s1, s2, s3) and also predict edges (links) in the input network.
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Network-based diffusion/propagation
methods

Network-based diffusion/propagation is a technique for

detecting the spread of biological information throughout the

network along network edges, thanks to its ability to amplify

feature associations based on the hypothesis that node proximity

within a network is a measure of their relatedness and contribution

to biological processes (Cowen et al., 2017; Di Nanni et al., 2020).

The method has been exploited in many network-based analysis

pipelines and is suitable for analysing patient-level molecular profiles

with different aims including disease subtyping because of its label

propagation (Di Nanni et al., 2020). Propagationmethods, including

random walk, random walk with restart, insulated heat diffusion,

and diffusion kernel networks, provide a quantitative estimation of

proximity between features associated with different data types by

considering all possible paths beyond the shortest paths (Figure 3)

(Cowen et al., 2017; Di Nanni et al., 2020).

From a data analysis perspective, the network diffusion

(ND) methods require omics data and network data. The

network data could be obtained from a priori knowledge,

inferred from omics data, or generated using a mixed

FIGURE 3
(A) Describes a random walk from the seed node (e.g., node A). The concept behind random walk is a guilt-by-association approach where an
imaginary particle explores the network structure from seed nodes. The direction of movement of the particle is completely independent of the
previous directions moved. At each step, the particle transition from any node in the graph with a certain probability (shown on the edges). The
probability flow of random walks on a network is used as a proxy for information flows in the network to study the function of features,
subnetworks, and prioritize features in the network. After several iterations, we are interested in the distribution of our position (Stationary
distribution) in the graph (final state after iterative walks). The stationary probability distribution can be seen as a measure of the proximity between
the seed(s) and all the other nodes in the graph. Nodes within the network can be prioritized using a specificmetric (s1, s2, s3) such as the geometric
mean of their proximity to seed nodes. (B) Describes heat diffusion from a reference query (e.g., node A). The concept behind heat diffusion in
biological networks is perturbing nodes and simulating how the disturbance flows across edges within the network. Node disturbancemeans adding
a scalar value (e.g., log fold changes fromgene expression experiment, copy number variations) to node(s).Within a biological network, heat diffusion
allows for the assessment of connectivity and topology of features which can allow the identification of relevant/dysregulated pathways and/or
mutational effects across edges to neighbouring nodes. The purple arrowmeans diffusion jumps across different layers. The thickness of the purple
arrow signifies the effect of query node (A) on nodes (F) and (H) as shown in nodes (F) and (H) in the final state graph after diffusion. Nodes within the
network can be prioritized using a specific metric such as diffusion state distance.
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approach of a priori and novel knowledge (Di Nanni et al.,

2020). Omics data information, e.g., genetic aberration events

underlying differential expression and/or a biological

phenotype, are superimposed on the nodes (source nodes)

within the network before the information is propagated via

the edges until convergence and consensus features are found

(Cowen et al., 2017; Di Nanni et al., 2020).

NDmethods transform input vectors of scores obtained from

the omics data into dense vectors to eliminate missing values and

ties. This transformation process can be applied before, after, or

during the integration step to refine the results based on

molecular network data (Di Nanni et al., 2020). In the ND-

before integration approach, the diffusion method is applied to a

collection of scores (scores obtained from the omics data) that

represent the multi-omics data. The ND-after integration

approach is implemented when the various multi-omics data

have been initially integrated into a unique structure. The ND-

during integration approach is implemented in an instance where

each layer exchanges information during the diffusion process.

Box 1 provides a summary of the equations related to the

diffusion methods.

BOX 1 Summary equations of the network propagation/
diffusion methods

Random Walk

xT � [AD−1]k.xo

Random Walk with Restart (RWR)

xT � α[I − (1 − α)AD−1]−1 .x0

Insulated Heat Diffusion

xT � α[I − (1 − α)AD−1
2]−1 .x0

Diffusion Kernel

xT�eα(D−A).xo

Where,
xT is the final state of the network after the propagation of

information throughout the network
x0 is the initial biological information (initial state vector of

aberration scores e.g., gene expression scores). A is the adjacency
matrix of the network. D is the diagonal matrix of the out-degrees
of nodes. AD−1 is the normalized adjacency matrix. k is the number
of time steps, α is the restart probability and I is an identity matrix

Causality- and network-based inference
methods

The mechanism of action within a biological system is

fundamental to understanding such a system. For this reason,

biological network inference and causal learning can be used to

investigate the direct and indirect multi-layer associations and

possible causal relations between omics data features in the

system (Griffin et al., 2018).

Causal networks are generally graphical representations that

demonstrate likely causal relations between nodes by capturing

directional interactions and modelling dependencies between

biological variables. The method enables researchers to put

directionality between features in a network as well as decipher

modules (subnetworks) and/or features associated with patient

survival, disease processes, or pinpoint sources of perturbations

within multi-omics biological network data (Hawe et al., 2019).

Partial correlation-based networks enable the inference of features

regulating co-expression or the activities of other features within the

network by estimating conditional dependencies (partial correlations)

(Hawe et al., 2019). Partial correlation corrects for spurious associations

among features that are mediated by other variables measured in the

dataset, thereby reducing the density of the network and enhancing its

interpretability (Hawe et al., 2019). These methods have been

implemented to infer mechanistic regulatory interactions or predict

markers in biological networks (Hawe et al., 2019).

Alternatively, network-based computational frameworks that

implement probabilistic graphical models offer attractive solutions

for causal reasoning and inference over multi-omics data (Friedman,

2004; Koller and Friedman, 2009; Griffin et al., 2018). A probabilistic

graphical model (PGM) is a graph technique for modelling joint

probability distributions and (in)dependencies over a set of random

variables (Koller and Friedman, 2009). From a data analysis

perspective, PGM uses graph-based representation (nodes as

features and edges as direct probabilistic interactions between

node pairs) as the basis to encode the complex distribution of

the data for probabilistic reasoning and inference (Koller and

Friedman, 2009). The framework of probabilistic graphical

models includes a variety of directed and undirected models

(Koller and Friedman, 2009). Directed models (e.g., Bayesian

networks) require pre-defined directionality or capture

conditional (in)dependencies to assert an influence on

features. Undirected models (e.g., Markov networks) are

undirected graphical models that offer a simpler

perspective on directed models, especially in instances

where the directionality of the interactions between features

cannot be determined. Compared to directed models which

can be used for causal reasoning and inference, undirected

models are limited to inference tasks because they fail to

capture the influence of nodes on neighbouring nodes.

