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ABSTRACT

We present methods to estimate the physical properties of house-
hold containers and their fillings manipulated by humans. We use
a lightweight, pre-trained convolutional neural network with coor-
dinate attention as a backbone model of the pipelines to accurately
locate the object of interest and estimate the physical properties in
the CORSMAL Containers Manipulation (CCM) dataset. We ad-
dress the filling type classification with audio data and then combine
this information from audio with video modalities to address the fill-
ing level classification. For the container capacity, dimension, and
mass estimation, we present a data augmentation and consistency
measurement to alleviate the over-fitting issue in the CCM dataset
caused by the limited number of containers. We augment the train-
ing data using an object-of-interest-based re-scaling that increases
the variety of physical values of the containers. We then perform
the consistency measurement to choose a model with low prediction
variance in the same containers under different scenes, which en-
sures the generalization ability of the model. Our method improves
the generalization ability of the models to estimate the property of
the containers that were not previously seen in the training.
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1. INTRODUCTION

Human-robot collaboration is an important concept in the modern
industry, where robots are required to interact and cooperate with hu-
mans [1, 2, 3, 4, 5, 6]. In this work, we aim at addressing tasks that
are crucial in human-robot object handover: estimating the physi-
cal properties of target containers and their fillings. A good estima-
tion model should generalize to containers with various materials,
shapes, textures, and transparency. However, estimating the physi-
cal properties of the container is still challenging due to the invisible
content, occlusion, and variety of household containers.

Existing methods [7, 8, 9] address the classification of fill-
ing level and type mostly with audio data, whereas the estimation
of capacity, dimension, and mass of the container are remaining
problems. A dataset available and commonly used to estimate
these properties is the CORSMAL Containers Manipulation (CCM)
dataset [10]. Training a neural network for regressing the capacity,
dimension and mass value on this dataset, which with only 9 objects
appears repeatedly in the total 684 videos, can be easily over-fitted
and eventually make the regression similar to classification. There-
fore, neural networks trained directly on the dataset, such as [9],
usually lead to poor generalization. Other works [7, 8] that apply
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Fig. 1. Overview of our approach for the filling level and type classi-
fication of the container. Key– CA: Coordinate Attention, FC: Fully
Connected, LSTM: Long Short Term Memory, Log-Mel: Log-Mel
spectrogram.

non-deep-learning approaches for estimating the container capacity
show certain generalization ability but have limited performance.

In this paper, we present methods to estimate the physical prop-
erties of household containers, such as filling type and level classi-
fication, container capacity, mass, and dimension estimation using
the CCM dataset [10]. We use MobileNetv2 [11] with the coordi-
nate attention (CA) [12] as a backbone model, with minor changes
of input modalities for each task. Our backbone model incorpo-
rates positional information, which shows good generalization abil-
ity with both audio and RGB-Depth (RGBD) inputs. The audio
data is converted to clips of log-Mel spectrogram [13] which are
used as input for the filling type classification. To address the fill-
ing level classification, we jointly combine the intermediate audio
feature from the filling type classification with the intermediate vi-
sual feature from the corresponding RGB frames. For the estimation
of container capacity, dimensions and mass, we use RGBD images
cropped by YOLO-v5 [14] to filter out the irrelevant information in
the target frame. To address the generalization problem, we augment
the annotations for container capacity, dimension, and mass using
the geometric relationship between 2D images and 3D objects by
randomly resizing the detected object of interest and changing the
value of the label based on the geometric relationship. We further
present a variance-based evaluation that measures the consistency of
the model in each container to evaluate the generalization ability of
trained models.
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Fig. 2. Overview of our framework to estimate container capacity, mass, and dimension. We use the same network architecture for these tasks
and employ the data augmentation strategy to augment the target objects detected from YOLO-v5 [14]. At training time, we perform training
with RGBD input and evaluate the variance of the videos with the same container k.

2. PROPOSED METHOD

We present our methods to perform filling level and type classi-
fication (Section 2.1) and container capacity, mass, and dimen-
sion estimation (Section 2.2). We use the CCM dataset [10] that
provides audio-visual recordings where people manipulate con-
tainers including cups, drinking glass, and food boxes by pouring
the filling into the container, shaking the food box, or perform-
ing no action. The container filling is labeled with one of four
classes, {empty, pasta, rice,water}, with three different filling lev-
els, {0%, 50%, 90%}. Among the video data from four views, we
use the RGB and depth images captured from a camera facing the
human operator.