In addition to partial correlation and probabilistic graphical

models, advanced ML models and frameworks that are more

computationally efficient have been explored for inferring causal

relationships between multi-modal data (Peters et al., 2017; Badsha

and Fu, 2019; Luo et al., 2020; Wein et al., 2021). Also, new methods
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TABLE 1 Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

Machine learning-driven network-based tools

mixOmics An R toolkit dedicated to
the exploration and
integration of biological
data sets with a specific
focus on variable
selection. The package
contains suite of
algorithms and
functions. The function
network is used for
graph visualization

1) Receives as input
multiple matrices each
representing a different
omics

Infer interactions
between nodes by using
a pairwise association
score

Leverages on
measurements of
variables

Relevance networks Supervised and
unsupervised
ML

most omics types (genes,
mRNA, metabolites,
miRNomics data,
proteomics)

2012 González et al.
(2012)

2) Perform network
analysis using the
network function

Similarity
network fusion

A network-based
framework that uses
networks of samples as a
basis for integration. It
fuses individual
networks from each
omics layer to represent
the full spectrum of
underlying data

1) SNF first creates a
sample-similarity
network for each omics
level and then fuses
these into one network
using a nonlinear
combination method

Uses a scaled
exponential similarity
kernel to determine the
edge weight. The
weighted edges
represent pairwise
sample similarities

Nodes represent
samples and the node
size represents a
phenotype like survival

Identifies disease
subtypes, performs
survival prediction

Unsupervised
ML

most omics types
(mRNA, DNA
methylation, and
microRNA (miRNA)
expression data)

2014 Wang et al. (2014b)

Lemon-Tree A multi-omics module
network inference
software suite that finds
co-expressed gene
clusters and reconstructs
regulatory programs
involving other
upstream omics data

1) Infer co-expressed
gene clusters

Computes edge weight
which represents the
frequency with which
pairs of genes belong to
the same cluster

Compute the regulator
score and considers the
number of trees a
regulator is assigned to,
with what score
(posterior probability),
and at which level of the
tree

Predicts driver
genes/biomarker

Unsupervised
ML

expression data, copy
number, microRNA,
epigenetic profiles

2015 Bonnet et al. (2015)

2) Build consensus
modules using the
spectral edge clustering
algorithm

3) Build module
network

4) Module learning

Multiscale
Embedded Gene
Co-expression
Network Analysis
(MEGENA)

An R package co-
expression network
analysis framework that
effectively and efficiently
constructs and analyses
co-expression networks

1) Constructs fast planar
filtered network

Computes a similarity
score between node pair

Compute node degree
as node weight/size

Predicts
subnetworks, driver
hubs

Unsupervised
ML

Genes, mRNA, Fast
planar filtered network

2015 Song and Zhang,
(2015)

2) Identify multi-scale
clustering structures

3) Perform multiscale
hub analysis

4) Perform cluster-trait
association analysis

Omics Integrator The approach applies
advanced network
optimization algorithms
to a network to find

1) Garnet identifies a set
of transcriptional factors
associated with mRNA
expression changes by

Uses least-squares
regression to relate the
transcription factor

Transcription factors
with motifs exhibiting
statistically significant
regression coefficients

Predicts
subnetworks that
connect changes

Supervised ML most omics types
(mRNA, epigenetic
changes, proteins,
metabolites)

2016 Tuncbag et al.
(2016)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

high-confidence,
interpretable
subnetworks that best
explain the data

incorporating epigenetic
changes nearby
expressed genes

affinity scores to mRNA
expression changes

are given a weight
of–log (p-value)

observed in omics
data

The software is
comprised of the Garnet
and Forest tools

2) Garnet scans regions
proximal to transcribed
genes for transcription
factor binding sites and
then regresses
transcription factor
affinity scores against
gene expression changes

Forest converts uniform
edge weights to costs
using a scoring function

The prize function
assigns negative weights
to nodes based on the
number of connections
they have in the
interactome

Forest provides
perturbation strategies
for perturbation
analyses to determine
the robustness of a
network

3) Forest identifies a
condition-specific
functional sub-network
from user data and a
confidence-weighted
interactome

4) The confidence-
weighted interactome is
integrated with the
‘omic’ hits using the
prize-collecting Steiner
forest algorithm, where
the data is either
connected directly or via
intermediate nodes,
called ‘Steiner nodes’

Weighted
Similarity Network
Fusion

A method that
implements a modified
similarity network
approach to identify
disease subtypes. It

1) Build a regulatory
network from the input
data

Considers the similarity
of two patients by
considering the overall
difference between the
expression levels of all

Computes feature
weights by first ranking
features using a
modified PageRank
algorithm followed by

Identifies disease
subtypes, performs
survival prediction

Unsupervised
ML

miRNA, mRNA,
transcription factors

2016 Xu et al. (2016)

2) Calculating the
weight for each feature

(Continued on following page)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

accounts for feature
weights when clustering
patients

their features and the
weight of each feature

Integrating feature
ranking and feature
variation

and ranking the features
based on network
information and the
expression variation of
the features

3) Obtain weighted
sample similarity
networks from genes
(mRNAs, TFs) and
miRNAs separately
using the weights and
expression data of the
features

4) Perform network
fusion and clustering to
find patient groups that
imply disease subtypes

iOmicsPASS A method for
integrating multi-omics
profile over genome-
scale biological networks
and identifying
predictive subnetworks
that provides the
mechanistic
interpretation of a
specific phenotype

1) Integrates
quantitative multi-
omics data by
computing interaction
scores for a network

Computes scores for
each molecular
interaction. The scores
are derived in the
context of the type of
interactions data (TF
regulatory network and
protein-protein
interaction network
with or without DNA
copy number)

Utilizes measurement of
each molecule in their
respective omics data
sets as node score

Predicts phenotypic
group-specific
subnetworks,
feature selection

Supervised ML Biological network,
mRNA, proteomics data,
DNA copy number,
sample metainformation

2019 Koh et al. (2019)

The tool considers
molecular interactions
within and between
omics data types as a
data feature

2) Discover molecular
interactions whose joint
expression patterns
predict phenotypic
subnetworks/groups
3) Report biological
pathways enriched in
the subnetworks using a
modified nearest
shrunken centroid
algorithm

Sparse
CRossmodal
Superlayered Neural
Network
(SCR-SNN)

A subtype classification
model that represents a
sparse version of a cross-
modal super-layered
neural network

1) Biomarker filtering Estimates connection
between nodes

Compute weight for
nodes

Predicts disease
subtype

Neural network DNA methylation,
mRNA

2020 Joshi et al. (2020)

2) Biomarker selection,
using a cross-modal,
super-layered neural
network

(Continued on following page)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

3) Integration of selected
biomarkers from omics
data

4) Prediction model
building

Integrative
Network Fusion

A framework for high-
throughput omics data
integration that
leverages machine
learning models to
extract multi-omics
predictive biomarkers

1) A set of top-ranked
features is extracted by
juxtaposition by
Random Forest (RF) and
linear Support Vector
Machine (LSVM)
classifiers

Uses a scaled
exponential Euclidean
distance kernel to
compute edges weight

Implements a feature
ranking scheme on
similarity network
fusion integrated
features

Identifies disease
subtypes and
predictive
biomarkers

Supervised ML mRNA, microRNA
expression, protein levels,
copy number variants,
DNA Methylation

2020 Tuncbag et al.,
(2016); Chierici
et al., (2020)

2) A feature ranking
scheme is computed on
similarity network
fusion-integrated
features

3) A random forest
model is trained on the
intersection of two sets
of top-ranked features
from the juxtaposition
and feature ranking
scheme (rSNF) and
provides compact
predictive biomarkers

Discovery of
active Modules In
Networks using
Omics (DOMINO)

A network-based active
module identification
algorithm used for
identifying subnetworks
that show significant
over-representation of
accrued activity signal
(“active modules”)

1) Receives as input a set
of genes flagged as the
active genes in a dataset
and a network of gene
interactions

Uses the confidence
scores of the tissue-
specific functional
interactions as weights
of edges

Uses gene activity scores Predicts
subnetworks

Unsupervised
ML

gene network and
transcriptomics data

2021 Levi et al. (2021)

2) Partition the network
into disjoint, highly
connected subnetworks

3) Detect relevant
subnetworks containing
active over-represented
genes

4) Further, refine
subnetworks into
compartments

(Continued on following page)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

5) Repartition’s
subnetwork
compartments in
putative modules

6) Reports final modules
that are over-
represented by active
genes

multi-source
information super
network

A network-based
framework for
constructing a single
network from multi-
source data

1) Constructs a super
network based on the
weighted sum of the
pairwise weighted edge
vectors (for each pair of
genes)

Computes edge weights Computes gene-specific
scores based on
characteristics and
topology of the super
network

Predicts
subnetworks

Unsupervised
ML

Genes, pathway
information, CNVs,
Drug data, mRNA,
miRNA, PPI

2018 Zachariou et al.
(2018)

i-Modern A deep learning network
framework for
integrating multi-omics
data

1) Feature extraction
using optimized
autoencoder

Estimate connection
between nodes

Implements a
randomization
approach to explore
node weight

predict omics
signatures, patient
subgroup
classification

Neural network miRNA, somatic
mutations, copy number
variation (CNV), DNA
methylation, proteins

2022 Pan et al. (2022)

2) Low-dimensional
feature extraction via
Cox-PH models

3) Patient subgroup
classification

OmicsNet 2.0 A network-based multi-
omics analysis platform
and an R package
(OmicsNetR) to easily
build, visualize, and
analyze multi-omics
networks

1) Accepts different data
types as input

The methodology does
not take edge
directionality orweights
into account

Uses feature activity
scores

Predicts sub-
networks, crosstalk

Unsupervised
ML

Genes, proteins,
transcription factors,
miRNAs, metabolites,
SNPs, Taxa, lc-ms Peaks

2022 Zhou et al. (2022)

2) Search different
molecular interaction
database

3) Creates multi-omics
networks

4) Performs network
visual analytics

multi-omics data
integration for
clustering to identify
cancer subtypes
(MDICC)

A method for multi-
omics data integration
that implements affinity
matrix and network
fusion methods

1) Construct an affinity
matrix for different
omics data based on a
Gaussian kernel
function

Computes edge weight
as a measure of the
Euclidean distance
between samples

Utilizes measurement of
each molecule in their
respective omics data

Predicts disease
subtypes

Unsupervised
ML

mRNA, miRNA,
proteomics data, DNA
methylation

2022 Yang et al. (2022)

2) Fuse affinity matrices
into a new relational
matrix with low rank

3) Cluster fused network

(Continued on following page)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

Network-based diffusion/propagation tools

Tied Diffusion of
Interacting Events
(TieDIE)

TieDIE method extends
the heat diffusion
strategies by leveraging
different types of
genomic inputs to find
relevant genes on a
background network
with high specificity

1) Computes scores for
each node in the graph

The diffusion approach
is used to describe the
edge score between
node pairs (1 and -1).
Aij = 1 if node i activates
node j, Aij = −1 if node i
represses or inactivates
node j, and 0 otherwise,
where A is an adjacency
matrix

Scores between -1 and
+1 are assigned to the
nodes reflecting a
positive or negative
association with the
disease state

Predicts biomarkers
and disease-specific
subnetworks

Diffusion-based genes, proteins, biological
pathway features, mRNA,
DNA methylation

2013 Paull et al. (2013)

2) Utilizes multiple
diffusion processes to
predict disease-related
genes, subnetworks, and
pathways A node score of

0 reflects genes not
known to be associated
with the disease process

Nodes scores could
represent experimental
measurements

Network-based
Integration of
Multi-omics Data
(NetICS)

A gene prioritization
method that is a
framework for per-
sample network-based
integration of diverse
data types on a directed
functional interaction
network

1) Constructs a directed
functional interaction
network from input
functional interactions

Compute connectivity
scores between node
pairs

Compute a ranking
score for all genes

Predicts biomarkers Random walk miRNA-gene interaction,
mRNA, DNA
methylation, genetic
aberrations, protein levels

2018 Dimitrakopoulos
et al. (2018)

NetICS provides insight
into how aberration
events that are different
between samples of the
same disease type cause
similar expression
changes in other genes

2) Diffuse aberration
scores from the aberrant
genes following the
directionality of the
network interactions

3) Diffuse differential
expression scores from
differentially expressed
genes

4) Predicts how
aberration events cause
expression changes
through gene interaction

Hierarchical
HotNet

An algorithm that
simultaneously
combines network
interactions and vertex
scores to construct,
identify, and rank
statistically significant
high-weight altered
subnetworks across
different omics datasets.