2.1. Filling level and type classification

Figure 1 shows the pipeline of estimating the filling type and level
of the container. Inspired by [8], we also rely on the clipped audios
and voting strategy for the filling type estimation and we adopt the
LSTM [15] network passed by the intermediate feature from the fill-
ing type estimation to predict the filling level. However, instead of
using the VGG backbone [16] on the audio features, we use a more
efficient backbone, MobileNetv2 [11] with CA [12]. For the fill-
ing level classification, we employ a multi-modal approach that inte-
grates information from audio and RGB video. We combine the in-
termediate audio feature from the filling type classification with the
RGB feature since combining different modalities can utilize more
relevant object features and improve the generalization of the model
in a small training set.
Backbone model. To emphasize the information for the target tasks,
we include the CA [12] to MobileNetv2 [11]. Unlike the Squeeze-
and-Excitation attention [17] which neglects the positional informa-
tion, the CA generates the channel attention with the spatial informa-
tion, which captures the useful information from the audio feature
and RGB frames by encoding the long-range positional information.
Feature extraction. An audio sequence usually contains various
events, which may not be relevant to our objective. Training a model
on such audio sequences may introduce noise caused by other events.
Using additional existing annotation containing the starting and end-
ing time of events in the audio signals [8], we divide the signals into
a series of audio clips overlapping in time. The clips which do not
contain the target events will be assigned to an empty label. These
audio clips will be used for extracting the log-Mel spectrogram [13]
and the training will be performed on these clips instead of the whole

audio sequence. The corresponding RGB video frames of each au-
dio clip are also extracted to jointly estimate the filling level in a
time-series manner.
Filling type classification. Let us denote an n-th audio sequence
with multiple clips, where the t-th audio feature map, i.e. the log-
Mel spectrogram, Xn

t , is extracted using the audio clips with the
length of 0.025s and the stride of 0.01s, with an assigned label, Y nt .
In this task, we aim to find a model fθT , with learned parameters
θT on the audio features, to perform the classification on the four
classes of filling types. The objective function is:

θT = argmin
θ

∑
n

∑
t

L (fθ (Xn
t ) , Y

n
t ), (1)

where L is the cross-entropy loss. At the inference time, we perform
classification on each Xn

t in audio. As each Xn
t generates an in-

dependent prediction, we adopt a voting strategy to decide the final
predictions. If the number of non-empty predictions does not exceed
the threshold, which we empirically set to 5, the sequence is labelled
to empty. Otherwise, the label is the class with the most predictions.
Filling level classification. We adopt a multi-modal fusion strat-
egy, which integrates information from multiple modalities. As each
modality captures specific characteristics of the underlying informa-
tion, combining multiple complementary modalities can provide a
highly comprehensive set of data. As the filling level of the con-
tainers varies over time, we perform this task in a time-series man-
ner. We first align the frames with the center of the generated audio
clips. These audio and RGB frames are then used as input to the
pre-trained audio model (fθT ) from the filling type estimation and
the pre-trained vision model from ImageNet classification [18], re-
spectively, since the CCM training data is not sufficient to train the
whole pipeline from scratch. Note that the parameters for the pre-
trained audio and vision models are fixed during training to avoid
the model over-fit to the limited training samples. We retrieve the
embeddings before the fully connected (FC) layer from audio and
vision models. The intermediate features from these two models are
then concatenated and fed into a LSTM network [15] with FC layers
to classify the filling level. We aim to find the model gθL with the
learned parameters θL as follows:

θL = argmin
θ

∑
n

L(gθ(fθT (Xn
1...t), Z

n
1...t), Y

n) (2)

where Xn
1...t, Z

n
1...t are the audio and RGB data, respectively.