1) Combines network
topology and vertex
scores

Defines a similarity
measure between node
pairs using both
network topology and
vertex scores

Uses vertex scores in the
input network

Predicts a hierarchy
of mutated
subnetworks

Random walk Interaction network with
vertex scores

2018 Paull et al., (2013);
Reyna et al., (2018)

2) Defines a similarity
matrix from the network
using a random walk-
based approach

3) Implements
hierarchical clustering to

(Continued on following page)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

It addresses the
limitations of HotNet
(Vandin et al., 2012),
HotNet2 (Leiserson
et al., 2015) by
combating
ascertainment bias in
data and integrating
both network topology
and vertex score

construct a hierarchy of
clusters consisting of
highly connected
components

4) Assesses the statistical
significance of clusters

regNet regNet R package
utilizes gene expression
and copy number data to
learn regulatory
networks to estimate the
potential impacts of
individual gene
expression alterations on
clinically relevant
signature genes

1) RegNet learns a
regulatory network from
a large collection of
paired gene expression
and copy number
profiles

Compute a connectivity
table that represents
learned links between
genes

Compute impact score
for regulator genes,
describing the
contribution to
expression changes in
another gene

Predicts driver
genes or disease
biomarkers

Diffusion-based transcription factors,
mRNA, copy number
data

2018 Seifert and Beyer,
(2018); Marín-Llaó
et al., (2020)

2) Uses network
propagation to quantify
the impacts of altered
genes sample-specific
gene expression changes
on other clinically
relevant target genes

Integrative multi-
cohort and multi-
omics meta-analysis
framework

A multi-omics meta-
analysis framework that
can identify robust
molecular subnetworks
and biomarkers for a
given disease condition

1) Module (A) takes
multiple independent
mRNA datasets and
performs a leave-one-
out meta-analysis to
identify reliable
differentially expressed
genes

The confidence score for
each protein-protein
interaction is obtained
from the STRING
database

Utilizes experimental
values from differential
expression and
methylation for omics
features

Predicts biomarkers
and subnetworks
describing patients’
clinical outcome

Diffusion-based mRNA, DNA
methylation, protein-
protein interactions

2019 Shafi et al. (2019)

2) Module (B) takes
multiple independent
DNA methylation
datasets and identifies
differentially methylated
genes

3) Module (C) identifies
methylation-driven
genes

4) Methylation-driven
genes are used as inputs
in a network
propagation algorithm

(Continued on following page)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

to identify the proposed
subnetworks

Random walk
with restart on
multiplex and
heterogeneous
biological networks

A random walk
algorithm able to exploit
multiple biological
interaction sources to
integrate multiplex-
heterogeneous networks

1) Define adjacency
matrix for input
networks

Generates weighted or
unweighted adjacency
matrix

Scores nodes according
to their proximity to the
seed nodes

Predicts candidate
features and
subnetworks

Random walk Multi-modal data 2019 Valdeolivas et al.
(2019)

2) Compute transition
probabilities of the
random walk with
restart

3) Performs propagation
from seed nodes

MultiPaths A Python framework to
build customized
harmonized multi-
omics networks from
multiple biological
databases. MultiPaths
framework contains two
independent Python
packages: DiffuPy and
DiffuPath useful for
interpreting and
contextualizing results
from multi-omics
experiments

1) DiffuPy implements
four existing network
propagation algorithms
and five graph kernels
and enables propagating
user-defined labels,
either as lists of entities
or lists of entities with
their corresponding
quantitative values

The methodology does
not take edge
directionality or weights
into account for
propagation

Compute node scores
using a function of
graph kernel and input
scores

Predicts
subnetworks

Diffusion-based genes, mRNA,
metabolites, miRNomics
data, biological pathway/
processes data

2020 Reyna et al., (2018);
Marín-Llaó et al.,
(2020)

2) DiffuPath, wraps the
generic diffusion
algorithms from DiffuPy
and applies them to
construct biological
networks

Analytic and
integration
framework for
multi-omics
longitudinal datasets

An integrative
framework for building
multi-omics networks
from longitudinal
datasets. It consists of
multi-omics kinetic
clustering and multi-
layer network-based
analysis. The method is
based on the modeling
and clustering of
expression profiles with
similar behaviours using
the timeOmics (Bodein
et al., 2019) approach

1) Performs network
reconstruction

Infers correlations
between molecules
based on multi-omics
data

Uses experimental
measurements as node
scores

Identify crosstalk,
key biological
functions, or
mechanisms

Random walk Metabolites, genes,
protein abundance,
mRNA

2020 Bodein et al. (2020)

2) Perform over-
representation analysis

(Continued on following page)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

Random Walk
with Restart for
multi-dimensional
data Fusion
(RWRF)

The method uses a
similarity network of
samples as the basis for
integration

1) Construct a similarity
network for each data
type

Edge weight is estimated
by calculating the
similarity measure

Estimate stationary
probability distribution
which indicates
similarity between the
seed node and other
nodes

Identify disease
subtypes

Random walk
with restart

mRNA, DNA
methylation, microRNA

2021 Wen et al. (2021)

2) Fuse similarity
networks

3) Performs random
walk with restart on the
multiplex network

4) Performs network
clustering

Causality- and network-based inference tools

Differential
network analysis in
genomics (DINGO)

DINGO is a pathway-
based model for
estimating patient
group-specific networks
and making inferences
on differential network
activation between
patient-specific groups.
DINGO jointly
estimates the group-
specific conditional
dependencies by
decomposing them into
global and group-
specific components

1) Estimates global
component, which
represents the relations
common to both
patient-specific groups

Constructs differential
scores for group-specific
edges

The vertices are ordered
by their degree
centrality

Predicts driver
genes

Differential
network
approach

mRNA, DNA copy
number, DNA
methylation, microRNA

2015 Ha et al. (2015)

2) Estimates local group-
specific component
which represents the
differential unique
relations in each patient-
specific group

3) Determines
significant differential
edges

Permutation-
based Causal
Inference
Algorithms with
Interventions

The non-parametric
algorithm is used to
learn directed acyclic
graphs comprising both
observational and
interventional data. An
example is the greedy
sparsest permutation
algorithm

1) Generate an
interventional
distribution

Estimates edge weight Utilizes experimental
measurements of
features

Allows for inference
of causal graphs

Unsupervised
ML

Multi-modal data (omics,
clinical data)

2017 Wang et al. (2017)

2) Search for a
permutation

3) Learn from
interventions

iDINGO iDINGO R package is an
expansion of DINGO.
The package estimates
group-specific
dependencies between
different omics data and
make inferences on the

1) Integrate ordered data
platforms using the
chain graph model

Constructs differential
scores for group-specific
edges

The vertices are ordered
by degrees (number of
connections)

Predicts hub omics
features
characterized by the
number of
differential edges

Differential
network
approach

mRNA, DNA copy
number, DNA
methylation, microRNA

2018 Class et al. (2018)

2) Constructs
differential scores for
group-specific edges to

(Continued on following page)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

integrative differential
networks, considering
the biological hierarchy
among the omics
platforms. It integrates
omics data using the
chain graph model

determine the
significant differential
edges

prior
incorporation
Mixed Graphical
Model (piMGM)

Can learn with accuracy
the structure of
probabilistic graphs over
mixed data by
appropriately
incorporating priors
from multiple sources

1) Incorporates prior
information from
multiple sources

Leverage conditional
dependencies to
estimate the strength of
edges

Utilizes experimental
measurements of
features

Identify disease
subtypes, active
pathways in healthy
and disease samples

Probabilistic
graphical model

Multi-modal data (omics,
clinical data)

2018 Ha et al., (2015);
Manatakis et al.
(2018)

Identifies gene pathways
associated with disease
subtype

2) Score the reliability of
prior information by
using a weighted scheme
3) Merge prior
information into a single
prior distribution for
each edge

4) Learning the structure
of probabilistic graphs

5) Uses separate
regularization
parameters for edges
with and without priors

6) Determine active
pathways

CausalMGM A method for learning a
causal graph over
variables of mixed type
linked to disease
diagnosis and
progression

1) Learn the undirected
graph over mixed data
types

Leverage conditional
dependencies to
estimate the strength of
edges

Leverages on
measurements of
variables

Identify causal
pathways,
biomarkers, and
patient stratification

Probabilistic
graphical model

Multi-modal data (omics,
clinical data)

2019 Sedgewick et al.
(2019)

2) Perform local
directionality
determinations with
conditional
independence tests

Multi-Omic
inTegrative Analysis
(MOTA)

A network-based
method that uses data
acquired at multiple
layers from the same set
of samples to rank

1) Builds a differential
network

The weight of edges
represents the partial
correlation (above
threshold) between
node pairs

Computes an activity
score (MOTA Score) for
each node based on its
p-value and its
connected nodes

Predicts driver
genes or disease
biomarkers

Differential
network
approach

mRNA, metabolite,
glycomics data, proteins

2020 Class et al., (2018);
Fan et al., (2020)

2) Computes partial
correlation between

(Continued on following page)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

candidate disease
biomarkers

node pairs using
graphical LASSO

3) Calculates the
differential partial
correlation to determine
intra-omics connections
for the network

Integrative multi-
omics network-
based approach
(IMNA)

An integrative multi-
omics framework for
regulatory network
analysis

1) SNP-gene mapping
pairs collection

Uses the confidence
scores of the tissue-
specific functional
interactions as edge
weight

Computes signature
scores for each node
from different networks.
Signature scores for a
gene from different
networks are combined
and normalized to get a
composite score for
each gene

Identifies tissue-
specific gene
interaction
networks and key
nodes

Bayesian
network
approach

GWAS signals, eQTLs,
epigenomic regulatory
annotations, mRNA,
protein interactome, and
chromatin long-range
interactions

2020 Chen et al. (2020)

2) Construct SNP-gene
bipartite network

3) Construct a
functional interaction
network

4) Computes signature
score for nodes in the
network

5) Computes composite
score to provide
quantitative evidence of
node to evaluate the
importance of the
regulatory function

6) Perform key driver
analysis on tissue-
specific gene interaction
networks

MRPC An R package that learns
causal graphs and allows
for inference

1) Learning the graph
skeleton

Incorporates the
principle of Mendelian
randomization as
constraints on edge
direction

Utilizes experimental
measurements of
features

Allows for inference
of causal graphs

Unsupervised
ML

Genomic data, mRNA 2021 Badsha et al. (2021)

2) Orienting edges in the
skeleton

3) Simulating
continuous and discrete
data

4) Assessment of
inferred graphs

(Continued on following page)
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that extend Bayesian networks have been developed for causal

inference. For instance, Zheng et al. (Zheng et al., 2018) developed

a newmethod to estimate the structure and inference from aBayesian

network by transforming the structure learning problem into a

continuous optimization formulation that does not impose any

structural assumptions on the graph. In another instance,

Lachapelle et al. (Lachapelle et al., 2019) proposed a novel score-

based approach to learning from Bayesian networks via the edge

weights of neural networks. The approach developed by the authors

adapts the optimization method presented by Zheng et al. (Zheng

et al., 2018) to allow for non-linear relationships between variables

using neural networks. Box 2 provides a summary of the equations

related to the Bayesian and Markov methods. Given that the

underlying principles behind network-based approaches for

analysis vary, combining such approaches is feasible and may

increase prediction accuracy as shown by Zheng et al. (Zheng

et al., 2018) and Lacapelle et al. (Lachapelle et al., 2019).

BOX 2 Summary equations of the Bayesian andMarkov network.
Bayesian Network
Each node in a Bayesian network is represented as a probability

distribution of cause given the observed evidence which is built
from the Bayes theorem shown below (Kotiang and Eslami, 2020).

P[Cause |Evidence] � P[Evidence |Cause] . P[Cause]
P[Evidence]

Thus, the full probability model for a Bayesian network is
obtained by specifying the joint probability distribution (i.e., a
series of the conditional probability distribution of the nodes in
the network) (Kotiang and Eslami, 2020).

Markov Network

P(X � x) � 1
z
exp(∑

i

ωifi(x{i}))
Where x is the feature vector, Z is the normalization constant

calculated as

Z � ∑
xϵX

exp (∑
i

ωifi(x{i}))
fi is the feature function defined as

fi(x{i}) � { 1 Fi(x{i}) � true
0 otherwise

ωi is the non-negative real-valued weight which reflects
constraints on nodes

Fi is the logistic formula.

Review of network-based integrative
multi-omics tools

We systematically reviewed literature primarily published

between 2010 and 2022 that report on ML-driven network-based

tools, network-based diffusion/propagation tools, and causality-T
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and network-based inference tools. We further highlight the

tool’s uniqueness in terms of (i) input data types, (ii) method/

algorithm implemented, (iii) most important analytical steps, (iv)

potential node and/or edge weighting, and (v) predicted outcome

(crosstalk, disease subtypes, biomarkers, subnetworks, and

patient survival). The tools presented in this review (Table 1)

(i) have broad biomedical data applications and are not restricted

to specific (disease) research topics only, (ii) are implemented as

standalone software like R, MATLAB, Python libraries, or as part

of a pipeline and, (iii) account for the weight of nodes and/or

edges within the network.