2.2. Container capacity, mass, and dimension estimation

Figure 2 shows the pipeline of estimating the capacity, mass, and
dimensions. We utilize the same network structures with previous
tasks, i.e. the MobileNetv2 with CA, as the backbone model. We
first crop the object of interest using bounding boxes containing the
target object. We then perform the data augmentation and use the
augmented data as input to train the model for better generalization.
The transfer learning strategy, which uses the trained parameters on
the dimension estimation, is also adopted to improve the general-
ization ability of our model on capacity and mass estimation. After
generating the predictions, we apply the proposed consistency eval-
uation to find the model with less variance, which may have a better
generalization on those unseen containers.
Backbone model. As an RGBD image requires 4 channel inputs,
we initialize the parameters for the first 3 input channels with Mo-
bileNetv2 pre-trained on ImageNet classification [18] and randomly
initialize the parameters for the 4-th channel of our model. We also
include the CA [12] for better generalization of the model.
Container detection. Prior to estimating the capacity, mass, and
dimension, we first locate the container’s position in the images ex-
tracted from videos since the background does not contribute to the
predictions directly but occupies a large portion in the image. We
apply a YOLO-v5 [14] object detector to localize the object in the
RGB frame and crop the object of interest in both the RGB frame
and corresponding depth image (already spatially aligned). As there
is no annotation of bounding boxes in the CCM dataset, we use the
detector pre-trained on COCO dataset [19].
Data augmentation. Even if the training set of CCM contains 684
audio-visual recordings with different manipulations and conditions,
the labels for container capacity, mass and dimensions are limited to
the number of containers used in the set, i.e. 9. Considering that
the model estimates the continuous values, training the model to ad-
dress such a regression problem on the CCM dataset may cause an
over-fitting issue. Assuming that, given a fixed depth of the target
container, the capacity, dimension, and mass can be proportional to
the number of pixels that belong to the target object, we make use
of this relationship to perform the data augmentation. Specifically,
we randomly resize the target container image by a scale factor s and
change their corresponding labels with such a scale factor. Consider-
ing that the depth value has not been changed and by neglecting the
correction for the perspective projection of the object, we multiply
s2 to the capacity and mass and s to the dimension values according
to scaling the target container image by s. Note that this augmen-
tation is an approximation that might not be physically correct. To
compensate for the noise introduced by the proposed approach, we
sample s according to a normal distribution with the mean µ = 1 and
the standard deviation σ ∈ [0.5, 1.0]. The distribution is truncated to
make sure s ∈ [0.5, 1.5]. The final images are padded to [640, 640]
and resized to [320, 320] for reducing the computation cost.
Transfer learning. The container capacity and mass can be obtained
if the dimensions and the materials (i.e density) are known. We thus
consider that the container capacity and mass estimations are higher-
level tasks than the dimension estimation as the model needs to not
only detect the object shape but also learn semantic context, such
as material and volume from the image. We thus employ a transfer
learning that uses knowledge learned from the container dimension
estimation for the container capacity and mass estimation. We first
train our model on the dimension estimation and then use the pre-
trained weights as initial weights to train models for the capacity and
mass estimation. Figure 4 visualizes the intra-class variance in our
validation dataset. We can observe that the model trained with the
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Fig. 3. Illustration of our data augmentation. The object is resized
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Fig. 4. Effect of the transfer learning on capacity estimation.

weights transferred from the dimension data can maintain a more
stable variance curve compared to the model trained from scratch.
The model can encode the representations of the target container
after learning to predict the width and height, which improves the
generalization ability of our model.
Consistency evaluation. Although we perform the augmentation
on the training set, the predictions of the same containers should be
consistent at the test time, which indicates a good generalization.
Given the predictions of n-th video frame t with container k, Ŷ nt,k,
and its real-value label, Yk, we measure the total variance, V ar, as:

V ar =
∑
k

∑
n

∑
t

(Ŷ nt,k − Yk)2. (3)

Using the estimated variance of the models on our manually cho-
sen validation set, we select the model with high accuracy with low
variance to ensure the generalization ability.

3. EXPERIMENTS

3.1. Setup

We evaluate our models on the CCM dataset, which is divided into
the public train (9 containers, 684 configurations), public test (3 un-
seen containers, 228 configurations), and private test (3 unseen con-
tainers, 228 configurations). We then split the training set into two
parts: 7 objects for training and 2 objects for self-validation. For ob-
ject detection, we use YOLO-v5 pre-trained on COCO dataset [19].
As classes in COCO dataset are different from those in the CCM
dataset, similar to [9], we detect objects according to the categories:
cups, wine, glasses, vases (for wine glasses), books, and laptops (for
boxes). If object detection is failed, we use the average prediction
from the training dataset. For training, we use Adam [20] optimizer
with a learning rate of 0.001 for 100 epochs for each task except



Table 1. Results of the filling type and level classification and con-
tainer capacity estimation. The best results are highlighted in bold.
Key– A: audio, C: color image, D: depth image.