Research questions explored using
integrative multi-omics network
approaches

Understanding how crosstalk between
omics layers impacts a biological process
or disease phenotype

A perturbed biological system is characterized by deviations

in the behaviour of the molecules (omics data features) causing

changes in crosstalk (Figure 1). These changes could become

apparent inmultiple (connected and dependent) omics levels and

may represent a wide range of molecular events responsible for

disease phenotype or impaired biological processes.

Network-based diffusion/propagation tools (described in

Table 1) offer a framework to identify aberrant omics features

(e.g., gene expression, somatic mutations, copy number

variations, molecular subnetworks informative of disease

subtype) and how their presence and activities within the

network induce possible (downstream) changes that might

underpin disease phenotype.

In a study to understand the molecular function of SARS-

CoV-2 and SARS-CoV proteins and their interaction with the

human host, Stukalov et al. (Stukalov et al., 2021) profiled the

interactomes of both virus groups and investigated the effect of

viral infection on the transcriptome, proteome, ubiquitinome,

and phosphoproteome of a lung-derived human cell line.

Functional analysis of the various biomolecules within a

molecular network revealed crosstalk between the cellular

processes during perturbations taking place upon infection at

different omics layers and pathway levels. The authors (Stukalov

et al., 2021) implemented the Hierarchical HotNet NDmethod to

explore host-SARS-CoV-2 protein interactions during viral

infection and its impact on omics levels and cell lines to

understand how that could influence molecular pathways.

Importantly, the group observed that the transforming growth

factor beta (TGF-β) signalling pathway, known for its

involvement in tissue fibrosis as one of the hallmarks of

COVID-19 (Mo et al., 2020), was specifically dysregulated by

SARS-CoV-2 ORF8. Further results revealed that autophagy, one

of the mechanisms for controlling SARS-CoV-2 replication and

monitoring the progression of viral infection (Sargazi et al.,

2021), was specifically dysregulated by SARS-CoV-2 ORF3.

These findings highlight the biological relevance of crosstalk

and the insights it provides to understanding disease

mechanisms.

Identifying modules/subnetworks for
disease or disease progression prediction/
prognosis

Modular organizations within a network, characterized by

clusters of neighbouring nodes highlight features that are

functionally related or involved in similar activities within the

system. In contrast to identifying (crosstalk of) features

informative of disease mechanism, the focus here is on

identifying different omics data features that cluster together

to inform molecular transitions that describe disease severity

level and/or disease subtypes.

Network-based tools that predict disease subtypes or

subnetworks informative of a phenotype or a phenotypic

group (described in Table 1) are useful for answering such

questions and can help in e.g., estimating survival rates across

different patient groups. Tools that implement ML and ND-

based methods are useful to identify clusters in a network (see

Table 1). It is noteworthy that the approach or steps,

algorithms, and input data types implemented by such tools

to predict subnetworks vary (as described in Table 1). In a

recent application of a network-based method to COVID-19

research, Sun et al. (Sun et al., 2021a), employed MEGENA

(Song and Zhang, 2015), an unsupervised ML method, to

perform protein-metabolite-lipid multi-omics network

analysis based on the differential co-expression (correlation

between pair of omics features) of these omics data features.

The network analysis indicated that tryptophan metabolism

and melatonin, a metabolite related to tryptophan metabolism

may contribute to molecular transitions in critical COVID-19

patients. Studies have shown that tryptophan and melatonin

can improve the immune system and reduce inflammation in

COVID-19, suggesting that function disorder may cause

impairment to tryptophan metabolism and immune

response (Essa et al., 2020; Shneider et al., 2020).

Interestingly, activation of tryptophan metabolism has been

clinically shown to be selectively enhanced in severe patients

(Takeshita and Yamamoto, 2022). The authors further

identified pathologically-relevant lipid modules which are

being altered among mild COVID-19 patients.

Interestingly, connections between clusters/modules in the

omics data may explain the crosstalk of biological features which

are specific to the disease state and may serve as biomarkers for

monitoring disease progression, treatment, and management

(Yan et al., 2016; Overmyer et al., 2020; Su et al., 2020).
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Identifying candidate drivers of disease
mechanisms

The contributory effect of features (nodes) within a system

varies and depends on factors including but not limited to the

level of feature expression or abundance, the level of interaction

with other features, and the (background) state of the system.

While some of these omics data features are passive (i.e., have

little or no effect on system stability), others may have a

significant effect on the observed phenotype.

In many biological disease-related problems, exploring

relationships between multi-omics data extends beyond

measuring marginal associations between features. Thus,

identifying biologically relevant nodes that influence changes

TABLE 2 Useful network-based integrative multi-omics tools for drug discovery.

Tool/Method Description Major steps of
tool

Outcome Method/
Approach

Input data type Year References

DTINet A computational
pipeline focuses on
learning a low-
dimensional vector
representation of
features, which
accurately explains the
topological properties
of individual nodes in
the heterogeneous
network, and then
makes prediction
based on these
representations via a
vector space projection
scheme

1) Integrates a variety
of drug-related
information sources
to construct a
heterogeneous
network

Drug–target
interactions

Unsupervised
ML

drug-related information
protein-protein
interactome

2017 Luo et al.
(2017)

2) Applies a compact
feature learning
algorithm to obtain a
low-dimensional
vector representation
of the features

3) Finds the best
projection from drug
space onto protein
space

4) Infers new drug-
target interactions

DrugComboExplorer A tool for identifying
driver signalling
pathways and inferring
the polypharmacy
efficacies and synergy
mechanisms through
drug functional
module-induced
regulation of target
expression analysis

1) Identify the seed
(driver) genes

Prioritize
synergistic drug
combinations,
Uncover potential
mechanisms of
drug synergy

Unsupervised
ML

DNA sequencing, gene
copy number, DNA
methylation, RNA-seq
data

2019 Huang et al.
(2019)

2) Explore networks
from the seed genes
by integrating the
RNA-seq profiles
and pathway
knowledge

3) Explore networks
from the seed genes
by integrating the
methylation profiles
and pathway data

4) Combine the
networks generated
from the RNA-seq
data and the
methylation data

Reciprocal nearest
neighbour and
contextual information
encoding (RNCE)

A network integration
approach accounting
for network structure
by a reciprocal nearest
neighbour and
contextual
information encoding
(RNCE) approach

1) Applies the
similarity network
fusion (SNF)
approach to fuse
drug networks

Predicts drug
targets, drug
mechanism of
action

Unsupervised
ML

Pharmacogenomic data
such as gene expression
data under drug
perturbation or drug
sensitivity data at the cell-
line level

2021 Chen and
Wong, (2021)

2) Generate
contextual
information network

3) Compensate for
the contextual
information network
with the initial SNF
network
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within the system could serve as candidate disease-related nodes

responsible for an underlying phenotype (Dimitrakopoulos et al.,

2018). Causal and network inference methods described in

Table 1 can be implemented to explore likely causal features,

potential causal relationships, and infer networks that

differentiate severe disease from mild in a multi-modal

network. Although causal methods provide insights into likely

causal agents, investigating and confirming true causality extends

beyond computational analysis to experimental validation in

relevant models. Also, ML and diffusion-based methods can

be used to explore candidate drivers. We describe in Table 1

some network-based tools that predict candidate disease-related

nodes. In a recent COVID-19-related study, Tomazou et al.

(Tomazou et al., 2021) implemented a network-based multi-

omics data integration approach based on a multi-source

information super-network scheme (described in Table 1) to

prioritize COVID-19-related genes that could be useful as drug

targets. The super network was constructed based on the

weighted sum of the pairwise weighted edge vectors (for each

pair of features) obtained from different sources. The method

then prioritizes genes in the network by calculating a

characteristic score known as the Multi-source Information

Gain (MIG). Some of the genes identified by the authors

include Serum Amyloid A (SAA1, SAA2, SAA3) which has

been clinically verified as a sensitive biomarker in evaluating

the severity and prognosis of COVID-19 (Li et al., 2020),

C-reactive protein (CRP) clinically shown to be a marker of

systemic inflammation associated with adverse outcomes in

COVID-19 patients (Smilowitz et al., 2021), Serine proteinase

inhibitor A3 (SERPINA3) shown to be a biomarker for COVID-

19-related organ damage (coronary artery disease) and

erythropoiesis impairment (Demichev et al., 2021), and

vascular cell adhesion molecule (VCAM1) shown to be a

vascular and inflammatory implicated in the inflammatory

response to sever COVID-19 (Birnhuber et al., 2021).

Drug discovery

Network-based methods that employ systematic integration

of disease-specific omics profiles coupled with drug-related data

(e.g., FDA-approved, experimental drugs, drug-target

interactions) into a heterogeneous network have been shown

to provide answers to biological questions related to drug

development (Wang et al., 2014a; Vitali et al., 2016; Luo et al.,

2017). In this type of network analysis, nodes could represent

both omics data features and non-omics data features such as

drugs, diseases, and drug targets. The edges represent the

functional association between the data types such as

pharmacological or phenotypic information.

The network-based view of drug discovery and development

may involve multiple methods or tools at different steps. ND and

ML methods have been widely implemented in this research area

to make predictions (Luo et al., 2017; Tomazou et al., 2021).

Predictions from such methods present an effective way to

complement experimental methods with the aim of, (i)

identifying drug targets, (ii) understanding the disease-drug

relationship, (iii) investigating drug-target interactions, (iv)

identifying potential drug candidates, (v) drug response

prediction, (vi) drug-drug relations, and (vii) predict effective

drug combinations. Of note, driver nodes or subnetworks as

predicted by tools described in Table 1 might also inform on drug

targets. An interesting application of network-based methods for

drug discovery is the COVID-19 study by Tomazou et al.

(Tomazou et al., 2021), whereby some of the predicted

candidate compounds including dexamethasone, atorvastatin,

beta-estradiol, cyclosporin-A, imatinib, and remdesivir have

been found to generate promising results in clinical trials

(https://clinicaltrials.gov/). We describe in Table 2, some

useful integrative multi-modal network-based tools that are

specifically for drug discovery.

Current challenges and
recommendations

Design of experiment

The choice of a network-based integration method does not

only depend on the biological question but also the experimental

design. Certain network-based methods can only deal with

paired data, whereas others can also deal with sparse datasets

where there is no or only partial overlap between the samples

profiled with the different omics layers. Importantly, the scope of

the research will inform the type of data that should be generated.

For instance, the paired data, herein referring to different omics

data measurements from the same biological sample, is preferred

when establishing a holistic picture of systems biology

underpinning molecular mechanisms linked to disorders,

whereas non-paired data (data generated from different

biological samples) is more appropriate for comparative

(meta)analysis of samples or omics data measurements. It is

therefore recommended to consider the scope of research and the

network-based methods that fit.

Reproducibility

Researchers routinely expect that results generated by applying

network models are reproducible. For network-based methods, the

key issues related to reproducibility are non-harmonized data, biased

model evaluation, and lack of transferable code or software. First,

multi-omics network-based integration involves the use of

heterogeneous data, and some sort of data harmonization is

required. A promising approach to harmonize multi-omics

research is to ensure that the data comply with FAIR data
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principles (findability, accessibility, interoperability, and reusability).

The data FAIRification process ensures that a (meta)data schema/

method which captures relations between (omics) measurements,

data structure, and concepts are clearly defined and easily

interpretable by both humans and computers. The metadata

schema provides information about the omics data structure and

facilitates easy mapping of measured features onto persistent

identifiers and established biological networks to investigate the

connection between network elements (Krassowski et al., 2020).

Second, confidence inmulti-omics network-basedmethods requires

systematic evaluation and validation of both datasets and models as

a prerequisite for benchmarking toward reproducibility (Krassowski

et al., 2020). This approach requires harmonized datasets of quality

and quantity that provide unbiased ground truth to ensure that the

model at least predicts biologically verified features or edges. Given

that there is no gold standard metric for validation, it is critical to

validate on a variety of data sources and use metrics that are robust

to the level of missing data. Third, to replicate results from previous

studies, a detailed report of the analysis together with executable

analysis code is important to achieve this purpose. The report and

code could be hosted in repositories (e.g., GitHub, Bitbucket,

GitLab), reproducible scientific workflow management systems

(e.g., Nextflow, Galaxy), environment sharing avenues (e.g.,

Conda, Docker), or packaged as libraries for programming

languages (Canzler et al., 2020). In addition to the key issues,

adapting general best practices in the computational analysis will

aid reproducibility.

Heterogeneity

Heterogeneity (a measure of variation) of multi-omics datasets,

characterized by diverse data sources, data types, and data structure

results in computational complexity, analysis bias, and hampers a

robust and reproducible integrative network analysis (Lee et al.,

2021). There is an increasing awareness of controlling heterogeneity

acrossmulti-omics integrative analysis, butmost of them are focused

on paired data rather than non-paired data.