Method Filling Type Filling Level Capacity

Input Score Input Score Input Score
KEIO-ICS [21] A 80.72 A 65.73 C 72.26

BIT [9] A 94.26 A,C 79.65 C 60.57
HVRL [8] A 96.95 A 78.65 C,D 54.79

Concatenation[7] A,C 41.83 A,C 42.70 C 62.57
ACC [22] A 94.50 A 80.84 - -

NTNU [23] A 86.89 - - D 67.30
Ours A 99.13 A,C 77.40 C,D 59.51

Table 2. Results of the container mass and dimension, width (top
and bottom) and height estimation. The best results are in bold.
Key– A: audio, C: Color image, D: depth image.

Input Mass Width (top) Width (bottom) Height
KEIO-ICS [21] C 40.19 69.09 59.74 70.07

Visual [24] C,D 49.64 - - -
Ours C,D 58.78 80.01 76.09 74.33

the filling type classification trained for 200 epochs. We use cross-
entropy loss for the filling level and type classification and `1 loss
the container capacity, mass, dimension estimation.

3.2. Implementation Details

For the filling level and type classification, we extract the log-Mel
spectrogram of 64 dimensions from 8-channel audios. The fully-
connected layers in the filling type classification contain two layers
of size 512×128 and 128×N , where N is the number of classes,
and in the filling level classification the size becomes 1280×N with
0.2 dropout rate. The LSTM network contains 3 layers of 256 units
each with 0.15 dropout rate. For the MobileNetv2 backbone, we
use the original structure [11], except the last output layer that is
modified to fit the desired output. The feature of the audio and color
(RGB) image extracted by MobileNet is (1280,1) after average pool-
ing. For the container capacity, mass and dimensions estimation, we
use the depth information provided by the CCM dataset, i.e. the dis-
tance from the object to the camera. To handle the inaccurate depth
information, e.g. the flattened depth of a cylindrical surface, we con-
catenate the depth map with the RGB channels and process them in
the network in the same way.

3.3. Results

Table 1 and 2 show the results of the existing methods and ours for
the filling type and level classification and container capacity, mass,
and dimension estimation. The benchmark scores1, averages of the
public and private test dataset, are based on 10 performance scores
that quantify the accuracy of the estimations and consider the impact
of the estimations on the quality of human-to-robot handover and
delivery of the container by the robot in simulator [6].

As shown in Table 1, our method outperforms other methods for
the filling type classification. ACC [22] shows the best result in the
filling level estimation, which uses multiple classifiers to first detect
the action by the human and then the filling type. The audio data can
generalize well on different containers for the filling type classifica-
tion. However, in the filling level estimation, the model using audio-
only may be distracted by some background noise. We examine our
multi-modality strategy for the filling level estimation. Table 3 show
the results of the ablation study. Combination with the vision-based

1http://corsmal.eecs.qmul.ac.uk/challenge.html

Table 3. Effect of input modalities. Key– A: audio, C: color image.
Method Input Filling Level

Ours A 75.53
A,C 77.40
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Fig. 5. Effect of the proposed data augmentation on the capacity
estimation. The train and validation set are manually selected with
different containers using the public training set. The original curves
(light color) are smoothed (dark color) for better visualization.

encoder improves the generalization of our model, which makes
the total score higher than the audio-based model. Compared with
KEIO-ICS [21], we obtain a higher score using the audio as input
only, showing the effectiveness of our backbone model.

For the container capacity estimation, KEIO-ICS [21] shows the
best result. While HVRL [8] and KEIO-ICS use a model specific to
solve each task, we use the same backbone for the five estimation
tasks, which can be more generalizable. In Table 2, our method out-
performs others for estimating the container mass and dimensions,
i.e., the width at the top and bottom, and height of the container.

3.4. Analysis

We perform ablation studies to analyze the effect of the modality
fusion and the proposed data augmentation.

We examine the effect of the modality-fusion strategy in the fill-
ing level estimation in Table 3. The results show that fusing the audio
and visual features improves the performance of the filling level es-
timation as the vision cues can provide additional information, e.g.,
the filling level of the transparent containers.

We analyze the effect of the proposed data augmentation in our
validation set (split from the training set). As shown in Figure 5,
in the container capacity estimation, the validation accuracy of the
model with the data augmentation is higher as the epochs increase
compared to the model without the augmentation.

4. CONCLUSION

We presented methods to estimate the physical properties of the
household containers for human-robot collaboration. The key idea
of our approach is to improve the generalization ability of the mod-
els using multi-modal information with attention and geometric re-
lationship between 2D images and 3D containers. Future works
include the investigation of a physically-correct data augmentation
method and transfer learning on each task.
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