In the context of network-based integrative analysis

developing models and algorithms that could account for

non-uniformity by identifying the most robust signals

encompassing data, heterogeneity is important. This could be

in the form of variable selection models to identify important

covariates with the strength of multiple datasets, and yet

maintain the flexibility of variable selection between the

datasets to account for the data heterogeneity (Lima et al., 2020).

(Biological) Interpretation of results

Interpreting results from an integrative multi-omics analysis

is a process of disentangling multiple functional relationships.

Primarily, the systematic interpretation of results depends on the

kind of biological question and the type of omics measurements

used for the analysis. Different omics technologies may have

different levels of completeness and sensitivity in terms of

detecting biological features. This might result in some omics

data types containing more information than others as well as

impact the results significantly (Jung et al., 2020). It is important

to consider the inherent relationship between the omics profiles

used during the interpretation of the results. More often

functional annotation of features is based on generalized

information which allows a less comprehensive understanding

of the molecular mechanisms underlying a phenotype. For this

reason, incorporating relevant contextualized pathway

information (e.g., tissue-specific or cell-specific) in the analysis

has been useful to assess the functional relevance of nodes and

subnetworks on the disease/phenotypic landscape, thereby

facilitating interpretation.

The capacity to interpret predicted features and interactions

of known biological relevance may take the form of deductive

reasoning or semantic similarities to support a hypothesis (Guo

et al., 2022). In the context of algorithms, robust node weighting

and edge weighting metrics measured based on known evidence

(e.g., text mining, contextualized pathway information) is

important to make an inference that is potentially biologically

grounded and experimentally confirmable, knowing that the

association between omics layers extends from one-to-one and

one-to-many to many-to-many.

Sparsity

There is sparsity at the sample level (not all samples have

been profiled with the same assays) and at the feature level. The

latter is far more prominent in metabolomics and proteomics

than in DNA and RNA sequencing. This is mainly due to the

selection of peaks (intensities observed in MS1 survey scans) for

fragmentation by data-dependent acquisition (DDA) or data-

independent acquisition (DIA) tandem mass spectrometry

(LC-MS/MS) approaches (Guo and Huan, 2020; Davies

et al., 2021). Typically, an ideal acquisition mode ought to

produce spectra of high quality for as many of the ions present

in the sample as possible, however, that is not the case, resulting

in sparsity at the feature level. This issue is partly but not

completely resolved in the newer DIA and integrated DDA-

DIA modes which operate in a less-selective manner and have

higher coverage as compared to the older DDA mode (Sun

et al., 2021b; Davies et al., 2021).

Another contributing factor to sparsity in omics data in

tandem with omics technologies is the absence of

accumulation of a molecule to a detectable level by omics

platforms (evidenced even across platforms of the same omics

technology (e.g., next-generation RNA and DNA sequencing).

This is partly associated with experimental design, poor

biological sample quality, and sample processing.
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For computational analysis purposes, mputation can be used to

solve missing value problems; however, imputation does not apply

to all omics data types (Folch-Fortuny et al., 2015). In addition to

imputation, sample similaritymeasurementmethods such asmatrix

calibration (Li, 2015) and the Mahalanobis distance approach

(Sitaram et al., 2015) could be useful to extrapolate for missing

values, however, these methods are also limited to specific omics

data types. Thus, a feature may have values only in a small

percentage of samples leading to sparse matrices, where features

may have a wide variety of distributions. Some multi-omics data

integration methods can handle sparse data and also feature

reduction methods; however, skewed estimates might result in a

biased interpretation of results (Greenland et al., 2016). To address

the issue of sparsity in the context of networks, network integration

aggregates independent data sources to form amore comprehensive

attributed interactome, where the edges are qualified by specific

semantic relations or similarity correlation, and the level of

confidence in the node pair relationship based on evidence from

similarity scores, literature and graph databases (Guo et al., 2022).

Also, incorporating autoencoders, a deep learning approach, and its

denoising and variational variants autoencoders (e.g., sparse

autoencoders) have been used to address this issue in graph

neural networks (Ng, 2011). Autoencoders learn a representation

of the data from the input layer, enforce sparsity constraints and try

to reproduce it at the output layer. During this process, the model

can learn from incomplete data and generate new plausible values

for imputation (Pereira et al., 2020).

Future directions

An area of prospect for integrative multi-omics network-

based research, which remains an important opportunity, is

making efforts to limit the challenges linked with network-

based multi-omics integration in the context of

heterogeneity, reproducibility, sparsity, and interpretation

of results as discussed above. Another area of importance is

building hybrid integrative models which are capable of

handling paired and non-paired omics data, as well as

other biomedical data. Furthermore, efforts to develop a

framework tool or metadata schema that standardizes or

harmonizes various multi-omics approaches for data

integration could be useful. For example, such a

framework may leverage an optimized approach to weigh

and prioritize genes, pathways, biological processes, drug

targets, and relationships between various other biological

FIGURE 4
Overview of the discussed network-based multi-omics integrative tools and research questions (in the circle) that they can be applied to. The
tools implement different methods including unsupervised machine learning (*), supervised machine learning (**), neural networks (***), diffusion-
based (+), random walk (++), differential network (#), probabilistic graphical model (##) and Bayesian methods (###).
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features from the multi-omics datasets. However, such

framework tools will also require the expertise of domain

experts, as well as the detailed and uniform characterization

of statistical and technical attributes of the data (Krassowski

et al., 2020).

Discussion

Network-based integrative multi-omics analysis offers the

opportunity to elucidate interactions that can occur among all

classes of molecules in a biological system as well as information

flow between and within multiple omics levels. In addition, it

potentially provides substantial improvement of biological

understanding by helping in the interpretation of results, as

compared to single omics analysis, although collecting multi-

omics data from different sources does not guarantee that it will

be possible to learn about (all of) the relationships present.

Various graph-based multi-omics methods have been

developed for network analysis; however, their application is

dependent on the scope of the research question of interest and

the (omics) data types available. Consequently, this will inform

the choice of an integrative analytical approach and tools. The

network-based methods discussed use different scoring metrics,

algorithms, and data types which together translate into a

comprehensive data source/graph to be employed for

interpretation into biological knowledge. The overviewand

description of the tools for network-based integrative analysis

(Table 1) show that different approaches can be implemented in

different ways to achieve similar results. Additionally, the

classification of tools (Figure 4) highlights that some tools can

be applied to more than one research question. However, due to

the difference in approaches of these methods, we recommend

the use of multiple analytical and methodological approaches

during integrative data analysis, to compare and validate the

study results in different ways before interpretation for further

downstream tests or follow-up studies.
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